1
|
Rizwan A, Sridharan B, Park JH, Kim D, Vial JC, Kyhm K, Lim HG. Nanophotonic-enhanced photoacoustic imaging for brain tumor detection. J Nanobiotechnology 2025; 23:170. [PMID: 40045308 PMCID: PMC11881315 DOI: 10.1186/s12951-025-03204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Photoacoustic brain imaging (PABI) has emerged as a promising biomedical imaging modality, combining high contrast of optical imaging with deep tissue penetration of ultrasound imaging. This review explores the application of photoacoustic imaging in brain tumor imaging, highlighting the synergy between nanomaterials and state of the art optical techniques to achieve high-resolution imaging of deeper brain tissues. PABI leverages the photoacoustic effect, where absorbed light energy causes thermoelastic expansion, generating ultrasound waves that are detected and converted into images. This technique enables precise diagnosis, therapy monitoring, and enhanced clinical screening, specifically in the management of complex diseases such as breast cancer, lymphatic disorder, and neurological conditions. Despite integration of photoacoustic agents and ultrasound radiation, providing a comprehensive overview of current methodologies, major obstacles in brain tumor treatment, and future directions for improving diagnostic and therapeutic outcomes. The review underscores the significance of PABI as a robust research tool and medical method, with the potential to revolutionize brain disease diagnosis and treatment.
Collapse
Affiliation(s)
- Ali Rizwan
- Smart Gym-Based Translational Research Center for Active Senior'S Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jin Hyeong Park
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Daehun Kim
- Indusrty 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jean-Claude Vial
- Université Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
- Department of Optics & Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Kwangseuk Kyhm
- Department of Optics & Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Gyun Lim
- Smart Gym-Based Translational Research Center for Active Senior'S Healthcare, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Indusrty 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Chen Z, Gezginer I, Zhou Q, Tang L, Deán-Ben XL, Razansky D. Multimodal optoacoustic imaging: methods and contrast materials. Chem Soc Rev 2024; 53:6068-6099. [PMID: 38738633 PMCID: PMC11181994 DOI: 10.1039/d3cs00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 05/14/2024]
Abstract
Optoacoustic (OA) imaging offers powerful capabilities for interrogating biological tissues with rich optical absorption contrast while maintaining high spatial resolution for deep tissue observations. The spectrally distinct absorption of visible and near-infrared photons by endogenous tissue chromophores facilitates extraction of diverse anatomic, functional, molecular, and metabolic information from living tissues across various scales, from organelles and cells to whole organs and organisms. The primarily blood-related contrast and limited penetration depth of OA imaging have fostered the development of multimodal approaches to fully exploit the unique advantages and complementarity of the method. We review the recent hybridization efforts, including multimodal combinations of OA with ultrasound, fluorescence, optical coherence tomography, Raman scattering microscopy and magnetic resonance imaging as well as ionizing methods, such as X-ray computed tomography, single-photon-emission computed tomography and positron emission tomography. Considering that most molecules absorb light across a broad range of the electromagnetic spectrum, the OA interrogations can be extended to a large number of exogenously administered small molecules, particulate agents, and genetically encoded labels. This unique property further makes contrast moieties used in other imaging modalities amenable for OA sensing.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Quanyu Zhou
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Lin Tang
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
3
|
Seeger M, Stylogiannis A, Prade L, Glasl S, Ntziachristos V. Overdriven laser diode optoacoustic microscopy. Sci Rep 2023; 13:19542. [PMID: 37945920 PMCID: PMC10636104 DOI: 10.1038/s41598-023-46855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Laser diodes are small and inexpensive but don't afford the pulse energy and beam profile required for optoacoustic (photoacoustic) microscopy. Using two novel modulation concepts, i.e. overdriving continuous-wave laser diodes (CWLD) and frequency-wavelength multiplexing (FWM) based on illumination pulse-trains, we demonstrate concurrent multi-wavelength optoacoustic microscopy with signal-to-noise ratios of > 17 dB, < 2 µm resolution at repetition rates of 1 MHz. This unprecedented performance based on an adaptable trigger engine allowed us to contrast FWM to wavelength alternating acquisition using identical optical components. We showcase this concept's superiority over conventional optoacoustic microscopes by visualizing vascular oxygenation dynamics and circulating tumor cells in mice. This work positions laser diodes as a technology allowing affordable, tunable, and miniaturizable optoacoustic microscopy.
Collapse
Affiliation(s)
- Markus Seeger
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger St 22, 81675, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landst. 1, 85764, Neuherberg, Germany
| | - Antonios Stylogiannis
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger St 22, 81675, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landst. 1, 85764, Neuherberg, Germany
| | - Ludwig Prade
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger St 22, 81675, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landst. 1, 85764, Neuherberg, Germany
| | - Sarah Glasl
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger St 22, 81675, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landst. 1, 85764, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger St 22, 81675, Munich, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landst. 1, 85764, Neuherberg, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Boltzmannstr. 11, 85748, Garching b. München, Germany.
| |
Collapse
|
4
|
Mandeville R, Deshmukh S, Tan ET, Kumar V, Sanchez B, Dowlatshahi AS, Luk J, See RHB, Leochico CFD, Thum JA, Bazarek S, Johnston B, Brown J, Wu J, Sneag D, Rutkove S. A scoping review of current and emerging techniques for evaluation of peripheral nerve health, degeneration and regeneration: part 2, non-invasive imaging. J Neural Eng 2023; 20:041002. [PMID: 37369193 DOI: 10.1088/1741-2552/ace217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Peripheral neuroregenerative research and therapeutic options are expanding exponentially. With this expansion comes an increasing need to reliably evaluate and quantify nerve health. Valid and responsive measures of the nerve status are essential for both clinical and research purposes for diagnosis, longitudinal follow-up, and monitoring the impact of any intervention. Furthermore, novel biomarkers can elucidate regenerative mechanisms and open new avenues for research. Without such measures, clinical decision-making is impaired, and research becomes more costly, time-consuming, and sometimes infeasible. Part 1 of this two-part scoping review focused on neurophysiology. In part 2, we identify and critically examine many current and emerging non-invasive imaging techniques that have the potential to evaluate peripheral nerve health, particularly from the perspective of regenerative therapies and research.
