1
|
Lim JL, Jensen SM, Plomp JJ, Vankerckhoven B, Kneip C, Coppejans R, Steyaert C, Moens K, De Clercq L, Tannemaat MR, Ulrichts P, Silence K, van der Maarel SM, Vergoossen DL, Vanhauwaert R, Verschuuren JJ, Huijbers MG. Patient-specific therapeutic benefit of MuSK agonist antibody ARGX-119 in MuSK myasthenia gravis passive transfer models. iScience 2025; 28:111684. [PMID: 39898046 PMCID: PMC11783450 DOI: 10.1016/j.isci.2024.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Muscle-specific kinase (MuSK) orchestrates the establishment and maintenance of neuromuscular synapses. Autoantibodies targeting MuSK cause myasthenia gravis (MG), a disease characterized by skeletal muscle weakness. MuSK autoantibodies are predominantly IgG4 which are bispecific, functionally monovalent antibodies that are antagonists of MuSK signaling. We hypothesized that bivalent MuSK agonist antibodies can rescue MuSK MG. Here, we investigated whether ARGX-119, a MuSK frizzled-like domain agonist antibody, can ameliorate disease in passive transfer models induced by polyclonal patient IgG4. ARGX-119 improved survival and muscle weakness in a mouse model induced by one patient material, but not by three others. Patient-specific efficacy could not be explained by titer or competition for ARGX-119 binding, but rather correlated with the presence of MuSK activating antibodies in some patients. This first proof of concept of a MuSK agonist in a clinically relevant MuSK MG model forms a starting point for therapeutic studies toward ARGX-119 efficacy in neuromuscular diseases.
Collapse
Affiliation(s)
- Jamie L. Lim
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Stine Marie Jensen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaap J. Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | - Martijn R. Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | - Dana L.E. Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jan J. Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maartje G. Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Keritam O, Vincent A, Zimprich F, Cetin H. A clinical perspective on muscle specific kinase antibody positive myasthenia gravis. Front Immunol 2024; 15:1502480. [PMID: 39703505 PMCID: PMC11655327 DOI: 10.3389/fimmu.2024.1502480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4 are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting the downstream phosphorylation pathway and compromising the formation of AChR clusters. Clinically, MuSK-MG is commonly associated with the predominant involvement of bulbar, facial, shoulder and neck muscles. Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of clinical impairment and cholinergic crisis. Corticosteroids and other non-steroidal immunosuppressants are less effective with the need for higher doses and prolonged treatment. Rituximab, by contrast, has been shown to be particularly effective and is now often used early in the disease course. Its use is associated with a significant improvement in the clinical outcome of MuSK-MG patients over time. This review aims to describe the pathophysiology underlying MuSK-MG and provide a comprehensive overview of the clinical features and therapeutic options.
Collapse
Affiliation(s)
- Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Mousavi A, Kumar P, Frykman H. The changing landscape of autoantibody testing in myasthenia gravis in the setting of novel drug treatments. Clin Biochem 2024; 133-134:110826. [PMID: 39357636 DOI: 10.1016/j.clinbiochem.2024.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Acquired myasthenia gravis (MG) is an autoimmune disease targeting the specific proteins in the postsynaptic muscle membrane. 50% of ocular and 80% of generalized MG have acetylcholine receptor antibodies (AChR Abs). 1-10% of MG patients have antibodies against muscle-specific kinase (MuSK), and 2-50 % of seronegative MG cases have antibodies against lipoprotein-receptor-related protein4 antibodies (LRP4 Abs). Serological testing is crucial for diagnosing and determining the appropriate therapeutic approach for MG patients. The radioimmunoprecipitation assay (RIPA) method is a historical standard test for detecting the AChR Abs and MuSK Abs. While it has nearly 100% specificity in the AChR Abs detection, its sensitivity is between 50--92%. The sensitivity and specificity of RIPA for detecting MuSK Abs is much lower. The fixed and live Cell-Based assays (f-CBA and L- CBA) have higher sensitivity than RIPA. With advancements in the serological diagnosis and management of MG, we now recommend a complete reflex testing algorithm on the first pretreatment sample of a suspected MG patient, starting with the binding and blocking assays for AChR Abs by RIPA and/ or f-CBA. If AChR Ab is negative, then reflex to MuSK Abs by RIPA and/ or CBAs. If AChR and MuSK Abs are negative, then use clustered L-CBA by request.
Collapse
Affiliation(s)
- Ali Mousavi
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada
| | - Pankaj Kumar
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada
| | - Hans Frykman
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada; Neurocode Lab. Inc. Bellingham, Washington, USA.
| |
Collapse
|
4
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Dziadkowiak E, Baczyńska D, Waliszewska-Prosół M. MuSK Myasthenia Gravis-Potential Pathomechanisms and Treatment Directed against Specific Targets. Cells 2024; 13:556. [PMID: 38534400 PMCID: PMC10968960 DOI: 10.3390/cells13060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease in which autoantibodies target structures within the neuromuscular junction, affecting neuromuscular transmission. Muscle-specific tyrosine kinase receptor-associated MG (MuSK-MG) is a rare, often more severe, subtype of the disease with different pathogenesis and specific clinical features. It is characterized by a more severe clinical course, more frequent complications, and often inadequate response to treatment. Here, we review the current state of knowledge about potential pathomechanisms of the MuSK-MG and their therapeutic implications as well as ongoing research in this field, with reference to key points of immune-mediated processes involved in the background of myasthenia gravis.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | | |
Collapse
|
6
|
Hayashi M. Pathophysiology of Childhood-Onset Myasthenia: Abnormalities of Neuromuscular Junction and Autoimmunity and Its Background. PATHOPHYSIOLOGY 2023; 30:599-617. [PMID: 38133144 PMCID: PMC10747330 DOI: 10.3390/pathophysiology30040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
The pathophysiology of myasthenia gravis (MG) has been largely elucidated over the past half century, and treatment methods have advanced. However, the number of cases of childhood-onset MG is smaller than that of adult MG, and the treatment of childhood-onset MG has continued to be based on research in the adult field. Research on pathophysiology and treatment methods that account for the unique growth and development of children is now desired. According to an epidemiological survey conducted by the Ministry of Health, Labour and Welfare of Japan, the number of patients with MG by age of onset in Japan is high in early childhood. In recent years, MG has been reported from many countries around the world, but the pattern of the number of patients by age of onset differs between East Asia and Western Europe, confirming that the Japanese pattern is common in East Asia. Furthermore, there are racial differences in autoimmune MG and congenital myasthenic syndromes according to immunogenetic background, and their pathophysiology and relationships are gradually becoming clear. In addition, treatment options are also recognized in different regions of the world. In this review article, I will present recent findings focusing on the differences in pathophysiology.
Collapse
Affiliation(s)
- Masatoshi Hayashi
- Department of Pediatrics, Uwajima City Hospital, Uwajima 798-8510, Japan
| |
Collapse
|
7
|
Uyen Dao TM, Barbeau S, Messéant J, Della-Gaspera B, Bouceba T, Semprez F, Legay C, Dobbertin A. The collagen ColQ binds to LRP4 and regulates the activation of the Muscle-Specific Kinase-LRP4 receptor complex by agrin at the neuromuscular junction. J Biol Chem 2023; 299:104962. [PMID: 37356721 PMCID: PMC10382678 DOI: 10.1016/j.jbc.2023.104962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Collagen Q (ColQ) is a nonfibrillar collagen that plays a crucial role at the vertebrate neuromuscular junction (NMJ) by anchoring acetylcholinesterase to the synapse. ColQ also functions in signaling, as it regulates acetylcholine receptor clustering and synaptic gene expression, in a manner dependent on muscle-specific kinase (MuSK), a key protein in NMJ formation and maintenance. MuSK forms a complex with low-density lipoprotein receptor-related protein 4 (LRP4), its coreceptor for the proteoglycan agrin at the NMJ. Previous studies suggested that ColQ also interacts with MuSK. However, the molecular mechanisms underlying ColQ functions and ColQ-MuSK interaction have not been fully elucidated. Here, we investigated whether ColQ binds directly to MuSK and/or LRP4 and whether it modulates agrin-mediated MuSK-LRP4 activation. Using coimmunoprecipitation, pull-down, plate-binding assays, and surface plasmon resonance, we show that ColQ binds directly to LRP4 but not to MuSK and that ColQ interacts indirectly with MuSK through LRP4. In addition, we show that the LRP4 N-terminal region, which contains the agrin-binding sites, is also crucial for ColQ binding to LRP4. Moreover, ColQ-LRP4 interaction was reduced in the presence of agrin, suggesting that agrin and ColQ compete for binding to LRP4. Strikingly, we reveal ColQ has two opposing effects on agrin-induced MuSK-LRP4 signaling: it constitutively reduces MuSK phosphorylation levels in agrin-stimulated myotubes but concomitantly increases MuSK accumulation at the muscle cell surface. Our results identify LRP4 as a major receptor of ColQ and provide new insights into mechanisms of ColQ signaling and acetylcholinesterase anchoring at the NMJ.
