1
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Kozlov D, Rodimova S, Kuznetsova D. The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review). Sovrem Tekhnologii Med 2023; 15:54-79. [PMID: 39967915 PMCID: PMC11832066 DOI: 10.17691/stm2023.15.5.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 01/03/2025] Open
Abstract
Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ. This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently being developed.
Collapse
Affiliation(s)
- D.S. Kozlov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, I Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Junior Researcher, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
3
|
Zietzer A, Steffen E, Niepmann S, Düsing P, Hosen MR, Liu W, Jamme P, Al-Kassou B, Goody PR, Zimmer S, Reiners KS, Pfeifer A, Böhm M, Werner N, Nickenig G, Jansen F. MicroRNA-mediated vascular intercellular communication is altered in chronic kidney disease. Cardiovasc Res 2022; 118:316-333. [PMID: 33135066 DOI: 10.1093/cvr/cvaa322] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/23/2020] [Indexed: 02/27/2024] Open
Abstract
AIMS Chronic kidney disease (CKD) is an independent risk factor for the development of coronary artery disease (CAD). For both, CKD and CAD, the intercellular transfer of microRNAs (miRs) through extracellular vesicles (EVs) is an important factor of disease development. Whether the combination of CAD and CKD affects endothelial function through cellular crosstalk of EV-incorporated miRs is still unknown. METHODS AND RESULTS Out of 172 screened CAD patients, 31 patients with CAD + CKD were identified and matched with 31 CAD patients without CKD. Additionally, 13 controls without CAD and CKD were included. Large EVs from CAD + CKD patients contained significantly lower levels of the vasculo-protective miR-130a-3p and miR-126-3p compared to CAD patients and controls. Flow cytometric analysis of plasma-derived EVs revealed significantly higher numbers of endothelial cell-derived EVs in CAD and CAD + CKD patients compared to controls. EVs from CAD + CKD patients impaired target human coronary artery endothelial cell (HCAEC) proliferation upon incubation in vitro. Consistent with the clinical data, treatment with the uraemia toxin indoxyl sulfate (IS)-reduced miR-130a-3p levels in HCAEC-derived EVs. EVs from IS-treated donor HCAECs-reduced proliferation and re-endothelialization in EV-recipient cells and induced an anti-angiogenic gene expression profile. In a mouse-experiment, intravenous treatment with EVs from IS-treated endothelial cells significantly impaired endothelial regeneration. On the molecular level, we found that IS leads to an up-regulation of the heterogenous nuclear ribonucleoprotein U (hnRNPU), which retains miR-130a-3p in the cell leading to reduced vesicular miR-130a-3p export and impaired EV-recipient cell proliferation. CONCLUSION Our findings suggest that EV-miR-mediated vascular intercellular communication is altered in patients with CAD and CKD, promoting CKD-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Andreas Zietzer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Eva Steffen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sven Niepmann
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Mohammed Rabiul Hosen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Weiyi Liu
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Paul Jamme
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Baravan Al-Kassou
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Philipp Roger Goody
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sebastian Zimmer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Katrin S Reiners
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael Böhm
- Medical Department III, Faculty of Medicine, Saarland University Medical Center, Saarland University, Kirrberger Straße 100, 66421 Homburg, Germany
| | - Nikos Werner
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Medical Department II, Krankenhaus der Barmherzigen Brüder Trier, Nordallee 1, 54292 Trier, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
4
|
Fallatah B, Shuaib M, Adroub S, Paytuví-Gallart A, Della Valle F, Nadeef S, Lanzuolo C, Orlando V. Ago1 controls myogenic differentiation by regulating eRNA-mediated CBP-guided epigenome reprogramming. Cell Rep 2021; 37:110066. [PMID: 34852230 DOI: 10.1016/j.celrep.2021.110066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
The role of chromatin-associated RNAi components in the nucleus of mammalian cells and in particular in the context of developmental programs remains to be elucidated. Here, we investigate the function of nuclear Argonaute 1 (Ago1) in gene expression regulation during skeletal muscle differentiation. We show that Ago1 is required for activation of the myogenic program by supporting chromatin modification mediated by developmental enhancer activation. Mechanistically, we demonstrate that Ago1 directly controls global H3K27 acetylation (H3K27ac) by regulating enhancer RNA (eRNA)-CREB-binding protein (CBP) acetyltransferase interaction, a key step in enhancer-driven gene activation. In particular, we show that Ago1 is specifically required for myogenic differentiation 1 (MyoD) and downstream myogenic gene activation, whereas its depletion leads to failure of CBP acetyltransferase activation and blocking of the myogenic program. Our work establishes a role of the mammalian enhancer-associated RNAi component Ago1 in epigenome regulation and activation of developmental programs.