Collapse
Affiliation(s)
- Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Swati Deshmukh
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Ek Tsoon Tan
- Department of Radiology, Hospital for Special Surgery, New York, NY 10021, United States of America
| | - Viksit Kumar
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Benjamin Sanchez
- Department Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Arriyan S Dowlatshahi
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Justin Luk
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Reiner Henson B See
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Carl Froilan D Leochico
- Department of Physical Medicine and Rehabilitation, St. Luke's Medical Center, Global City, Taguig, The Philippines
- Department of Rehabilitation Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, The Philippines
| | - Jasmine A Thum
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Stanley Bazarek
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Benjamin Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Justin Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Jim Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Darryl Sneag
- Department of Radiology, Hospital for Special Surgery, New York, NY 10021, United States of America
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| |
Collapse
|
5
|
Hybrid confocal fluorescence and photoacoustic microscopy for the label-free investigation of melanin accumulation in fish scales. Sci Rep 2022; 12:7173. [PMID: 35504968 PMCID: PMC9065085 DOI: 10.1038/s41598-022-11262-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Lower vertebrates, including fish, can rapidly alter skin lightness through changes in melanin concentration and melanosomes’ mobility according to various factors, which include background color, light intensity, ambient temperature, social context, husbandry practices and acute or chronic stressful stimuli. Within this framework, the determination of skin chromaticity parameters in fish species is estimated either in specific areas using colorimeters or at the whole animal level using image processing and analysis software. Nevertheless, the accurate quantification of melanin content or melanophore coverage in fish skin is quite challenging as a result of the laborious chemical analysis and the typical application of simple optical imaging methods, requiring also to euthanize the fish in order to obtain large skin samples for relevant investigations. Here we present the application of a novel hybrid confocal fluorescence and photoacoustic microscopy prototype for the label-free imaging and quantification of melanin in fish scales samples with high spatial resolution, sensitivity and detection specificity. The hybrid images are automatically processed through optimized algorithms, aiming at the accurate and rapid extraction of various melanin accumulation indices in large datasets (i.e., total melanin content, melanophores’ area, density and coverage) corresponding to different fish species and groups. Furthermore, convolutional neural network-based algorithms have been trained using the recorded data towards the classification of different scales’ samples with high accuracy. In this context, we demonstrate that the proposed methodology may increase substantially the precision, as well as, simplify and expedite the relevant procedures for the quantification of melanin content in marine organisms.
Collapse
|
6
|
Seeger M, Dehner C, Jüstel D, Ntziachristos V. Label-free concurrent 5-modal microscopy (Co5M) resolves unknown spatio-temporal processes in wound healing. Commun Biol 2021; 4:1040. [PMID: 34489513 PMCID: PMC8421396 DOI: 10.1038/s42003-021-02573-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
The non-invasive investigation of multiple biological processes remains a methodological challenge as it requires capturing different contrast mechanisms, usually not available with any single modality. Intravital microscopy has played a key role in dynamically studying biological morphology and function, but it is generally limited to resolving a small number of contrasts, typically generated by the use of transgenic labels, disturbing the biological system. We introduce concurrent 5-modal microscopy (Co5M), illustrating a new concept for label-free in vivo observations by simultaneously capturing optoacoustic, two-photon excitation fluorescence, second and third harmonic generation, and brightfield contrast. We apply Co5M to non-invasively visualize multiple wound healing biomarkers and quantitatively monitor a number of processes and features, including longitudinal changes in wound shape, microvascular and collagen density, vessel size and fractality, and the plasticity of sebaceous glands. Analysis of these parameters offers unique insights into the interplay of wound closure, vasodilation, angiogenesis, skin contracture, and epithelial reformation in space and time, inaccessible by other methods. Co5M challenges the conventional concept of biological observation by yielding multiple simultaneous parameters of pathophysiological processes in a label-free mode.
Collapse
Affiliation(s)
- Markus Seeger
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Dehner
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Jüstel
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
7
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
8
|
Li C, Liu C, Fan Y, Ma X, Zhan Y, Lu X, Sun Y. Recent development of near-infrared photoacoustic probes based on small-molecule organic dye. RSC Chem Biol 2021; 2:743-758. [PMID: 34458809 PMCID: PMC8341990 DOI: 10.1039/d0cb00225a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/07/2021] [Indexed: 12/22/2022] Open
Abstract
Photoacoustic imaging (PAI), which integrates the higher spatial resolution of optical imaging and the deeper penetration depth of ultrasound imaging, has attracted great attention. Various photoacoustic probes including inorganic and organic agents have been well fabricated in last decades. Among them, small-molecule based agents are most promising candidates for preclinical/clinical applications due to their favorite in vivo features and facile functionalization. In recent years, PAI, in the near-infrared region (NIR, 700-1700 nm) has developed rapidly and has made remarkable achievements in the biomedical field. Compared with the visible light region (400-700 nm), it can significantly reduce light scattering and meanwhile provide deeper tissue penetration. In this review, we discuss the recent developments of near-infrared photoacoustic probes based on small molecule dyes, which focus on their "always on" and "activatable" form in biomedicine. Further, we also suggest current challenges and perspectives.
Collapse
Affiliation(s)
- Chonglu Li
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology Nanjing 210044 China
| | - Chang Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology Nanjing 210044 China
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Yifan Fan
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Xin Ma
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization Shaoguan 512026 China
| | - Yibei Zhan
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
| | - Xiaoju Lu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| |
Collapse
|
9
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|
10
|
Seeger M, Soliman D, Aguirre J, Diot G, Wierzbowski J, Ntziachristos V. Pushing the boundaries of optoacoustic microscopy by total impulse response characterization. Nat Commun 2020; 11:2910. [PMID: 32518250 PMCID: PMC7283257 DOI: 10.1038/s41467-020-16565-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
Optical microscopy improves in resolution and signal-to-noise ratio by correcting for the system’s point spread function; a measure of how a point source is resolved, typically determined by imaging nanospheres. Optical-resolution optoacoustic (photoacoustic) microscopy could be similarly corrected, especially to account for the spatially-dependent signal distortions induced by the acoustic detection and the time-resolved and bi-polar nature of optoacoustic signals. Correction algorithms must therefore include the spatial dependence of signals’ origins and profiles in time, i.e. the four-dimensional total impulse response (TIR). However, such corrections have been so far impeded by a lack of efficient TIR-characterization methods. We introduce high-quality TIR determination based on spatially-distributed optoacoustic point sources (SOAPs), produced by scanning an optical focus on an axially-translatable 250 nm gold layer. Using a spatially-dependent TIR-correction improves the signal-to-noise ratio by >10 dB and the axial resolution by ~30%. This accomplishment displays a new performance paradigm for optoacoustic microscopy. Characterizing the total impulse response (TIR) of photoacoustic microscopes has been challenging due to difficulties distributing appropriate point sources. Here, the authors present a method for 3D generation of spatially-distributed optoacoustic point sources and show that subsequent TIR correction results in improved image quality.