Collapse
Affiliation(s)
- Thi Minh Uyen Dao
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Susie Barbeau
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Julien Messéant
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | - Tahar Bouceba
- Sorbonne Université, CNRS, IBPS, Protein Engineering Platform, Paris, France
| | - Fannie Semprez
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Claire Legay
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Alexandre Dobbertin
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
| |
Collapse
|
8
|
Lim JL, Augustinus R, Plomp JJ, Roya-Kouchaki K, Vergoossen DLE, Fillié-Grijpma Y, Struijk J, Thomas R, Salvatori D, Steyaert C, Blanchetot C, Vanhauwaert R, Silence K, van der Maarel SM, Verschuuren JJ, Huijbers MG. Development and characterization of agonistic antibodies targeting the Ig-like 1 domain of MuSK. Sci Rep 2023; 13:7478. [PMID: 37156800 PMCID: PMC10167245 DOI: 10.1038/s41598-023-32641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Muscle-specific kinase (MuSK) is crucial for acetylcholine receptor (AChR) clustering and thereby neuromuscular junction (NMJ) function. NMJ dysfunction is a hallmark of several neuromuscular diseases, including MuSK myasthenia gravis. Aiming to restore NMJ function, we generated several agonist monoclonal antibodies targeting the MuSK Ig-like 1 domain. These activated MuSK and induced AChR clustering in cultured myotubes. The most potent agonists partially rescued myasthenic effects of MuSK myasthenia gravis patient IgG autoantibodies in vitro. In an IgG4 passive transfer MuSK myasthenia model in NOD/SCID mice, MuSK agonists caused accelerated weight loss and no rescue of myasthenic features. The MuSK Ig-like 1 domain agonists unexpectedly caused sudden death in a large proportion of male C57BL/6 mice (but not female or NOD/SCID mice), likely caused by a urologic syndrome. In conclusion, these agonists rescued pathogenic effects in myasthenia models in vitro, but not in vivo. The sudden death in male mice of one of the tested mouse strains revealed an unexpected and unexplained role for MuSK outside skeletal muscle, thereby hampering further (pre-) clinical development of these clones. Future research should investigate whether other Ig-like 1 domain MuSK antibodies, binding different epitopes, do hold a safe therapeutic promise.
Collapse
Affiliation(s)
- Jamie L Lim
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Roy Augustinus
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kasra Roya-Kouchaki
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Yvonne Fillié-Grijpma
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Josephine Struijk
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Rachel Thomas
- Department PDC-Pathologie, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Salvatori
- Veterinary Faculty, Department Clinical Sciences, Universiteit Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
9
|
Prömer J, Barresi C, Herbst R. From phosphorylation to phenotype - Recent key findings on kinase regulation, downstream signaling and disease surrounding the receptor tyrosine kinase MuSK. Cell Signal 2023; 104:110584. [PMID: 36608736 DOI: 10.1016/j.cellsig.2022.110584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Muscle-specific kinase (MuSK) is the key regulator of neuromuscular junction development. MuSK acts via several distinct pathways and is responsible for pre- and postsynaptic differentiation. MuSK is unique among receptor tyrosine kinases as activation and signaling are particularly tightly regulated. Initiation of kinase activity requires Agrin, a heparan sulphate proteoglycan derived from motor neurons, the low-density lipoprotein receptor-related protein-4 (Lrp4) and the intracellular adaptor protein Dok-7. There is a great knowledge gap between MuSK activation and downstream signaling. Recent studies using omics techniques have addressed this knowledge gap, thereby greatly contributing to a better understanding of MuSK signaling. Impaired MuSK signaling causes severe muscle weakness as described in congenital myasthenic syndromes or myasthenia gravis but the underlying pathophysiology is often unclear. This review focuses on recent advances in deciphering MuSK activation and downstream signaling. We further highlight latest break-throughs in understanding and treatment of MuSK-related disorders and discuss the role of MuSK in non-muscle tissue.
Collapse
Affiliation(s)
- Jakob Prömer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
11
|
Petrov KA, Proskurina SE, Krejci E. Cholinesterases in Tripartite Neuromuscular Synapse. Front Mol Neurosci 2022; 14:811220. [PMID: 35002624 PMCID: PMC8733319 DOI: 10.3389/fnmol.2021.811220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The neuromuscular junction (NMJ) is a tripartite synapse in which not only presynaptic and post-synaptic cells participate in synaptic transmission, but also terminal Schwann cells (TSC). Acetylcholine (ACh) is the neurotransmitter that mediates the signal between the motor neuron and the muscle but also between the motor neuron and TSC. ACh action is terminated by acetylcholinesterase (AChE), anchored by collagen Q (ColQ) in the basal lamina of NMJs. AChE is also anchored by a proline-rich membrane anchor (PRiMA) to the surface of the nerve terminal. Butyrylcholinesterase (BChE), a second cholinesterase, is abundant on TSC and anchored by PRiMA to its plasma membrane. Genetic studies in mice have revealed different regulations of synaptic transmission that depend on ACh spillover. One of the strongest is a depression of ACh release that depends on the activation of α7 nicotinic acetylcholine receptors (nAChR). Partial AChE deficiency has been described in many pathologies or during treatment with cholinesterase inhibitors. In addition to changing the activation of muscle nAChR, AChE deficiency results in an ACh spillover that changes TSC signaling. In this mini-review, we will first briefly outline the organization of the NMJ. This will be followed by a look at the role of TSC in synaptic transmission. Finally, we will review the pathological conditions where there is evidence of decreased AChE activity.
Collapse
Affiliation(s)
- Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Svetlana E Proskurina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Eric Krejci
- CNRS, Université de Paris, ENS Paris Saclay, Centre Borelli UMR 9010, Paris, France
| |
Collapse
|
12
|
Ge X, Wei C, Dong H, Zhang Y, Bao X, Wu Y, Song D, Hao H, Xiong H. Juvenile Generalized Myasthenia Gravis With AChR and MuSK Antibody Double Positivity: A Case Report With a Review of the Literature. Front Pediatr 2022; 10:788353. [PMID: 35633954 PMCID: PMC9131937 DOI: 10.3389/fped.2022.788353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Myasthenia gravis is an autoimmune disease mediated by B cells and is associated with acetylcholine receptor (AChR) and muscle-specific receptor tyrosine kinase (MuSK) antibodies in the postsynaptic membrane at the neuromuscular junction. The presence of both antibodies in the serum of patients with myasthenia gravis has been rarely reported. Case description: A 9-year-old girl was admitted to our hospital with the chief complaints of reduced facial expression for 3 months and unclear speech and choking from drinking water for 2 months. The diagnosis of generalized myasthenia gravis was made based on clinical manifestations, repetitive electrical nerve stimulation, neostigmine tests, specific antibody tests and other auxiliary examinations. We found the rare coexistence of two key antibodies (anti-AChR and anti-MuSK antibodies) in the patient's serum. The patient experienced myasthenic crisis and received respiratory support even though she was taking prednisone therapy. Due to the poor response to treatment with pyridostigmine bromide, glucocorticoids and IVIG, we administered rituximab therapy, and she responded well and achieved clinical remission. This suggests that clinicians should pay more attention to atypical cases and antibody detection. Rituximab should be considered when conventional treatment fails.
Collapse
Affiliation(s)
- XiuShan Ge
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - CuiJie Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - YueHua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - XinHua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - DanYu Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - HongJun Hao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Functional monovalency amplifies the pathogenicity of anti-MuSK IgG4 in myasthenia gravis. Proc Natl Acad Sci U S A 2021; 118:2020635118. [PMID: 33753489 PMCID: PMC8020787 DOI: 10.1073/pnas.2020635118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An expanding group of autoimmune diseases is now recognized to be hallmarked by pathogenic IgG4 autoantibodies. IgG4 has the unique ability to exchange Fab-arms, rendering it bispecific and functionally monovalent. Here we show that autoantibody functional monovalency significantly amplifies the pathogenicity of IgG4 autoantibodies using patient-derived monoclonal antibodies in an in vivo model of MuSK myasthenia gravis. Therefore, subclass switching to predominant IgG4 autoantibodies is a critical step in the development of MuSK myasthenia gravis. This new mechanism in autoimmunity is also potentially relevant to 29 other IgG4-mediated autoimmune diseases known to date, allergy and other disease settings where IgG4 antibodies contribute to pathology. Human immunoglobulin (Ig) G4 usually displays antiinflammatory activity, and observations of IgG4 autoantibodies causing severe autoimmune disorders are therefore poorly understood. In blood, IgG4 naturally engages in a stochastic process termed “Fab-arm exchange” in which unrelated IgG4s exchange half-molecules continuously. The resulting IgG4 antibodies are composed of two different binding sites, thereby acquiring monovalent binding and inability to cross-link for each antigen recognized. Here, we demonstrate that this process amplifies autoantibody pathogenicity in a classic IgG4-mediated autoimmune disease: muscle-specific kinase (MuSK) myasthenia gravis. In mice, monovalent anti-MuSK IgG4s caused rapid and severe myasthenic muscle weakness, whereas the same antibodies in their parental bivalent form were less potent or did not induce a phenotype. Mechanistically this could be explained by opposing effects on MuSK signaling. Isotype switching to IgG4 in an autoimmune response thereby may be a critical step in the development of disease. Our study establishes functional monovalency as a pathogenic mechanism in IgG4-mediated autoimmune disease and potentially other disorders.
