1
|
Deng X, Zhang S, Zhao R, Liu W, Huang W, Chen X, Gao X, Huang Y, Zhang D. The role of the RING finger protein 213 gene in Moyamoya disease. Fluids Barriers CNS 2025; 22:39. [PMID: 40247333 PMCID: PMC12004738 DOI: 10.1186/s12987-025-00649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/29/2025] [Indexed: 04/19/2025] Open
Abstract
Moyamoya Disease (MMD) represents a chronic and progressive cerebrovascular disorder characterized by the gradual occlusion of the terminal portions of the bilateral internal carotid arteries and their major branches, accompanied by the formation of abnormal vascular networks at the base of the skull. In adolescents, particularly in pediatric populations, MMD is a significant cause of stroke, posing a severe challenge to human health and imposing a heavy burden on healthcare systems. Ring Finger Protein 213 (RNF213), as the primary susceptibility gene for MMD, plays a crucial regulatory role in the initiation, progression, and prognosis of the disease. Despite extensive research on the role of RNF213 in the pathogenesis of MMD, the underlying molecular mechanisms remain incompletely understood and represent a pressing scientific challenge requiring further exploration. This review aims to synthesize the latest research findings and systematically elucidate the multifaceted roles of RNF213 in MMD, including genetic susceptibility, immune-inflammatory responses, blood-brain barrier(BBB) disruption, and angiogenesis. By integrating these findings, this study seeks to provide new insights and theoretical support for a comprehensive and in-depth understanding of the pathophysiological processes of MMD. This research not only contributes to further unraveling the complex pathogenesis of MMD but also lays a solid theoretical foundation for the development of targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Shaosen Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Runsheng Zhao
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weihong Huang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Xuanlin Chen
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Xiang Gao
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
He S, Zhou Z, Cheng MY, Hao X, Chiang T, Wang Y, Zhang J, Wang X, Ye X, Wang R, Steinberg GK, Zhao Y. Advances in moyamoya disease: pathogenesis, diagnosis, and therapeutic interventions. MedComm (Beijing) 2025; 6:e70054. [PMID: 39822761 PMCID: PMC11733107 DOI: 10.1002/mco2.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
Moyamoya disease (MMD) is a type of cerebrovascular disease characterized by occlusion of the distal end of the internal carotid artery and the formation of collateral blood vessels. Over the past 20 years, the landscape of research on MMD has significantly transformed. In this review, we provide insights into the pathogenesis, diagnosis, and therapeutic interventions in MMD. The development of high-throughput sequencing technology has expanded our understanding of genetic susceptibility, identifying MMD-related genes beyond RNF213, such as ACTA2, DIAPH1, HLA, and others. The genetic susceptibility of MMD to its pathological mechanism was summarized and discussed. Based on the second-hit theory, the influences of inflammation, immunity, and environmental factors on MMD were also appropriately summarized. Despite these advancements, revascularization surgery remains the primary treatment for MMD largely because of the lack of effective in vivo and in vitro models. In this study, 16 imaging diagnostic methods for MMD were summarized. Regarding therapeutic intervention, the influences of drugs, endovascular procedures, and revascularization surgeries on patients with MMD were discussed. Future research on the central MMD vascular abnormalities and peripheral circulating factors will provide a more comprehensive understanding of the pathogenic mechanisms of MMD.
Collapse
Affiliation(s)
- Shihao He
- Department of NeurosurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Zhenyu Zhou
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Michelle Y. Cheng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaokuan Hao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Terrance Chiang
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yanru Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Junze Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Xilong Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xun Ye
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Rong Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Gary K. Steinberg
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yuanli Zhao
- Department of NeurosurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
3
|
Walters BP, Trivedi YV, Katoch T, Gupta V, Jain R. Exploring the Connection: Moyamoya Disease and Its Implications for Cardiovascular Health. Cardiol Rev 2025:00045415-990000000-00391. [PMID: 39812469 DOI: 10.1097/crd.0000000000000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Moyamoya disease (MMD) is a vascular disorder characterized by steno-occlusive alterations in cerebral arteries, often resulting in ischemic or hemorrhagic events predominantly affecting the female population and more common in Asian populations. Despite its predominantly neurological manifestations, recent research suggests a potential association between MMD and cardiovascular diseases (CVDs). MMD involves various genetic and environmental factors, with mutations in the RNF213 gene being strongly implicated in disease susceptibility, with histopathological findings revealing intimal lesions and smooth muscle proliferation, contributing to vascular occlusion as well as dysregulation of circulating endothelial and smooth muscle progenitor cells further complicating MMD's pathogenesis. However, the exact nature of the relationship between MMD and CVD remains incompletely understood, and emerging evidence suggests a potential interplay between these pathologies. In this study, we discuss the potential link between MMD and CVD, exploring genetic factors, pathophysiological mechanisms, and studies highlighting cardiac manifestations in MMD patients.
Collapse
Affiliation(s)
- Benjamin P Walters
- From the Department of Internal Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| | | | - Tavishi Katoch
- Department of Internal Medicine, Indira Gandhi Medical College, Shimla, HP, India
| | - Vasu Gupta
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH; and
| | - Rohit Jain
- Department of Internal Medicine, Milton S Hershey Medical Center, Hershey, PA
| |
Collapse
|
4
|
Bang OY, Fujimura M. Medical Management of Adult Moyamoya Disease: A Review and Relevant Cases With Ischemic Events. J Stroke 2025; 27:1-18. [PMID: 39916450 PMCID: PMC11834343 DOI: 10.5853/jos.2024.04273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 02/20/2025] Open
Abstract
Moyamoya disease (MMD) is a rare and progressive cerebrovascular disorder characterized by stenosis or occlusion of the internal carotid arteries resulting in the development of fragile collateral vessels at the base of the brain. Surgical revascularization is the primary treatment option for preventing ischemic and hemorrhagic events; however, the role of medical management has become increasingly recognized, particularly in cases involving asymptomatic patients or those at a high risk for surgical complications. In this review, we aimed to investigate the current guidelines and evidence supporting various medical management strategies for MMD, including the importance of controlling risk factors and judicious use of antithrombotic therapy. Given the considerable variability in patient presentation, such as age of onset, symptomatology, and comorbid conditions, it is crucial to adopt tailored therapeutic approaches that address each patient's unique characteristics. The existing literature on medical management is limited. However, individualized strategies may effectively mitigate the risk of ischemic events and improve the overall patient outcomes. Further research is essential to develop comprehensive and standardized treatment protocols for medical management of adult patients with MMD. In addition, ongoing trials and efforts to develop disease-modifying agents are discussed.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- S&E bio Co., Ltd., Seoul, Korea
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Bao Y, Ma Q, Chen L, Feng K, Guo W, Huang T, Cai YD. Recognizing SARS-CoV-2 infection of nasopharyngeal tissue at the single-cell level by machine learning method. Mol Immunol 2025; 177:44-61. [PMID: 39700903 DOI: 10.1016/j.molimm.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
SARS-CoV-2 has posed serious global health challenges not only because of the high degree of virus transmissibility but also due to its severe effects on the respiratory system, such as inducing changes in multiple organs through the ACE2 receptor. This virus makes changes to gene expression at the single-cell level and thus to cellular functions and immune responses in a variety of cell types. Previous studies have not been able to resolve these mechanisms fully, and so our study tries to bridge knowledge gaps about the cellular responses under conditions of infection. We performed single-cell RNA-sequencing of nasopharyngeal swabs from COVID-19 patients and healthy controls. We assembled a dataset of 32,588 cells for 58 subjects for analysis. The data were sorted into eight cell types: ciliated, basal, deuterosomal, goblet, myeloid, secretory, squamous, and T cells. Using machine learning, including nine feature ranking algorithms and two classification algorithms, we classified the infection status of single cells and analyzed gene expression to pinpoint critical markers of SARS-CoV-2 infection. Our findings show distinct gene expression profiles between infected and uninfected cells across diverse cell types, with key indicators such as FKBP4, IFITM1, SLC35E1, CD200R1, MT-ATP6, KRT13, RBM15, and FTH1 illuminating unique immune responses and potential pathways for viral spread and immune evasion. The machine learning methods effectively differentiated between infected and non-infected cells, shedding light on the cellular heterogeneity of SARS-CoV-2 infection. The findings will improve our knowledge of the cellular dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- YuSheng Bao
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China.
| | - Wei Guo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Tan BYQ, Kok CHP, Ng MBJ, Loong S, Jou E, Yeo LLL, Han W, Anderson CD, Khor CC, Lai PS. Exploring RNF213 in Ischemic Stroke and Moyamoya Disease: From Cellular Models to Clinical Insights. Biomedicines 2024; 13:17. [PMID: 39857601 PMCID: PMC11762504 DOI: 10.3390/biomedicines13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Advances in stroke genetics have highlighted the critical role of rare genetic variants in cerebrovascular diseases, with RNF213 emerging as a key player in ischemic stroke and Moyamoya disease (MMD). Initially identified as the primary susceptibility gene for MMD, RNF213-notably the p.R4810K variant-has been strongly linked to intracranial artery stenosis (ICAS) and various ischemic stroke subtypes, particularly in East Asian populations. This gene encodes an E3 ubiquitin ligase with diverse roles in angiogenesis, vascular remodeling, lipid metabolism, and cerebral blood flow regulation, yet its exact mechanisms in cerebrovascular pathology remain incompletely understood. This review synthesizes findings from genetic studies, as well as cellular and animal models, to provide a holistic understanding of RNF213's involvement in cerebrovascular diseases. Key mechanisms by which RNF213 variants contribute to disease pathogenesis are explored, alongside discussions on their clinical utility as biomarkers and therapeutic targets. Additionally, we address the gene's implications for disease prediction, risk assessment, and cascade screening. By integrating evidence across disciplines, this review identifies critical knowledge gaps, including the biological pathways underlying RNF213's pathogenicity. These insights lay the groundwork for future research and underscore the potential of RNF213 in driving personalized approaches to cerebrovascular disease management.
