1
|
Erban T, Kadleckova D, Sopko B, Harant K, Talacko P, Markovic M, Salakova M, Kadlikova K, Tachezy R, Tachezy J. Varroa destructor parasitism and Deformed wing virus infection in honey bees are linked to peroxisome-induced pathways. Proteomics 2024; 24:e2300312. [PMID: 38446070 DOI: 10.1002/pmic.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-β signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Dominika Kadleckova
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Martin Markovic
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Martina Salakova
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Klara Kadlikova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| |
Collapse
|
2
|
Hazam S, Touati S, Touati L, Saher L, Khedidji H, Ait Kaki S, Chemat S. Promising Algerian essential oils as natural acaricides against the honey bee mite Varroa destructor (Acari: Varroidae). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:87-107. [PMID: 38015279 DOI: 10.1007/s10493-023-00866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Varroosis induced by Varroa destructor Anderson and Trueman represents the most pathogenic and destructive disease affecting the western honey bee, Apis mellifera. In this study, we investigated the acaricidal activity against the Varroa mite using essential oils (EOs) from the aerial parts of four autochthonous Algerian herbal species, namely Artemisia herba alba, Artemisia campestris, Artemisia judaica and Ruta montana. EOs were obtained by means of hydrodistillation and their composition was characterized by gas chromatography-mass spectrometry. The toxicity of the selected EOs toward V. destructor and A. mellifera adult honey bees was evaluated using the complete exposure method. The results indicate the predominance of davanone (66.9%) in A. herba alba, β-pinene (19.5%) in A. campestris, piperitone (68.7%) in A. judaica and 2-undecanone (70.1%) in R. montana EOs. Interestingly, the LC50 values coupled to bee mortality rates revealed that all tested oils exhibited significant acaricidal efficiency with selectivity ratio (SR) values of 10.77, 8.78, 5.62 and 3.73 for A. campestris, A. judaica, A. herba alba, and R. montana, respectively. These values were better than that of thymol (SR = 3.65), the positive control. These findings suggest that these EOs could be used as plant-derived veterinary acaricides to control varroosis in field conditions.
Collapse
Affiliation(s)
- Souad Hazam
- Laboratory of Valorization and Conservation of Biological Resources (VALCOR), Faculty of Sciences, University of M'hamed Bougara, Boumerdes, Algeria.
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria.
| | - Salem Touati
- Multipurpose Agricultural Cooperative of Tizi-Ouzou (CAPTO), Tizi-Ouzou, Algeria
| | - Lounis Touati
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria
| | - Liza Saher
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria
| | - Hassiba Khedidji
- Laboratory of Valorization and Conservation of Biological Resources (VALCOR), Faculty of Sciences, University of M'hamed Bougara, Boumerdes, Algeria
| | - Sabrina Ait Kaki
- Laboratory of Valorization and Conservation of Biological Resources (VALCOR), Faculty of Sciences, University of M'hamed Bougara, Boumerdes, Algeria
| | - Smain Chemat
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria
| |
Collapse
|
3
|
Retzinger AC, Retzinger GS. The Acari Hypothesis, II: Interspecies Operability of Pattern Recognition Receptors. Pathogens 2021; 10:pathogens10091220. [PMID: 34578252 PMCID: PMC8468033 DOI: 10.3390/pathogens10091220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Hypersensitivity to galactose-α-1,3-galactose (α-gal) is an informative example of a pathologic IgE-mediated process. By way of their saliva, ticks are able to sensitize humans to tick dietary elements that express α-gal. Mites, which along with ticks constitute the phyletic subclass Acari, feed on proteinaceous foodstuffs that represent most, if not all, human allergens. Given: (1) the gross nature of the pathophysiological reactions of allergy, especially anaphylaxis, (2) the allergenicity of acarian foodstuffs, and (3) the relatedness of ticks and mites, it has been hypothesized that human-acarian interactions are cardinal to the pathogenesis of allergy. In this report, a means by which such interactions contribute to that pathogenesis is proposed.
Collapse
Affiliation(s)
- Andrew C. Retzinger
- Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University, Parkersburg, WV 26101, USA
- Correspondence:
| | - Gregory S. Retzinger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
4
|
Direct Evidence for Infection of Varroa destructor Mites with the Bee-Pathogenic Deformed Wing Virus Variant B - but Not Variant A - via Fluorescence- in situ-Hybridization Analysis. J Virol 2021; 95:JVI.01786-20. [PMID: 33298545 PMCID: PMC8092827 DOI: 10.1128/jvi.01786-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deformed wing virus (DWV) is a bee pathogenic, single- and positive-stranded RNA virus that has been involved in severe honey bee colony losses worldwide. DWV, when transmitted horizontally or vertically from bee to bee, causes mainly covert infections not associated with any visible symptoms or damage. Overt infections occur after vectorial transmission of DWV to the developing bee pupae through the ectoparasitic mite Varroa destructor Symptoms of overt infections are pupal death, bees emerging with deformed wings and shortened abdomens, or cognitive impairment due to brain infection. So far, three variants of DWV, DWV-A, DWV-B, and DWV-C, have been described. While it is widely accepted that V. destructor acts as vector of DWV, the question of whether the mite only functions as a mechanical vector or whether DWV can infect the mite thus using it as a biological vector is hotly debated, because in the literature data can be found that support both hypotheses. In order to settle this scientific dispute, we analyzed putatively DWV-infected mites with a newly established protocol for fluorescence-in situ-hybridization of mites and demonstrated DWV-specific signals inside mite cells. We provide compelling and direct evidence that DWV-B infects the intestinal epithelium and the salivary glands of V. destructor In contrast, no evidence for DWV-A infecting mite cells was found. Our data are key to understanding the pathobiology of DWV, the mite's role as a biological DWV vector and the quasispecies dynamics of this RNA virus when switching between insect and arachnid host species.IMPORTANCE Deformed wing virus (DWV) is a bee pathogenic, originally rather benign, single- and positive-stranded RNA virus. Only the vectorial transmission of this virus to honey bees by the ectoparasitic mite Varroa destructor leads to fatal or symptomatic infections of individuals, usually followed by collapse of the entire colony. Studies on whether the mite only acts as a mechanical virus vector or whether DWV can infect the mite and thus use it as a biological vector have led to disparate results. In our study using fluorescence-in situ-hybridization we provide compelling and direct evidence that at least the DWV-B variant infects the gut epithelium and the salivary glands of V. destructor Hence, the host range of DWV includes both, bees (Insecta) and mites (Arachnida). Our data contribute to a better understanding of the triangular relationship between honey bees, V. destructor and DWV and the evolution of virulence in this viral bee pathogen.