Collapse
Affiliation(s)
- Markus Seeger
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Dominik Soliman
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Juan Aguirre
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Gael Diot
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Jakob Wierzbowski
- Walter Schottky Institute, Physics Department, Technical University of Munich, Am Coulombwall 4, 85748, Garching, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany. .,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
11
|
Photoacoustic Imaging Probes Based on Tetrapyrroles and Related Compounds. Int J Mol Sci 2020; 21:ijms21093082. [PMID: 32349297 PMCID: PMC7247687 DOI: 10.3390/ijms21093082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Photoacoustic imaging (PAI) is a rapidly evolving field in molecular imaging that enables imaging in the depths of ultrasound and with the sensitivity of optical modalities. PAI bases on the photoexcitation of a chromophore, which converts the absorbed light into thermal energy, causing an acoustic pressure wave that can be captured with ultrasound transducers, in generating an image. For in vivo imaging, chromophores strongly absorbing in the near-infrared range (NIR; > 680 nm) are required. As tetrapyrroles have a long history in biomedical applications, novel tetrapyrroles and inspired mimics have been pursued as potentially suitable contrast agents for PAI. The goal of this review is to summarize the current state of the art in PAI applications using tetrapyrroles and related macrocycles inspired by it, highlighting those compounds exhibiting strong NIR-absorption. Furthermore, we discuss the current developments of other absorbers for in vivo photoacoustic (PA) applications.
Collapse
|
12
|
Haindl R, Deloria AJ, Sturtzel C, Sattmann H, Rohringer W, Fischer B, Andreana M, Unterhuber A, Schwerte T, Distel M, Drexler W, Leitgeb R, Liu M. Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae. BIOMEDICAL OPTICS EXPRESS 2020; 11:2137-2151. [PMID: 32341872 PMCID: PMC7173920 DOI: 10.1364/boe.390410] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 05/06/2023]
Abstract
We present a dual modality functional optical coherence tomography and photoacoustic microscopy (OCT-PAM) system. The photoacoustic modality employs an akinetic optical sensor with a large imaging window. This imaging window enables direct reflection mode operation, and a seamless integration of optical coherence tomography (OCT) as a second imaging modality. Functional extensions to the OCT-PAM system include Doppler OCT (DOCT) and spectroscopic PAM (sPAM). This functional and non-invasive imaging system is applied to image zebrafish larvae, demonstrating its capability to extract both morphological and hemodynamic parameters in vivo in small animals, which are essential and critical in preclinical imaging for physiological, pathophysiological and drug response studies.
Collapse
Affiliation(s)
- Richard Haindl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Abigail J. Deloria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Caterina Sturtzel
- Innovative Cancer Models, St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Harald Sattmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | | | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Martin Distel
- Innovative Cancer Models, St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Ovsepian SV, Olefir I, Ntziachristos V. Advances in Optoacoustic Neurotomography of Animal Models. Trends Biotechnol 2019; 37:1315-1326. [PMID: 31662189 DOI: 10.1016/j.tibtech.2019.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023]
Abstract
Unlike traditional optical methods, optoacoustic imaging is less sensitive to scattering of ballistic photons, so it is capable of high-resolution interrogation at a greater depth. By integrating video-rate visualization with multiplexing and sensing a range of endogenous and exogenous chromophores, optoacoustic imaging has matured into a versatile noninvasive investigation modality with rapidly expanding use in biomedical research. We review the principal features of the technology and discuss recent advances it has enabled in structural, functional, and molecular neuroimaging in small-animal models. In extending the boundaries of noninvasive observation beyond the reach of customary photonic methods, the latest developments in optoacoustics have substantially advanced neuroimaging inquiry, with promising implications for basic and translational studies.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany; Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Third Faculty of Medicine, Charles University, 116 36 Prague, Czech Republic.
| | - Ivan Olefir
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany.
| |
Collapse
|
14
|
Bi R, Dinish US, Goh CC, Imai T, Moothanchery M, Li X, Kim JY, Jeon S, Pu Y, Kim C, Ng LG, Wang LV, Olivo M. In vivo label-free functional photoacoustic monitoring of ischemic reperfusion. JOURNAL OF BIOPHOTONICS 2019; 12:e201800454. [PMID: 30865386 DOI: 10.1002/jbio.201800454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/30/2019] [Accepted: 03/03/2019] [Indexed: 05/18/2023]
Abstract
Pressure ulcer formation is a common problem among patients confined to bed or restricted to wheelchairs. The ulcer forms when the affected skin and underlying tissues go through repeated cycles of ischemia and reperfusion, leading to inflammation. This theory is evident by intravital imaging studies performed in immune cell-specific, fluorescent reporter mouse skin with induced ischemia-reperfusion (I-R) injuries. However, traditional confocal or multiphoton microscopy cannot accurately monitor the progression of vascular reperfusion by contrast agents, which leaks into the interstitium under inflammatory conditions. Here, we develop a dual-wavelength micro electro mechanical system (MEMS) scanning-based optical resolution photoacoustic microscopy (OR-PAM) system for continuous label-free functional imaging of vascular reperfusion in an IR mouse model. This MEMS-OR-PAM system provides fast scanning speed for concurrent dual-wavelength imaging, which enables continuous monitoring of the reperfusion process. During reperfusion, the revascularization of blood vessels and the oxygen saturation (sO2 ) changes in both arteries and veins are recorded, from which the local oxygen extraction ratios of the ischemic tissue and the unaffected tissue can be quantified. Our MEMS-OR-PAM system provides novel perspectives to understand the I-R injuries. It solves the problem of dynamic label-free functional monitoring of the vascular reperfusion at high spatial resolution.