Collapse
Affiliation(s)
- Bodor Fallatah
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Muhammad Shuaib
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Sabir Adroub
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | | | - Francesco Della Valle
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Seba Nadeef
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council, 20090 Milan, Italy; National Institute of Molecular Genetics (INGM) "Romeo ed Enrica Invernizzi," Chromatin and Nuclear Architecture Laboratory, 20122 Milan, Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia.
| |
Collapse
|
5
|
Shen Q, Wang YE, Truong M, Mahadevan K, Wu JJ, Zhang H, Li J, Smith HW, Smibert CA, Palazzo AF. RanBP2/Nup358 enhances miRNA activity by sumoylating Argonautes. PLoS Genet 2021; 17:e1009378. [PMID: 33600493 PMCID: PMC7924746 DOI: 10.1371/journal.pgen.1009378] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/02/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Mutations in RanBP2 (also known as Nup358), one of the main components of the cytoplasmic filaments of the nuclear pore complex, contribute to the overproduction of acute necrotizing encephalopathy (ANE1)-associated cytokines. Here we report that RanBP2 represses the translation of the interleukin 6 (IL6) mRNA, which encodes a cytokine that is aberrantly up-regulated in ANE1. Our data indicates that soon after its production, the IL6 messenger ribonucleoprotein (mRNP) recruits Argonautes bound to let-7 microRNA. After this mRNP is exported to the cytosol, RanBP2 sumoylates mRNP-associated Argonautes, thereby stabilizing them and enforcing mRNA silencing. Collectively, these results support a model whereby RanBP2 promotes an mRNP remodelling event that is critical for the miRNA-mediated suppression of clinically relevant mRNAs, such as IL6.
Collapse
Affiliation(s)
- Qingtang Shen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yifan E. Wang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Mathew Truong
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kohila Mahadevan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jingze J. Wu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hui Zhang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jiawei Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Harrison W. Smith
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Craig A. Smibert
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
6
|
Dicing the Disease with Dicer: The Implications of Dicer Ribonuclease in Human Pathologies. Int J Mol Sci 2020; 21:ijms21197223. [PMID: 33007856 PMCID: PMC7583940 DOI: 10.3390/ijms21197223] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gene expression dictates fundamental cellular processes and its de-regulation leads to pathological conditions. A key contributor to the fine-tuning of gene expression is Dicer, an RNA-binding protein (RBPs) that forms complexes and affects transcription by acting at the post-transcriptional level via the targeting of mRNAs by Dicer-produced small non-coding RNAs. This review aims to present the contribution of Dicer protein in a wide spectrum of human pathological conditions, including cancer, neurological, autoimmune, reproductive and cardiovascular diseases, as well as viral infections. Germline mutations of Dicer have been linked to Dicer1 syndrome, a rare genetic disorder that predisposes to the development of both benign and malignant tumors, but the exact correlation of Dicer protein expression within the different cancer types is unclear, and there are contradictions in the data. Downregulation of Dicer is related to Geographic atrophy (GA), a severe eye-disease that is a leading cause of blindness in industrialized countries, as well as to psychiatric and neurological diseases such as depression and Parkinson's disease, respectively. Both loss and upregulation of Dicer protein expression is implicated in severe autoimmune disorders, including psoriasis, ankylosing spondylitis, rheumatoid arthritis, multiple sclerosis and autoimmune thyroid diseases. Loss of Dicer contributes to cardiovascular diseases and causes defective germ cell differentiation and reproductive system abnormalities in both sexes. Dicer can also act as a strong antiviral with a crucial role in RNA-based antiviral immunity. In conclusion, Dicer is an essential enzyme for the maintenance of physiology due to its pivotal role in several cellular processes, and its loss or aberrant expression contributes to the development of severe human diseases. Further exploitation is required for the development of novel, more effective Dicer-based diagnostic and therapeutic strategies, with the goal of new clinical benefits and better quality of life for patients.