Collapse
|
5
|
Al Naggar Y, Paxton RJ. The novel insecticides flupyradifurone and sulfoxaflor do not act synergistically with viral pathogens in reducing honey bee (Apis mellifera) survival but sulfoxaflor modulates host immunocompetence. Microb Biotechnol 2021; 14:227-240. [PMID: 32985125 PMCID: PMC7888445 DOI: 10.1111/1751-7915.13673] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
The decline of insect pollinators threatens global food security. A major potential cause of decline is considered to be the interaction between environmental stressors, particularly between exposure to pesticides and pathogens. To explore pesticide-pathogen interactions in an important pollinator insect, the honey bee, we used two new nicotinic acetylcholine receptor agonist insecticides (nACHRs), flupyradifurone (FPF) and sulfoxaflor (SULF), at sublethal and field-realistic doses in a fully crossed experimental design with three common viral honey bee pathogens, Black queen cell virus (BQCV) and Deformed wing virus (DWV) genotypes A and B. Through laboratory experiments in which treatments were administered singly or in combination to individual insects, we recorded harmful effects of FPF and pathogens on honey bee survival and immune gene expression. Though we found no evidence of synergistic interactions among stressors on either honey bee survival or viral load, the combined treatment SULF and DWV-B led to a synergistic upregulation of dicer-like gene expression. We conclude that common viral pathogens pose a major threat to honey bees, while co-exposure to these novel nACHR insecticides does not significantly exacerbate viral impacts on host survival in the laboratory.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General ZoologyInstitute for BiologyMartin Luther University Halle‐WittenbergHoher Weg 8Halle (Saale)06120Germany
- Zoology DepartmentFaculty of ScienceTanta UniversityTanta31527Egypt
| | - Robert J. Paxton
- General ZoologyInstitute for BiologyMartin Luther University Halle‐WittenbergHoher Weg 8Halle (Saale)06120Germany
| |
Collapse
|
6
|
Woodford L, Evans DJ. Deformed wing virus: using reverse genetics to tackle unanswered questions about the most important viral pathogen of honey bees. FEMS Microbiol Rev 2020; 45:6035241. [PMID: 33320949 DOI: 10.1093/femsre/fuaa070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Deformed wing virus (DWV) is the most important viral pathogen of honey bees. It usually causes asymptomatic infections but, when vectored by the ectoparasitic mite Varroa destructor, it is responsible for the majority of overwintering colony losses globally. Although DWV was discovered four decades ago, research has been hampered by the absence of an in vitro cell culture system or the ability to culture pure stocks of the virus. The recent developments of reverse genetic systems for DWV go some way to addressing these limitations. They will allow the investigation of specific questions about strain variation, host tropism and pathogenesis to be answered, and are already being exploited to study tissue tropism and replication in Varroa and non-Apis pollinators. Three areas neatly illustrate the advances possible with reverse genetic approaches: (i) strain variation and recombination, in which reverse genetics has highlighted similarities rather than differences between virus strains; (ii) analysis of replication kinetics in both honey bees and Varroa, in studies that likely explain the near clonality of virus populations often reported; and (iii) pathogen spillover to non-Apis pollinators, using genetically tagged viruses to accurately monitor replication and infection.
Collapse
Affiliation(s)
- Luke Woodford
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - David J Evans
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
7
|
Mites, ticks, anaphylaxis and allergy: The Acari hypothesis. Med Hypotheses 2020; 144:110257. [PMID: 33254563 DOI: 10.1016/j.mehy.2020.110257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 02/01/2023]
Abstract
Anaphylaxis is a poorly understood immune process in which a Th2-/IgE-mediated adaptive response commandeers cellular machinery, typically reserved for defense against multicellular ectoparasites, to activate against otherwise benign molecules. Its clinical manifestations consist of rapid pathophysiological reflexes that target epithelial surfaces. The galactose-α-1,3-galactose hypersensitivity response is a compelling model of anaphylaxis for which causation has been demonstrated. At the core of the model, a tick bite sensitizes a recipient to a tick foodstuff. As proposed herein, the model likely informs on the origin of all allergic inflammation; namely, allergy is not intended to protect against seemingly harmless and irrelevant materials, but is, instead, intended to rid epithelial surfaces of pathogen-bearing Acari, i.e., mites and ticks. The demonstrated adjuvant activity of acarian gastrointestinal secretions, when paired with the polyphagous diet of mites, renders acarians eminently suited to accounting, mechanistically, for many, if not all, human allergies.
Collapse
|
8
|
Choong WK, Wang JH, Sung TY. MinProtMaxVP: Generating a minimized number of protein variant sequences containing all possible variant peptides for proteogenomic analysis. J Proteomics 2020; 223:103819. [PMID: 32407886 DOI: 10.1016/j.jprot.2020.103819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Identifying single-amino-acid variants (SAVs) from mass spectrometry-based experiments is critical for validating single-nucleotide variants (SNVs) at the protein level to facilitate biomedical research. Currently, two approaches are usually applied to convert SNV annotations into SAV-harboring protein sequences. One approach generates one sequence containing exactly one SAV, and the other all SAVs. However, they may neglect the possibility of SAV combinations, e.g., haplotypes, existing in bio-samples. Therefore, it is necessary to consider all SAV combinations of a protein when generating SAV-harboring protein sequences. In this paper, we propose MinProtMaxVP, a novel approach which selects a minimized number of SAV-harboring protein sequences generated from the exhaustive approach, while still accommodating all possible variant peptides, by solving a classic set covering problem. Our study on known haplotype variations of TAS2R38 justifies the necessity for MinProtMaxVP to consider all combinations of SAVs. The performance of MinProtMaxVP is demonstrated by an in silico study on OR2T27 with five SAVs and real experimental data of the HEK293 cell line. Furthermore, assuming simulated somatic and germline variants of OR2T27 in tumor and normal tissues demonstrates that when adopting the appropriate somatic and germline SAV integration strategy, MinProtMaxVP is adaptable to labeling and label-free mass spectrometry-based experiments. SIGNIFICANCE: We present MinProtMaxVP, a novel approach to generate SAV-harboring protein sequences for constructing a customized protein sequence database, which is used in database searching for variant peptide identification. This approach outperforms the existing approaches in generating all possible variant peptides to be included in protein sequences and possibly leading to identification of more variant peptides in proteogenomic analysis.
Collapse
Affiliation(s)
- Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
9
|
Wu Y, Liu Q, Weiss B, Kaltenpoth M, Kadowaki T. Honey Bee Suppresses the Parasitic Mite Vitellogenin by Antimicrobial Peptide. Front Microbiol 2020; 11:1037. [PMID: 32523577 PMCID: PMC7261897 DOI: 10.3389/fmicb.2020.01037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
The negative effects of honey bee parasitic mites and deformed wing virus (DWV) on honey bee and colony health have been well characterized. However, the relationship between DWV and mites, particularly viral replication inside the mites, remains unclear. Furthermore, the physiological outcomes of honey bee immune responses stimulated by DWV and the mite to the host (honey bee) and perhaps the pathogen/parasite (DWV/mite) are not yet understood. To answer these questions, we studied the tripartite interactions between the honey bee, Tropilaelaps mercedesae, and DWV as the model. T. mercedesae functioned as a vector for DWV without supporting active viral replication. Thus, DWV negligibly affected mite fitness. Mite infestation induced mRNA expression of antimicrobial peptides (AMPs), Defensin-1 and Hymenoptaecin, which correlated with DWV copy number in honey bee pupae and mite feeding, respectively. Feeding T. mercedesae with fruit fly S2 cells heterologously expressing honey bee Hymenoptaecin significantly downregulated mite Vitellogenin expression, indicating that the honey bee AMP manipulates mite reproduction upon feeding on bee. Our results provide insights into the mechanism of DWV transmission by the honey bee parasitic mite to the host, and the novel role of AMP in defending against mite infestation.