Collapse
Affiliation(s)
- Renzhe Bi
- Singapore Bioimaging Consortium, Singapore
| | - U S Dinish
- Singapore Bioimaging Consortium, Singapore
| | | | - Toru Imai
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, California Institute of Technology, Pasadena, California
| | | | - Xiuting Li
- Singapore Bioimaging Consortium, Singapore
| | - Jin Young Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Seungwan Jeon
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Yang Pu
- MicroPhotoAcoustics Inc., Ronkonkoma, New York
| | - Chulhong Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | | | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, California Institute of Technology, Pasadena, California
| | | |
Collapse
|
15
|
Liu C, Liao J, Chen L, Chen J, Ding R, Gong X, Cui C, Pang Z, Zheng W, Song L. The integrated high-resolution reflection-mode photoacoustic and fluorescence confocal microscopy. PHOTOACOUSTICS 2019; 14:12-18. [PMID: 30923675 PMCID: PMC6423349 DOI: 10.1016/j.pacs.2019.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 05/05/2023]
Abstract
A dual modality microscopy with the highest imaging resolution reported so far based on reflection-mode photoacoustic and confocal fluorescence is presented in this study. The unique design of the imaging head of the microscope makes it highly convenient for scalable high-resolution imaging by simply switching the optical objectives. The submicron resolution performance of the system is demonstrated via in vivo imaging of zebrafish, normal mouse ear, and a xenograft tumor model inoculated in the mouse ear. The imaging results confirm that the presented dual-modality microscopy imaging system could play a vital role in observing model organism, studying tumor angiogenesis and assessment of antineoplastic drugs.
Collapse
Affiliation(s)
- Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiuling Liao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Longchao Chen
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Jianhua Chen
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Rubo Ding
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Xiaojing Gong
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Caimei Cui
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Zhiqiang Pang
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding authors.
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding authors.
| |
Collapse
|
16
|
Karlas A, Fasoula NA, Paul-Yuan K, Reber J, Kallmayer M, Bozhko D, Seeger M, Eckstein HH, Wildgruber M, Ntziachristos V. Cardiovascular optoacoustics: From mice to men - A review. PHOTOACOUSTICS 2019; 14:19-30. [PMID: 31024796 PMCID: PMC6476795 DOI: 10.1016/j.pacs.2019.03.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 05/04/2023]
Abstract
Imaging has become an indispensable tool in the research and clinical management of cardiovascular disease (CVD). An array of imaging technologies is considered for CVD diagnostics and therapeutic assessment, ranging from ultrasonography, X-ray computed tomography and magnetic resonance imaging to nuclear and optical imaging methods. Each method has different operational characteristics and assesses different aspects of CVD pathophysiology; nevertheless, more information is desirable for achieving a comprehensive view of the disease. Optoacoustic (photoacoustic) imaging is an emerging modality promising to offer novel information on CVD parameters by allowing high-resolution imaging of optical contrast several centimeters deep inside tissue. Implemented with illumination at several wavelengths, multi-spectral optoacoustic tomography (MSOT) in particular, is sensitive to oxygenated and deoxygenated hemoglobin, water and lipids allowing imaging of the vasculature, tissue oxygen saturation and metabolic or inflammatory parameters. Progress with fast-tuning lasers, parallel detection and advanced image reconstruction and data-processing algorithms have recently transformed optoacoustics from a laboratory tool to a promising modality for small animal and clinical imaging. We review progress with optoacoustic CVD imaging, highlight the research and diagnostic potential and current applications and discuss the advantages, limitations and possibilities for integration into clinical routine.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Korbinian Paul-Yuan
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Josefine Reber
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Kallmayer
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dmitry Bozhko
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Seeger
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Henning Eckstein
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Moritz Wildgruber
- Institute for Diagnostic and Interventional Radiology, University Hospital rechts der Isar, Munich, Germany
- Institute for Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
17
|
Abstract
Fuelled by innovation, optical microscopy plays a critical role in the life sciences and medicine, from basic discovery to clinical diagnostics. However, optical microscopy is limited by typical penetration depths of a few hundred micrometres for in vivo interrogations in the visible spectrum. Optoacoustic microscopy complements optical microscopy by imaging the absorption of light, but it is similarly limited by penetration depth. In this Review, we summarize progress in the development and applicability of optoacoustic mesoscopy (OPAM); that is, optoacoustic imaging with acoustic resolution and wide-bandwidth ultrasound detection. OPAM extends the capabilities of optical imaging beyond the depths accessible to optical and optoacoustic microscopy, and thus enables new applications. We explain the operational principles of OPAM, its placement as a bridge between optoacoustic microscopy and optoacoustic macroscopy, and its performance in the label-free visualization of tissue pathophysiology, such as inflammation, oxygenation, vascularization and angiogenesis. We also review emerging applications of OPAM in clinical and biological imaging.
Collapse
|
18
|
Dadkhah A, Zhou J, Yeasmin N, Jiao S. Integrated multimodal photoacoustic microscopy with OCT- guided dynamic focusing. BIOMEDICAL OPTICS EXPRESS 2019; 10:137-150. [PMID: 30775089 PMCID: PMC6363202 DOI: 10.1364/boe.10.000137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 05/10/2023]
Abstract
Combining different contrast mechanisms to achieve simultaneous multimodal imaging is always desirable but is challenging due to the various optical and hardware requirements for different imaging systems. We developed a multimodal microscopic optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissues. This imaging system integrated photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and confocal fluorescence microscopy in one platform. By taking advantage of the depth resolving capability of OCT, we developed a novel OCT-guided surface contour scanning methodology for dynamic focusing adjustment. We have conducted phantom, in vivo, and ex vivo tests to demonstrate the capability of the multimodal imaging system for providing comprehensive microscopic information of biological tissues. Integrating all the aforementioned imaging modalities with OCT-guided dynamic focusing for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the future.