Collapse
|
14
|
Ohkawara B, Ito M, Ohno K. Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology. Int J Mol Sci 2021; 22:ijms22052455. [PMID: 33671084 PMCID: PMC7957818 DOI: 10.3390/ijms22052455] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Signal transduction at the neuromuscular junction (NMJ) is affected in many human diseases, including congenital myasthenic syndromes (CMS), myasthenia gravis, Lambert–Eaton myasthenic syndrome, Isaacs’ syndrome, Schwartz–Jampel syndrome, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. The NMJ is a prototypic cholinergic synapse between the motor neuron and the skeletal muscle. Synaptogenesis of the NMJ has been extensively studied, which has also been extrapolated to further understand synapse formation in the central nervous system. Studies of genetically engineered mice have disclosed crucial roles of secreted molecules in the development and maintenance of the NMJ. In this review, we focus on the secreted signaling molecules which regulate the clustering of acetylcholine receptors (AChRs) at the NMJ. We first discuss the signaling pathway comprised of neural agrin and its receptors, low-density lipoprotein receptor-related protein 4 (Lrp4) and muscle-specific receptor tyrosine kinase (MuSK). This pathway drives the clustering of acetylcholine receptors (AChRs) to ensure efficient signal transduction at the NMJ. We also discuss three secreted molecules (Rspo2, Fgf18, and connective tissue growth factor (Ctgf)) that we recently identified in the Wnt/β-catenin and fibroblast growth factors (FGF) signaling pathways. The three secreted molecules facilitate the clustering of AChRs by enhancing the agrin-Lrp4-MuSK signaling pathway.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Correspondence: ; Tel.: +81-52-744-2447; Fax: +81-52-744-2449
| | | | | |
Collapse
|
15
|
Zou A, Ramanathan S, Dale RC, Brilot F. Single-cell approaches to investigate B cells and antibodies in autoimmune neurological disorders. Cell Mol Immunol 2021; 18:294-306. [PMID: 32728203 PMCID: PMC8027387 DOI: 10.1038/s41423-020-0510-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Autoimmune neurological disorders, including neuromyelitis optica spectrum disorder, anti-N-methyl-D-aspartate receptor encephalitis, anti-MOG antibody-associated disorders, and myasthenia gravis, are clearly defined by the presence of autoantibodies against neurological antigens. Although these autoantibodies have been heavily studied for their biological activities, given the heterogeneity of polyclonal patient samples, the characteristics of a single antibody cannot be definitively assigned. This review details the findings of polyclonal serum and CSF studies and then explores the advances made by single-cell technologies to the field of antibody-mediated neurological disorders. High-resolution single-cell methods have revealed abnormalities in the tolerance mechanisms of several disorders and provided further insight into the B cells responsible for autoantibody production. Ultimately, several factors, including epitope specificity and binding affinity, finely regulate the pathogenic potential of an autoantibody, and a deeper appreciation of these factors may progress the development of targeted immunotherapies for patients.
Collapse
Affiliation(s)
- Alicia Zou
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia.
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Discipline of Applied Medical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Frykman H, Kumar P, Oger J. Immunopathology of Autoimmune Myasthenia Gravis: Implications for Improved Testing Algorithms and Treatment Strategies. Front Neurol 2020; 11:596621. [PMID: 33362698 PMCID: PMC7755715 DOI: 10.3389/fneur.2020.596621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a heterogeneous condition, characterized by autoantibodies (Abs) that target functionally important structures within neuromuscular junctions (NMJ), thus affecting nerve-to-muscle transmission. MG patients are more often now subgrouped based on the profile of serum autoantibodies, which segregate with clinical presentation, immunopathology, and their response to therapies. The serological testing plays an essential role in confirming MG diagnosis and guiding disease management, although a small percentage of MG patients remain negative for antibodies. With the advancements in new highly effective pathophysiologically-specific immunotherapeutic options, it has become increasingly important to identify the specific Abs responsible for the pathogenicity in individual MG patients. There are several new assays and protocols being developed for the improved detection of Abs in MG patients. This review focuses on the divergent immunopathological mechanisms in MG, and discusses their relevance to improved diagnostic and treatment. We propose a comprehensive "reflex testing," algorithm for the presence of MG autoantibodies, and foresee that in the near future, the convenience and specificity of novel assays will permit the clinicians to consider them into routine systematic testing, thus stimulating laboratories to make these tests available. Moreover, adopting treatment driven testing algorithms will be crucial to identify subgroups of patients potentially benefiting from novel immunotherapies for MG.
Collapse
Affiliation(s)
- Hans Frykman
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| | - Pankaj Kumar
- BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| | - Joel Oger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Badawi Y, Nishimune H. Impairment Mechanisms and Intervention Approaches for Aged Human Neuromuscular Junctions. Front Mol Neurosci 2020; 13:568426. [PMID: 33328881 PMCID: PMC7717980 DOI: 10.3389/fnmol.2020.568426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
The neuromuscular junction (NMJ) is a chemical synapse formed between a presynaptic motor neuron and a postsynaptic muscle cell. NMJs in most vertebrate species share many essential features; however, some differences distinguish human NMJs from others. This review will describe the pre- and postsynaptic structures of human NMJs and compare them to NMJs of laboratory animals. We will focus on age-dependent declines in function and changes in the structure of human NMJs. Furthermore, we will describe insights into the aging process revealed from mouse models of accelerated aging. In addition, we will compare aging phenotypes to other human pathologies that cause impairments of pre- and postsynaptic structures at NMJs. Finally, we will discuss potential intervention approaches for attenuating age-related NMJ dysfunction and sarcopenia in humans.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, United States.,Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Japan
| |
Collapse
|
18
|
Cao M, Koneczny I, Vincent A. Myasthenia Gravis With Antibodies Against Muscle Specific Kinase: An Update on Clinical Features, Pathophysiology and Treatment. Front Mol Neurosci 2020; 13:159. [PMID: 32982689 PMCID: PMC7492727 DOI: 10.3389/fnmol.2020.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Muscle Specific Kinase myasthenia gravis (MuSK-MG) is an autoimmune disease that impairs neuromuscular transmission leading to generalized muscle weakness. Compared to the more common myasthenia gravis with antibodies against the acetylcholine receptor (AChR), MuSK-MG affects mainly the bulbar and respiratory muscles, with more frequent and severe myasthenic crises. Treatments are usually less effective with the need for prolonged, high doses of steroids and other immunosuppressants to control symptoms. Under physiological condition, MuSK regulates a phosphorylation cascade which is fundamental for the development and maintenance of postsynaptic AChR clusters at the neuromuscular junction (NMJ). Agrin, secreted by the motor nerve terminal into the synaptic cleft, binds to low density lipoprotein receptor-related protein 4 (LRP4) which activates MuSK. In MuSK-MG, monovalent MuSK-IgG4 autoantibodies block MuSK-LRP4 interaction preventing MuSK activation and leading to the dispersal of AChR clusters. Lower levels of divalent MuSK IgG1, 2, and 3 antibody subclasses are also present but their contribution to the pathogenesis of the disease remains controversial. This review aims to provide a detailed update on the epidemiological and clinical features of MuSK-MG, focusing on the pathophysiological mechanisms and the latest indications regarding the efficacy and safety of different treatment options.