Collapse
Affiliation(s)
- Benjamin Y. Q. Tan
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore; (M.B.J.N.); (L.L.L.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore 117597, Singapore;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | | | - Megan B. J. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore; (M.B.J.N.); (L.L.L.Y.)
| | - Shaun Loong
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore 117597, Singapore;
| | - Eric Jou
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Leonard L. L. Yeo
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore; (M.B.J.N.); (L.L.L.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore 117597, Singapore;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Weiping Han
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Christopher D. Anderson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
7
|
Xu J, Zou Z, Liu W, Zhang Q, Shen J, Hao F, Chen G, Yu D, Li Y, Zhang Z, Qin Y, Yang R, Wang Y, Duan L. HAPLN3 p.T34A contributes to incomplete penetrance of moyamoya disease in Chinese carrying RNF213 p.R4810K. Eur J Neurol 2024; 31:e16473. [PMID: 39315749 PMCID: PMC11555006 DOI: 10.1111/ene.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND PURPOSE The penetrance of the RNF213 p.R4810K, a founder mutation of moyamoya disease (MMD), is estimated to be only 1/150-1/300. However, the factors affecting its penetrance remain unclear. Therefore, our study aims to identify modifier genes associated with the incomplete penetrance of this founder mutation. METHODS Whole-exome sequencing (WES) was performed on 36 participants, including 22 MMD patients and 14 non-MMD controls with RNF213 p.R4810K mutation. Fisher's exact test was used to assess the presence of genetic variants that differed significantly between MMD patients and non-MMD controls. In order to exclude false-positive results, another 55 carriers were included to perform Fisher's exact test for the selected sites in the WES discovery stage. Subsequently, human brain microvascular endothelial cells were transfected with wild-type and mutant HAPLN3 for tube formation assays and western blotting to explore the impact of candidate genes on angiogenesis. RESULTS Analysis of variants from WES data revealed a total of 12 non-synonymous variants. Through bioinformatics analysis, the focus was on the HAPLN3 p.T34A variant with a significant p value of 0.00731 in Fisher's exact test. Validation through Sanger sequencing confirmed the presence of this variant in the WES data. In vitro experiments revealed that silencing HAPLN3 and transfecting HAPLN3 p.T34A significantly enhanced tube formation and increased the relative protein expression of vascular endothelial growth factor in endothelial cells. CONCLUSIONS These results suggest that HAPLN3 may function as a modifier gene of RNF213 p.R4810K, promoting the development of MMD and contributing to the incomplete penetrance of MMD founder mutations.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Zhengxing Zou
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Wanyang Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Qian Zhang
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Juan Shen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Fangbin Hao
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Gan Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Dan Yu
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Yunzhu Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Zhengshan Zhang
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Yuchen Qin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Rimiao Yang
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Yue Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public HealthChina Medical UniversityShenyangChina
| | - Lian Duan
- Department of Neurosurgery, the Fifth Medical CentreChinese PLA General HospitalBeijingChina
| |
Collapse
|
8
|
Hiraide T, Tsuda N, Momoi M, Shinya Y, Sano M, Fukuda K, Shibahara J, Kuramoto J, Kanai Y, Kosaki K, Hakamata Y, Kataoka M. CXCL12/CXCR4 pathway as a novel therapeutic target for RNF213-associated pulmonary arterial hypertension. Sci Rep 2024; 14:26604. [PMID: 39496725 PMCID: PMC11535198 DOI: 10.1038/s41598-024-77388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Genetic backgrounds of patients with pulmonary arterial hypertension (PAH) were not fully investigated. A variant of c.14429G > A (p.Arg4810Lys) in the ring finger protein 213 gene (RNF213) was recently identified as a risk allele for poor treatment response and poor clinical prognosis in patients with PAH. However, the molecular mechanisms of the RNF213 p.Arg4810Lys variant in development of PAH are unknown. We investigated the underlying molecular mechanisms of RNF213-associated vasculopathy using an in vivo mouse model. RNF213+/p.Arg4828Lys mice, harboring the heterozygous RNF213 p.Arg4828Lys variant corresponding to the p.Arg4810Lys variant in humans, were created using the CRISPR-Cas9 system to recapitulate the genetic status of PAH patients. RNF213+/p.Arg4828Lys mice had a significant elevation of the right ventricular systolic pressure, hypertrophy of the right ventricle, and increased thickness of the pulmonary arterial medial wall compared with wild-type mice after 3 months of exposure to a hypoxic environment. C-X-C motif chemokine ligand 12 (CXCL12), a C-X-C chemokine receptor type 4 (CXCR4) ligand, was significantly elevated in the lungs of RNF213+/p.Arg4828Lys mice, and PAH was ameliorated by the administration of a CXCR4 antagonist. CXCL12-CXCR4 is an angiogenic chemokine axis, and immunohistochemistry demonstrated an increase in CXCR4 in vimentin-positive spindle-shaped cells in adventitia and interstitial lesions in RNF213+/p.Arg4828Lys mice and lung specimens from severe PAH patients with the RNF213 p.Arg4810Lys variant. We confirmed a cause-and-effect relationship between the RNF213 p.Arg4810Lys variant and PAH via the CXCL12-CXCR4 pathway. The findings in this study suggest that targeting this pathway might be a novel therapeutic strategy for RNF213-associated vasculopathy.
Collapse
Affiliation(s)
- Takahiro Hiraide
- Department of Cardiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noboru Tsuda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mizuki Momoi
- Department of Cardiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshiki Shinya
- Department of Cardiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Motoaki Sano
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Junji Shibahara
- Department of Pathology, School of Medicine, Kyorin University, Mitaka, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yoji Hakamata
- Department of Basic Science, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan.
- The Second Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
9
|
Shin HS, Park GH, Choi ES, Park SY, Kim DS, Chang J, Hong JM. RNF213 variant and autophagic impairment: A pivotal link to endothelial dysfunction in moyamoya disease. J Cereb Blood Flow Metab 2024; 44:1801-1815. [PMID: 38573771 PMCID: PMC11494856 DOI: 10.1177/0271678x241245557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/06/2024]
Abstract
Moyamoya disease (MMD) is closely associated with the Ring Finger Protein 213 (RNF213), a susceptibility gene for MMD. However, its biological function remains unclear. We aimed to elucidate the role of RNF213 in the damage incurred by human endothelial cells under oxygen-glucose deprivation (OGD). We analyzed autophagy in peripheral blood mononuclear cells (PBMCs) derived from patients carrying either RNF213 wildtype (WT) or variant (p.R4810K). Subsequently, human umbilical vein endothelial cells (HUVECs) were transfected with RNF213 WT (HUVECWT) or p.R4810K (HUVECR4810K) and exposed to OGD for 2 h. Immunoblotting was used to analyze autophagy marker proteins, and endothelial function was analyzed by tube formation assay. Autophagic vesicles were observed using transmission electron microscopy. Post-OGD exposure, we administered rapamycin and cilostazol as potential autophagy inducers. The RNF213 variant group during post-OGD exposure (vs. pre-OGD) showed autophagy inhibition, increased protein expression of SQSTM1/p62 (p < 0.0001) and LC3-II (p = 0.0039), and impaired endothelial function (p = 0.0252). HUVECR4810K during post-OGD exposure (versus pre-OGD) showed a remarkable increase in autophagic vesicles. Administration of rapamycin and cilostazol notably restored the function of HUVECR4810K and autophagy. Our findings support the pivotal role of autophagy impaired by the RNF213 variant in MMD-induced endothelial cell dysfunction.
Collapse
Affiliation(s)
- Hee Sun Shin
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Geun Hwa Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Eun Sil Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - So Young Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Da Sol Kim
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Jaerak Chang
- Department of Brain Science, Ajou University School of Medicine, Suwon, Korea
| | - Ji Man Hong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| |
Collapse
|
10
|
Nakashima K, Imai T, Shiraishi A, Unose R, Goto H, Nagatomo Y, Kojima-Ishii K, Mushimoto Y, Nishiyama K, Yamamura K, Nagata H, Ishimura M, Kusuhara K, Koga Y, Sakai Y, Ohga S. The immunoreactive signature of monocyte-derived dendritic cells from patients with Down syndrome. Clin Exp Immunol 2024; 217:291-299. [PMID: 38916251 PMCID: PMC11310712 DOI: 10.1093/cei/uxae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/17/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024] Open
Abstract
The clinical spectrum of Down syndrome (DS) ranges from congenital malformations to premature aging and early-onset senescence. Excessive immunoreactivity and oxidative stress are thought to accelerate the pace of aging in DS patients; however, the immunological profile remains elusive. We investigated whether peripheral blood monocyte-derived dendritic cells (MoDCs) in DS patients respond to lipopolysaccharide (LPS) distinctly from non-DS control MoDCs. Eighteen DS patients (age 2-47 years, 12 males) and 22 controls (age 4-40 years, 15 males) were enrolled. CD14-positive monocytes were immunopurified and cultured for 7 days in the presence of granulocyte-macrophage colony-stimulating factor and IL-4, yielding MoDCs in vitro. After the LPS-stimulation for 48 hours from days 7 to 9, culture supernatant cytokines were measured by multiplex cytokine bead assays, and bulk-prepared RNA from the cells was used for transcriptomic analyses. MoDCs from DS patients produced cytokines/chemokines (IL-6, IL-8, TNF-α, MCP-1, and IP-10) at significantly higher levels than those from controls in response to LPS. RNA sequencing revealed that DS-derived MoDCs differentially expressed 137 genes (74 upregulated and 63 downregulated) compared with controls. A gene enrichment analysis identified 5 genes associated with Toll-like receptor signaling (KEGG: hsa04620, P = 0.00731) and oxidative phosphorylation (hsa00190, P = 0.0173) pathways. MoDCs obtained from DS patients showed higher cytokine or chemokine responses to LPS than did control MoDCs. Gene expression profiles suggest that hyperactive Toll-like receptor and mitochondrial oxidative phosphorylation pathways configure the immunoreactive signature of MoDCs in DS patients.
Collapse
Affiliation(s)
- Kentaro Nakashima
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Imai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Shiraishi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoko Unose
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironori Goto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nagatomo
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kanako Kojima-Ishii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kei Nishiyama
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichiro Yamamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hazumu Nagata
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Yang X, Zhu X, Sheng J, Fu Y, Nie D, You X, Chen Y, Yang X, Ling Q, Zhang H, Li X, Hu S. RNF213 promotes Treg cell differentiation by facilitating K63-linked ubiquitination and nuclear translocation of FOXO1. Nat Commun 2024; 15:5961. [PMID: 39013878 PMCID: PMC11252262 DOI: 10.1038/s41467-024-50392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-β and exerts a crucial role in the therapeutic efficacy of IFN-β for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.