Collapse
|
7
|
Ferguson CM, Echeverria D, Hassler M, Ly S, Khvorova A. Cell Type Impacts Accessibility of mRNA to Silencing by RNA Interference. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:384-393. [PMID: 32650236 PMCID: PMC7340969 DOI: 10.1016/j.omtn.2020.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
RNA interference (RNAi) is a potent mechanism that silences mRNA and protein expression in all cells and tissue types. RNAi is known to exert many of its functional effects in the cytoplasm, and thus, the cellular localization of target mRNA may impact observed potency. Here, we demonstrate that cell identity has a profound impact on accessibility of apolipoprotein E (ApoE) mRNA to RNAi. We show that, whereas both neuronal and glial cell lines express detectable ApoE mRNA, in neuronal cells, ApoE mRNA is not targetable by RNAi. Screening of a panel of thirty-five chemically modified small interfering RNAs (siRNAs) did not produce a single hit in a neuronal cell line, whereas up to fifteen compounds showed strong efficacy in glial cells. Further investigation of the cellular localization of ApoE mRNA demonstrates that ApoE mRNA is partially spliced and preferentially localized to the nucleus (∼80%) in neuronal cells, whereas more than 90% of ApoE mRNA is cytoplasmic in glial cells. Such an inconsistency in intracellular localization and splicing might provide an explanation for functional differences in RNAi compounds. Thus, cellular origin might have an impact on accessibility of mRNA to RNAi and should be taken into account during the screening process.
Collapse
Affiliation(s)
- Chantal M Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies. Int J Mol Sci 2020; 21:ijms21114007. [PMID: 32503341 PMCID: PMC7312461 DOI: 10.3390/ijms21114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of gene expression has emerged as a fundamental element of transcript homeostasis. Key effectors in this process are the Argonautes (AGOs), highly specialized RNA-binding proteins (RBPs) that form complexes, such as the RNA-Induced Silencing Complex (RISC). AGOs dictate post-transcriptional gene-silencing by directly loading small RNAs and repressing their mRNA targets through small RNA-sequence complementarity. The four human highly-conserved family-members (AGO1, AGO2, AGO3, and AGO4) demonstrate multi-faceted and versatile roles in transcriptome’s stability, plasticity, and functionality. The post-translational modifications of AGOs in critical amino acid residues, the nucleotide polymorphisms and mutations, and the deregulation of expression and interactions are tightly associated with aberrant activities, which are observed in a wide spectrum of pathologies. Through constantly accumulating information, the AGOs’ fundamental engagement in multiple human diseases has recently emerged. The present review examines new insights into AGO-driven pathology and AGO-deregulation patterns in a variety of diseases such as in viral infections and propagations, autoimmune diseases, cancers, metabolic deficiencies, neuronal disorders, and human infertility. Altogether, AGO seems to be a crucial contributor to pathogenesis and its targeting may serve as a novel and powerful therapeutic tool for the successful management of diverse human diseases in the clinic.