Collapse
Affiliation(s)
- Michelangelo Cao
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Koneczny I. Update on IgG4-mediated autoimmune diseases: New insights and new family members. Autoimmun Rev 2020; 19:102646. [PMID: 32801046 DOI: 10.1016/j.autrev.2020.102646] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022]
Abstract
Antibodies of IgG4 subclass are exceptional players of the immune system, as they are considered to be immunologically inert and functionally monovalent, and as such may be part of classical tolerance mechanisms. IgG4 antibodies are found in a range of different diseases, including IgG4-related diseases, allergy, cancer, rheumatoid arthritis, helminth infection and IgG4 autoimmune diseases, where they may be pathogenic or protective. IgG4 autoimmune diseases are an emerging new group of diseases that are characterized by pathogenic, antigen-specific autoantibodies of IgG4 subclass, such as MuSK myasthenia gravis, pemphigus vulgaris and thrombotic thrombocytopenic purpura. The list of IgG4 autoantigens is rapidly growing and to date contains 29 candidate antigens. Interestingly, IgG4 autoimmune diseases are restricted to four distinct organs: 1) the central and peripheral nervous system, 2) the kidney, 3) the skin and mucous membranes and 4) the vascular system and soluble antigens in the blood circulation. The pathogenicity of IgG4 can be validated using our classification system, and is usually excerted by functional blocking of protein-protein interaction.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
20
|
Collagens at the vertebrate neuromuscular junction, from structure to pathologies. Neurosci Lett 2020; 735:135155. [PMID: 32534096 DOI: 10.1016/j.neulet.2020.135155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
The extracellular matrix at the neuromuscular junction is built upon components secreted by the motoneuron, the muscle cell and terminal Schwann cells, the cells constituting this specific synapse. This compartment contains glycoproteins, proteoglycans and collagens that form a dense and specialized layer, the synaptic basal lamina. A number of these molecules are known to play a crucial role in anterograde and retrograde signalings that are active in neuromuscular junction formation, maintenance and function. Here, we focus on the isoforms of collagens which are enriched at the synapse. We summarize what we know of their structure, their function and their interactions with transmembrane receptors and other components of the synaptic basal lamina. A number of neuromuscular diseases, congenital myastenic syndromes and myasthenia gravis are caused by human mutations and autoantibodies against these proteins. Analysis of these diseases and of the specific collagen knock-out mice highlights the roles of some of these collagens in promoting a functional synapse.
Collapse
|
21
|
Vergoossen DLE, Augustinus R, Huijbers MG. MuSK antibodies, lessons learned from poly- and monoclonality. J Autoimmun 2020; 112:102488. [PMID: 32505442 DOI: 10.1016/j.jaut.2020.102488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
Abstract
Muscle-specific kinase (MuSK) plays a critical role in establishing and maintaining neuromuscular synapses. Antibodies derived from immunizing animals with MuSK were important tools to help detect MuSK and its activity. The role of antibodies in MuSK-related research got an extra dimension when autoantibodies to MuSK were found to cause myasthenia gravis (MG) in 2001. Active immunization with MuSK or passive transfer of polyclonal purified IgG(4) fractions from patients reproduced myasthenic muscle weakness in a range of animal models. Polyclonal patient-purified autoantibodies were furthermore found to block agrin-Lrp4-MuSK signaling, explaining the synaptic disassembly, failure of neuromuscular transmission and ultimately muscle fatigue observed in vivo. MuSK autoantibodies are predominantly of the IgG4 subclass. Low levels of other subclass MuSK antibodies coexist, but their role in the pathogenesis is unclear. Patient-derived monoclonal antibodies revealed that MuSK antibody subclass and valency alters their functional effects and possibly their pathogenicity. Interestingly, recombinant functional bivalent MuSK antibodies might even have therapeutic potential for a variety of neuromuscular disorders, due to their agonistic nature on the MuSK signaling cascade. Thus, MuSK antibodies have proven to be helpful tools to study neuromuscular junction physiology, contributed to our understanding of the pathophysiology of MuSK MG and might be used to treat neuromuscular disorders. The source of MuSK antibodies and consequently their (mixed) polyclonal or monoclonal nature were important confounding factors in these experiments. Here we review the variety of MuSK antibodies described thus far, the insights they have given us and their potential for the future.
Collapse
Affiliation(s)
- Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Roy Augustinus
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands; Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
22
|
Takamori M. Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Front Mol Neurosci 2020; 13:86. [PMID: 32547365 PMCID: PMC7272578 DOI: 10.3389/fnmol.2020.00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Myasthenia gravis (MG) is a disease of the postsynaptic neuromuscular junction (NMJ) where nicotinic acetylcholine (ACh) receptors (AChRs) are targeted by autoantibodies. Search for other pathogenic antigens has detected the antibodies against muscle-specific tyrosine kinase (MuSK) and low-density lipoprotein-related protein 4 (Lrp4), both causing pre- and post-synaptic impairments. Agrin is also suspected as a fourth pathogen. In a complex NMJ organization centering on MuSK: (1) the Wnt non-canonical pathway through the Wnt-Lrp4-MuSK cysteine-rich domain (CRD)-Dishevelled (Dvl, scaffold protein) signaling acts to form AChR prepatterning with axonal guidance; (2) the neural agrin-Lrp4-MuSK (Ig1/2 domains) signaling acts to form rapsyn-anchored AChR clusters at the innervated stage of muscle; (3) adaptor protein Dok-7 acts on MuSK activation for AChR clustering from “inside” and also on cytoskeleton to stabilize AChR clusters by the downstream effector Sorbs1/2; (4) the trans-synaptic retrograde signaling contributes to the presynaptic organization via: (i) Wnt-MuSK CRD-Dvl-β catenin-Slit 2 pathway; (ii) Lrp4; and (iii) laminins. The presynaptic Ca2+ homeostasis conditioning ACh release is modified by autoreceptors such as M1-type muscarinic AChR and A2A adenosine receptors. The post-synaptic structure is stabilized by: (i) laminin-network including the muscle-derived agrin; (ii) the extracellular matrix proteins (including collagen Q/perlecan and biglycan which link to MuSK Ig1 domain and CRD); and (iii) the dystrophin-associated glycoprotein complex. The study on MuSK ectodomains (Ig1/2 domains and CRD) recognized by antibodies suggested that the MuSK antibodies were pathologically heterogeneous due to their binding to multiple functional domains. Focussing one of the matrix proteins, biglycan which functions in the manner similar to collagen Q, our antibody assay showed the negative result in MG patients. However, the synaptic stability may be impaired by antibodies against MuSK ectodomains because of the linkage of biglycan with MuSK Ig1 domain and CRD. The pathogenic diversity of MG is discussed based on NMJ signaling molecules.
Collapse
|
23
|
Abstract
Thirty to fifty percent of patients with acetylcholine receptor (AChR) antibody (Ab)-negative myasthenia gravis (MG) have Abs to muscle specific kinase (MuSK) and are referred to as having MuSK-MG. MuSK is a 100 kD single-pass post-synaptic transmembrane receptor tyrosine kinase crucial to the development and maintenance of the neuromuscular junction. The Abs in MuSK-MG are predominantly of the IgG4 immunoglobulin subclass. MuSK-MG differs from AChR-MG, in exhibiting more focal muscle involvement, including neck, shoulder, facial and bulbar-innervated muscles, as well as wasting of the involved muscles. MuSK-MG is highly associated with the HLA DR14-DQ5 haplotype and occurs predominantly in females with onset in the fourth decade of life. Some of the standard treatments of AChR-MG have been found to have limited effectiveness in MuSK-MG, including thymectomy and cholinesterase inhibitors. Therefore, current treatment involves immunosuppression, primarily by corticosteroids. In addition, patients respond especially well to B cell depletion agents, e.g., rituximab, with long-term remissions. Future treatments will likely derive from the ongoing analysis of the pathogenic mechanisms underlying this disease, including histologic and physiologic studies of the neuromuscular junction in patients as well as information derived from the development and study of animal models of the disease.
Collapse
Affiliation(s)
| | - David P. Richman
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
Lazaridis K, Baltatzidou V, Tektonidis N, Tzartos SJ. Antigen-specific immunoadsorption of MuSK autoantibodies as a treatment of MuSK-induced experimental autoimmune myasthenia gravis. J Neuroimmunol 2019; 339:577136. [PMID: 31855721 DOI: 10.1016/j.jneuroim.2019.577136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction. Approximately 9% of MG patients have autoantibodies targeting the muscle specific kinase (MuSK), and are challenging therapeutically, since they often present with more severe symptoms. A useful therapy is plasmapheresis, but it is highly non-specific. Antigen-specific immunoadsorption would only remove the pathogenic autoantibodies, minimizing the possible side effects and maximizing the benefit. We used rats with human MuSK-induced experimental autoimmune MG to perform antigen-specific immunoadsorptions, and found it very effective, resulting in a dramatic autoantibody titer decrease, while immunoadsorbed, but not mock-treated, animals showed an significant improvement of their clinical symptoms. Overall, the procedure was efficient, supporting its application for MG treatment.
Collapse
Affiliation(s)
| | | | | | - Socrates J Tzartos
- Hellenic Pasteur Institute, Athens, Greece; Tzartos NeuroDiagnostics, Athens, Greece.
| |
Collapse
|
25
|
Herbst R. MuSk function during health and disease. Neurosci Lett 2019; 716:134676. [PMID: 31811897 DOI: 10.1016/j.neulet.2019.134676] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MuSK (muscle-specific kinase) is the key signaling molecule during the formation of a mature and functional neuromuscular junction (NMJ). Signal transduction events downstream of MuSK activation induce both pre- and postsynaptic differentiation, which, most prominently, includes the clustering of acetylcholine receptors (AChRs) at synaptic sites. MuSK activation requires a complex interplay between its co-receptor Lrp4 (low-density lipoprotein receptor-related protein-4), the motor neuron-derived heparan-sulfate proteoglycan Agrin and the intracellular adaptor protein Dok-7. A tight regulation of MuSK kinase activity is crucial for proper NMJ development. Defects in MuSK signaling are the cause of muscle weakness as reported in congenital myasthenic syndromes and myasthenia gravis. This review focuses on recent structure-based analyses of MuSK, Agrin, Lrp4 and Dok-7 interactions and their function during MuSK activation. Conclusions about the regulation of the MuSK kinase that were derived from molecular structures will be highlighted. In addition, the role of MuSK during development and disease will be discussed.