Collapse
MESH Headings
- Ubiquitination
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cell Differentiation
- Animals
- Forkhead Box Protein O1/metabolism
- Forkhead Box Protein O1/genetics
- Mice
- Humans
- Interferon-beta/metabolism
- Mice, Inbred C57BL
- Cell Nucleus/metabolism
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/genetics
- Multiple Sclerosis/pathology
- Active Transport, Cell Nucleus
- Female
- Mice, Knockout
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- HEK293 Cells
Collapse
Affiliation(s)
- Xiaofan Yang
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaotong Zhu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junli Sheng
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuling Fu
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Dingnai Nie
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong You
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yitian Chen
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Yang
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Qiao Ling
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Huili Zhang
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
| | - Xiaomin Li
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Shengfeng Hu
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Chiablaem K, Jinawath A, Nuanpirom J, Arora JK, Nasaree S, Thanomchard T, Singhto N, Chittavanich P, Suktitipat B, Charoensawan V, Chairoungdua A, Jinn-Chyuan Sheu J, Kiyotani K, Svasti J, Nakamura Y, Jinawath N. Identification of RNF213 as a Potential Suppressor of Local Invasion in Intrahepatic Cholangiocarcinoma. J Transl Med 2024; 104:102074. [PMID: 38723854 DOI: 10.1016/j.labinv.2024.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a lethal cancer with poor survival especially when it spreads. The histopathology of its rare intraductal papillary neoplasm of the bile duct type (IPNB) characteristically shows cancer cells originating within the confined bile duct space. These cells eventually invade and infiltrate the nearby liver tissues, making it a good model to study the mechanism of local invasion, which is the earliest step of metastasis. To discover potential suppressor genes of local invasion in ICC, we analyzed the somatic mutation profiles and performed clonal evolution analyses of the 11 pairs of macrodissected locally invasive IPNB tissues (LI-IPNB) and IPNB tissues without local invasion from the same patients. We identified a protein-truncating variant in an E3 ubiquitin ligase, RNF213 (c.6967C>T; p.Gln2323X; chr17: 78,319,102 [hg19], exon 29), as the most common protein-truncating variant event in LI-IPNB samples (4/11 patients). Knockdown of RNF213 in HuCCT1 and YSCCC cells showed increased migration and invasion, and reduced vasculogenic mimicry but maintained normal proliferation. Transcriptomic analysis of the RNF213-knockdown vs control cells was then performed in the HuCCT1, YSCCC, and KKU-100 cells. Gene ontology enrichment analysis of the common differentially expressed genes revealed significantly altered cytokine and oxidoreductase-oxidizing metal ion activities, as confirmed by Western blotting. Gene Set Enrichment Analysis identified the most enriched pathways being oxidative phosphorylation, fatty acid metabolism, reactive oxygen species, adipogenesis, and angiogenesis. In sum, loss-of-function mutation of RNF213 is a common genetic alteration in LI-IPNB tissues. RNF213 knockdown leads to increased migration and invasion of ICC cells, potentially through malfunctions of the pathways related to inflammation and energy metabolisms.
Collapse
Affiliation(s)
- Khajeelak Chiablaem
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Artit Jinawath
- Molecular Histopathology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jiratchaya Nuanpirom
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Jantarika Kumar Arora
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirawit Nasaree
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanastha Thanomchard
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pamorn Chittavanich
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bhoom Suktitipat
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Varodom Charoensawan
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kazuma Kiyotani
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan; National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, Thailand.
| |
Collapse
|
13
|
Fujii F, Kanemasa H, Okuzono S, Setoyama D, Taira R, Yonemoto K, Motomura Y, Kato H, Masuda K, Kato TA, Ohga S, Sakai Y. ATP1A3 regulates protein synthesis for mitochondrial stability under heat stress. Dis Model Mech 2024; 17:dmm050574. [PMID: 38804677 PMCID: PMC11247502 DOI: 10.1242/dmm.050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Pathogenic variants in ATP1A3, the gene encoding the α3 subunit of the Na+/K+-ATPase, cause alternating hemiplegia of childhood (AHC) and related disorders. Impairments in Na+/K+-ATPase activity are associated with the clinical phenotype. However, it remains unclear whether additional mechanisms are involved in the exaggerated symptoms under stressed conditions in patients with AHC. We herein report that the intracellular loop (ICL) of ATP1A3 interacted with RNA-binding proteins, such as Eif4g (encoded by Eif4g1), Pabpc1 and Fmrp (encoded by Fmr1), in mouse Neuro2a cells. Both the siRNA-mediated depletion of Atp1a3 and ectopic expression of the p.R756C variant of human ATP1A3-ICL in Neuro2a cells resulted in excessive phosphorylation of ribosomal protein S6 (encoded by Rps6) and increased susceptibility to heat stress. In agreement with these findings, induced pluripotent stem cells (iPSCs) from a patient with the p.R756C variant were more vulnerable to heat stress than control iPSCs. Neurons established from the patient-derived iPSCs showed lower calcium influxes in responses to stimulation with ATP than those in control iPSCs. These data indicate that inefficient protein synthesis contributes to the progressive and deteriorating phenotypes in patients with the p.R756C variant among a variety of ATP1A3-related disorders.
Collapse
Affiliation(s)
- Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
14
|
Zedde M, Grisendi I, Assenza F, Napoli M, Moratti C, Pavone C, Bonacini L, Di Cecco G, D’Aniello S, Stoenoiu MS, Persu A, Valzania F, Pascarella R. RNF213 Polymorphisms in Intracranial Artery Dissection. Genes (Basel) 2024; 15:725. [PMID: 38927660 PMCID: PMC11203323 DOI: 10.3390/genes15060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The ring finger protein 213 gene (RNF213) is involved in several vascular diseases, both intracranial and systemic ones. Some variants are common in the Asian population and are reported as a risk factor for moyamoya disease, intracranial stenosis and intracranial aneurysms. Among intracranial vascular diseases, both moyamoya disease and intracranial artery dissection are more prevalent in the Asian population. We performed a systematic review of the literature, aiming to assess the rate of RNF213 variants in patients with spontaneous intracranial dissections. Four papers were identified, providing data on 53 patients with intracranial artery dissection. The rate of RNF213 variants is 10/53 (18.9%) and it increases to 10/29 (34.5%), excluding patients with vertebral artery dissection. All patients had the RNF213 p.Arg4810Lys variant. RNF213 variants seems to be involved in intracranial dissections in Asian cohorts. The small number of patients, the inclusion of only patients of Asian descent and the small but non-negligible coexistence with moyamoya disease familiarity might be limiting factors, requiring further studies to confirm these preliminary findings and the embryological interpretation.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Federica Assenza
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Manuela Napoli
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Pavone
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Lara Bonacini
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Giovanna Di Cecco
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Serena D’Aniello
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Maria Simona Stoenoiu
- Department of Internal Medicine, Rheumatology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Alexandre Persu
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| |
Collapse
|
15
|
Li Z, Liu Y, Li X, Yang S, Feng S, Li G, Jin F, Nie S. Knockdown the moyamoya disease susceptibility gene, RNF213, upregulates the expression of basic fibroblast growth factor and matrix metalloproteinase-9 in bone marrow derived mesenchymal stem cells. Neurosurg Rev 2024; 47:246. [PMID: 38811382 DOI: 10.1007/s10143-024-02448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
Moyamoya disease (MMD) is a chronic, progressive cerebrovascular occlusive disease. Ring finger protein 213 (RNF213) is a susceptibility gene of MMD. Previous studies have shown that the expression levels of angiogenic factors increase in MMD patients, but the relationship between the susceptibility gene RNF213 and these angiogenic mediators is still unclear. The aim of the present study was to investigate the pathogenesis of MMD by examining the effect of RNF213 gene knockdown on the expression of matrix metalloproteinase-9 (MMP-9) and basic fibroblast growth factor (bFGF) in rat bone marrow-derived mesenchymal stem cells (rBMSCs). Firstly, 40 patients with MMD and 40 age-matched normal individuals (as the control group) were enrolled in the present study to detect the levels of MMP-9 and bFGF in serum by ELISA. Secondly, Sprague-Dawley male rat BMSCs were isolated and cultured using the whole bone marrow adhesion method, and subsequent phenotypic analysis was performed by flow cytometry. Alizarin red and oil red O staining methods were used to identify osteogenic and adipogenic differentiation, respectively. Finally, third generation rBMSCs were transfected with lentivirus recombinant plasmid to knockout expression of the RNF213 gene. After successful transfection was confirmed by reverse transcription-quantitative PCR and fluorescence imaging, the expression levels of bFGF and MMP-9 mRNA in rBMSCs and the levels of bFGF and MMP-9 protein in the supernatant of the culture medium were detected on the 7th and 14th days after transfection. There was no significant difference in the relative expression level of bFGF among the three groups on the 7th day. For the relative expression level of MMP-9, there were significant differences on the 7th day and 14th day. In addition, there was no statistically significant difference in the expression of bFGF in the supernatant of the RNF213 shRNA group culture medium, while there was a significant difference in the expression level of MMP-9. The knockdown of the RNF213 gene affects the expression of bFGF and MMP-9. However, further studies are needed to determine how they participate in the pathogenesis of MMD. The findings of the present study provide a theoretical basis for clarifying the pathogenesis and clinical treatment of MMD.
Collapse
Affiliation(s)
- Zhengyou Li
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Yang Liu
- Department of Neurosurgery, Fushan District People's Hospital, Yantai, Shandong, 265500, P.R. China
| | - Xiumei Li
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Shaojing Yang
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Song Feng
- Department of Neurosurgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences and Qingdao Central Hospital Medical Group, 127 Siliu South Road, Qingdao, Shandong, 266042, P.R. China
| | - Genhua Li
- Department of Geriatric Neurology, Anti-Aging Monitoring Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, P.R. China
| | - Feng Jin
- Department of Neurosurgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences and Qingdao Central Hospital Medical Group, 127 Siliu South Road, Qingdao, Shandong, 266042, P.R. China.
| | - Shanjing Nie
- Department of Geriatric Neurology, Anti-Aging Monitoring Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
16
|
Haas P, Wiggenhauser LM, Tellermann J, Hurth H, Feucht D, Tatagiba M, Khan N, Roder C. Vascular risk profile and changes of arterial hypertension after surgical revascularization in adult Moyamoya patients. Sci Rep 2024; 14:12364. [PMID: 38811635 PMCID: PMC11137083 DOI: 10.1038/s41598-024-61966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Moyamoya disease (MMD) is a rare stenoocclusive cerebral vasculopathy often treated by neurosurgical revascularization using extracranial-intracranial bypasses to prevent ischemic or hemorrhagic events. Little is known about the vascular risk profile of adult MMD patients compared to the general population. We therefore analyzed 133 adult MMD patients and compared them with data from more than 22,000 patients from the German Health Update database. Patients with MMD showed an age- and sex-adjusted increased prevalence of arterial hypertension, especially in women between 30 and 44 years and in patients of both sexes between 45 and 64 years. Diabetes mellitus was diagnosed significantly more frequently in MMD patients with increasing age, whereas the vascular risk profile in terms of obesity, nicotine and alcohol consumption was similar to that of the general population. Antihypertensive medication was changed one year after surgical revascularization in 67.5% of patients with a tendency towards dose reduction in 43.2% of all patients. After revascularization, physicians need to be aware of a high likelihood of changes in arterial hypertension and should adjust all other modifiable systemic vascular risk factors to achieve the best treatment possible.