Collapse
Affiliation(s)
- Yunfei Wu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Qiushi Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Benjamin Weiss
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
10
|
Al Naggar Y, Paxton RJ. Mode of Transmission Determines the Virulence of Black Queen Cell Virus in Adult Honey Bees, Posing a Future Threat to Bees and Apiculture. Viruses 2020; 12:E535. [PMID: 32422881 PMCID: PMC7290678 DOI: 10.3390/v12050535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Honey bees (Apis mellifera) can be infected by many viruses, some of which pose a major threat to their health and well-being. A critical step in the dynamics of a viral infection is its mode of transmission. Here, we compared for the first time the effect of mode of horizontal transmission of Black queen cell virus (BQCV), a ubiquitous and highly prevalent virus of A. mellifera, on viral virulence in individual adult honey bees. Hosts were exposed to BQCV either by feeding (representing direct transmission) or by injection into hemolymph (analogous to indirect or vector-mediated transmission) through a controlled laboratory experimental design. Mortality, viral titer and expression of three key innate immune-related genes were then quantified. Injecting BQCV directly into hemolymph in the hemocoel resulted in far higher mortality as well as increased viral titer and significant change in the expression of key components of the RNAi pathway compared to feeding honey bees BQCV. Our results support the hypothesis that mode of horizontal transmission determines BQCV virulence in honey bees. BQCV is currently considered a benign viral pathogen of adult honey bees, possibly because its mode of horizontal transmission is primarily direct, per os. We anticipate adverse health effects on honey bees if BQCV transmission becomes vector-mediated.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany;
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany;
| |
Collapse
|
11
|
Gusachenko ON, Woodford L, Balbirnie-Cumming K, Campbell EM, Christie CR, Bowman AS, Evans DJ. Green Bees: Reverse Genetic Analysis of Deformed Wing Virus Transmission, Replication, and Tropism. Viruses 2020; 12:E532. [PMID: 32408550 PMCID: PMC7291132 DOI: 10.3390/v12050532] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023] Open
Abstract
Environmental and agricultural pollination services by honey bees, Apis mellifera, and honey production are compromised by high levels of annual colony losses globally. The majority are associated with disease caused by deformed wing virus (DWV), a positive-strand RNA virus, exacerbated by the ectoparasitic mite Varroa destructor. To improve honey bee health, a better understanding of virus transmission and pathogenesis is needed which requires the development of tools to study virus replication, transmission, and localisation. We report the use of reverse genetic (RG) systems for the predominant genetically distinct variants of DWV to address these questions. All RG-recovered viruses replicate within 24 h post-inoculation of pupae and could recapitulate the characteristic symptoms of DWV disease upon eclosion. Larvae were significantly less susceptible but could be infected orally and subsequently developed disease. Using genetically tagged RG DWV and an in vitro Varroa feeding system, we demonstrate virus replication in the mite by accumulation of tagged negative-strand viral replication intermediates. We additionally apply a modified DWV genome expressing a fluorescent reporter protein for direct in vivo observation of virus distribution in injected pupae or fed larvae. Using this, we demonstrate extensive sites of virus replication in a range of pupal tissues and organs and in the nascent wing buds in larvae fed high levels of virus, indicative of a direct association between virus replication and pathogenesis. These studies provide insights into virus replication kinetics, tropism, transmission, and pathogenesis, and produce new tools to help develop the understanding needed to control DWV-mediated colony losses.
Collapse
Affiliation(s)
- Olesya N. Gusachenko
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, UK; (L.W.); (D.J.E.)
| | - Luke Woodford
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, UK; (L.W.); (D.J.E.)
| | - Katharin Balbirnie-Cumming
- Centre for Inflammation Research, Queen‘s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Ewan M. Campbell
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK; (E.M.C.); (C.R.C.); (A.S.B.)
| | - Craig R. Christie
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK; (E.M.C.); (C.R.C.); (A.S.B.)
| | - Alan S. Bowman
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK; (E.M.C.); (C.R.C.); (A.S.B.)
| | - David J. Evans
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, UK; (L.W.); (D.J.E.)
| |
Collapse
|
12
|
Manley R, Temperton B, Boots M, Wilfert L. Contrasting impacts of a novel specialist vector on multihost viral pathogen epidemiology in wild and managed bees. Mol Ecol 2020; 29:380-393. [PMID: 31834965 PMCID: PMC7003859 DOI: 10.1111/mec.15333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 01/27/2023]
Abstract
Typically, pathogens infect multiple host species. Such multihost pathogens can show considerable variation in their degree of infection and transmission specificity, which has important implications for potential disease emergence. Transmission of multihost pathogens can be driven by key host species and changes in such transmission networks can lead to disease emergence. We study two viruses that show contrasting patterns of prevalence and specificity in managed honeybees and wild bumblebees, black queen cell virus (BQCV) and slow bee paralysis virus (SBPV), in the context of the novel transmission route provided by the virus‐vectoring Varroa destructor. Our key result is that viral communities and RNA virus genetic variation are structured by location, not host species or V. destructor presence. Interspecific transmission is pervasive with the same viral variants circulating between pollinator hosts in each location; yet, we found virus‐specific host differences in prevalence and viral load. Importantly, V. destructor presence increases the prevalence in honeybees and, indirectly, in wild bumblebees, but in contrast to its impact on deformed wing virus (DWV), BQCV and SBPV viral loads are not increased by Varroa presence, and do not show genetic evidence of recent emergence. Effective control of Varroa in managed honeybee colonies is necessary to mitigate further disease emergence, and alleviate disease pressure on our vital wild bee populations. More generally, our results highlight the over‐riding importance of geographical location to the epidemiological outcome despite the complexity of multihost‐parasite interactions.
Collapse
Affiliation(s)
- Robyn Manley
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK.,Department of Biosciences, University of Exeter, Exeter, UK
| | - Ben Temperton
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
13
|
Erban T, Klimov P, Talacko P, Harant K, Hubert J. Proteogenomics of the house dust mite, Dermatophagoides farinae: Allergen repertoire, accurate allergen identification, isoforms, and sex-biased proteome differences. J Proteomics 2020; 210:103535. [DOI: 10.1016/j.jprot.2019.103535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/28/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
|
14
|
Phytoseiid predatory mites can disperse entomopathogenic fungi to prey patches. Sci Rep 2019; 9:19435. [PMID: 31857623 PMCID: PMC6923365 DOI: 10.1038/s41598-019-55499-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 11/28/2019] [Indexed: 11/29/2022] Open
Abstract
Recent studies have shown that predatory mites used as biocontrol agents can be loaded with entomopathogenic fungal conidia to increase infection rates in pest populations. Under laboratory conditions, we determined the capacity of two phytoseiid mites, Amblyseius swirskii and Neoseiulus cucumeris to deliver the entomopathogenic fungus Beauveria bassiana to their prey, Frankliniella occidentalis. Predatory mites were loaded with conidia and released on plants that had been previously infested with first instar prey clustered on a bean leaf. We examined each plant section to characterize the spatial distribution of each interacting organism. Our results showed that A. swirskii delivered high numbers of conidia to thrips infested leaves, thereby increasing the proportion of thrips that came into contact with the fungus. The effect was larger when thrips infestation occurred on young leaves than on old leaves. Neoseiulus cucumeris delivered less conidia to the thrips infested leaves. These patterns result from differences in foraging activity between predatory mite species. Amblyseius swirskii stayed longer on plants, especially within thrips colonies, and had a stronger suppressing effect on thrips than N. cucumeris. Our study suggests that loading certain predatory mite species with fungal conidia can increase their capacity to suppress thrips populations by combining predation and dispersing pathogens.