Collapse
Affiliation(s)
- Ruth Herbst
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Kinderspitalgasse 15, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Souto EB, Lima B, Campos JR, Martins-Gomes C, Souto SB, Silva AM. Myasthenia gravis: State of the art and new therapeutic strategies. J Neuroimmunol 2019; 337:577080. [PMID: 31670062 DOI: 10.1016/j.jneuroim.2019.577080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Abstract
Myasthenia Gravis (MG) - an autoimmune neuromuscular disease - is known by the production of autoantibodies against components of the neuromuscular junction mainly to the acetylcholine receptor, which cause the destruction and compromises the synaptic transmission. This disease is characterized by fluctuating and fatigable muscle weakness, becoming more intensive with activity, but with an improvement under resting. There are many therapeutic strategies used to alleviate MG symptoms, either by improving the transmission of the nerve impulse or by ameliorating autoimmune reactions with e.g. steroids, immunosuppressant drugs, or monoclonal antibodies (rituximab and eculizumab). Many breakthroughs in the discovery of new therapeutic targets have been reported, but MG remains to be a chronic disease where the symptoms are kept in the majority of patients. In this review, we discuss the different therapeutic strategies that have been used over the years to alleviate MG symptoms, as well as innovative therapeutic approaches currently under study.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Bernardo Lima
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Joana R Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Carlos Martins-Gomes
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Selma B Souto
- Department of Endocrinology of S. João Hospital, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Amélia M Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
27
|
Abstract
This article discusses antibodies associated with immune-mediated myasthenia gravis and the pathologic action of these antibodies at the neuromuscular junctions of skeletal muscle. To explain how these antibodies act, we consider the physiology of neuromuscular transmission with emphasis on 4 features: the structure of the neuromuscular junction; the roles of postsynaptic acetylcholine receptors and voltage-gated Na+ channels and in converting the chemical signal from the nerve terminal into a propagated action potential on the muscle fiber that triggers muscle contraction; the safety factor for neuromuscular transmission; and how the safety factor is reduced in different forms of autoimmune myasthenia gravis.
Collapse
Affiliation(s)
- Robert L Ruff
- Department of Neurology, Case Western University School of Medicine, The Metro Health System, 2500 Metro Health Drive, Cleveland, OH 44109, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Robert P Lisak
- Department of Neurology, Wayne State University School of Medicine, 8D University Health Center, 4201 St Antoine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
28
|
Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019; 8:cells8070671. [PMID: 31269763 PMCID: PMC6678492 DOI: 10.3390/cells8070671] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ). Autoantibodies target key molecules at the NMJ, such as the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low-density lipoprotein receptor-related protein 4 (Lrp4), that lead by a range of different pathogenic mechanisms to altered tissue architecture and reduced densities or functionality of AChRs, reduced neuromuscular transmission, and therefore a severe fatigable skeletal muscle weakness. In this review, we give an overview of the history and clinical aspects of MG, with a focus on the structure and function of myasthenic autoantigens at the NMJ and how they are affected by the autoantibodies' pathogenic mechanisms. Furthermore, we give a short overview of the cells that are implicated in the production of the autoantibodies and briefly discuss diagnostic challenges and treatment strategies.
Collapse
|
29
|
Takata K, Stathopoulos P, Cao M, Mané-Damas M, Fichtner ML, Benotti ES, Jacobson L, Waters P, Irani SR, Martinez-Martinez P, Beeson D, Losen M, Vincent A, Nowak RJ, O'Connor KC. Characterization of pathogenic monoclonal autoantibodies derived from muscle-specific kinase myasthenia gravis patients. JCI Insight 2019; 4:127167. [PMID: 31217355 PMCID: PMC6629167 DOI: 10.1172/jci.insight.127167] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by muscle weakness and caused by pathogenic autoantibodies that bind to membrane proteins at the neuromuscular junction. Most patients have autoantibodies against the acetylcholine receptor (AChR), but a subset of patients have autoantibodies against muscle-specific tyrosine kinase (MuSK) instead. MuSK is an essential component of the pathway responsible for synaptic differentiation, which is activated by nerve-released agrin. Through binding MuSK, serum-derived autoantibodies inhibit agrin-induced MuSK autophosphorylation, impair clustering of AChRs, and block neuromuscular transmission. We sought to establish individual MuSK autoantibody clones so that the autoimmune mechanisms could be better understood. We isolated MuSK autoantibody-expressing B cells from 6 MuSK MG patients using a fluorescently tagged MuSK antigen multimer, then generated a panel of human monoclonal autoantibodies (mAbs) from these cells. Here we focused on 3 highly specific mAbs that bound quantitatively to MuSK in solution, to MuSK-expressing HEK cells, and at mouse neuromuscular junctions, where they colocalized with AChRs. These 3 IgG isotype mAbs (2 IgG4 and 1 IgG3 subclass) recognized the Ig-like domain 2 of MuSK. The mAbs inhibited AChR clustering, but intriguingly, they enhanced rather than inhibited MuSK phosphorylation, which suggests an alternative mechanism for inhibiting AChR clustering. A fluorescent tetrameric antigen allows isolation of human myasthenia gravis monoclonal antibodies that interrupt acetylcholine receptor signaling.
Collapse
Affiliation(s)
- Kazushiro Takata
- Department of Neurology and.,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Panos Stathopoulos
- Department of Neurology and.,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Michelangelo Cao
- Neurosciences Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, Oxford, England
| | - Marina Mané-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Miriam L Fichtner
- Department of Neurology and.,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erik S Benotti
- Department of Neurology and.,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Leslie Jacobson
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, England
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, England
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, England
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, Oxford, England
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Angela Vincent
- Neurosciences Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, Oxford, England
| | | | - Kevin C O'Connor
- Department of Neurology and.,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Legay C. Congenital myasthenic syndromes with acetylcholinesterase deficiency, the pathophysiological mechanisms. Ann N Y Acad Sci 2019; 1413:104-110. [PMID: 29405353 DOI: 10.1111/nyas.13595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
The neuromuscular junction (NMJ) is a cholinergic synapse in vertebrates. This synapse connects motoneurons to muscles and is responsible for muscle contraction, a physiological process that is essential for survival. A key factor for the normal functioning of this synapse is the regulation of acetylcholine (ACh) levels in the synaptic cleft. This is ensured by acetylcholinesterase (AChE), which degrades ACh. A number of mutations in synaptic genes expressed in motoneurons or muscle cells have been identified and are causative for a class of neuromuscular diseases called congenital myasthenic syndromes (CMSs). One of these CMSs is due to deficiency in AChE, which is absent or diffuse in the synaptic cleft. Here, I focus on the origins of the syndrome. The role of ColQ, a collagen that anchors AChE in the synaptic cleft, is discussed in this context. Studies performed on patient biopsies, transgenic mice, and muscle cultures have provided a more comprehensive view of the connectome at the NMJ that should be useful for understanding the differences in the symptoms observed in specific CMSs due to mutated proteins in the synaptic cleft.
Collapse
Affiliation(s)
- Claire Legay
- CNRS 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
31
|
Huijbers MG, Plomp JJ, van Es IE, Fillié-Grijpma YE, Kamar-Al Majidi S, Ulrichts P, de Haard H, Hofman E, van der Maarel SM, Verschuuren JJ. Efgartigimod improves muscle weakness in a mouse model for muscle-specific kinase myasthenia gravis. Exp Neurol 2019; 317:133-143. [PMID: 30851266 DOI: 10.1016/j.expneurol.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/24/2019] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
Abstract
Myasthenia gravis is hallmarked by fatigable muscle weakness resulting from neuromuscular synapse dysfunction caused by IgG autoantibodies. The variant with muscle-specific kinase (MuSK) autoantibodies is characterized by prominent cranial and bulbar weakness and a high frequency of respiratory crises. The majority of MuSK MG patients requires long-term immunosuppressive treatment, but the result of these treatments is considered less satisfactory than in MG with acetylcholine receptor antibodies. Emergency treatments are more frequently needed, and many patients develop permanent facial weakness and nasal speech. Therefore, new treatment options would be welcome. The neonatal Fc receptor protects IgG from lysosomal breakdown, thus prolonging IgG serum half-life. Neonatal Fc receptor antagonism lowers serum IgG levels and thus may act therapeutically in autoantibody-mediated disorders. In MuSK MG, IgG4 anti-MuSK titres closely correlate with disease severity. We therefore tested efgartigimod (ARGX-113), a new neonatal Fc receptor blocker, in a mouse model for MuSK myasthenia gravis. This model involves 11 daily injections of purified IgG4 from MuSK myasthenia gravis patients, resulting in overt myasthenic muscle weakness and, consequently, body weight loss. Daily treatment with 0.5 mg efgartigimod, starting at the fifth passive transfer day, reduced the human IgG4 titres about 8-fold, despite continued daily injection. In muscle strength and fatigability tests, efgartigimod-treated myasthenic mice outperformed control myasthenic mice. Electromyography in calf muscles at endpoint demonstrated less myasthenic decrement of compound muscle action potentials in efgartigimod-treated mice. These substantial in vivo improvements of efgartigimod-treated MuSK MG mice following a limited drug exposure period were paralleled by a tendency of recovery at neuromuscular synaptic level (in various muscles), as demonstrated by ex vivo functional studies. These synaptic improvements may well become more explicit upon longer drug exposure. In conclusion, our study shows that efgartigimod has clear therapeutic potential in MuSK myasthenia gravis and forms an exciting candidate drug for many autoantibody-mediated neurological and other disorders.