Collapse
Affiliation(s)
- Patrick Haas
- Department of Neurosurgery and Moyamoya Center, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Lucas Moritz Wiggenhauser
- Department of Neurosurgery and Moyamoya Center, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Jonas Tellermann
- Department of Neurosurgery and Moyamoya Center, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Helene Hurth
- Department of Neurosurgery and Moyamoya Center, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Daniel Feucht
- Department of Neurosurgery and Moyamoya Center, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery and Moyamoya Center, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Nadia Khan
- Department of Neurosurgery and Moyamoya Center, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Moyamoya Center, University Children's Hospital of Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Constantin Roder
- Department of Neurosurgery and Moyamoya Center, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| |
Collapse
|
17
|
Morito D. Molecular structure and function of mysterin/RNF213. J Biochem 2024; 175:495-505. [PMID: 38378744 DOI: 10.1093/jb/mvae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Mysterin is a large intracellular protein harboring a RING finger ubiquitin ligase domain and is also referred to as RING finger protein 213 (RNF213). The author performed the first molecular cloning of the mysterin gene as the final step in genetic exploration of cerebrovascular moyamoya disease (MMD) and initiated the next round of exploration to understand its molecular and cellular functions. Although much remains unknown, accumulating findings suggest that mysterin functions in cells by targeting massive intracellular structures, such as lipid droplets (LDs) and various invasive pathogens. In the latter case, mysterin appears to directly surround and ubiquitylate the surface of pathogens and stimulate cell-autonomous antimicrobial reactions, such as xenophagy and inflammatory response. To date, multiple mutations causing MMD have been identified within and near the RING finger domain of mysterin; however, their functional relevance remains largely unknown. Besides the RING finger, mysterin harbors a dynein-like ATPase core and an RZ finger, another ubiquitin ligase domain unique to mysterin, while functional exploration of these domains has also just commenced. In this review, the author attempts to summarize the core findings regarding the molecular structure and function of the mysterin protein, with an emphasis on the perspective of MMD research.
Collapse
Affiliation(s)
- Daisuke Morito
- Department of Biochemistry, Showa University School of Medicine, Hatanodai 1-5-8, Shinagawa, Tokyo 142-0064, Japan
| |
Collapse
|
18
|
Xiang X, He Y, Zhang Z, Yang X. Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance. Nat Commun 2024; 15:2164. [PMID: 38461306 PMCID: PMC10925056 DOI: 10.1038/s41467-024-46480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.
Collapse
Affiliation(s)
- Xianke Xiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Yao He
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Cancer Research Institute, Shenzhen Bay Lab, Shenzhen, 518132, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Klawinski DM, Cottrell CE, Schieffer KM, Indyk JA, Gandhi K, Mardis ER, Rodriguez DP, Breneman JC, Osorio DS. Fatal brainstem injury following proton radiation in a patient with medulloblastoma and a germline variant in RNF213. Pediatr Blood Cancer 2024; 71:e30739. [PMID: 37877896 DOI: 10.1002/pbc.30739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Brainstem injury occurs secondary to radiation to the posterior fossa in up to 2% of pediatric patients. It may occur after months to years after treatment. It has been associated with age less than 5 years and with comorbid conditions such as cerebrovascular disease, diabetes mellitus, and hypertension. Radiation necrosis is often symptomatic and can be fatal. A pathogenic variant in RNF213 was found in a patient who suffered fatal radiation necrosis. This mutation has been associated with moyamoya disease and may predispose to radiation necrosis.
Collapse
Affiliation(s)
- Darren M Klawinski
- Department of Pediatrics, Nemours Children's Health Jacksonville, Jacksonville, Florida, USA
| | | | | | | | - Kajal Gandhi
- Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | | - John C Breneman
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
20
|
Murai Y, Matano F, Kubota A, Nounaka Y, Ishisaka E, Shirokane K, Koketsu K, Nakae R, Tamaki T. RNF213-Related Vasculopathy: Various Systemic Vascular Diseases Involving RNF213 Gene Mutations: Review. J NIPPON MED SCH 2024; 91:140-145. [PMID: 38777780 DOI: 10.1272/jnms.jnms.2024_91-215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Moyamoya disease (MMD) is a cerebrovascular disorder that is predominantly observed in women of East Asian descent, and is characterized by progressive stenosis of the internal carotid artery, beginning in early childhood, and a distinctive network of collateral vessels known as "moyamoya vessels" in the basal ganglia. Additionally, a prevalent genetic variant found in most MMD cases is the p.R4810K polymorphism of RNF213 on chromosome 17q25.3. Recent studies have revealed that RNF213 mutations are associated not only with MMD, but also with other systemic vascular disorders, including intracranial atherosclerosis and systemic vascular abnormalities such as pulmonary artery stenosis and coronary artery diseases. Therefore, the concept of "RNF213-related vasculopathy" has been proposed. This review focuses on polymorphisms in the RNF213 gene and describes a wide range of clinical and genetic phenotypes associated with RNF213-related vasculopathy. The RNF213 gene has been suggested to play an important role in the pathogenesis of vascular diseases and developing new therapies. Therefore, further research and knowledge sharing through collaboration between clinicians and researchers are required.
Collapse
Affiliation(s)
- Yasuo Murai
- Department of Neurological Surgery, Nippon Medical School Hospital
| | - Fumihiro Matano
- Department of Neurological Surgery, Nippon Medical School Hospital
| | - Asami Kubota
- Department of Neurological Surgery, Nippon Medical School Hospital
| | - Yohei Nounaka
- Department of Neurological Surgery, Nippon Medical School Hospital
| | - Eitaro Ishisaka
- Department of Neurological Surgery, Nippon Medical School Musashi Kosugi Hospital
| | - Kazutaka Shirokane
- Department of Neurological Surgery, Nippon Medical School Chiba Hokusoh Hospital
| | - Kenta Koketsu
- Department of Neurological Surgery, Nippon Medical School Chiba Hokusoh Hospital
| | - Ryuta Nakae
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital
| | - Tomonori Tamaki
- Department of Neurological Surgery, Nippon Medical School Tama Nagayama Hospital
| |
Collapse
|
21
|
Li F, Huang YY, Zhang S, Wang W. Different phenotypes of moyamoya disease in a Chinese familial case involving heterozygous c.14429G>a variant in RNF213. Br J Neurosurg 2023; 37:1882-1885. [PMID: 35642380 DOI: 10.1080/02688697.2021.1916433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/09/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE Moyamoya disease (MMD) is an uncommon chronic and occlusive cerebrovascular disorder involving the development of abnormal collateral vessels. This report aimed to describe a Chinese familial case with a rare variant in the RNF213 gene. METHODS The present report presents a rare familial case of MMD involving a heterozygous c.14429G>A variant in RNF213 and exhibiting different phenotypes. RESULTS A 3-year-old Chinese boy and his 10-year-old sister diagnosed severe bilateral MMD, while their mother was diagnosed asymptomatic bilateral MMD, based on the imaging results of magnetic resonance angiography (MRA). The boy mainly showed numbness at left hand accompanied by dysphasia and dyskinesia, while his sister had complex symptoms including dysphasia, dyskinesia at both hands and fatigue of limbs. Muscle force was ranked as left (upper limb/lower limb: 4/3) and right (upper limb/lower limb: 3/4). Genetic testing indicated a heterozygous c.14429G>A variant in RNF213 in 3 patients. The 3 patients shared the same amino acid substitution of p.Arg4810Lys caused by c.14429G>A. The father of two children also underwent genetic testing for RNF213 and MRI examination but found normal in all indices. CONCLUSIONS Genetic testing for RNF213 is suggested for MMD screening towards family members, and c.14576G>A variant is identified as an important pathogenic mutation with family heritability.
Collapse
Affiliation(s)
- Feng Li
- Outpatient Department of Pediatrics, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yuan-Yuan Huang
- Outpatient Department of Pediatrics, The First Hospital of Jilin University, Changchun, P.R. China
| | - Sai Zhang
- Outpatient Department of Pediatrics, The First Hospital of Jilin University, Changchun, P.R. China
| | - Wei Wang
- Outpatient Department of Pediatrics, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
22
|
Li S, Li Y, Huang P, Mao X, Jiang K, Chen R, Li Q, Wang L, Jin Z, Wan C, Xiong Y, Yu Y, Sheng W, Hong D, Lin J. Knockout of Rnf213 Ameliorates Cerebral Ischemic-reperfusion Injury by Inhibiting Neuronal Apoptosis Through the Akt/GSK-3β/β-catenin/Bcl-2 Pathway. Neuroscience 2023; 533:10-21. [PMID: 37778692 DOI: 10.1016/j.neuroscience.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Previous studies by us and others have shown that RING finger protein 213 (RNF213) is associated with cerebrovascular disease and systemic vasculopathy. Indeed, Rnf213 mRNA expression is increased in cerebral ischemia reperfusion injury (CIRI). The purpose of the present study was to investigate the role of Rnf213 in CIRI. Using the middle cerebral artery occlusion (MCAO) model, we confirmed that the expression of RNF213 protein was significantly upregulated in neurons in the ischemic penumbra. Rnf213 knockout mice were successfully generated using CRISPR/Cas9 technology. According to TTC staining and Bederson neurological scale, removal of Rnf213 decreased brain infarct volume and improved neurological deficit score, although the restoration of cerebral blood flow after MCAO was similar in WT and Rnf213-/- mice. In addition, the levels of p-Akt, p-GSK-3β, β-catenin and Bcl-2 were significantly increased 24 h after MCAO in the ischemic penumbra of the Rnf213-/- mice compared to WT mice, indicating that Rnf213 removal may ameliorate neuronal apoptosis by regulating the Akt/GSK-3β/β-catenin/Bcl-2 signaling pathway. Taken together, our study reveals that Rnf213 regulates neuronal apoptosis in CIRI, therefore impacting on brain infarct volume in brain ischemia.
Collapse
Affiliation(s)
- Shumeng Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yiheng Li
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaocheng Mao
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kaiyan Jiang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ran Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lulu Wang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zeqing Jin
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenyi Wan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Xiong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yaqing Yu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenli Sheng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Jing Lin
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
23
|
Ye F, Niu X, Liang F, Dai Y, Liang J, Li J, Wu X, Zheng H, Qi T, Sheng W. RNF213 loss-of-function promotes pathological angiogenesis in moyamoya disease via the Hippo pathway. Brain 2023; 146:4674-4689. [PMID: 37399508 PMCID: PMC10629795 DOI: 10.1093/brain/awad225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 07/05/2023] Open
Abstract
Moyamoya disease is an uncommon cerebrovascular disorder characterized by steno-occlusive changes in the circle of Willis and abnormal vascular network development. Ring finger protein 213 (RNF213) has been identified as an important susceptibility gene for Asian patients, but researchers have not completely elucidated whether RNF213 mutations affect the pathogenesis of moyamoya disease. Using donor superficial temporal artery samples, whole-genome sequencing was performed to identify RNF213 mutation types in patients with moyamoya disease, and histopathology was performed to compare morphological differences between patients with moyamoya disease and intracranial aneurysm. The vascular phenotype of RNF213-deficient mice and zebrafish was explored in vivo, and RNF213 knockdown in human brain microvascular endothelial cells was employed to analyse cell proliferation, migration and tube formation abilities in vitro. After bioinformatics analysis of both cell and bulk RNA-seq data, potential signalling pathways were measured in RNF213-knockdown or RNF213-knockout endothelial cells. We found that patients with moyamoya disease carried pathogenic mutations of RNF213 that were positively associated with moyamoya disease histopathology. RNF213 deletion exacerbated pathological angiogenesis in the cortex and retina. Reduced RNF213 expression led to increased endothelial cell proliferation, migration and tube formation. Endothelial knockdown of RNF213 activated the Hippo pathway effector Yes-associated protein (YAP)/tafazzin (TAZ) and promoted the overexpression of the downstream effector VEGFR2. Additionally, inhibition of YAP/TAZ resulted in altered cellular VEGFR2 distribution due to defects in trafficking from the Golgi apparatus to the plasma membrane and reversed RNF213 knockdown-induced angiogenesis. All these key molecules were validated in ECs isolated from RNF213-deficient animals. Our findings may suggest that loss-of-function of RNF213 mediates the pathogenesis of moyamoya disease via the Hippo pathway.