Collapse
Affiliation(s)
- Arash Dadkhah
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Jun Zhou
- School of Physics and Information Engineering, Jianghan University, Wuhan, Hubei 430056, China
| | - Nusrat Yeasmin
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
19
|
Moore MJ, El-Rass S, Xiao Y, Wang Y, Wen XY, Kolios MC. Simultaneous ultra-high frequency photoacoustic microscopy and photoacoustic radiometry of zebrafish larvae in vivo. PHOTOACOUSTICS 2018; 12:14-21. [PMID: 30225194 PMCID: PMC6139000 DOI: 10.1016/j.pacs.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 05/07/2023]
Abstract
With their optically transparent appearance, zebrafish larvae are readily imaged with optical-resolution photoacoustic (PA) microscopy (OR-PAM). Previous OR-PAM studies have mapped endogenous chromophores (e.g. melanin and hemoglobin) within larvae; however, anatomical features cannot be imaged with OR-PAM alone due to insufficient optical absorption. We have previously reported on the photoacoustic radiometry (PAR) technique, which can be used simultaneously with OR-PAM to generate images dependent upon the optical attenuation properties of a sample. Here we demonstrate application of the duplex PAR/PA technique for label-free imaging of the anatomy and vasculature of zebrafish larvae in vivo at 200 and 400 MHz ultrasound detection frequencies. We then use the technique to assess the effects of anti-angiogenic drugs on the development of the larval vasculature. Our results demonstrate the effectiveness of simultaneous PAR/PA for acquiring anatomical images of optically transparent samples in vivo, and its potential applications in assessing drug efficacy and embryonic development.
Collapse
Affiliation(s)
- Michael J. Moore
- Department of Physics, Ryerson University, Toronto, M5B 2K3, Canada
- Institute for Biomedical Engineering and Science Technology, A Partnership Between Ryerson University and St. Michael’s Hospital, Toronto, M5B 1W8, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
| | - Suzan El-Rass
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Zebrafish Centre for Advanced Drug Discovery, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Institute of Medical Science, Departments of Medicine, Laboratory Medicine and Pathobiology & Physiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Yongliang Xiao
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Zebrafish Centre for Advanced Drug Discovery, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Institute of Medical Science, Departments of Medicine, Laboratory Medicine and Pathobiology & Physiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Youdong Wang
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Zebrafish Centre for Advanced Drug Discovery, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Institute of Medical Science, Departments of Medicine, Laboratory Medicine and Pathobiology & Physiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Xiao-Yan Wen
- Institute for Biomedical Engineering and Science Technology, A Partnership Between Ryerson University and St. Michael’s Hospital, Toronto, M5B 1W8, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Zebrafish Centre for Advanced Drug Discovery, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Institute of Medical Science, Departments of Medicine, Laboratory Medicine and Pathobiology & Physiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, M5B 2K3, Canada
- Institute for Biomedical Engineering and Science Technology, A Partnership Between Ryerson University and St. Michael’s Hospital, Toronto, M5B 1W8, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Corresponding author at: Department of Physics, Ryerson University, Toronto, M5B 2K3, Canada.
| |
Collapse
|
20
|
Huang Y, Kellnberger S, Sergiadis G, Ntziachristos V. Blood vessel imaging using radiofrequency-induced second harmonic acoustic response. Sci Rep 2018; 8:15522. [PMID: 30341349 PMCID: PMC6195590 DOI: 10.1038/s41598-018-33732-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
We introduce a contrast mechanism for visualizing blood vessels based on radiofrequency-induced second harmonic acoustic (RISHA) signals sensing blood conductivity. We develop a novel imaging system using commonly available inexpensive components, and demonstrate in vivo RISHA visualization of blood vessels based on low-power quasi-continuous radiofrequency excitation of tissue at frequencies of a few MHz. We show how the novel approach also implicitly enables radiofrequency-induced passive ultrasound imaging and can be readily applied to non-invasive imaging of blood vessels ex vivo and in vivo. We discuss the implications of non-invasive conductivity measurements in the context of biomedical applications.
Collapse
Affiliation(s)
- Yuanhui Huang
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging (IBMI), Neuherberg, D-85764, Germany.,Technische Universität München, Chair for Biological Imaging, München, D-81675, Germany
| | - Stephan Kellnberger
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging (IBMI), Neuherberg, D-85764, Germany. .,Technische Universität München, Chair for Biological Imaging, München, D-81675, Germany. .,Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.
| | - George Sergiadis
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging (IBMI), Neuherberg, D-85764, Germany.,Aristotle University of Thessaloniki, School of Electrical and Computer Engineering, Thessaloniki, 54124, Greece.,Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Suzhou, 215163, China
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging (IBMI), Neuherberg, D-85764, Germany. .,Technische Universität München, Chair for Biological Imaging, München, D-81675, Germany.
| |
Collapse
|
21
|
Moore MJ, Strohm EM, Kolios MC. Triplex micron-resolution acoustic, photoacoustic, and optical transmission microscopy via photoacoustic radiometry. OPTICS EXPRESS 2018; 26:22315-22326. [PMID: 30130926 DOI: 10.1364/oe.26.022315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/03/2018] [Indexed: 05/23/2023]
Abstract
We present a new sensing technique, termed photoacoustic radiometry (PAR), for mapping the optical attenuation properties of a sample. In PAR, laser pulses attenuated via transmission through the sample impinge on the ultrasound transducer and generate a photoacoustic (PA) signal within it. Spatial variation of the optical attenuation properties of the sample influences the amplitude of the PAR signal, providing image contrast. Performed simultaneously with pulse-echo ultrasound and PA imaging, this triplex imaging technique enables rapid characterization of samples with micrometer-resolution in a single scan. In this work, we demonstrate that the PAR technique can be easily integrated into existing PA microscopy systems, with applications in imaging biological samples and non-destructive evaluation of optically opaque materials such as silicon wafers.