Collapse
Affiliation(s)
- Maartje G Huijbers
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Inge E van Es
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Samar Kamar-Al Majidi
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Peter Ulrichts
- argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Gent, Belgium
| | - Hans de Haard
- argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Gent, Belgium
| | - Erik Hofman
- argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Gent, Belgium
| | | | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
32
|
Huijbers MG, Vergoossen DL, Fillié-Grijpma YE, van Es IE, Koning MT, Slot LM, Veelken H, Plomp JJ, van der Maarel SM, Verschuuren JJ. MuSK myasthenia gravis monoclonal antibodies: Valency dictates pathogenicity. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e547. [PMID: 30882021 PMCID: PMC6410930 DOI: 10.1212/nxi.0000000000000547] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Objective To isolate and characterize muscle-specific kinase (MuSK) monoclonal antibodies from patients with MuSK myasthenia gravis (MG) on a genetic and functional level. Methods We generated recombinant MuSK antibodies from patient-derived clonal MuSK-specific B cells and produced monovalent Fab fragments from them. Both the antibodies and Fab fragments were tested for their effects on neural agrin-induced MuSK phosphorylation and acetylcholine receptor (AChR) clustering in myotube cultures. Results The isolated MuSK monoclonal antibody sequences included IgG1, IgG3, and IgG4 that had undergone high levels of affinity maturation, consistent with antigenic selection. We confirmed their specificity for the MuSK Ig-like 1 domain and binding to neuromuscular junctions. Monovalent MuSK Fab, mimicking functionally monovalent MuSK MG patient Fab-arm exchanged serum IgG4, abolished agrin-induced MuSK phosphorylation and AChR clustering. Surprisingly, bivalent monospecific MuSK antibodies instead activated MuSK phosphorylation and partially induced AChR clustering, independent of agrin. Conclusions Patient-derived MuSK antibodies can act either as MuSK agonist or MuSK antagonist, depending on the number of MuSK binding sites. Functional monovalency, induced by Fab-arm exchange in patient serum, makes MuSK IgG4 antibodies pathogenic.
Collapse
Affiliation(s)
- Maartje G Huijbers
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Dana L Vergoossen
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Yvonne E Fillié-Grijpma
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Inge E van Es
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Marvyn T Koning
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Linda M Slot
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Hendrik Veelken
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Jaap J Plomp
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Silvère M van der Maarel
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Jan J Verschuuren
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| |
Collapse
|
33
|
Zhang QL, Xu MJ, Wang TL, Zhu ZQ, Lai F, Zheng XC. Newly discovered COLQ gene mutation and its clinical features in patients with acetyl cholinesterase deficiency. J Integr Neurosci 2018; 17:439-446. [PMID: 29630557 DOI: 10.3233/jin-180080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To investigate the relationship between acetyl cholinesterase associated collagen gene (COLQ) mutation in patients with acetyl cholinesterase deficiency and its clinical characteristics. Serum and red blood cell acetyl cholinesterase from patients with acetyl cholinesterase deficiency (n=6) and normal controls (n=20) were measured by butyryl thiocholine substrate. COLQ gene variations were detected by sequencing. And the cholinesterase (ChE) genotypes were measured by dibucaine inhibition in vitro. The distributions of ChE surrounded the blood vessels and nerve fibers in lung or pancreas tissues were detected by immunohistochemical staining and indirect immunofluorescence. Serum lactic acid, ammonia and other clinical data were analyzed. Serum ChE in patients with acetyl cholinesterase deficiency were only 1/50 to 1/1000 fold of normal controls. Comparing to controls, dibucaine inhibition values of patients were significantly lower, while there were no differences in red blood cells acetyl cholinesterase. Serum lactic acid and ammonia in patients were significantly higher than controls. Inser 1281-1282 GC of COLQ gene was found in 2 patients, while IVS 6 + 21 T > A, IVS 6 + 30 G > T, IVS 6 + 34 T > C and IVS66 + 12 inser T mutations were found in the other 4 patients, respectively. In addition, the patients with COLQ gene mutation were resistant to regular doses of anesthetics. COLQ gene mutation may be an important reason for the lack of serum ChE in patients with acetyl cholinesterase deficiency.
Collapse
Affiliation(s)
- Qing-Lin Zhang
- Department of Anesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Postcode: 100026, China. E-mails: , ,
| | - Ming-Jun Xu
- Department of Anesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Postcode: 100026, China. E-mails: , ,
| | - Tian-Long Wang
- Department of Anesthesiology of Xuanwu Hospital, Capital Medical University, Postcode: 100053, China. E-mail:
| | - Zi-Qiong Zhu
- Department of Anesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Postcode: 100026, China. E-mails: , ,
| | - Fancai Lai
- Department of Thoracic Surgery, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao-Chun Zheng
- Department of Anesthesiology of Provincial Clinical College, Fujian Medical University, Postcode: 350001, China.,Department of Emergency, Fujian Provincial Hospital, Postcode: 350001, China. E-mail:
| |
Collapse
|
34
|
Abstract
RATIONALE Hereditary genetic mutations may cause congenital cholinesterase deficiency. When succinylcholine and mivacurium are applied on cholinesterase-deficient patients during general anesthesia, prolonged postoperative asphyxia occurs, which is an uncommon but very serious complication. PATIENT CONCERNS A previously healthy 30-year-old female presented prolonged spontaneous breathing recovery after general anesthesia. DIAGNOSES After the patient's postoperative spontaneous breathing recovery delayed, the plasma cholinesterase was found to be 27 U/L, which was far below the normal level (4000 U/L to 13500 U/L). This patient had no disease that can cause plasma cholinesterase deficiency and was therefore diagnosed as congenital cholinesterase deficiency. INTERVENTIONS AND OUTCOMES The patient was sent to the intensive care unit (ICU) intubated for mechanical ventilator support, and on the next day the tracheal tube was removed without any complications when her spontaneous respiration resumed. LESSONS Cholinesterase is an enzyme secreted by the liver involved in many physiological processes in human body. Plasma cholinesterase commonly contains acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). When succinylcholine and mivacurium are applied on patients with cholinesterase-deficiency during general anesthesia, prolonged postoperative asphyxia occurs, which is an uncommon but very serious complication. Lately, new evidences have suggested that hereditary genetic mutations may be responsible for congenital cholinesterase deficiency.
Collapse
|
35
|
Regulation of mammalian neuromuscular junction formation and maintenance by Wnt signaling. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Trampert DC, Hubers LM, van de Graaf SF, Beuers U. On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1401-1409. [DOI: 10.1016/j.bbadis.2017.07.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
|
37
|
Morren J, Li Y. Myasthenia gravis with muscle-specific tyrosine kinase antibodies: A narrative review. Muscle Nerve 2018; 58:344-358. [DOI: 10.1002/mus.26107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- John Morren
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S90; Cleveland Ohio 44195 USA
| | - Yuebing Li
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S90; Cleveland Ohio 44195 USA
| |
Collapse
|
38
|
Abstract
IgG4 autoimmune diseases are characterized by the presence of antigen-specific autoantibodies of the IgG4 subclass and contain well-characterized diseases such as muscle-specific kinase myasthenia gravis, pemphigus, and thrombotic thrombocytopenic purpura. In recent years, several new diseases were identified, and by now 14 antigens targeted by IgG4 autoantibodies have been described. The IgG4 subclass is considered immunologically inert and functionally monovalent due to structural differences compared to other IgG subclasses. IgG4 usually arises after chronic exposure to antigen and competes with other antibody species, thus "blocking" their pathogenic effector mechanisms. Accordingly, in the context of IgG4 autoimmunity, the pathogenicity of IgG4 is associated with blocking of enzymatic activity or protein-protein interactions of the target antigen. Pathogenicity of IgG4 autoantibodies has not yet been systematically analyzed in IgG4 autoimmune diseases. Here, we establish a modified classification system based on Witebsky's postulates to determine IgG4 pathogenicity in IgG4 autoimmune diseases, review characteristics and pathogenic mechanisms of IgG4 in these disorders, and also investigate the contribution of other antibody entities to pathophysiology by additional mechanisms. As a result, three classes of IgG4 autoimmune diseases emerge: class I where IgG4 pathogenicity is validated by the use of subclass-specific autoantibodies in animal models and/or in vitro models of pathogenicity; class II where IgG4 pathogenicity is highly suspected but lack validation by the use of subclass specific antibodies in in vitro models of pathogenicity or animal models; and class III with insufficient data or a pathogenic mechanism associated with multivalent antigen binding. Five out of the 14 IgG4 antigens were validated as class I, five as class II, and four as class III. Antibodies of other IgG subclasses or immunoglobulin classes were present in several diseases and could contribute additional pathogenic mechanisms.