Collapse
|
9
|
Shuaib M, Parsi KM, Thimma M, Adroub SA, Kawaji H, Seridi L, Ghosheh Y, Fort A, Fallatah B, Ravasi T, Carninci P, Orlando V. Nuclear AGO1 Regulates Gene Expression by Affecting Chromatin Architecture in Human Cells. Cell Syst 2019; 9:446-458.e6. [PMID: 31629687 DOI: 10.1016/j.cels.2019.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/29/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
The impact of mammalian RNA interference components, particularly, Argonaute proteins, on chromatin organization is unexplored. Recent reports indicate that AGO1 association with chromatin appears to influence gene expression. To uncover the role of AGO1 in the nucleus, we used a combination of genome-wide approaches in control and AGO1-depleted HepG2 cells. We found that AGO1 strongly associates with active enhancers and RNA being produced at those sites. Hi-C analysis revealed AGO1 enrichment at the boundaries of topologically associated domains (TADs). By Hi-C in AGO1 knockdown cells, we observed changes in chromatin organization, including TADs and A/B compartment mixing, specifically in AGO1-bound regions. Distinct groups of genes and especially eRNA transcripts located within differentially interacting loci showed altered expression upon AGO1 depletion. Moreover, AGO1 association with enhancers is dependent on eRNA transcription. Collectively, our data suggest that enhancer-associated AGO1 contributes to the fine-tuning of chromatin architecture and gene expression in human cells.
Collapse
Affiliation(s)
- Muhammad Shuaib
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Krishna Mohan Parsi
- IRCSS Fondazione, Santa Lucia, Epigenetics and Genome Reprogramming, Rome, Italy
| | - Manjula Thimma
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Sabir Abdu Adroub
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Loqmane Seridi
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Yanal Ghosheh
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Alexandre Fort
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Bodor Fallatah
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Valerio Orlando
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia; IRCSS Fondazione, Santa Lucia, Epigenetics and Genome Reprogramming, Rome, Italy.
| |
Collapse
|
10
|
Ramchandran R, Chaluvally-Raghavan P. miRNA-Mediated RNA Activation in Mammalian Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 28639193 DOI: 10.1007/978-981-10-4310-9_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNA (miRNA or miR) is a small noncoding RNA molecule ~22 nucleotides in size, which is found in plants, animals, and some viruses. miRNAs are thought to primarily down regulate gene expression by binding to 3' untranslated regions of target transcripts, thereby triggering mRNA cleavage or repression of translation. Recently, evidence has emerged that miRNAs can interact with the promoter and activate gene expression. This mechanism, called RNA activation (RNAa), is a process of transcriptional activation where the direct interaction of miRNA on the promoter triggers the recruitment of transcription factors and RNA-Polymerase-II on the promoter to activate gene transcription. To date, very little is known about the mechanism by which miRNA regulates RNA activation (RNAa) and their role in tumor progression. This is an emerging field in RNA biology. In this chapter, we describe the mechanisms utilized by miRNAs to activate transcription.
Collapse
Affiliation(s)
- Ramani Ramchandran
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
11
|
Hicks JA, Li L, Matsui M, Chu Y, Volkov O, Johnson KC, Corey DR. Human GW182 Paralogs Are the Central Organizers for RNA-Mediated Control of Transcription. Cell Rep 2018; 20:1543-1552. [PMID: 28813667 DOI: 10.1016/j.celrep.2017.07.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/10/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023] Open
Abstract
In the cytoplasm, small RNAs can control mammalian translation by regulating the stability of mRNA. In the nucleus, small RNAs can also control transcription and splicing. The mechanisms for RNA-mediated nuclear regulation are not understood and remain controversial, hindering the effective application of nuclear RNAi and investigation of its natural regulatory roles. Here, we reveal that the human GW182 paralogs TNRC6A/B/C are central organizing factors critical to RNA-mediated transcriptional activation. Mass spectrometry of purified nuclear lysates followed by experimental validation demonstrates that TNRC6A interacts with proteins involved in protein degradation, RNAi, the CCR4-NOT complex, the mediator complex, and histone-modifying complexes. Functional analysis implicates TNRC6A, NAT10, MED14, and WDR5 in RNA-mediated transcriptional activation. These findings describe protein complexes capable of bridging RNA-mediated sequence-specific recognition of noncoding RNA transcripts with the regulation of gene transcription.