Collapse
|
15
|
Erban T, Sopko B, Kadlikova K, Talacko P, Harant K. Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-β signaling pathways. Sci Rep 2019; 9:9400. [PMID: 31253851 PMCID: PMC6599063 DOI: 10.1038/s41598-019-45764-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Honeybee workers undergo metamorphosis in capped cells for approximately 13 days before adult emergence. During the same period, Varroa mites prick the defenseless host many times. We sought to identify proteome differences between emerging Varroa-parasitized and parasite-free honeybees showing the presence or absence of clinical signs of deformed wing virus (DWV) in the capped cells. A label-free proteomic analysis utilizing nanoLC coupled with an Orbitrap Fusion Tribrid mass spectrometer provided a quantitative comparison of 2316 protein hits. Redundancy analysis (RDA) showed that the combination of Varroa parasitism and DWV clinical signs caused proteome changes that occurred in the same direction as those of Varroa alone and were approximately two-fold higher. Furthermore, proteome changes associated with DWV signs alone were positioned above Varroa in the RDA. Multiple markers indicate that Varroa activates TGF-β-induced pathways to suppress wound healing and the immune response and that the collective action of stressors intensifies these effects. Furthermore, we indicate JAK/STAT hyperactivation, p53-BCL-6 feedback loop disruption, Wnt pathway activation, Wnt/Hippo crosstalk disruption, and NF-κB and JAK/STAT signaling conflict in the Varroa–honeybee–DWV interaction. These results illustrate the higher effect of Varroa than of DWV at the time of emergence. Markers for future research are provided.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Klara Kadlikova
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.,Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6-Suchdol, CZ-165 00, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| |
Collapse
|
16
|
Abstract
Deformed wing virus (DWV) has become the most well-known, widespread, and intensively studied insect pathogen in the world. Although DWV was previously present in honeybee populations, the arrival and global spread of a new vector, the ectoparasitic mite Varroa destructor, has dramatically altered DWV epidemiology. DWV is now the most prevalent virus in honeybees, with a minimum average of 55% of colonies/apiaries infected across 32 countries. Additionally, DWV has been detected in 65 arthropod species spanning eight insect orders and three orders of Arachnida. Here, we describe the significant progress that has been made in elucidating the capsid structure of the virus, understanding its ever-expanding host range, and tracking the constantly evolving DWV genome and formation of recombinants. The construction of molecular clones, working with DWV in cell lines, and the development of immunohistochemistry methods will all help the community to move forward. Identifying the tissues in which DWV variants are replicating and understanding the impact of DWV in non-honeybee hosts are major new goals.
Collapse
Affiliation(s)
- Stephen J Martin
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, United Kingdom;
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales 2751, Australia;
| |
Collapse
|
17
|
Tehel A, Vu Q, Bigot D, Gogol-Döring A, Koch P, Jenkins C, Doublet V, Theodorou P, Paxton R. The Two Prevalent Genotypes of an Emerging Infectious Disease, Deformed Wing Virus, Cause Equally Low Pupal Mortality and Equally High Wing Deformities in Host Honey Bees. Viruses 2019; 11:v11020114. [PMID: 30699904 PMCID: PMC6409761 DOI: 10.3390/v11020114] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 12/26/2022] Open
Abstract
Deformed wing virus (DWV) is an emerging infectious disease of the honey bee (Apis mellifera) that is considered a major cause of elevated losses of honey bee colonies. DWV comprises two widespread genotypes: the originally described genotype A, and genotype B. In adult honey bees, DWV-B has been shown to be more virulent than DWV-A. However, their comparative effects on earlier host developmental stages are unknown. Here, we experimentally inoculated honey bee pupae and tested for the relative impact of DWV-A versus DWV-B on mortality and wing deformities in eclosing adults. DWV-A and DWV-B caused similar, and only slightly elevated, pupal mortality (mean 18% greater mortality than control). Both genotypes caused similarly high wing deformities in eclosing adults (mean 60% greater wing deformities than control). Viral titer was high in all of the experimentally inoculated eclosing adults, and was independent of wing deformities, suggesting that the phenotype 'deformed wings' is not directly related to viral titer or viral genotype. These viral traits favor the emergence of both genotypes of DWV by not limiting the reproduction of its vector, the ectoparasitic Varroa destructor mite, in infected pupae, and thereby facilitating the spread of DWV in honey bees infested by the mite.
Collapse
Affiliation(s)
- Anja Tehel
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany.
| | - Quynh Vu
- Cuu Long Delta Rice Research Institute, Can Tho City 94709, Vietnam.
| | - Diane Bigot
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany.
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Technische Hochschule Mittelhessen, University of Applied Sciences, Wiesenstrasse 14, 35390 Gießen, Germany.
| | - Peter Koch
- Technische Hochschule Mittelhessen, University of Applied Sciences, Wiesenstrasse 14, 35390 Gießen, Germany.
| | - Christina Jenkins
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany.
| | - Vincent Doublet
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany.
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Panagiotis Theodorou
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany.
| | - Robert Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| |
Collapse
|
18
|
Gisder S, Möckel N, Eisenhardt D, Genersch E. In vivo evolution of viral virulence: switching of deformed wing virus between hosts results in virulence changes and sequence shifts. Environ Microbiol 2018; 20:4612-4628. [PMID: 30452113 DOI: 10.1111/1462-2920.14481] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
The health of the Western honey bee is threatened by a global epidemic of deformed wing virus (DWV) infections driven by the ectoparasitic mite Varroa destructor acting as mechanical and biological virus vector. Three different variants of DWV, DWV-A, -B and -C exist. Virulence differences between these variants and their relation to V. destructor are still controversially discussed. We performed laboratory experiments to analyze the virulence of DWV directly isolated from crippled bees (DWVP0 ) or after one additional passage in bee pupae (DWVP1 ). We demonstrated that DWVP0 was more virulent than DWVP1 for pupae, when pupal mortality was taken as virulence marker, and for adult bees, when neurotropism and cognitive impairment were taken as virulence markers. Phylogenetic analysis supported that DWV exists as quasispecies and showed that DWVP0 clustered with DWV-B and DWVP1 with DWV-A when the phylogeny was based on the master sequences of the RNA-dependent RNA polymerase but not so when it was based on the VP3 region master sequences. We propose that switching of DWV between the bee and the mite host is accompanied by changes in viral sequence, tissue tropism and virulence and that the RNA-dependent RNA polymerase is involved in determining host range and virulence.