Collapse
Affiliation(s)
- Inga Koneczny
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Patterson KR, Dalmau J, Lancaster E. Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia. Ann Neurol 2018; 83:40-51. [PMID: 29244234 PMCID: PMC5876120 DOI: 10.1002/ana.25120] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine the pathogenic mechanisms of autoantibodies to the cell adhesion molecule Caspr2 in acquired neuromyotonia and autoimmune encephalitis. METHODS Caspr2-positive samples were confirmed using a cell-based assay, and their IgG subtypes were determined by enzyme-linked immunosorbent assay and cell-based assay. A solid phase binding assay quantified the binding of Caspr2 to contactin-2 in the presence of Caspr2 autoantibodies. Living cultures of primary rat hippocampal neurons were incubated with Caspr2-positive or control sera, and the distribution of Caspr2-positive immunofluorescent puncta and total surface Caspr2 was quantified. HEK cells transfected to express Caspr2 were incubated with Caspr2-positive or control samples, and cell-surface biotinylation and Western blot were used to assess total, internalized, and surface levels of Caspr2. RESULTS We confirmed 6 samples with strong Caspr2 reactivity. IgG4 Caspr2 antibodies were present in all 6 cases. Caspr2 interacted with another cell adhesion molecule, contactin-2, with nanomolar affinity in the solid phase assay, and Caspr2 autoantibodies inhibited this interaction. Caspr2 autoantibodies did not affect the surface expression of Caspr2 in rat primary hippocampal neurons or transfected HEK cells. INTERPRETATION Caspr2 autoantibodies inhibit the interaction of Caspr2 with contactin-2 but do not cause internalization of Caspr2. Functional blocking of cell adhesion molecule interactions represents a potential mechanism with therapeutic implications for IgG4 autoantibodies to cell adhesion molecules in neurological diseases. Ann Neurol 2018;83:40-51.
Collapse
Affiliation(s)
- Kristina R Patterson
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Josep Dalmau
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Hospital Clinic-August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies Barcelona, Spain
| | - Eric Lancaster
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
40
|
Ghazanfari N, Trajanovska S, Morsch M, Liang SX, Reddel SW, Phillips WD. The mouse passive-transfer model of MuSK myasthenia gravis: disrupted MuSK signaling causes synapse failure. Ann N Y Acad Sci 2017; 1412:54-61. [DOI: 10.1111/nyas.13513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Nazanin Ghazanfari
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| | - Sofie Trajanovska
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| | - Marco Morsch
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
- Department of Biomedical Sciences; Macquarie University; Sydney New South Wales Australia
| | - Simon X. Liang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences; Liaoning Medical University; Jinzhou China
| | - Stephen W. Reddel
- Department of Molecular Medicine; Concord Hospital; Sydney New South Wales Australia
| | - William D. Phillips
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
41
|
Illa I, Cortés-Vicente E, Martínez MÁ, Gallardo E. Diagnostic utility of cortactin antibodies in myasthenia gravis. Ann N Y Acad Sci 2017; 1412:90-94. [PMID: 29068555 DOI: 10.1111/nyas.13502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
Patients with myasthenia gravis (MG) without antibodies to the acetylcholine receptor (AChR) or muscle-specific tyrosine kinase (MuSK) have been classified as having double-seronegative myasthenia gravis (dSNMG). We used the sera from six dSNMG patients with positive immunohistochemistry assays in a protein array to screen reactivity with 9000 human proteins. We identified cortactin, an intracellular protein that interacts with agrin/MuSK favoring AChR aggregation, as a new antigen in dSNMG. We then designed an in-house enzyme-linked immunosorbent assay as a screening assay and confirmed these results by western blot. We found that 19.7% of dSNMG patients had anti-cortactin antibodies. In contrast, patients with AChR+ MG or other autoimmune disorders and healthy controls were positive at significantly lower rates. Five percent of healthy controls were positive. In a recent study, we screened sera from 250 patients (AChR+ MG, MuSK+ MG, dSNMG) and 29 healthy controls. Cortactin antibodies were identified in 23.7% of dSNMG and 9.5% AChR+ MG patients (P = 0.02). None of the MuSK+ MG patients, patients with other autoimmune disorders, or healthy controls had antibodies against cortactin. Patients with dSNMG cortactin+ MG were negative for anti-striated muscle and anti-LRP4 antibodies. Patients with dSNMG cortactin+ MG presented ocular or mild generalized MG without bulbar symptoms. We conclude that cortactin autoantibodies are biomarkers of MG that, when present, suggest that the disease will be mild.
Collapse
Affiliation(s)
- Isabel Illa
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - María Ángeles Martínez
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
42
|
Ohno K, Ohkawara B, Ito M. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opin Ther Targets 2017; 21:949-958. [PMID: 28825343 DOI: 10.1080/14728222.2017.1369960] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.
Collapse
Affiliation(s)
- Kinji Ohno
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Bisei Ohkawara
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mikako Ito
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
43
|
Romi F, Hong Y, Gilhus NE. Pathophysiology and immunological profile of myasthenia gravis and its subgroups. Curr Opin Immunol 2017; 49:9-13. [PMID: 28780294 DOI: 10.1016/j.coi.2017.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/07/2017] [Indexed: 01/11/2023]
Abstract
Myasthenia gravis (MG) is an autoimmune antibody-mediated disease characterized by muscle weakness and fatigability. It is believed that the initial steps triggering humoral immunity in MG take place inside thymic tissue and thymoma. The immune response against one or several epitopes expressed on thymic tissue cells spills over to neuromuscular junction components sharing the same epitope causing humoral autoimmunity and antibody production. The main cause of MG is acetylcholine receptor antibodies. However, many other neuromuscular junction membrane protein targets, intracellular and extracellular proteins are suggested to participate in MG pathophysiology. MG should be divided into subgroups based on clinical presentation and immunology. This includes onset age, clinical characteristics, thymic pathology and antibody profile. The immunological profile of these subgroups is determined by the antibodies present.
Collapse
Affiliation(s)
- Fredrik Romi
- Department of Neurology, Haukeland University Hospital, Norway.
| | - Yu Hong
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
44
|
Takamori M. Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders. Int J Mol Sci 2017; 18:ijms18040896. [PMID: 28441759 PMCID: PMC5412475 DOI: 10.3390/ijms18040896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
In the neuromuscular junction, postsynaptic nicotinic acetylcholine receptor (nAChR) clustering, trans-synaptic communication and synaptic stabilization are modulated by the molecular mechanisms underlying synaptic plasticity. The synaptic functions are based presynaptically on the active zone architecture, synaptic vesicle proteins, Ca2+ channels and synaptic vesicle recycling. Postsynaptically, they are based on rapsyn-anchored nAChR clusters, localized sensitivity to ACh, and synaptic stabilization via linkage to the extracellular matrix so as to be precisely opposed to the nerve terminal. Focusing on neural agrin, Wnts, muscle-specific tyrosine kinase (a mediator of agrin and Wnts signalings and regulator of trans-synaptic communication), low-density lipoprotein receptor-related protein 4 (the receptor of agrin and Wnts and participant in retrograde signaling), laminin-network (including muscle-derived agrin), extracellular matrix proteins (participating in the synaptic stabilization) and presynaptic receptors (including muscarinic and adenosine receptors), we review the functional structures of the synapse by making reference to immunological pathogenecities in postsynaptic disease, myasthenia gravis. The synapse-related proteins including cortactin, coronin-6, caveolin-3, doublecortin, R-spondin 2, amyloid precursor family proteins, glia cell-derived neurotrophic factor and neurexins are also discussed in terms of their possible contribution to efficient synaptic transmission at the neuromuscular junction.