Collapse
Affiliation(s)
- Fei Ye
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xingyang Niu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Feng Liang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanyuan Dai
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 517108, China
| | - Jie Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaoxing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxin Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanyue Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tiewei Qi
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
24
|
Yajima H, Miyawaki S, Sayama S, Kumasawa K, Ikemura M, Imai H, Hongo H, Hirano Y, Ishigami D, Torazawa S, Kiyofuji S, Koizumi S, Saito N. Hypertensive disorders of pregnancy in moyamoya disease: A single institution experience. J Stroke Cerebrovasc Dis 2023; 32:107377. [PMID: 37742384 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023] Open
Abstract
OBJECTIVE The characteristics of pregnancy and delivery in patients with moyamoya disease (MMD) remain unclear. We retrospectively investigated perinatal outcomes in patients with MMD to evaluate the risks associated to this condition. MATERIALS AND METHODS Clinical data of women with MMD who delivered at the University of Tokyo Hospital between 2000 and 2021 were collected. Maternal characteristics including genetic data, obstetric complications, method of delivery and anesthesia, neonatal outcomes, neurological events during pregnancy, delivery, and postpartum course, were reviewed. RESULTS Thirteen pregnancies with MMD were identified. The median maternal age was 30 years. The initial clinical symptoms were identified as transient ischemic attack, infarction, and headache. Eight patients had a history of bypass surgery. The median gestational age at delivery was 37 weeks. DNA samples were collected from five patients, responsible for six pregnancies. Of these six cases, five had the RNF213 c.14429G > A (p.Arg4810Lys) heterozygous variant. Of the 13 pregnancies, seven had hypertensive disorder of pregnancy (HDP). Additionally, three of five pregnancy cases with RNF213 p.Arg4810Lys heterozygous variant presented with HDP. Nine patients underwent cesarean section, and four delivered vaginally with epidural anesthesia. One case of ischemic stroke was confirmed during the postpartum period. Regarding newborns, neither Apgar scores lower than 7 nor neonatal intensive care unit admissions were reported. CONCLUSIONS This study suggests that the frequency of HDP is higher in patients with MMD compared to those with normal pregnancies. Strict blood pressure control should be performed in patients with MMD during pregnancy and postpartum period.
Collapse
Affiliation(s)
- Hirohisa Yajima
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan.
| | - Seisuke Sayama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Imai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan; Department of Neurosurgery, Japan Community Healthcare Organization Tokyo Shinjuku Medical Center, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Yudai Hirano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Seiei Torazawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Satoshi Kiyofuji
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Satoshi Koizumi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| |
Collapse
|
25
|
Ogura S, Ohara T, Tanaka E, Ashida S, Maezono-Kandori K, Hanya M, Mizuta I, Mizuno T. Clinical characteristics and intracranial arterial lesions of non-young adult ischemic stroke patients with RNF213 p.R4810K variant. J Neurol Sci 2023; 452:120775. [PMID: 37657303 DOI: 10.1016/j.jns.2023.120775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Although RNF213 p.R4810K, a genetic susceptibility variant for moyamoya disease (MMD), is associated with intracranial artery stenosis/occlusion (ICASO), the impact of this variant on ischemic stroke patients in non-young adults is unclear. We aimed to determine the characteristics of non-young adult stroke patients with RNF213 p.R4810K. METHODS We retrospectively identified acute ischemic stroke patients ≥50 years who were admitted to our hospital and underwent intracranial vascular imaging. We reviewed the patients with RNF213 p.R4810K and compared stroke characteristics and the frequency and location of ICASO between patients with and without the variant. RESULTS Among 341 patients, RNF213 p.R4810K was identified in 7 patients (2.1%). Five of the 7 patients with the variant (71%) had multiple ICASO without any finding of MMD and remaining 2 patients had no ICASO. The presumed etiologies of ICASO were atherosclerosis in 3 cases, vasculitis in 1, and undetermined vasculopathy in 1. ICASO in the anterior circulation was more common in patients with the variant than in those without (71% vs. 25%). The internal carotid artery, the M1 segment of the middle cerebral artery, the A1 segment of the anterior cerebral artery, and the P1 segment of the posterior cerebral artery, which were the most frequently affected arteries in MMD, were more often affected in the variant group. CONCLUSIONS Non-young adult stroke patients with RNF213 p.R4810K are more likely to have ICASO in arterial segments commonly affected in MMD. The etiology of their ICASO exhibited diverse mechanisms, possibly depending on vascular risk and other environmental factors.
Collapse
Affiliation(s)
- Shiori Ogura
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Neurology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Tomoyuki Ohara
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Eijirou Tanaka
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinji Ashida
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Maezono-Kandori
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Neurology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Misaki Hanya
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Neurology, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
26
|
Shirozu N, Ohgidani M, Hata N, Tanaka S, Inamine S, Sagata N, Kimura T, Inoue I, Arimura K, Nakamizo A, Nishimura A, Maehara N, Takagishi S, Iwaki K, Nakao T, Masuda K, Sakai Y, Mizoguchi M, Yoshimoto K, Kato TA. Angiogenic and inflammatory responses in human induced microglia-like (iMG) cells from patients with Moyamoya disease. Sci Rep 2023; 13:14842. [PMID: 37684266 PMCID: PMC10491754 DOI: 10.1038/s41598-023-41456-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Angiogenic factors associated with Moyamoya disease (MMD) are overexpressed in M2 polarized microglia in ischemic stroke, suggesting that microglia may be involved in the pathophysiology of MMD; however, existing approaches are not applicable to explore this hypothesis. Herein we applied blood induced microglial-like (iMG) cells. We recruited 25 adult patients with MMD and 24 healthy volunteers. Patients with MMD were subdivided into progressive (N = 7) or stable (N = 18) group whether novel symptoms or radiographic advancement of Suzuki stage within 1 year was observed or not. We produced 3 types of iMG cells; resting, M1-, and M2-induced cells from monocytes, then RNA sequencing followed by GO and KEGG pathway enrichment analysis and qPCR assay were performed. RNA sequencing of M2-induced iMG cells revealed that 600 genes were significantly upregulated (338) or downregulated (262) in patients with MMD. Inflammation and immune-related factors and angiogenesis-related factors were specifically associated with MMD in GO analysis. qPCR for MMP9, VEGFA, and TGFB1 expression validated these findings. This study is the first to demonstrate that M2 microglia may be involved in the angiogenic process of MMD. The iMG technique provides a promising approach to explore the bioactivity of microglia in cerebrovascular diseases.
Collapse
Affiliation(s)
- Noritoshi Shirozu
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunya Tanaka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuaki Kimura
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Maehara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soh Takagishi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuma Iwaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
27
|
Chen T, Wei W, Yu J, Xu S, Zhang J, Li X, Chen J. The Progression of Pathophysiology of Moyamoya Disease. Neurosurgery 2023; 93:502-509. [PMID: 36912514 DOI: 10.1227/neu.0000000000002455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023] Open
Abstract
Moyamoya disease (MMD) is a chronic steno-occlusive cerebrovascular disease that often leads to hemorrhagic and ischemic strokes; however, its etiology remains elusive. Surgical revascularization by either direct or indirect bypass techniques to restore cerebral hypoperfusion is the treatment of choice to date. This review aims to provide an overview of the current advances in the pathophysiology of MMD, including the genetic, angiogenic, and inflammatory factors related to disease progression. These factors may cause MMD-related vascular stenosis and aberrant angiogenesis in complex manners. With a better understanding of the pathophysiology of MMD, nonsurgical approaches that target the pathogenesis of MMD may be able to halt or slow the progression of this disease.
Collapse
Affiliation(s)
- Tongyu Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Shuangxiang Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| |
Collapse
|
28
|
Kaseka ML, Dlamini N. Investigation and management of pediatric moyamoya arteriopathy in the era of genotype-phenotype correlation studies. Eur J Hum Genet 2023; 31:735-737. [PMID: 37188827 PMCID: PMC10326028 DOI: 10.1038/s41431-023-01369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Affiliation(s)
- M L Kaseka
- Division of Neurology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada.
| | - N Dlamini
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
30
|
Circulating Inflammatory Cytokine Associated with Poor Prognosis in Moyamoya Disease: A Prospective Cohort Study. J Clin Med 2023; 12:jcm12030823. [PMID: 36769472 PMCID: PMC9917516 DOI: 10.3390/jcm12030823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Inflammation is a key factor in the development of moyamoya disease. However, the cytokine distribution in moyamoya disease and its impact on prognosis remain unclear. A total of 204 patients with moyamoya disease were enrolled in this study. The peripheral blood was analyzed for baseline data and cytokines, which included IL-6, IL-1β, IL-2R, IL-8, and TNF-α. Patients with the RNF213 mutation and those without the mutation were compared in terms of their differences in cytokines. A mRS score ≥2 was defined as a poor prognosis, and a mRS score <2 was described as a good prognosis, and differences in cytokines were compared between the two groups. Regression analysis was performed to identify markers affecting prognosis. TNF-α and IL-6 levels were higher in the group without the RNF213 mutation compared to the mutation group. Multivariate stepwise regression analysis indicated that the G3 subgroup of IL-6 and the G4 subgroup of TNF-α were the independent risk factors for adverse prognosis in adults with moyamoya disease (OR 3.678, 95% CI [1.491, 9.074], p = 0.005; OR 2.996, 95% CI [1.180, 7.610], p = 0.021). IL-6 and TNF-α were associated with poor prognosis in adult patients with moyamoya disease.
Collapse
|
31
|
Sulit AK, Kolisnik T, Frizelle FA, Purcell R, Schmeier S. MetaFunc: taxonomic and functional analyses of high throughput sequencing for microbiomes. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e4. [PMID: 39295912 PMCID: PMC11406379 DOI: 10.1017/gmb.2022.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 09/21/2024]
Abstract
The identification of functional processes taking place in microbiome communities augment traditional microbiome taxonomic studies, giving a more complete picture of interactions taking place within the community. While there are applications that perform functional annotation on metagenomes or metatranscriptomes, very few of these are able to link taxonomic identity to function or are limited by their input types or databases used. Here we present MetaFunc, a workflow which takes RNA sequences as input reads, and from these (1) identifies species present in the microbiome sample and (2) provides gene ontology annotations associated with the species identified. In addition, MetaFunc allows for host gene analysis, mapping the reads to a host genome, and separating these reads, prior to microbiome analyses. Differential abundance analysis for microbe taxonomies, and differential gene expression analysis and gene set enrichment analysis may then be carried out through the pipeline. A final correlation analysis between microbial species and host genes can also be performed. Finally, MetaFunc builds an R shiny application that allows users to view and interact with the microbiome results. In this paper, we showed how MetaFunc can be applied to metatranscriptomic datasets of colorectal cancer.