Collapse
Affiliation(s)
- Sebastian Gisder
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Nadine Möckel
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Dorothea Eisenhardt
- Institute of Biology/Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany.,Institut für Mikrobiologie und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Insights into the metabolism and behaviour of Varroa destructor mites from analysis of their waste excretions. Parasitology 2018; 146:527-532. [PMID: 30409232 PMCID: PMC6425362 DOI: 10.1017/s0031182018001762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Varroa destructor mites (Acari: Varroidae) are harmful ectoparasites of Apis mellifera honey bees. Female foundresses of wax-capped pupal host cells and their daughters feed on host fluids from open wounds on the host's integument. Details of V. destructor mite nutrition are forthcoming, and little is known about the potential physical effects on hosts from mite feeding. Chemical analysis of waste excretions can infer details of animals’ nutrition. Here, chemical analysis by high-performance liquid chromatography/mass spectrometry (HPLC-MS/MS) of mite excretions showed that the purine content of V. destructor waste consists of guanine with traces of hypoxanthine. Traces of uric acid and caffeine were also detected. Concentrations of guanine attenuated over time and excretions collected from senescing mites did not contain detectable guanine. Non-reproducing individual female mites maintained in vitro, housed in gelatin capsules and provided a honey bee pupa, deposited an average of nearly 18 excretions daily, mostly on the host's integument rather than on the capsule wall. The weight and volume of excretions suggest mites can consume nearly a microlitre of host fluids each day. Compounded over 10 days, this together with open wounds, could lead to substantial water loss and stress to developing pupae.
Collapse
|
20
|
Mondet F, Rau A, Klopp C, Rohmer M, Severac D, Le Conte Y, Alaux C. Transcriptome profiling of the honeybee parasite Varroa destructor provides new biological insights into the mite adult life cycle. BMC Genomics 2018; 19:328. [PMID: 29728057 PMCID: PMC5936029 DOI: 10.1186/s12864-018-4668-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The parasite Varroa destructor represents a significant threat to honeybee colonies. Indeed, development of Varroa infestation within colonies, if left untreated, often leads to the death of the colony. Although its impact on bees has been extensively studied, less is known about its biology and the functional processes governing its adult life cycle and adaptation to its host. We therefore developed a full life cycle transcriptomic catalogue in adult Varroa females and included pairwise comparisons with males, artificially-reared and non-reproducing females (10 life cycle stages and conditions in total). Results Extensive remodeling of the Varroa transcriptome was observed, with an upregulation of energetic and chitin metabolic processes during the initial and final phases of the life cycle (e.g. phoretic and post-oviposition stages), whereas during reproductive stages in brood cells genes showing functions related to transcriptional regulation were overexpressed. Several neurotransmitter and neuropeptide receptors involved in behavioural regulation, as well as active compounds of salivary glands, were also expressed at a higher level outside the reproductive stages. No difference was detected between artificially-reared phoretic females and their counterparts in colonies, or between females who failed to reproduce and females who successfully reproduced, indicating that phoretic individuals can be reared outside host colonies without impacting their physiology and that mechanisms underlying reproductive failure occur before oogenesis. Conclusions We discuss how these new findings reveal the remarkable adaptation of Varroa to its host biology and notably to the switch from living on adults to reproducing in sealed brood cells. By spanning the entire adult life cycle, our work captures the dynamic changes in the parasite gene expression and serves as a unique resource for deciphering Varroa biology and identifying new targets for mite control. Electronic supplementary material The online version of this article (10.1186/s12864-018-4668-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fanny Mondet
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France.
| | - Andrea Rau
- INRA, UMR 1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Christophe Klopp
- INRA, Genotoul Bioinfo, UR 875 MIAT Mathématiques et Informatique Appliquées de Toulouse, 31326, Castanet-Tolosan, France
| | - Marine Rohmer
- Institut de Génomique Fonctionnelle, UMR 5203 CNRS, U661 INSERM, Universités Montpellier 1 & 2, 34094, Montpellier, France
| | - Dany Severac
- Institut de Génomique Fonctionnelle, UMR 5203 CNRS, U661 INSERM, Universités Montpellier 1 & 2, 34094, Montpellier, France
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France
| | - Cedric Alaux
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France.
| |
Collapse
|
21
|
Erban T, Klubal R. Non-protease native allergens partially purified from bodies of eight domestic mites using p-aminobenzamidine ligand. Allergol Immunopathol (Madr) 2018; 46:218-225. [PMID: 29128091 DOI: 10.1016/j.aller.2017.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Optimised purification steps for concentrating trace target native antigens are needed. Combining the p-aminobenzamidine ligand with protease inactivation enables partial purification of mite non-protease allergens lacking proteases. OBJECTIVE We sought to analyse in detail proteins obtained using this method from eight species of synanthropic acaridid mites and tested IgE reactivity using pooled human sera. MATERIALS AND METHODS Proteins affinity bound to p-aminobenzamidine as a ligand were identified by MALDI TOF/TOF. After electroblotting, the proteins were visualised using the fluorescent SYPRO-Ruby protein blot stain, and IgE reactivity was further analysed using pooled human sera collected from patients allergic to house dust mites. RESULTS MS/MS identification confirmed previous results that no proteases were purified. Protein patterns corresponding to the allergens Der f 7, Der f 30 and actins indicated that these proteins are purified using p-aminobenzamidine and are present across a wide spectrum of acaridid mites. When using Dermatophagoides farinae, apolipophorins (Der f 14), chitinase-like Der f 15 and 18, 70-kDa heat shock protein, and a Der f Alt a10 allergen homolog (gi|37958173) were also detected. The target antigens tropomyosins and paramyosins showed similar IgE binding among the mite species tested. IgE reactivity with miscellaneous D. farinae antigen was also observed. CONCLUSIONS Partial purification of mite non-protease antigens using a strategy combining p-aminobenzamidine with protease inactivation was verified by 1D-E and 2D-E analyses. IgE binding to p-aminobenzamidine-purified native non-protease mite antigens was tested using pooled sera. This preliminary study allows for further work on individual serum samples, allowing confirmation of immunoreactivity.
Collapse
Affiliation(s)
- T Erban
- Crop Research Institute, 507/73, Prague 6-Ruzyne, CZ-16106, Czech Republic.
| | - R Klubal
- Medical Center Prague, Mezi Vodami 205/29, Prague 4-Modrany, CZ-14300, Czech Republic
| |
Collapse
|
22
|
Egekwu NI, Posada F, Sonenshine DE, Cook S. Using an in vitro system for maintaining Varroa destructor mites on Apis mellifera pupae as hosts: studies of mite longevity and feeding behavior. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 74:301-315. [PMID: 29511937 DOI: 10.1007/s10493-018-0236-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Varroa destructor mites (varroa) are ectoparasites of Apis mellifera honey bees, and the damage they inflict on hosts is likely a causative factor of recent poor honey bee colony performance. Research has produced an arsenal of control agents against varroa mites, which have become resistant to many chemical means of their control, and other means have uncertain efficacy. Novel means of control will result from a thorough understanding of varroa physiology and behavior. However, robust knowledge of varroa biology is lacking; mites have very low survivability and reproduction away from their natural environment and host, and few tested protocols of maintaining mites in vitro are available as standardized methods for varroa research. Here, we describe the 'varroa maintenance system' (VMS), a tool for maintaining in vitro populations of varroa on its natural host, and present best practices for its use in varroa and host research. Additionally, we present results using the VMS from research of varroa and host longevity and varroa feeding behavior. Under these conditions, from two trials, mites lived an average of 12 and 14 days, respectively. For studies of feeding behavior, female mites inflicted wounds located on a wide range of sites on the host's integument, but preferred to feed from the host's abdomen and thorax. Originally in the phoretic-phase, female mites in VMS had limited reproduction, but positive instances give insights into the cues necessary for initiating reproduction. The VMS is a useful tool for laboratory studies requiring long-term survival of mites, or host-parasite interactions.