Collapse
Affiliation(s)
- Jessica A Hicks
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Liande Li
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Masayuki Matsui
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Yongjun Chu
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Oleg Volkov
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Krystal C Johnson
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
| |
Collapse
|
12
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
13
|
Katz S, Cussigh D, Urbán N, Blomfield I, Guillemot F, Bally-Cuif L, Coolen M. A Nuclear Role for miR-9 and Argonaute Proteins in Balancing Quiescent and Activated Neural Stem Cell States. Cell Rep 2017; 17:1383-1398. [PMID: 27783951 PMCID: PMC5098119 DOI: 10.1016/j.celrep.2016.09.088] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/07/2016] [Accepted: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
Throughout life, adult neural stem cells (NSCs) produce new neurons and glia that contribute to crucial brain functions. Quiescence is an essential protective feature of adult NSCs; however, the establishment and maintenance of this state remain poorly understood. We demonstrate that in the adult zebrafish pallium, the brain-enriched miR-9 is expressed exclusively in a subset of quiescent NSCs, highlighting a heterogeneity within these cells, and is necessary to maintain NSC quiescence. Strikingly, miR-9, along with Argonaute proteins (Agos), is localized to the nucleus of quiescent NSCs, and manipulating their nuclear/cytoplasmic ratio impacts quiescence. Mechanistically, miR-9 permits efficient Notch signaling to promote quiescence, and we identify the RISC protein TNRC6 as a mediator of miR-9/Agos nuclear localization in vivo. We propose a conserved non-canonical role for nuclear miR-9/Agos in controlling the balance between NSC quiescence and activation, a key step in maintaining adult germinal pools.
Collapse
Affiliation(s)
- Shauna Katz
- Zebrafish Neurogenetics Group, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, CNRS-University Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Delphine Cussigh
- Zebrafish Neurogenetics Group, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, CNRS-University Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology, Institut Pasteur and CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Noelia Urbán
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Isabelle Blomfield
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - François Guillemot
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Group, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, CNRS-University Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology, Institut Pasteur and CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France.
| | - Marion Coolen
- Zebrafish Neurogenetics Group, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, CNRS-University Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology, Institut Pasteur and CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
14
|
D'Alessandro G, d'Adda di Fagagna F. Transcription and DNA Damage: Holding Hands or Crossing Swords? J Mol Biol 2017; 429:3215-3229. [DOI: 10.1016/j.jmb.2016.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/12/2023]
|
15
|
Eckenfelder A, Ségéral E, Pinzón N, Ulveling D, Amadori C, Charpentier M, Nidelet S, Concordet JP, Zagury JF, Paillart JC, Berlioz-Torrent C, Seitz H, Emiliani S, Gallois-Montbrun S. Argonaute proteins regulate HIV-1 multiply spliced RNA and viral production in a Dicer independent manner. Nucleic Acids Res 2017; 45:4158-4173. [PMID: 28003477 PMCID: PMC5397155 DOI: 10.1093/nar/gkw1289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022] Open
Abstract
Argonaute (Ago) proteins associate with microRNAs (miRNAs) to form the core of the RNA-induced silencing complex (RISC) that mediates post-transcriptional gene silencing of target mRNAs. As key players in anti-viral defense, Ago proteins are thought to have the ability to interact with human immunodeficiency virus type 1 (HIV-1) RNA. However, the role of this interaction in regulating HIV-1 replication has been debated. Here, we used high throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) to explore the interaction between Ago2 and HIV-1 RNA in infected cells. By only considering reads of 50 nucleotides length in our analysis, we identified more than 30 distinct binding sites for Ago2 along the viral RNA genome. Using reporter assays, we found four binding sites, located near splice donor sites, capable of repressing Luciferase gene expression in an Ago-dependent manner. Furthermore, inhibition of Ago1 and Ago2 levels in cells expressing HIV-1 led to an increase of viral multiply spliced transcripts and to a strong reduction in the extracellular CAp24 level. Depletion of Dicer did not affect these activities. Our results highlight a new role of Ago proteins in the control of multiply spliced HIV-1 transcript levels and viral production, independently of the miRNA pathway.