Collapse
Affiliation(s)
- Arielle Kae Sulit
- Department of Surgery, University of Otago, Christchurch, New Zealand
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Tyler Kolisnik
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | | | - Rachel Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | | |
Collapse
|
32
|
RNF213 Loss-of-Function Promotes Angiogenesis of Cerebral Microvascular Endothelial Cells in a Cellular State Dependent Manner. Cells 2022; 12:cells12010078. [PMID: 36611871 PMCID: PMC9818782 DOI: 10.3390/cells12010078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Enhanced and aberrant angiogenesis is one of the main features of Moyamoya disease (MMD) pathogenesis. The ring finger protein 213 (RNF213) and the variant p.R4810K have been linked with higher risks of MMD and intracranial arterial occlusion development in east Asian populations. The role of RNF213 in diverse aspects of the angiogenic process, such as proliferation, migration and capillary-like formation, is well-known but has been difficult to model in vitro. To evaluate the effect of the RNF213 MMD-associated gene on the angiogenic activity, we have generated RNF213 knockout in human cerebral microvascular endothelial cells (hCMEC/D3-RNF213-/-) using the CRISPR-Cas9 system. Matrigel-based assay and a tri-dimensional (3D) vascularized model using the self-assembly approach of tissue engineering were used to assess the formation of capillary-like structures. Quite interestingly, this innovative in vitro model of MMD recapitulated, for the first time, disease-associated pathophysiological features such as significant increase in angiogenesis in confluent endothelial cells devoid of RNF213 expression. These cells, grown to confluence, also showed a pro-angiogenic signature, i.e., increased secretion of soluble pro-angiogenic factors, that could be eventually used as biomarkers. Interestingly, we demonstrated that that these MMD-associated phenotypes are dependent of the cellular state, as only noted in confluent cells and not in proliferative RNF213-deficient cells.
Collapse
|
33
|
Hausman-Kedem M, Herring R, Torres MD, Santoro JD, Kaseka ML, Vargas C, Amico G, Bertamino M, Nagesh D, Tilley J, Schenk A, Ben-Shachar S, Musolino PL. The Genetic Landscape of Ischemic Stroke in Children - Current Knowledge and Future Perspectives. Semin Pediatr Neurol 2022; 44:100999. [PMID: 36456039 DOI: 10.1016/j.spen.2022.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Stroke in childhood has multiple etiologies, which are mostly distinct from those in adults. Genetic discoveries over the last decade pointed to monogenic disorders as a rare but significant cause of ischemic stroke in children and young adults, including small vessel and arterial ischemic stroke. These discoveries contributed to the understanding that stroke in children may be a sign of an underlying genetic disease. The identification of these diseases requires a detailed medical and family history collection, a careful clinical evaluation for the detection of systemic symptoms and signs, and neuroimaging assessment. Establishing an accurate etiological diagnosis and understanding the genetic risk factors for stroke are essential steps to decipher the underlying mechanisms, optimize the design of tailored prevention strategies, and facilitate the identification of novel therapeutic targets in some cases. Despite the increasing recognition of monogenic causes of stroke, genetic disorders remain understudied and therefore under-recognized in children with stroke. Increased awareness among healthcare providers is essential to facilitate accurate diagnosis in a timely manner. In this review, we provide a summary of the main single-gene disorders which may present as ischemic stroke in childhood and describe their clinical manifestations. We provide a set of practical suggestions for the diagnostic work up of these uncommon causes of stroke, based upon the stroke subtype and imaging characteristics that may suggest a monogenic diagnosis of ischemic stroke in children. Current hurdles in the genetic analyses of children with ischemic stroke as well as future prospectives are discussed.
Collapse
Affiliation(s)
- Moran Hausman-Kedem
- Pediatric Neurology Institute, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Israel; The Sacker Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rachelle Herring
- Neurology Department, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Marcela D Torres
- Hematology Department, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Jonathan D Santoro
- Division of Neurology, Children's Hospital Los Angeles, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | | | - Carolina Vargas
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Giulia Amico
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Deepti Nagesh
- Division of Neurology, Children's Hospital Los Angeles, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | - Jo Tilley
- Departments of Hematology and Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Allyson Schenk
- Research Data Science and Analytics Department-Stroke and Thrombosis Program, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Shay Ben-Shachar
- Research Data Science and Analytics Department-Stroke and Thrombosis Program, Cook Children's Medical Center, Fort Worth, TX, USA; Clalit Research Institute, Innovation Division, Clalit Health Services, Ramat Gan, Israel
| | - Patricia L Musolino
- Center for Genomic Medicine, Center for Rare Neurological Disorders, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Mineharu Y, Nakamura Y, Sato N, Kamata T, Oichi Y, Fujitani T, Funaki T, Okuno Y, Miyamoto S, Koizumi A, Harada KH. Increased abundance of Ruminococcus gnavus in gut microbiota is associated with moyamoya disease and non-moyamoya intracranial large artery disease. Sci Rep 2022; 12:20244. [PMID: 36424438 PMCID: PMC9691692 DOI: 10.1038/s41598-022-24496-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease endemic in East Asia. The p.R4810K mutation in RNF213 gene confers a risk of MMD, but other factors remain largely unknown. We tested the association of gut microbiota with MMD. Fecal samples were collected from 27 patients with MMD, 7 patients with non-moyamoya intracranial large artery disease (ICAD) and 15 control individuals with other disorders, and 16S rRNA were sequenced. Although there was no difference in alpha diversity or beta diversity between patients with MMD and controls, the cladogram showed Streptococcaceae was enriched in patient samples. The relative abundance analysis demonstrated that 23 species were differentially abundant between patients with MMD and controls. Among them, increased abundance of Ruminococcus gnavus > 0.003 and decreased abundance of Roseburia inulinivorans < 0.002 were associated with higher risks of MMD (odds ratio 9.6, P = 0.0024; odds ratio 11.1, P = 0.0051). Also, Ruminococcus gnavus was more abundant and Roseburia inulinivorans was less abundant in patients with ICAD than controls (P = 0.046, P = 0.012). The relative abundance of Ruminococcus gnavus or Roseburia inulinivorans was not different between the p.R4810K mutant and wildtype. Our data demonstrated that gut microbiota was associated with both MMD and ICAD.
Collapse
Affiliation(s)
- Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan.
| | - Yasuhisa Nakamura
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Noriaki Sato
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiko Kamata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Oichi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasushi Okuno
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Koizumi
- Social Health Medicine Welfare Laboratory, Public Interest Incorporated Association Kyoto Hokenkai, Kyoto, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
35
|
Zhang L, Rashad S, Zhou Y, Niizuma K, Tominaga T. RNF213 loss of function reshapes vascular transcriptome and spliceosome leading to disrupted angiogenesis and aggravated vascular inflammatory responses. J Cereb Blood Flow Metab 2022; 42:2107-2122. [PMID: 35754359 PMCID: PMC9580177 DOI: 10.1177/0271678x221110679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
RNF213 gene mutations are the cause behind Moyamoya disease, a rare cerebrovascular occlusive disease. However, the function of RNF213 in the vascular system and the impact of its loss of function are not yet comprehended. To understand RNF23 function, we performed gene knockdown (KD) in vascular cells and performed various phenotypical analysis as well as extensive transcriptome and epitranscriptome profiling. Our data revealed that RNF213 KD led to disrupted angiogenesis in HUVEC, in part due to downregulation of DNA replication and proliferation pathways. Furthermore, HUVEC cells became sensitive to LPS induced inflammation after RNF213 KD, leading to retarded cell migration and enhanced macrophage transmigration. This was evident at the level of transcriptome as well. Interestingly, RNF213 led to extensive changes in mRNA splicing that were not previously reported. In vascular smooth muscle cells (vSMCs), RNF213 KD led to alteration in cytoskeletal organization, contractility, and vSMCs function related pathways. Finally, RNF213 KD disrupted endothelial-to-vSMCs communication in co-culture models. Overall, our results indicate that RNF213 KD sensitizes endothelial cells to inflammation, leading to altered angiogenesis. Our results shed the light on the important links between RNF213 mutations and inflammatory/immune inducers of MMD and on the unexplored role of epitranscriptome in MMD.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
36
|
Hernandez D, Walsh S, Saavedra Sanchez L, Dickinson MS, Coers J. Interferon-Inducible E3 Ligase RNF213 Facilitates Host-Protective Linear and K63-Linked Ubiquitylation of Toxoplasma gondii Parasitophorous Vacuoles. mBio 2022; 13:e0188822. [PMID: 36154443 PMCID: PMC9601232 DOI: 10.1128/mbio.01888-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
The obligate intracellular protozoan pathogen Toxoplasma gondii infects a wide range of vertebrate hosts and frequently causes zoonotic infections in humans. Whereas infected immunocompetent individuals typically remain asymptomatic, toxoplasmosis in immunocompromised individuals can manifest as a severe, potentially lethal disease, and congenital Toxoplasma infections are associated with adverse pregnancy outcomes. The protective immune response of healthy individuals involves the production of lymphocyte-derived cytokines such as interferon gamma (IFN-γ), which elicits cell-autonomous immunity in host cells. IFN-γ-inducible antiparasitic defense programs comprise nutritional immunity, the production of noxious gases, and the ubiquitylation of the Toxoplasma-containing parasitophorous vacuole (PV). PV ubiquitylation prompts the recruitment of host defense proteins to the PV and the consequential execution of antimicrobial effector programs, which reduce parasitic burden. However, the ubiquitin E3 ligase orchestrating these events has remained unknown. Here, we demonstrate that the IFN-γ-inducible E3 ligase RNF213 translocates to Toxoplasma PVs and facilitates PV ubiquitylation in human cells. Toxoplasma PVs become decorated with linear and K63-linked ubiquitin and recruit ubiquitin adaptor proteins in a process that is RNF213 dependent but independent of the linear ubiquitin chain assembly complex (LUBAC). IFN-γ priming fails to restrict Toxoplasma growth in cells lacking RNF213 expression, thus identifying RNF213 as a potent executioner of ubiquitylation-driven antiparasitic host defense. IMPORTANCE Globally, approximately one out of three people become infected with the obligate intracellular parasite Toxoplasma. These infections are typically asymptomatic but can cause severe disease and mortality in immunocompromised individuals. Infections can also be passed on from mother to fetus during pregnancy, potentially causing miscarriage or stillbirth. Therefore, toxoplasmosis constitutes a substantial public health burden. A better understanding of mechanisms by which healthy individuals control Toxoplasma infections could provide roadmaps toward novel therapies for vulnerable groups. Our work reveals a fundamental mechanism controlling intracellular Toxoplasma infections. Cytokines produced during Toxoplasma infections instruct human cells to produce the enzyme RNF213. We find that RNF213 labels intracellular vacuoles containing Toxoplasma with the small protein ubiquitin, which functions as an "eat-me" signal, attracting antimicrobial defense programs to fight off infection. Our work therefore identified a novel antiparasitic protein orchestrating a central aspect of the human immune response to Toxoplasma.