Collapse
Affiliation(s)
- Noble I Egekwu
- Bee Research Lab, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA.
| | - Francisco Posada
- Bee Research Lab, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Daniel E Sonenshine
- Bee Research Lab, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Steven Cook
- Bee Research Lab, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| |
Collapse
|
23
|
de Mattos IM, Soares AEE, Tarpy DR. Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:32-44. [PMID: 29067534 DOI: 10.1007/s10646-017-1868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Honey bee (Apis mellifera L.) populations have been experiencing notable mortality in Europe and North America. No single cause has been identified for these dramatic losses, but rather multiple interacting factors are likely responsible (such as pesticides, malnutrition, habitat loss, and pathogens). Paraquat is one of the most widely used non-selective herbicides, especially in developing countries. This herbicide is considered slightly toxic to honey bees, despite being reported as a highly effective inducer of oxidative stress in a wide range of living systems. Here, we test the effects of paraquat on the expression of detoxification and antioxidant-related genes, as well as on the dynamics of pathogen titers. Moreover, we tested the effects of pollen as mitigating factor to paraquat exposure. Our results show significant changes in the expression of several antioxidant-related and detoxification-related genes in the presence of paraquat, as well as an increase of pathogens titers. Finally, we demonstrate a mitigating effect of pollen through the up-regulation of specific genes and improvement of survival of bees exposed to paraquat. The presence of pollen in the diet was also correlated with a reduced prevalence of Nosema and viral pathogens. We discuss the importance of honey bees' nutrition, especially the availability of pollen, on colony losses chronically reported in the USA and Europe.
Collapse
Affiliation(s)
- Igor Medici de Mattos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14.049-900, Brazil.
| | - Ademilson E E Soares
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14.049-900, Brazil
| | - David R Tarpy
- Department of Entomology & Plant Pathology, College of Agriculture and Life Science, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
24
|
McAfee A, Chan QWT, Evans J, Foster LJ. A Varroa destructor protein atlas reveals molecular underpinnings of developmental transitions and sexual differentiation. Mol Cell Proteomics 2017; 16:2125-2137. [PMID: 28867676 PMCID: PMC5724176 DOI: 10.1074/mcp.ra117.000104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 11/06/2022] Open
Abstract
Varroa destructor is the most economically damaging honey bee pest, weakening colonies by simultaneously parasitizing bees and transmitting harmful viruses. Despite these impacts on honey bee health, surprisingly little is known about its fundamental molecular biology. Here, we present a Varroa protein atlas crossing all major developmental stages (egg, protonymph, deutonymph, and adult) for both male and female mites as a web-based interactive tool (http://foster.nce.ubc.ca/varroa/index.html). We used intensity-based label-free quantitation to find 1,433 differentially expressed proteins across developmental stages. Enzymes for processing carbohydrates and amino acids were among many of these differences as well as proteins involved in cuticle formation. Lipid transport involving vitellogenin was the most significantly enriched biological process in the foundress (reproductive female) and young mites. In addition, we found that 101 proteins were sexually regulated and functional enrichment analysis suggests that chromatin remodeling may be a key feature of sex determination. In a proteogenomic effort, we identified 519 protein-coding regions, 301 of which were supported by two or more peptides and 169 of which were differentially expressed. Overall, this work provides a first-of-its-kind interrogation of the patterns of protein expression that govern the Varroa life cycle and the tools we have developed will support further research on this threatening honey bee pest.
Collapse
Affiliation(s)
- Alison McAfee
- From the ‡Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Queenie W T Chan
- From the ‡Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jay Evans
- §Bee Research Laboratory, Beltsville Agricultural Research Center-East, U.S. Department of Agriculture, Beltsville, MD, USA 20705-0000
| | - Leonard J Foster
- §Bee Research Laboratory, Beltsville Agricultural Research Center-East, U.S. Department of Agriculture, Beltsville, MD, USA 20705-0000
| |
Collapse
|
25
|
Dong X, Armstrong SD, Xia D, Makepeace BL, Darby AC, Kadowaki T. Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history. Gigascience 2017; 6:1-17. [PMID: 28327890 PMCID: PMC5467014 DOI: 10.1093/gigascience/gix008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/01/2017] [Indexed: 01/09/2023] Open
Abstract
The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. We sequenced the genome of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia, and predicted 15 190 protein-coding genes that were well supported by the mite transcriptomes and proteomic data. Although amino acid substitutions have been accelerated within the conserved core genes of two mites, T. mercedesae and Metaseiulus occidentalis, T. mercedesae has undergone the least gene family expansion and contraction between the seven arthropods we tested. The number of sensory system genes has been dramatically reduced, but T. mercedesae contains all gene sets required to detoxify xenobiotics. T. mercedesae is closely associated with a symbiotic bacterium (Rickettsiella grylli-like) and Deformed Wing Virus, the most prevalent honey bee virus. T. mercedesae has a very specialized life history and habitat as the ectoparasitic mite strictly depends on the honey bee inside a stable colony. Thus, comparison of the genome and transcriptome sequences with those of a tick and free-living mites has revealed the specific features of the genome shaped by interaction with the honey bee and colony environment. Genome and transcriptome sequences of T. mercedesae, as well as Varroa destructor (another globally prevalent ectoparasitic mite of honey bee), not only provide insights into the mite biology, but may also help to develop measures to control the most serious pests of the honey bee.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, China
| | - Stuart D Armstrong
- Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Dong Xia
- Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Benjamin L Makepeace
- Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, China
| |
Collapse
|
26
|
Amiri E, Strand MK, Rueppell O, Tarpy DR. Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. INSECTS 2017; 8:E48. [PMID: 28481294 PMCID: PMC5492062 DOI: 10.3390/insects8020048] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
27
|
Erban T, Harant K, Hubert J. Detailed two-dimensional gel proteomic mapping of the feces of the house dust mite Dermatophagoides pteronyssinus and comparison with D. farinae: Reduced trypsin protease content in D. pteronyssinus and different isoforms. J Proteomics 2017; 162:11-19. [PMID: 28442447 DOI: 10.1016/j.jprot.2017.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
Major domestic mite allergens are present in feces. We present a detailed 2D-E-MS/MS proteomic analysis of the Dermatophagoides pteronyssinus feces. Precise cultivation yielded a pure fecal extract. We detected differences in fecal allergens/digestive enzymes between D. pteronyssinus and D. farinae using 2D-E fingerprinting, including unique information on species-specific protease isoforms. Proteomic analysis was performed by 2D-E coupled with MALDI-TOF/TOF identification. The species-specific differences in the fecal extracts of the mites were attributed to trypsin-like proteases known as group 3 allergens. In D. farinae, Der f 3 exhibited high abundance with a pI similar (acidic) to that of the cysteine protease Der f 1 and the chymotrypsin protease Der f 6, whereas in D. pteronyssinus, Der p 3 was rarely detected and exhibited low abundance only at basic pI. Moreover, Der p 9 was detected at a pI of ~ 10, in contrast to Der p 1 and Der p 6, suggesting different compartmentalization in the body. Overall, in D. pteronyssinus feces, allergens of groups 1, 2, 6, and 15 were quantitatively similar to those of D. farinae with the exception of the group 3 and 9 allergens. This work provides novel insights into mite-defecated proteins/digestive enzymes, which are important allergens. SIGNIFICANCE Millions of people are affected by allergy and asthma, and their number is growing. In homes, the major triggers of allergy and asthma are the house dust mites Dermatophagoides farinae and D. pteronyssinus, and a clear understanding of the development of diseases caused by these mites is needed. The major sources of mite allergens are their feces, which are deposited in the environment and are easily inhaled as part of aeroplankton. However, descriptions of and comparisons between the major fecal allergens of these two mites are lacking. This study shows that similar group 1 (cysteine protease), 2 (NPC2 family), 6 (chymotrypsin) and 15 (chitinase-like) allergens are present in the feces of these two mite species, as determined by 2D-E mapping, whereas group 3 (trypsin) and 9 (collagenolytic protease) allergens in the feces of the two species are different. The results provide unique MS/MS mapped fingerprints of mite species-specific isoforms in feces. The presence of ubiquitin in mite feces suggests that these proteins participate in the post-translational modification of fecal proteins. The findings are essential for understanding differences between D. farinae and D. pteronyssinus with respect to immunoreactivity, protease activation mechanisms, association with microbes, and food utilization.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, Czechia.