Collapse
|
22
|
Quad-mode functional and molecular photoacoustic microscopy. Sci Rep 2018; 8:11123. [PMID: 30042404 PMCID: PMC6057954 DOI: 10.1038/s41598-018-29249-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022] Open
Abstract
A conventional photoacoustic microscopy (PAM) system typically has to make tradeoffs between its spatial resolution and penetration depth, by choosing a fixed configuration of optical excitation and acoustic detection. The single-scale imaging capability of PAM may limit its applications in biomedical studies. Here, we report a quad-mode photoacoustic microscopy (QM-PAM) system with four complementary spatial resolutions and maximum penetration depths. For this we first developed a ring-shaped focused ultrasound transducer that has two independent elements with respective central frequencies at 20 MHz and 40 MHz, providing complementary acoustically-determined spatial resolutions and penetration depths. To accommodate the dual-element ultrasound transducer, we implemented two optical excitation modes to provide tightly- and weakly-focused light illumination. The dual-element acoustic detection combined with the two optical focusing modes can thus provide four imaging scales in a single imaging device, with consistent contrast mechanisms and co-registered field of views. We have demonstrated the multiscale morphological, functional, and molecular imaging capability of QM-PAM in the mouse head, leg and ear in vivo. We expect the high scale flexibility of QM-PAM will enable broad applications in preclinical studies.
Collapse
|
23
|
Poh PSP, Schmauss V, McGovern JA, Schmauss D, Chhaya MP, Foehr P, Seeger M, Ntziachristos V, Hutmacher DW, van Griensven M, Schantz JT, Balmayor ER. Non-linear optical microscopy and histological analysis of collagen, elastin and lysyl oxidase expression in breast capsular contracture. Eur J Med Res 2018; 23:30. [PMID: 29866167 PMCID: PMC5987584 DOI: 10.1186/s40001-018-0322-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Background Capsular contracture is one of the most common complications in surgical interventions for aesthetic breast augmentation or post-mastectomy breast reconstruction involving the use of silicone prostheses. Although the precise cause of capsular contracture is yet unknown, the leading hypothesis is that it is caused by long-term unresolved foreign body reaction towards the silicone breast implant. To authors’ best knowledge, this is the first study that elucidates the presence of lysyl oxidase (LOX)—an enzyme that is involved in collagen and elastin crosslinking within fibrous capsules harvested from patients with severe capsular contracture. It was hypothesized that over-expression of LOX plays a role in the irreversible crosslinking of collagen and elastin which, in turn, stabilizes the fibrous proteins and contributes to the progression of capsular contracture. Methods Eight fibrous capsules were collected from patients undergoing capsulectomy procedure, biomechanical testing was performed for compressive Young’s moduli and evaluated for Type I and II collagen, elastin and LOX by means of non-linear optical microscopy and immunohistology techniques. Results Observations revealed the heterogeneity of tissue structure within and among the collected fibrous capsules. Regardless of the tissue structure, it has been shown that LOX expression was intensified at the implant-to-tissue interface. Conclusion Our results indicate the involvement of LOX in the initiation of fibrous capsule formation which ultimately contributes towards the progression of capsular contracture. Electronic supplementary material The online version of this article (10.1186/s40001-018-0322-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrina S P Poh
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Verena Schmauss
- Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jacqui A McGovern
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Daniel Schmauss
- Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mohit P Chhaya
- Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Peter Foehr
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Seeger
- Chair for Biological Imaging, Technical University of Munich, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair for Biological Imaging, Technical University of Munich, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan-Thorsten Schantz
- Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Elizabeth R Balmayor
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
24
|
Kellnberger S, Soliman D, Tserevelakis GJ, Seeger M, Yang H, Karlas A, Prade L, Omar M, Ntziachristos V. Optoacoustic microscopy at multiple discrete frequencies. LIGHT, SCIENCE & APPLICATIONS 2018; 7:109. [PMID: 30588294 PMCID: PMC6298999 DOI: 10.1038/s41377-018-0101-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/30/2018] [Accepted: 11/03/2018] [Indexed: 05/11/2023]
Abstract
Optoacoustic (photoacoustic) sensing employs illumination of transient energy and is typically implemented in the time domain using nanosecond photon pulses. However, the generation of high-energy short photon pulses requires complex laser technology that imposes a low pulse repetition frequency (PRF) and limits the number of wavelengths that are concurrently available for spectral imaging. To avoid the limitations of working in the time domain, we have developed frequency-domain optoacoustic microscopy (FDOM), in which light intensity is modulated at multiple discrete frequencies. We integrated FDOM into a hybrid system with multiphoton microscopy, and we examine the relationship between image formation and modulation frequency, showcase high-fidelity images with increasing numbers of modulation frequencies from phantoms and in vivo, and identify a redundancy in optoacoustic measurements performed at multiple frequencies. We demonstrate that due to high repetition rates, FDOM achieves signal-to-noise ratios similar to those obtained by time-domain methods, using commonly available laser diodes. Moreover, we experimentally confirm various advantages of the frequency-domain implementation at discrete modulation frequencies, including concurrent illumination at two wavelengths that are carried out at different modulation frequencies as well as flow measurements in microfluidic chips and in vivo based on the optoacoustic Doppler effect. Furthermore, we discuss how FDOM redefines possibilities for optoacoustic imaging by capitalizing on the advantages of working in the frequency domain.