Collapse
Affiliation(s)
- Dulcemaria Hernandez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Stephen Walsh
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Luz Saavedra Sanchez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mary S. Dickinson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
37
|
Ryu JC, Choi YH, Kim MH, Moon EJ, Kim Y, Kwon B, Song Y, Lee DH. Endovascular Treatment of Arterial Steno-Occlusive Lesions in Symptomatic Moyamoya Disease. Neurointervention 2022; 17:161-167. [PMID: 36217815 PMCID: PMC9626607 DOI: 10.5469/neuroint.2022.00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
The efficacy and safety of endovascular treatment (EVT) for moyamoya disease (MMD) have rarely been investigated. The objective of this study was to summarize the clinical outcomes of EVT for MMD and determine the potential role of EVT in treating symptomatic steno-occlusive lesions in MMD. Reports from January 2000 to December 2021 describing EVT in MMD were collected through a literature search. The search terms included “moyamoya”, “stent”, “angioplasty”, and “endovascular”. Data regarding baseline demographics, previous medical history, treated vessel, periprocedural complications, and angiographical recurrence were retrieved. This review included 10 studies with details of 19 patients undergoing a total of 31 EVT procedures. Twenty-one EVTs were performed as initial treatments for MMD, and 10 were performed as additional treatments for angiographical recurrence. The mean follow-up period of the initial EVTs was 9.0±11.9 months, with angiographical recurrence in 11 (68.8%) cases. The mean follow-up period of additional EVTs was 4.3±3.9 months, and seven (70.0%) EVTs showed restenosis of the re-treated vessel. Across all initial and additional EVTs, there were no differences in characteristics between the recurrence and non-recurrence groups. Overall, two periprocedural complications (9.5%) occurred, one vessel rupture and one massive intracerebral hemorrhage with subarachnoid hemorrhage. EVT plays a limited role in the management of symptomatic intracranial arterial steno-occlusive lesions of MMD. Recent advances in understanding the pathomechanism of MMD may urge neuro-interventionists to find a new endovascular approach with better balloon angioplasty or stenting mechanisms.
Collapse
Affiliation(s)
- Jae-Chan Ryu
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun Hyeok Choi
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Hyeon Kim
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Ji Moon
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Youngjin Kim
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Boseong Kwon
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yunsun Song
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deok Hee Lee
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Lehman LL, Kaseka ML, Stout J, See AP, Pabst L, Sun LR, Hassanein SA, Waak M, Vossough A, Smith ER, Dlamini N. Pediatric Moyamoya Biomarkers: Narrowing the Knowledge Gap. Semin Pediatr Neurol 2022; 43:101002. [PMID: 36344019 DOI: 10.1016/j.spen.2022.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Moyamoya is a progressive cerebrovascular disorder that leads to stenosis of the arteries in the distal internal carotid, proximal middle cerebral and proximal anterior cerebral arteries of the circle of Willis. Typically a network of collaterals form to bypass the stenosis and maintain cerebral blood flow. As moyamoya progresses it affects the anterior circulation more commonly than posterior circulation, and cerebral blood flow becomes increasingly reliant on external carotid supply. Children with moyamoya are at increased risk for ischemic symptoms including stroke and transient ischemic attacks (TIA). In addition, cognitive decline may occur over time, even in the absence of clinical stroke. Standard of care for stroke prevention in children with symptomatic moyamoya is revascularization surgery. Treatment of children with asymptomatic moyamoya with revascularization surgery however remains more controversial. Therefore, biomarkers are needed to assist with not only diagnosis but also with determining ischemic risk and identifying best surgical candidates. In this review we will discuss the current knowledge as well as gaps in research in relation to pediatric moyamoya biomarkers including neurologic presentation, cognitive, neuroimaging, genetic and biologic biomarkers of disease severity and ischemic risk.
Collapse
Affiliation(s)
- Laura L Lehman
- Department of Neurology, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Matsanga Leyila Kaseka
- Department of Neurology, CHU Sainte-Justine, Montreal, Quebec, Canada; Université de Montréal, Montreal, Quebec, Canada
| | - Jeffery Stout
- Harvard Medical School, Boston, MA; Newborn Medicine, Boston Children's Hospital, Boston, MA
| | - Alfred P See
- Harvard Medical School, Boston, MA; Department of Neurosurgery, Boston Children's Hospital, Boston, MA; Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Lisa Pabst
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH
| | - Lisa R Sun
- Division of Pediatric Neurology, Division of Cerebrovascular Neurology, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sahar A Hassanein
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Michaela Waak
- Department of Paediatric Intensive Care, Queensland Children's Hospital; Centre for Child Health Research, The University of Queensland, Brisbane, Australia
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia, University of Philadelphia, Philadelphia, Pennsylvania
| | - Edward R Smith
- Harvard Medical School, Boston, MA; Department of Neurosurgery, Boston Children's Hospital, Boston, MA
| | - Nomazulu Dlamini
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
39
|
Moyamoya disease emerging as an immune-related angiopathy. Trends Mol Med 2022; 28:939-950. [DOI: 10.1016/j.molmed.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
|
40
|
Liu E, Zhao H, Liu C, Tan X, Luo C, Yang S. Research progress of moyamoya disease combined with renovascular hypertension. Front Surg 2022; 9:969090. [PMID: 36090342 PMCID: PMC9458923 DOI: 10.3389/fsurg.2022.969090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Moyamoya disease (MMD) is an idiopathic cerebrovascular disease which was first described by Suzuki and Takaku in 1969. Moyamoya disease is a non-atherosclerotic cerebrovascular structural disorder. MMD has been found all over the world, especially in Japan, Korea, and China. In recent years, many reports pointed out that the changes of vascular stenosis in patients with moyamoya disease occurred not only in intracranial vessels, but also in extracranial vessels, especially the changes of renal artery. Renovascular hypertension (RVH) is considered to be one of the important causes of hypertension in patients with moyamoya disease. The pathogenesis of moyamoya disease combined with renovascular hypertension is still unclear, and the selection of treatment has not yet reached a consensus. This article reviews the latest research progress in epidemiology, RNF213 gene, pathomorphology, clinical characteristics and treatment of moyamoya disease combined with renovascular hypertension, in order to provide reference for clinical workers.
Collapse
Affiliation(s)
- Erheng Liu
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Heng Zhao
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Chengyuan Liu
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xueyi Tan
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Shuaifeng Yang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, China
- Correspondence: Shuaifeng Yang
| |
Collapse
|
41
|
Mystery(n) Phenotypic Presentation in Europeans: Report of Three Further Novel Missense RNF213 Variants Leading to Severe Syndromic Forms of Moyamoya Angiopathy and Literature Review. Int J Mol Sci 2022; 23:ijms23168952. [PMID: 36012218 PMCID: PMC9408709 DOI: 10.3390/ijms23168952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
Moyamoya angiopathy (MMA) is a rare cerebral vasculopathy in some cases occurring in children. Incidence is higher in East Asia, where the heterozygous p.Arg4810Lys variant in RNF213 (Mysterin) represents the major susceptibility factor. Rare variants in RNF213 have also been found in European MMA patients with incomplete penetrance and are today a recognized susceptibility factor for other cardiovascular disorders, from extracerebral artery stenosis to hypertension. By whole exome sequencing, we identified three rare and previously unreported missense variants of RNF213 in three children with early onset of bilateral MMA, and subsequently extended clinical and radiological investigations to their carrier relatives. Substitutions all involved highly conserved residues clustered in the C-terminal region of RNF213, mainly in the E3 ligase domain. Probands showed a de novo occurring variant, p.Phe4120Leu (family A), a maternally inherited heterozygous variant, p.Ser4118Cys (family B), and a novel heterozygous variant, p.Glu4867Lys, inherited from the mother, in whom it occurred de novo (family C). Patients from families A and C experienced transient hypertransaminasemia and stenosis of extracerebral arteries. Bilateral MMA was present in the proband’s carrier grandfather from family B. The proband from family C and her carrier mother both exhibited annular figurate erythema. Our data confirm that rare heterozygous variants in RNF213 cause MMA in Europeans as well as in East Asian populations, suggesting that substitutions close to positions 4118–4122 and 4867 of RNF213 could lead to a syndromic form of MMA showing elevated aminotransferases and extracerebral vascular involvement, with the possible association of peculiar skin manifestations.
Collapse
|
42
|
Kaur G, Porter CBM, Ashenberg O, Lee J, Riesenfeld SJ, Hofree M, Aggelakopoulou M, Subramanian A, Kuttikkatte SB, Attfield KE, Desel CAE, Davies JL, Evans HG, Avraham-Davidi I, Nguyen LT, Dionne DA, Neumann AE, Jensen LT, Barber TR, Soilleux E, Carrington M, McVean G, Rozenblatt-Rosen O, Regev A, Fugger L. Mouse fetal growth restriction through parental and fetal immune gene variation and intercellular communications cascade. Nat Commun 2022; 13:4398. [PMID: 35906236 PMCID: PMC9338297 DOI: 10.1038/s41467-022-32171-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.
Collapse
Affiliation(s)
- Gurman Kaur
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Lee
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Aggelakopoulou
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Subita Balaram Kuttikkatte
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christiane A E Desel
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- University Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jessica L Davies
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hayley G Evans
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Inbal Avraham-Davidi
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan T Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle A Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas R Barber
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Elizabeth Soilleux
- Department of Pathology, Tennis Court Rd, University of Cambridge, Cambridge, England
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Lars Fugger
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
43
|
Cao L, Dong Y, Sun K, Li D, Wang H, Li H, Yang B. Experimental Animal Models for Moyamoya Disease: A Species-Oriented Scoping Review. Front Surg 2022; 9:929871. [PMID: 35846951 PMCID: PMC9283787 DOI: 10.3389/fsurg.2022.929871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive stenosis of large intracranial arteries and a hazy network of basal collaterals called moyamoya vessels. The etiology and pathogenesis of MMD are still obscure. The biggest obstacles in the basic research of MMD are difficulty in obtaining specimens and the lack of an animal model. It is necessary to use appropriate and rationally designed animal models for the correct evaluation. Several animal models and methods have been developed to produce an effective MMD model, such as zebrafish, mice and rats, rabbits, primates, felines, canines, and peripheral blood cells, each with advantages and disadvantages. There are three mechanisms for developing animal models, including genetic, immunological/inflammatory, and ischemic animal models. This review aims to analyze the characteristics of currently available models, providing an overview of the animal models framework and the convenience of selecting model types for MMD research. It will be a great benefit to identify strategies for future model generations.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Pollaci G, Gorla G, Potenza A, Carrozzini T, Canavero I, Bersano A, Gatti L. Novel Multifaceted Roles for RNF213 Protein. Int J Mol Sci 2022; 23:ijms23094492. [PMID: 35562882 PMCID: PMC9099590 DOI: 10.3390/ijms23094492] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Ring Finger Protein 213 (RNF213), also known as Mysterin, is the major susceptibility factor for Moyamoya Arteriopathy (MA), a progressive cerebrovascular disorder that often leads to brain stroke in adults and children. Although several rare RNF213 polymorphisms have been reported, no major susceptibility variant has been identified to date in Caucasian patients, thus frustrating the attempts to identify putative therapeutic targets for MA treatment. For these reasons, the investigation of novel biochemical functions, substrates and unknown partners of RNF213 will help to unravel the pathogenic mechanisms of MA and will facilitate variant interpretations in a diagnostic context in the future. The aim of the present review is to discuss novel perspectives regarding emerging RNF213 roles in light of recent literature updates and dissect their relevance for understanding MA and for the design of future research studies. Since its identification, RNF213 involvement in angiogenesis and vasculogenesis has strengthened, together with its role in inflammatory signals and proliferation pathways. Most recent studies have been increasingly focused on its relevance in antimicrobial activity and lipid metabolism, highlighting new intriguing perspectives. The last area could suggest the main role of RNF213 in the proteasome pathway, thus reinforcing the hypotheses already previously formulated that depict the protein as an important regulator of the stability of client proteins involved in angiogenesis. We believe that the novel evidence reviewed here may contribute to untangling the complex and still obscure pathogenesis of MA that is reflected in the lack of therapies able to slow down or halt disease progression and severity.