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, Czechia
| |
Collapse
|
28
|
Hubert J, Bicianova M, Ledvinka O, Kamler M, Lester PJ, Nesvorna M, Kopecky J, Erban T. Changes in the Bacteriome of Honey Bees Associated with the Parasite Varroa destructor, and Pathogens Nosema and Lotmaria passim. MICROBIAL ECOLOGY 2017; 73:685-698. [PMID: 27730366 DOI: 10.1007/s00248-016-0869-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/23/2016] [Indexed: 05/11/2023]
Abstract
The honey bee, Apis mellifera, is a globally important species that suffers from a variety of pathogens and parasites. These parasites and pathogens may have sublethal effects on their bee hosts via an array of mechanisms, including through a change in symbiotic bacterial taxa. Our aim was to assess the influence of four globally widespread parasites and pathogens on the honey bee bacteriome. We examined the effects of the ectoparasitic mite Varroa destructor, the fungal pathogens Nosema apis and Nosema ceranae, and the trypanosome Lotmaria passim. Varroa was detected by acaricidal treatment, Nosema and L. passim by PCR, and the bacteriome using MiSeq 16S rRNA gene sequencing. Overall, the 1,858,850 obtained sequences formed 86 operational taxonomic units (OTUs) at 3 % dissimilarity. Location, time of year, and degree of infestation by Varroa had significant effects on the composition of the bacteriome of honey bee workers. Based on statistical correlations, we found varroosis more important factor than N. ceranae, N. apis, and L. passim infestation influencing the honey bee bacteriome and contributing to the changes in the composition of the bacterial community in adult bees. At the population level, Varroa appeared to modify 20 OTUs. In the colonies with high Varroa infestation levels (varroosis), the relative abundance of the bacteria Bartonella apis and Lactobacillus apis decreased. In contrast, an increase in relative abundance was observed for several taxa including Lactobacillus helsingborgensis, Lactobacillus mellis, Commensalibacter intestini, and Snodgrassella alvi. The results showed that the "normal" bacterial community is altered by eukaryotic parasites as well as displaying temporal changes and changes associated with the geographical origin of the beehive.
Collapse
Affiliation(s)
- Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6-Ruzyne, Czechia.
| | - Martina Bicianova
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6-Ruzyne, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, CZ-128 01, Prague 2, Czechia
| | - Ondrej Ledvinka
- Hydrological Database & Water Balance, Czech Hydrometeorological Institute, Na Sabatce 2050/17, CZ-143 06, Prague, 412, Czechia
| | - Martin Kamler
- Bee Research Institute at Dol, Maslovice-Dol 94, Libcice nad Vltavou, CZ-252 66, Czechia
| | - Philip J Lester
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6-Ruzyne, Czechia
| | - Jan Kopecky
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6-Ruzyne, Czechia
| | - Tomas Erban
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6-Ruzyne, Czechia
| |
Collapse
|
29
|
A Comparison of Deformed Wing Virus in Deformed and Asymptomatic Honey Bees. INSECTS 2017; 8:insects8010028. [PMID: 28272333 PMCID: PMC5371956 DOI: 10.3390/insects8010028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/07/2017] [Accepted: 03/02/2017] [Indexed: 01/02/2023]
Abstract
Deformed wing virus (DWV) in association with Varroa destructor is currently attributed to being responsible for colony collapse in the western honey bee (Apis mellifera). The appearance of deformed individuals within an infested colony has long been associated with colony losses. However, it is unknown why only a fraction of DWV positive bees develop deformed wings. This study concerns two small studies comparing deformed and non-deformed bees. In Brazil, asymptomatic bees (no wing deformity) that had been parasitised by Varroa as pupae had higher DWV loads than non-parasitised bees. However, we found no greater bilateral asymmetry in wing morphology due to DWV titres or parasitisation. As expected, using RT-qPCR, deformed bees were found to contain the highest viral loads. In a separate study, next generation sequencing (NGS) was applied to compare the entire DWV genomes from paired symptomatic and asymptomatic bees from three colonies on two different Hawaiian islands. This revealed no consistent differences between DWV genomes from deformed or asymptomatic bees, with the greatest variation seen between locations, not phenotypes. All samples, except one, were dominated by DWV type A. This small-scale study suggests that there is no unique genetic variant associated with wing deformity; but that many DWV variants have the potential to cause deformity.