Collapse
Affiliation(s)
- Agathe Eckenfelder
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Emmanuel Ségéral
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Natalia Pinzón
- CNRS, UPR 1142, Institut de Génétique Humaine, Montpellier 34396, France
| | - Damien Ulveling
- CNAM, Laboratoire Génomique, Bioinformatique et Applications (EA 4627), Paris 75003, France
| | - Céline Amadori
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Marine Charpentier
- INSERM, U1154, CNRS, UMR7196, Museum National d'Histoire Naturelle, Paris 75231, France
| | - Sabine Nidelet
- Plateforme MGX, Institut de Génomique Fonctionnelle, CNRS, UMR5203, INSERM, U661, Montpellier 34094, France
| | - Jean-Paul Concordet
- INSERM, U1154, CNRS, UMR7196, Museum National d'Histoire Naturelle, Paris 75231, France
| | - Jean-François Zagury
- CNAM, Laboratoire Génomique, Bioinformatique et Applications (EA 4627), Paris 75003, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg 67084, France
| | - Clarisse Berlioz-Torrent
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Hervé Seitz
- CNRS, UPR 1142, Institut de Génétique Humaine, Montpellier 34396, France
| | - Stéphane Emiliani
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Sarah Gallois-Montbrun
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| |
Collapse
|
16
|
Chaston JJ, Stewart AG, Christie M. Structural characterisation of TNRC6A nuclear localisation signal in complex with importin-alpha. PLoS One 2017; 12:e0183587. [PMID: 28837617 PMCID: PMC5570423 DOI: 10.1371/journal.pone.0183587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The GW182/TNRC6 family of proteins are central scaffolds that link microRNA-associated Argonaute proteins to the cytoplasmic decay machinery for targeted mRNA degradation processes. Although nuclear roles for the GW182/TNRC6 proteins are unknown, recent reports have demonstrated nucleocytoplasmic shuttling activity that utilises the importin-α and importin-β transport receptors for nuclear translocation. Here we describe the structure of mouse importin-α in complex with the TNRC6A nuclear localisation signal peptide. We further show that the interactions observed between TNRC6A and importin-α are conserved between mouse and human complexes. Our results highlight the ability of monopartite cNLS sequences to maximise contacts at the importin-α major binding site, as well as regions outside the main binding cavities.
Collapse
Affiliation(s)
- Jessica J. Chaston
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alastair Gordon Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mary Christie
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J 2017; 474:1603-1618. [PMID: 28473628 PMCID: PMC5415849 DOI: 10.1042/bcj20160759] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
Abstract
The enzyme Dicer is best known for its role as a riboendonuclease in the small RNA pathway. In this canonical role, Dicer is a critical regulator of the biogenesis of microRNA and small interfering RNA, as well as a growing number of additional small RNAs derived from various sources. Emerging evidence demonstrates that Dicer's endonuclease role extends beyond the generation of small RNAs; it is also involved in processing additional endogenous and exogenous substrates, and is becoming increasingly implicated in regulating a variety of other cellular processes, outside of its endonuclease function. This review will describe the canonical and newly identified functions of Dicer.