Collapse
Affiliation(s)
- Masaharu Takamori
- Neurological Center, Kanazawa-Nishi Hospital, Kanazawa, Ishikawa 920-0025, Japan.
| |
Collapse
|
45
|
Ulusoy C, Çavuş F, Yılmaz V, Tüzün E. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice. Immunol Invest 2017; 46:490-499. [PMID: 28375749 DOI: 10.1080/08820139.2017.1299754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ), characterized with muscle weakness. While MG develops due to acetylcholine receptor (AChR) antibodies in most patients, antibodies to muscle-specific receptor tyrosine kinase (MuSK) or low-density lipoprotein receptor-related protein 4 (LRP4) may also be identified. Experimental autoimmune myasthenia gravis (EAMG) has been previously induced by both LRP4 immunization and passive transfer of LRP4 antibodies. OBJECTIVE Our aim was to confirm previous results and to test the pathogenic effects of LRP4 immunization in a commonly used mouse strain C57BL/6 (B6) using a recombinantly expressed human LRP4 protein. METHODS B6 mice were immunized with human LRP4 in CFA, Torpedo Californica AChR in CFA or only CFA. Clinical and pathogenic aspects of EAMG were compared among groups. RESULTS LRP4- and AChR-immunized mice showed comparable EAMG clinical severity. LRP4-immunized mice displayed serum antibodies to LRP4 and NMJ IgG and complement factor C3 deposits. IgG2 was the dominant anti-LRP4 isotype. Cultured lymph node cells of LRP4- and AChR-immunized mice gave identical pro-inflammatory cytokine (IL-6, IFN-γ and IL-17) responses to LRP4 and AChR stimulation, respectively. CONCLUSION Our results confirm the EAMG-inducing action of LRP4 immunization and identify B6 as a LRP4-EAMG-susceptible mouse strain. Demonstration of complement fixing anti-LRP4 antibodies in sera and complement/IgG deposits at the NMJ of LRP4-immunized mice indicates complement activation as a putative pathogenic mechanism. We have thus developed a practical LRP4-induced EAMG model using a non-conformational protein and a widely available mouse strain for future investigation of LRP4-related MG.
Collapse
Affiliation(s)
- Canan Ulusoy
- a Department of Neuroscience , Aziz Sancar Institute for Experimental Medical Research, Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - Filiz Çavuş
- b Department of Genetics, Aziz Sancar Institute for Experimental Medical Research, Istanbul Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - Vuslat Yılmaz
- a Department of Neuroscience , Aziz Sancar Institute for Experimental Medical Research, Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - Erdem Tüzün
- a Department of Neuroscience , Aziz Sancar Institute for Experimental Medical Research, Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| |
Collapse
|
46
|
Koneczny I, Stevens JAA, De Rosa A, Huda S, Huijbers MG, Saxena A, Maestri M, Lazaridis K, Zisimopoulou P, Tzartos S, Verschuuren J, van der Maarel SM, van Damme P, De Baets MH, Molenaar PC, Vincent A, Ricciardi R, Martinez-Martinez P, Losen M. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J Autoimmun 2016; 77:104-115. [PMID: 27965060 DOI: 10.1016/j.jaut.2016.11.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 01/13/2023]
Abstract
Autoimmunity mediated by IgG4 subclass autoantibodies is an expanding field of research. Due to their structural characteristics a key feature of IgG4 antibodies is the ability to exchange Fab-arms with other, unrelated, IgG4 molecules, making the IgG4 molecule potentially monovalent for the specific antigen. However, whether those disease-associated antigen-specific IgG4 are mono- or divalent for their antigens is unknown. Myasthenia gravis (MG) with antibodies to muscle specific kinase (MuSK-MG) is a well-recognized disease in which the predominant pathogenic IgG4 antibody binds to extracellular epitopes on MuSK at the neuromuscular junction; this inhibits a pathway that clusters the acetylcholine (neurotransmitter) receptors and leads to failure of neuromuscular transmission. In vitro Fab-arm exchange-inducing conditions were applied to MuSK antibodies in sera, purified IgG4 and IgG1-3 sub-fractions. Solid-phase cross-linking assays were established to determine the extent of pre-existing and inducible Fab-arm exchange. Functional effects of the resulting populations of IgG4 antibodies were determined by measuring inhibition of agrin-induced AChR clustering in C2C12 cells. To confirm the results, κ/κ, λ/λ and hybrid κ/λ IgG4s were isolated and tested for MuSK antibodies. At least fifty percent of patients had IgG4, but not IgG1-3, MuSK antibodies that could undergo Fab-arm exchange in vitro under reducing conditions. Also MuSK antibodies were found in vivo that were divalent (monospecific for MuSK). Fab-arm exchange with normal human IgG4 did not prevent the inhibitory effect of serum derived MuSK antibodies on AChR clustering in C2C12 mouse myotubes. The results suggest that a considerable proportion of MuSK IgG4 could already be Fab-arm exchanged in vivo. This was confirmed by isolating endogenous IgG4 MuSK antibodies containing both κ and λ light chains, i.e. hybrid IgG4 molecules. These new findings demonstrate that Fab-arm exchanged antibodies are pathogenic.
Collapse
Affiliation(s)
- Inga Koneczny
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jo A A Stevens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Anna De Rosa
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Saif Huda
- Neurology Department, Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Maartje G Huijbers
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Abhishek Saxena
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Konstantinos Lazaridis
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue 115 21, Ampelokipi, Athens, Greece; Neurology Department, University Hospital, Herestraat 49, 3000 Leuven, Belgium
| | - Paraskevi Zisimopoulou
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue 115 21, Ampelokipi, Athens, Greece; Neurology Department, University Hospital, Herestraat 49, 3000 Leuven, Belgium
| | - Socrates Tzartos
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue 115 21, Ampelokipi, Athens, Greece; Neurology Department, University Hospital, Herestraat 49, 3000 Leuven, Belgium
| | - Jan Verschuuren
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Philip van Damme
- Neurology Department, University Hospital, Herestraat 49, 3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Neurosciences, VIB - Vesalius Research Center, Experimental Neurology - Laboratory of Neurobiology, Leuven, Belgium
| | - Marc H De Baets
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Peter C Molenaar
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Angela Vincent
- Neurology Department, Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Roberta Ricciardi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
47
|
Lee JI, Jander S. Myasthenia gravis: recent advances in immunopathology and therapy. Expert Rev Neurother 2016; 17:287-299. [PMID: 27690672 DOI: 10.1080/14737175.2017.1241144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- John-Ih Lee
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| | - Sebastian Jander
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
48
|
Abstract
Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms.
Collapse
Affiliation(s)
- William D Phillips
- Physiology and Bosch Institute, University of Sydney, Anderson Stuart Bldg (F13), Sydney, 2006, Australia
| | - Angela Vincent
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Ohno K, Otsuka K, Ito M. Roles of collagen Q in MuSK antibody-positive myasthenia gravis. Chem Biol Interact 2016; 259:266-270. [PMID: 27119269 DOI: 10.1016/j.cbi.2016.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/25/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The low-density lipoprotein receptor-related protein 4 (LRP4) and the muscle-specific receptor tyrosine kinase (MuSK) form a tetrameric protein complex on the postsynaptic membrane at the neuromuscular junction (NMJ). Binding of agrin to LRP4 triggers phosphorylation of MuSK. Activated MuSK drives clustering of acetylcholine receptor (AChR). Wnt ligands also directly bind to MuSK to induce AChR clustering. MuSK anchors the acetylcholinesterase (AChE)/collagen Q (ColQ) complex to the synaptic basal lamina. In addition, an extracellular proteoglycan, biglycan, binds to MuSK. Anti-MuSK autoantibodies (MuSK-IgG) are observed in 5-15% of autoimmune myasthenia gravis (MG) patients. MuSK-IgG blocks both ColQ-MuSK and LRP4-MuSK interactions. MuSK-IgG, LRP4, ColQ, and biglycan bind to the immunoglobulin-like domains 1 and 4 of MuSK. Lack of the effects of cholinesterase inhibitors in MuSK-MG patients is likely due to hindrance of ColQ-MuSK interaction by MuSK-IgG and subsequent deficiency of AChE observed in model mice, which, however, has not been proven in MuSK-MG patients. As ColQ enhances expression of membrane-bound MuSK, inhibition of ColQ-MuSK interaction by MuSK-IgG may account for lack of AChR clusters in MuSK-MG. We thus made passive transfer models using Colq+/+ and Colq-/- mice to dissect the effect of ColQ on AChR clustering in MuSK-MG. We found that MuSK-IgG-mediated suppression of LRP4-MuSK interaction, not of ColQ-MuSK interaction, caused defective AChR clustering. We also unexpectedly observed that both MuSK-IgG and ColQ suppressed agrin/LRP4/MuSK signaling in dose-dependent manners. Quantitative comparison revealed that MuSK-IgG blocked agrin-LRP4-MuSK signaling more than ColQ. We propose that attenuation of AChR clustering in MuSK-MG is due to hindrance of LRP4-MuSK interaction in the presence of agrin by MuSK-IgG.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya 466-8550, Japan.
| | - Kenji Otsuka
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya 466-8550, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya 466-8550, Japan
| |
Collapse
|
50
|
Myasthenia gravis — autoantibody characteristics and their implications for therapy. Nat Rev Neurol 2016; 12:259-68. [DOI: 10.1038/nrneurol.2016.44] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|