Collapse
Affiliation(s)
- Stephan Kellnberger
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), Technical University Munich, Einsteinstraße 25, 81675 München, Germany
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Dominik Soliman
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), Technical University Munich, Einsteinstraße 25, 81675 München, Germany
| | - George J. Tserevelakis
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), Technical University Munich, Einsteinstraße 25, 81675 München, Germany
| | - Markus Seeger
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), Technical University Munich, Einsteinstraße 25, 81675 München, Germany
| | - Hong Yang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), Technical University Munich, Einsteinstraße 25, 81675 München, Germany
- Xidian University, South Taibai Road 02, 710071 Xi’an, Shaanxi China
| | - Angelos Karlas
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), Technical University Munich, Einsteinstraße 25, 81675 München, Germany
| | - Ludwig Prade
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), Technical University Munich, Einsteinstraße 25, 81675 München, Germany
| | - Murad Omar
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), Technical University Munich, Einsteinstraße 25, 81675 München, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), Technical University Munich, Einsteinstraße 25, 81675 München, Germany
| |
Collapse
|
25
|
Pushing the Boundaries of Neuroimaging with Optoacoustics. Neuron 2017; 96:966-988. [DOI: 10.1016/j.neuron.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
|
26
|
Roberts S, Seeger M, Jiang Y, Mishra A, Sigmund F, Stelzl A, Lauri A, Symvoulidis P, Rolbieski H, Preller M, Deán-Ben XL, Razansky D, Orschmann T, Desbordes SC, Vetschera P, Bach T, Ntziachristos V, Westmeyer GG. Calcium Sensor for Photoacoustic Imaging. J Am Chem Soc 2017; 140:2718-2721. [DOI: 10.1021/jacs.7b03064] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Matthias Preller
- CSSB,
22607 Hamburg and Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | - Thorsten Bach
- Department
Chemie, Technical University of Munich, 85747 Garching, Germany
| | | | | |
Collapse
|
27
|
Tserevelakis GJ, Avtzi S, Tsilimbaris MK, Zacharakis G. Delineating the anatomy of the ciliary body using hybrid optical and photoacoustic imaging. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:60501. [PMID: 28613347 DOI: 10.1117/1.jbo.22.6.060501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate the application of an extended field of view hybrid microscope, integrating distinct optical and photoacoustic (PA) contrast modes, for the precise three-dimensional anatomy delineation of the ciliary body/iris structures in healthy rabbit eyes ex vivo. The glutaraldehyde-induced autofluorescence and the intrinsic PA signals provided by each of the employed imaging modalities were characterized by a high spatial complementarity, offering thus rich morphological information regarding the pars plana and pars plicata ciliary body portions, the iris, as well as, the attached zonule fiber strands. The bimodal microscopy approach presented could find application on studies involving the ocular accommodation mechanism or pathological ciliary body conditions, as a powerful diagnostic technique contributing to the understanding of ocular physiology and function.
Collapse
Affiliation(s)
- George J Tserevelakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, Heraklion, Crete, Greece
| | - Stella Avtzi
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, Heraklion, Crete, Greece
| | - Miltiadis K Tsilimbaris
- University of Crete, School of Medicine, Laboratory of Vision and Optics, Heraklion, Crete, Greece
| | - Giannis Zacharakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, Heraklion, Crete, Greece
| |
Collapse
|
28
|
Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 2017; 46:2158-2198. [PMID: 28276544 PMCID: PMC5460636 DOI: 10.1039/c6cs00765a] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Visualization of dynamic functional and molecular events in an unperturbed in vivo environment is essential for understanding the complex biology of living organisms and of disease state and progression. To this end, optoacoustic (photoacoustic) sensing and imaging have demonstrated the exclusive capacity to maintain excellent optical contrast and high resolution in deep-tissue observations, far beyond the penetration limits of modern microscopy. Yet, the time domain is paramount for the observation and study of complex biological interactions that may be invisible in single snapshots of living systems. This review focuses on the recent advances in optoacoustic imaging assisted by smart molecular labeling and dynamic contrast enhancement approaches that enable new types of multiscale dynamic observations not attainable with other bio-imaging modalities. A wealth of investigated new research topics and clinical applications is further discussed, including imaging of large-scale brain activity patterns, volumetric visualization of moving organs and contrast agent kinetics, molecular imaging using targeted and genetically expressed labels, as well as three-dimensional handheld diagnostics of human subjects.
Collapse
Affiliation(s)
- X L Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - S Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - B Mc Larney
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - S Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - D Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
29
|
Contrast-enhanced dual mode imaging: photoacoustic imaging plus more. Biomed Eng Lett 2017; 7:121-133. [PMID: 30603159 DOI: 10.1007/s13534-016-0006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022] Open
Abstract
Conventional biomedical imaging modalities in wide clinical use, such as ultrasound imaging, X-ray computed tomography, magnetic resonance imaging, and positron emission tomography, can provide morphological, anatomical, and functional information about biological tissues. However, single mode imaging in conventional medicine provides only limited information for definitive diagnoses. Thus, combinational diagnosis using multiple imaging modalities has become increasingly important. Recently, photoacoustic imaging (PAI) has gained significant attention, and several PAI prototypes have been used in clinical trials. At the same time, PAI has been tested in combination with conventional imaging modalities. For all these imaging modalities, various contrast-enhancing agents have been developed for various purposes. In this review article, we will focus on recent progress in developing dual mode contrast agents for PAI in combination with other conventional imaging modalities.
Collapse
|
30
|
Omar M, Rebling J, Wicker K, Schmitt-Manderbach T, Schwarz M, Gateau J, López-Schier H, Mappes T, Ntziachristos V. Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e16186. [PMID: 30167190 PMCID: PMC6061890 DOI: 10.1038/lsa.2016.186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 05/15/2023]
Abstract
Whole-body optical imaging of post-embryonic stage model organisms is a challenging and long sought-after goal. It requires a combination of high-resolution performance and high-penetration depth. Optoacoustic (photoacoustic) mesoscopy holds great promise, as it penetrates deeper than optical and optoacoustic microscopy while providing high-spatial resolution. However, optoacoustic mesoscopic techniques only offer partial visibility of oriented structures, such as blood vessels, due to a limited angular detection aperture or the use of ultrasound frequencies that yield insufficient resolution. We introduce 360° multi orientation (multi-projection) raster scan optoacoustic mesoscopy (MORSOM) based on detecting an ultra-wide frequency bandwidth (up to 160 MHz) and weighted deconvolution to synthetically enlarge the angular aperture. We report unprecedented isotropic in-plane resolution at the 9-17 μm range and improved signal to noise ratio in phantoms and opaque 21-day-old Zebrafish. We find that MORSOM performance defines a new operational specification for optoacoustic mesoscopy of adult organisms, with possible applications in the developmental biology of adulthood and aging.