Collapse
Affiliation(s)
- Giuliana Pollaci
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Gemma Gorla
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Antonella Potenza
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Tatiana Carrozzini
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Isabella Canavero
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (I.C.); (A.B.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (I.C.); (A.B.)
| | - Laura Gatti
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
- Correspondence: ; Tel.: +39-02-23942389
| |
Collapse
|
45
|
Eslamloo K, Kumar S, Xue X, Parrish KS, Purcell SL, Fast MD, Rise ML. Global gene expression responses of Atlantic salmon skin to Moritella viscosa. Sci Rep 2022; 12:4622. [PMID: 35301338 PMCID: PMC8931016 DOI: 10.1038/s41598-022-08341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Moritella viscosa is a Gram-negative pathogen that causes large, chronic ulcers, known as winter-ulcer disease, in the skin of several fish species including Atlantic salmon. We used a bath challenge approach to profile the transcriptome responses of M. viscosa-infected Atlantic salmon skin at the lesion (Mv-At) and away from the lesion (Mv-Aw) sites. M. viscosa infection was confirmed through RNA-based qPCR assays. RNA-Seq identified 5212 and 2911 transcripts differentially expressed in the Mv-At compared to no-infection control and Mv-Aw groups, respectively. Also, there were 563 differentially expressed transcripts when comparing the Mv-Aw to control samples. Our results suggest that M. viscosa caused massive and strong, but largely infection site-focused, transcriptome dysregulations in Atlantic salmon skin, and its effects beyond the skin lesion site were comparably subtle. The M. viscosa-induced transcripts of Atlantic salmon were mainly involved in innate and adaptive immune response-related pathways, whereas the suppressed transcripts by this pathogen were largely connected to developmental and cellular processes. As validated by qPCR, M. viscosa dysregulated transcripts encoding receptors, signal transducers, transcription factors and immune effectors playing roles in TLR- and IFN-dependent pathways as well as immunoregulation, antigen presentation and T-cell development. This study broadened the current understanding of molecular pathways underlying M. viscosa-triggered responses of Atlantic salmon, and identified biomarkers that may assist to diagnose and combat this pathogen.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada. .,Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kathleen S Parrish
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Sara L Purcell
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
46
|
Impact of RNF213 founder polymorphism (p.R4810K) on the postoperative development of indirect pial synangiosis after direct/indirect combined revascularization surgery for adult Moyamoya disease. Neurosurg Rev 2022; 45:2305-2313. [DOI: 10.1007/s10143-022-01749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/07/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
|
47
|
Roy V, Ross JP, Pépin R, Cortez Ghio S, Brodeur A, Touzel Deschênes L, Le-Bel G, Phillips DE, Milot G, Dion PA, Guérin S, Germain L, Berthod F, Auger FA, Rouleau GA, Dupré N, Gros-Louis F. Moyamoya Disease Susceptibility Gene RNF213 Regulates Endothelial Barrier Function. Stroke 2022; 53:1263-1275. [PMID: 34991336 DOI: 10.1161/strokeaha.120.032691] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Variants in the ring finger protein 213 (RNF213) gene are known to be associated with increased predisposition to cerebrovascular diseases development. Genomic studies have identified RNF213 as a major risk factor of Moyamoya disease in East Asian descendants. However, little is known about the RNF213 (ring finger protein 213) biological functions or its associated pathogenic mechanisms underlying Moyamoya disease. METHODS To investigate RNF213 loss-of-function effect in endothelial cell, stable RNF213-deficient human cerebral endothelial cells were generated using the CRISPR-Cas9 genome editing technology. RESULTS In vitro assays, using RNF213 knockout brain endothelial cells, showed clear morphological changes and increased blood-brain barrier permeability. Downregulation and delocalization of essential interendothelial junction proteins involved in the blood-brain barrier maintenance, such as PECAM-1 (platelet endothelial cell adhesion molecule-1), was also observed. Brain endothelial RNF213-deficient cells also showed an abnormal potential to transmigration of leukocytes and secreted high amounts of proinflammatory cytokines. CONCLUSIONS Taken together, these results indicate that RNF213 could be a key regulator of cerebral endothelium integrity, whose disruption could be an early pathological mechanism leading to Moyamoya disease. This study also further reinforces the importance of blood-brain barrier integrity in the development of Moyamoya disease and other RNF213-associated diseases.
Collapse
Affiliation(s)
- Vincent Roy
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Jay P Ross
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Rémy Pépin
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Sergio Cortez Ghio
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Alyssa Brodeur
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Lydia Touzel Deschênes
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Gaëtan Le-Bel
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Daniel E Phillips
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Geneviève Milot
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Patrick A Dion
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Sylvain Guérin
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Lucie Germain
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François Berthod
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François A Auger
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Guy A Rouleau
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Nicolas Dupré
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François Gros-Louis
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| |
Collapse
|
48
|
Martina L, Asselman C, Thery F, Boucher K, Delhaye L, Maia TM, Dermaut B, Eyckerman S, Impens F. Proteome Profiling of RNF213 Depleted Cells Reveals Nitric Oxide Regulator DDAH1 Antilisterial Activity. Front Cell Infect Microbiol 2021; 11:735416. [PMID: 34804992 PMCID: PMC8595287 DOI: 10.3389/fcimb.2021.735416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023] Open
Abstract
RNF213 is a large, poorly characterized interferon-induced protein. Mutations in RNF213 are associated with predisposition for Moyamoya disease (MMD), a rare cerebrovascular disorder. Recently, RNF213 was found to have broad antimicrobial activity in vitro and in vivo, yet the molecular mechanisms behind this function remain unclear. Using mass spectrometry-based proteomics and validation by real-time PCR we report here that knockdown of RNF213 leads to transcriptional upregulation of MVP and downregulation of CYR61, in line with reported pro- and anti-bacterial activities of these proteins. Knockdown of RNF213 also results in downregulation of DDAH1, which we discover to exert antimicrobial activity against Listeria monocytogenes infection. DDAH1 regulates production of nitric oxide (NO), a molecule with both vascular and antimicrobial effects. We show that NO production is reduced in macrophages from RNF213 KO mice, suggesting that RNF213 controls Listeria infection through regulation of DDAH1 transcription and production of NO. Our findings propose a potential mechanism for the antilisterial activity of RNF213 and highlight NO as a potential link between RNF213-mediated immune responses and the development of MMD.
Collapse
Affiliation(s)
- Lia Martina
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Proteomics Core, VIB, Ghent, Belgium
| | - Louis Delhaye
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Teresa M Maia
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Proteomics Core, VIB, Ghent, Belgium
| | - Bart Dermaut
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Proteomics Core, VIB, Ghent, Belgium
| |
Collapse
|
49
|
Tashiro R, Niizuma K, Kasamatsu J, Okuyama Y, Rashad S, Kikuchi A, Fujimura M, Kure S, Ishii N, Tominaga T. Dysregulation of Rnf 213 gene contributes to T cell response via antigen uptake, processing, and presentation. J Cell Physiol 2021; 236:7554-7564. [PMID: 33973242 DOI: 10.1002/jcp.30396] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/16/2023]
Abstract
Growing evidence suggest the association between Moyamoya disease (MMD) and immune systems, such as antigen presenting cells in particular. Rnf213 gene, a susceptibility gene for MMD, is highly expressed in immune tissues, however, its function remains unclear. In addition, the physiological role of RNF213 gene polymorphism c.14576G > A (rs112735431), susceptibility variant for MMD, is also poorly understood. By studying Rnf213-knockout (Rnf213-KO) mice with deletion of largest exon32 and Rnf213-knockin (Rnf213-KI) mice with insertion of single-nucleotide polymorphism corresponding to c.14576G > A mutation in MMD patients, we aimed to investigate the role of RNF213 in dendritic cell development, and antigen processing and presentation. First, we found a high level of Rnf213 gene expression in conventional DCs and monocytes. Second, flow cytometric and confocal microscopic analysis revealed ovalbumin protein-pulsed Rnf213-KO and Rnf213-KI DCs showed impaired antigen uptake, proteolysis and reduced numbers of endosomes and lysosomes, and thereby failed to activate and proliferate antigen-specific T cells efficiently. In addition, Rnf213-KI DCs showed a similar phenotype to that of Rnf213-KO BMDCs. In conclusion, our findings suggest the critical role of RNF213 in antigen uptake, processing and presentation.
Collapse
Affiliation(s)
- Ryosuke Tashiro
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuko Okuyama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sherif Rashad
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
- Division of Advanced Cerebrovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
50
|
Miller R, Unda SR, Holland R, Altschul DJ. Western Moyamoya Phenotype: A Scoping Review. Cureus 2021; 13:e19812. [PMID: 34956795 PMCID: PMC8693830 DOI: 10.7759/cureus.19812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
Moyamoya, a rare angiographic finding, is characterized by chronic and progressive stenosis at the terminal end of the internal carotid artery, followed by collateralization of the cerebral vasculature at the base of the skull. Coined by Suzuki and Takaku in 1969, the term "moyamoya" means a "puff of smoke" in Japanese, a reference to the angiographic appearance of moyamoya collateralization. Moyamoya is most commonly found in East Asian countries, where much governmental and civilian effort has been expended to characterize this unique disease process. However, despite its rarity, the occurrence of moyamoya in Western countries is associated with significant divergence regarding incidence, gender, sex, age at diagnosis, clinical presentation, and outcomes. Here, we attempted to review the Western literature on moyamoya presentation using the PubMed database to characterize the Western phenotype of moyamoya. We were guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR). We reviewed papers generated from a search with keywords "moyamoya case report," those reported from a Western institution, and those reported on a relevant association. Our scoping review demonstrated various clinical associations with moyamoya. Moreover, we summarized the demographic profile and clinical symptomatology, as well as reported disease associations to better elucidate the Western phenotype of moyamoya.
Collapse
Affiliation(s)
- Raphael Miller
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| | - Santiago R Unda
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| | - Ryan Holland
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| | - David J Altschul
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| |
Collapse
|