Collapse
|
18
|
The Role of RNA Interference in Stem Cell Biology: Beyond the Mutant Phenotypes. J Mol Biol 2017; 429:1532-1543. [PMID: 28118980 DOI: 10.1016/j.jmb.2017.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
Complex gene regulation systems ensure the maintenance of cellular identity during early development in mammals. Eukaryotic small RNAs have emerged as critical players in RNA interference (RNAi) by mediating gene silencing during embryonic stem cell self-renewal. Most of the proteins involved in the biogenesis of small RNAs are essential for proliferation and differentiation into the three germ layers of mouse embryonic stem cells. In the last decade, new functions for some RNAi proteins, independent of their roles in RNAi pathways, have been demonstrated in different biological systems. In parallel, new concepts in stem cell biology have emerged. Here, we review and integrate the current understanding of how RNAi proteins regulate stem cell identity with the new advances in the stem cell field and the recent non-canonical functions of the RNAi proteins. Finally, we propose a reevaluation of all RNAi mutant phenotypes, as non-canonical (small non-coding RNA independent) functions may contribute to the molecular mechanisms governing mouse embryonic stem cells commitment.
Collapse
|
19
|
Much C, Auchynnikava T, Pavlinic D, Buness A, Rappsilber J, Benes V, Allshire R, O’Carroll D. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein. PLoS Genet 2016; 12:e1006095. [PMID: 27254021 PMCID: PMC4890738 DOI: 10.1371/journal.pgen.1006095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.
Collapse
Affiliation(s)
- Christian Much
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tania Auchynnikava
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Buness
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robin Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dónal O’Carroll
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Effects of Echinococcus multilocularis miR-71 mimics on murine macrophage RAW264.7 cells. Int Immunopharmacol 2016; 34:259-262. [PMID: 26995025 DOI: 10.1016/j.intimp.2016.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/02/2016] [Accepted: 03/12/2016] [Indexed: 11/21/2022]
Abstract
The microRNAs (miRNAs) are a class of small regulatory non-coding RNA that contributes to the activation of host-pathogen cross-talk during infection. In helminthes, miR-71 is highly conserved and it has recently been detected in nematode exosomes, as well as in the sera and/or fluids of infected humans and mice. However, the role of miR-71 during infection remains poorly characterized. Herein, we show that Ago1 and Ago4, which encode key components of the small RNA-induced silencing complex (RISC), were up-regulated in murine macrophage RAW264.7 cells transfected by Echinococcus multilocularis miR-71 (emu-miR-71) mimics. Using a miRNA PCR array, none of the 84 miRNAs involved in inflammation or autoimmunity were significantly up- or down-regulated in the transfected cells (p>0.05). Although it did not influence IL-10 production by the treated cells (p>0.05), the mimics significantly repressed the production of NO 12 h after treatment with LPS and IFN-γ (p<0.01), identifying another potential mechanism whereby parasites can carefully regulate host levels of NO. These findings indicate that the release of parasite-derived miR-71 into hosts can affect the functions of macrophages, and possibly represents an exciting direction for studies of the interplay between parasites and hosts.
Collapse
|
21
|
Kalantari R, Chiang CM, Corey DR. Regulation of mammalian transcription and splicing by Nuclear RNAi. Nucleic Acids Res 2016; 44:524-37. [PMID: 26612865 PMCID: PMC4737150 DOI: 10.1093/nar/gkv1305] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
RNA interference (RNAi) is well known as a mechanism for controlling mammalian mRNA translation in the cytoplasm, but what would be the consequences if it also functions in cell nuclei? Although RNAi has also been found in nuclei of plants, yeast, and other organisms, there has been relatively little progress towards understanding the potential involvement of mammalian RNAi factors in nuclear processes including transcription and splicing. This review summarizes evidence for mammalian RNAi factors in cell nuclei and mechanisms that might contribute to the control of gene expression. When RNAi factors bind small RNAs, they form ribonucleoprotein complexes that can be selective for target sequences within different classes of nuclear RNA substrates. The versatility of nuclear RNAi may supply a previously underappreciated layer of regulation to transcription, splicing, and other nuclear processes.
Collapse
Affiliation(s)
- Roya Kalantari
- Departments of Pharmacology & Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Cheng-Ming Chiang
- Departments of Pharmacology & Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-8807, USA
| | - David R Corey
- Departments of Pharmacology & Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| |
Collapse
|