Collapse
Affiliation(s)
- Murad Omar
- Chair for Biological Imaging, Technische Universität München, München D-81675, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Johannes Rebling
- Chair for Biological Imaging, Technische Universität München, München D-81675, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Kai Wicker
- Carl Zeiss AG, Corporate Research and Technology, Jena D-07745, Germany
| | | | - Mathias Schwarz
- Chair for Biological Imaging, Technische Universität München, München D-81675, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Jérôme Gateau
- ESPCI Paris, PSL Research University, CNRS, INSERM, Institut Langevin, Paris F-75005, France
| | - Hérnan López-Schier
- Research Unit Sensory Biology and Organogenesis, Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Timo Mappes
- Carl Zeiss Vision International GmbH, Technology & Innovation, Aalen D-73430, Germany
| | - Vasilis Ntziachristos
- Chair for Biological Imaging, Technische Universität München, München D-81675, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg D-85764, Germany
| |
Collapse
|
31
|
Seeger M, Karlas A, Soliman D, Pelisek J, Ntziachristos V. Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma. PHOTOACOUSTICS 2016; 4:102-111. [PMID: 27761409 PMCID: PMC5063356 DOI: 10.1016/j.pacs.2016.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/14/2016] [Accepted: 07/25/2016] [Indexed: 05/20/2023]
Abstract
Carotid artery atherosclerosis is a main cause of stroke. Understanding atherosclerosis biology is critical in the development of targeted prevention and treatment strategies. Consequently, there is demand for advanced tools investigating atheroma pathology. We consider hybrid optoacoustic and multiphoton microscopy for the integrated and complementary interrogation of plaque tissue constituents and their mutual interactions. Herein, we visualize human carotid plaque using a hybrid multimodal imaging system that combines optical resolution optoacoustic (photoacoustic) microscopy, second and third harmonic generation microscopy, and two-photon excitation fluorescence microscopy. Our data suggest more comprehensive insights in the pathophysiology of atheroma formation and destabilization, by enabling congruent visualization of structural and biological features critical for the atherosclerotic process and its acute complications, such as red blood cells and collagen.
Collapse
Key Words
- BF, Brightfield
- CAE, Carotid thrombendarterectomy
- CMR, Continuous multirecord
- Collagen
- DAQ, Data acquisition
- FOV, Field of view
- GM, Galvanometric mirrors
- HE, Hemalaun-Eosin
- Human carotid atheroma
- IPH, Intraplaque hemorrhage
- LDL, Low density lipoprotein
- MAP, Maximum amplitude projection
- MPM, Multiphoton microscopy
- MPOM, Multiphoton and optoacoustic microscopy
- Multimodal microscopy
- NLO, Non-linear optical
- Non-linear optical microscopy
- OAM, Optoacoustic microscopy
- Optoacoustic microscopy
- PMT, Photo multiplier tube
- PSR, Picro-Sirius Red
- Photoacoustic microscopy
- RBC, Red blood cell
- ROI, Region of interest
- Red blood cells
- SHG, Second harmonic generation
- SMC, Smooth muscle cell
- THG, Third harmonic generation
- TPEF, Two-photon excitation fluorescence
Collapse
Affiliation(s)
- Markus Seeger
- Chair for Biological Imaging, Technische Universität München, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Angelos Karlas
- Chair for Biological Imaging, Technische Universität München, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Cardiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dominik Soliman
- Chair for Biological Imaging, Technische Universität München, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Chair for Biological Imaging, Technische Universität München, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Corresponding author at: Chair for Biological Imaging, Technische Universität München, Munich, Germany and Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
32
|
He H, Wissmeyer G, Ovsepian SV, Buehler A, Ntziachristos V. Hybrid optical and acoustic resolution optoacoustic endoscopy. OPTICS LETTERS 2016; 41:2708-10. [PMID: 27304269 DOI: 10.1364/ol.41.002708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We propose the implementation of hybrid optical and acoustic resolution optoacoustic endoscopy. Laser light is transmitted to tissue by two types of illumination for achieving optical and acoustic resolution imaging. A 20 MHz ultrasound detector is used for recording optoacoustic signals. The endoscopy probe attains a 3.6 mm diameter and is fully encapsulated into a catheter system. We validate the imaging performance of the hybrid endoscope on phantoms and ex vivo, and discuss the necessity for the extended resolution and depth range of endoscopy achieved.
Collapse
|
33
|
Wissmeyer G, Soliman D, Shnaiderman R, Rosenthal A, Ntziachristos V. All-optical optoacoustic microscope based on wideband pulse interferometry. OPTICS LETTERS 2016; 41:1953-1956. [PMID: 27128047 DOI: 10.1364/ol.41.001953] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Optical and optoacoustic (photoacoustic) microscopy have been recently joined in hybrid implementations that resolve extended tissue contrast compared to each modality alone. Nevertheless, the application of the hybrid technique is limited by the requirement to combine an optical objective with ultrasound detection collecting signal from the same micro-volume. We present an all-optical optoacoustic microscope based on a pi-phase-shifted fiber Bragg grating (π-FBG) with coherence-restored pulsed interferometry (CRPI) used as the interrogation method. The sensor offers an ultra-small footprint and achieved higher sensitivity over piezoelectric transducers of similar size. We characterize the spectral bandwidth of the ultrasound detector and interrogate the imaging performance on phantoms and tissues. We show the first optoacoustic images of biological specimen recorded with π-FBG sensors. We discuss the potential uses of π-FBG sensors based on CRPI.
Collapse
|
34
|
Tserevelakis GJ, Tsagkaraki M, Zacharakis G. Hybrid photoacoustic and optical imaging of pigments in vegetative tissues. J Microsc 2016; 263:300-6. [PMID: 27019381 DOI: 10.1111/jmi.12396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 11/26/2022]
Abstract
Pigments in vegetative tissues have been a subject of intense research during the previous decades, since they play an active role in several molecular mechanisms regarding plants' physiology and function. Towards this direction, the imaging modality that has been extensively employed and represents the state of the art for mapping pigments' distribution is confocal microscopy. Despite the advantage of a high spatial resolution however, confocal microscopy provides a rather limited imaging depth and requires necessarily strong fluorescence properties from the specimen under observation. To overcome such limitations, we propose a hybrid, photoacoustic and optical imaging methodology for the delineation of various vegetative pigments, such as chlorophylls, anthocyanins and betalains in different plant species. The superior sensitivity and the high contrast complementarity of the hybrid technique, render it a powerful alternative to the conventional fluorescence imaging modalities, significantly expanding the current state of the art.
Collapse
Affiliation(s)
- George J Tserevelakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Margarita Tsagkaraki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.,Department of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Giannis Zacharakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| |
Collapse
|