Collapse
|
30
|
Amiri E, Meixner MD, Kryger P. Deformed wing virus can be transmitted during natural mating in honey bees and infect the queens. Sci Rep 2016; 6:33065. [PMID: 27608961 PMCID: PMC5016801 DOI: 10.1038/srep33065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 08/19/2016] [Indexed: 11/18/2022] Open
Abstract
Deformed wing virus is an important contributor to honey bee colony losses. Frequently queen failure is reported as a cause for colony loss. Here we examine whether sexual transmission during multiple matings of queens is a possible way of virus infection in queens. In an environment with high prevalence of deformed wing virus, queens (n = 30) were trapped upon their return from natural mating flights. The last drone's endophallus (n = 29), if present, was removed from the mated queens for deformed wing virus quantification, leading to the detection of high-level infection in 3 endophalli. After oviposition, viral quantification revealed that seven of the 30 queens had high-level deformed wing virus infections, in all tissues, including the semen stored in the spermathecae. Two groups of either unmated queens (n = 8) with induced egg laying, or queens (n = 12) mated in isolation with drones showing comparatively low deformed wing virus infections served as control. None of the control queens exhibited high-level viral infections. Our results demonstrate that deformed wing virus infected drones are competitive to mate and able to transmit the virus along with semen, which occasionally leads to queen infections. Virus transmission to queens during mating may be common and can contribute noticeably to queen failure.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Agroecology, Aarhus University, Slagelse, 4200, Denmark
- Department of Biology, University of North Carolina, Greensboro, NC, 27403, USA
| | | | - Per Kryger
- Department of Agroecology, Aarhus University, Slagelse, 4200, Denmark
| |
Collapse
|
31
|
Hubert J, Kamler M, Nesvorna M, Ledvinka O, Kopecky J, Erban T. Comparison of Varroa destructor and Worker Honeybee Microbiota Within Hives Indicates Shared Bacteria. MICROBIAL ECOLOGY 2016; 72:448-459. [PMID: 27129319 DOI: 10.1007/s00248-016-0776-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
The ectoparasitic mite Varroa destructor is a major pest of the honeybee Apis mellifera. In a previous study, bacteria were found in the guts of mites collected from winter beehive debris and were identified using Sanger sequencing of their 16S rRNA genes. In this study, community comparison and diversity analyses were performed to examine the microbiota of honeybees and mites at the population level. The microbiota of the mites and honeybees in 26 colonies in seven apiaries in Czechia was studied. Between 10 and 50 Varroa females were collected from the bottom board, and 10 worker bees were removed from the peripheral comb of the same beehive. Both bees and mites were surface sterilized. Analysis of the 16S rRNA gene libraries revealed significant differences in the Varroa and honeybee microbiota. The Varroa microbiota was less diverse than was the honeybee microbiota, and the relative abundances of bacterial taxa in the mite and bee microbiota differed. The Varroa mites, but not the honeybees, were found to be inhabited by Diplorickettsia. The relative abundance of Arsenophonus, Morganella, Spiroplasma, Enterococcus, and Pseudomonas was higher in Varroa than in honeybees, and the Diplorickettsia symbiont detected in this study is specific to Varroa mites. The results demonstrated that there are shared bacteria between Varroa and honeybee populations but that these bacteria occur in different relative proportions in the honeybee and mite bacteriomes. These results support the suggestion of bacterial transfer via mites, although only some of the transferred bacteria may be harmful.
Collapse
Affiliation(s)
- Jan Hubert
- Biologically Active Substances in Crop Protection, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, 16106, Czechia.
| | - Martin Kamler
- Bee Research Institute at Dol, Libcice nad Vltavou, Czechia
| | - Marta Nesvorna
- Biologically Active Substances in Crop Protection, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, 16106, Czechia
| | - Ondrej Ledvinka
- Hydrological Database & Water Balance, Czech Hydrometeorological Institute, Na Sabatce 2050/17, 143 06, Prague 412, Czechia
| | - Jan Kopecky
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, Drnovska 507, Prague 6, Ruzyne, CZ, 161 06, Czechia
| | - Tomas Erban
- Biologically Active Substances in Crop Protection, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, 16106, Czechia
| |
Collapse
|
32
|
Kamler M, Nesvorna M, Stara J, Erban T, Hubert J. Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 69:1-9. [PMID: 26910521 DOI: 10.1007/s10493-016-0023-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
The parasitic mite Varroa destructor is a major pest of the western honeybee, Apis mellifera. The development of acaricide resistance in Varroa populations is a global issue. Discriminating concentrations of acaricides are widely used to detect pest resistance. Two methods, using either glass vials or paraffin capsules, are used to screen for Varroa resistance to various acaricides. We found the glass vial method to be useless for testing Varroa resistance to acaridices, so we developed a polypropylene vial bioassay. This method was tested on tau-fluvalinate-, acrinathrin-, and amitraz-resistant mite populations from three apiaries in Czechia. Acetone was used as a control and technical grade acaricide compounds diluted in acetone were applied to the polypropylene vials. The solutions were spread on the vial surface by rolling the vial, and were then evaporated. Freshly collected Varroa females were placed in the vials and the mortality of the exposed mites was measured after 24 h. The Varroa populations differed in mortality between the apiaries and the tested compounds. Mites from the Kyvalka site were resistant to acrinathrin, tau-fluvalinate, and amitraz, while mites from the Postrizin site were susceptible to all three acaricides. In Prelovice apiary, the mites were susceptible to acrinathrin and amitraz, but not to tau-fluvalinate. The calculated discriminating concentrations for tau-fluvalinate, acrinathrin, and amitraz were 0.66, 0.26 and 0.19 µg/mL, respectively. These results indicate that polyproplyne vial tests can be used to determine discriminating concentrations for the early detection of acaricide resistant Varroa. Finally, multiple-resistance in Kyvalka may indicate metabolic resistance.
Collapse
Affiliation(s)
- Martin Kamler
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague 6-Suchdol, Czechia
- Bee Research Institute at Dol, Maslovice-Dol 94, 252 66, Libcice nad Vltavou, Czechia
| | - Marta Nesvorna
- Laboratory of Plant Active Substances in Crop Protection, Crop Research Institute, Drnovska 507/73, 161 06, Prague 6-Ruzyne, Czechia
| | - Jitka Stara
- Laboratory of Plant Active Substances in Crop Protection, Crop Research Institute, Drnovska 507/73, 161 06, Prague 6-Ruzyne, Czechia
| | - Tomas Erban
- Laboratory of Plant Active Substances in Crop Protection, Crop Research Institute, Drnovska 507/73, 161 06, Prague 6-Ruzyne, Czechia
| | - Jan Hubert
- Laboratory of Plant Active Substances in Crop Protection, Crop Research Institute, Drnovska 507/73, 161 06, Prague 6-Ruzyne, Czechia.
| |
Collapse
|
33
|
Erban T, Rybanska D, Harant K, Hortova B, Hubert J. Feces Derived Allergens of Tyrophagus putrescentiae Reared on Dried Dog Food and Evidence of the Strong Nutritional Interaction between the Mite and Bacillus cereus Producing Protease Bacillolysins and Exo-chitinases. Front Physiol 2016; 7:53. [PMID: 26941650 PMCID: PMC4764834 DOI: 10.3389/fphys.2016.00053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
Tyrophagus putrescentiae (Schrank, 1781) is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida). In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities, and mite-bacterial interaction in dry dog food (DDF). Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30) and (poly)ubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases) of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (DDF) and low-fat, low-protein (flour) diets to 1 and 5% (w/w), and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist with the mite in balance to be beneficial for the mite. The mite-B. cereus symbiosis can be beneficial-suppressive at some level. The results increase the veterinary and medical importance of the allergens detected in feces. The B. cereus enzymes/toxins are important components of mite allergens. The strong symbiotic association of T. putrescentiae with B. cereus in DDF was indicated.
Collapse
Affiliation(s)
- Tomas Erban
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| | - Dagmar Rybanska
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research InstitutePrague, Czech Republic; Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences PraguePrague, Czech Republic
| | - Karel Harant
- Biology Section, Laboratory of Mass Spectrometry, Service Labs, Faculty of Science, Charles University in Prague Prague, Czech Republic
| | - Bronislava Hortova
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| | - Jan Hubert
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| |
Collapse
|
34
|
Wilfert L, Long G, Leggett HC, Schmid-Hempel P, Butlin R, Martin SJM, Boots M. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 2016; 351:594-7. [DOI: 10.1126/science.aac9976] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|