1
|
Duménil C, Spitaler U, Rehermann G, Bianchi F, Favaro R, Castellan I, Schmidt S, Eisenstecken D, Becher PG, Angeli S. Yeast-based attract-and-kill strategies for Drosophila suzukii management without disrupting honey bee activity. PLoS One 2025; 20:e0323653. [PMID: 40388535 PMCID: PMC12088520 DOI: 10.1371/journal.pone.0323653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/12/2025] [Indexed: 05/21/2025] Open
Abstract
Attract-and-kill strategies are effective, sustainable pest control methods. Formulations combining the insecticide spinosad, at a lower dose than conventional methods, with the Drosophila-associated yeast Hanseniaspora uvarum have shown promising results. Recently, Saccharomycopsis vini was identified as the most attractive yeast for ovipositing females. In this study, the potential of S. vini for use in attract-and-kill formulations against D. suzukii was evaluated alongside H. uvarum. Behavioural assays demonstrated that D. suzukii preferred S. vini when both yeasts are simultaneously present in a close range setting but was attracted to both in long range attraction assays. In efficacy assays, S. vini and H. uvarum were equally efficient at reducing oviposition and increasing mortality in formulation with spinosad. Offering yeast formulations at the foraging sites of trained honey bees did not stimulate more feeding when compared to sugar syrup. The characterisation of the organic volatile compounds released from the cultures demonstrated that S. vini and H. uvarum were composed of overlapping as well as distinct chemicals. The antennally active compounds ethyl acetate and ethyl propanoate were abundant in the more attractive S. vini and H. uvarum, while the compounds 3-methyl-1-butanol and 2-methylthiolan-3-one were more abundant in the less attractive S. cerevisiae. These chemicals may be further studied as possible attractants or repellents for D. suzukii. We propose S. vini as a new yeast with potential for use in integrated pest management, with a distinctive volatile profile while maintaining a similar efficacy compared to H. uvarum against D. suzukii. Neither H. uvarum nor S. vini stimulated honey bee foraging behaviour, suggesting that both yeast-based attract-and-kill formulations pose a low non-target risk to honey bees.
Collapse
Affiliation(s)
- Claire Duménil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Urban Spitaler
- Institute for Plant Health, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Irene Castellan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Silvia Schmidt
- Institute for Plant Health, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Paul G. Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| |
Collapse
|
2
|
Sobhy IS, Goelen T, Wäckers F, Verstrepen KJ, Wenseleers T, Jacquemyn H, Lievens B. Impact of Nectar Composition and Nectar Yeasts on Volatile Emissions and Parasitoid Behavior. J Chem Ecol 2025; 51:29. [PMID: 40047954 PMCID: PMC11885403 DOI: 10.1007/s10886-025-01587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/09/2025]
Abstract
Nectar yeasts can significantly influence the scent of floral nectar and therefore the foraging behavior of flower-visiting insects. While these effects likely depend on nectar chemistry and yeast species, their joint impact on nectar volatile profiles and associated insect responses remain poorly understood. Here, we used four synthetic nectar types varying in sugar and amino acid concentration and two specialist nectar yeasts (Metschnikowia gruessii and Metschnikowia reukaufii) to investigate how nectar composition and yeast species affect volatile profiles and the olfactory responses of the generalist aphid parasitoid Aphidius ervi. Olfactometer assays showed that A. ervi females significantly preferred fermented nectars with high amino acid-low sugar content (HL) and low amino acid-high sugar (LH) content, regardless being fermented by M. gruessii or M. reukaufii, over non-inoculated nectars. This effect was not observed for nectars with low amino acid-low sugar (LL) and high amino acid-high sugar (HH) content. Moreover, LL nectar fermented with M. gruessii became even repellent to the parasitoids. GC-MS analysis of volatile organic compounds (VOCs) revealed that VOC profiles of fermented nectars depended significantly on nectar type (i.e., chemical composition), yeast species, and their interaction. Whereas propyl acetate, isobutyl acetate, styrene, α-guaiene and pentyl-octanoate were associated with the LH fermented nectars, ethyl acetate and E-methyl isoeugenol were mainly associated with the HL fermented nectars, suggesting possible involvement in A. ervi attraction to these nectars. In contrast, isopropyl-hexadecanoate was associated with the non-attractive or repellent LL fermented nectars. Altogether, our results indicate that nectar composition has a strong impact on nectar scent when fermented by specialist nectar yeasts and subsequently on insect foraging behavior.
Collapse
Affiliation(s)
- Islam S Sobhy
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt.
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK.
| | - Tim Goelen
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Felix Wäckers
- , Biobest, Westerlo, Belgium
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Kevin J Verstrepen
- VIB - KU Leuvain Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department of Microbial and Molecular Systems, KU Leuven, Leuvain, Belgium
| | - Tom Wenseleers
- Laboratory of Socio-Ecology & Social Evolution, Biology Department, KU Leuven, Leuvain, Belgium
| | - Hans Jacquemyn
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuvain, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuvain, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
- KU Leuven Plant Institute (LPI), KU Leuven, Leuvain, Belgium.
| |
Collapse
|
3
|
Jones R, Goddard MR, Eady PE, Hall DR, Bray DP, Farman DI, Fountain MT. Differential Attraction of Summer and Winter Morphs of Spotted Wing Drosophila, Drosophila suzukii, to Yeasts. J Chem Ecol 2025; 51:23. [PMID: 39907900 PMCID: PMC11799104 DOI: 10.1007/s10886-025-01561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 02/06/2025]
Abstract
Drosophila suzukii is a pest of soft and stone fruits that is attracted to yeast volatile metabolites. Drosophila suzukii has distinct summer and winter morphs which are found in different habitats. Complex communities of yeasts likely differ between habitats and thus we hypothesized morphs differ in their attraction to yeast volatiles from different species and combinations of species. We presented D. suzukii with yeast species in isolation and in combinations, as either post-culture mixes or co-cultured, and measured activity of the flies in laboratory choice tests with a Locomotor Activity Monitor as a proxy for attraction. Candida zemplinina was more attractive to winter than summer morphs when cultured in both sterile strawberry juice (SSJ) and artificial culture media (YPD). No significant correlations were found between principle component scores derived from single yeast volatile profiles and fly activity. There was also differential attraction of morphs to certain yeast mixes, most notably post SSJ culture mixes of Hanseniaspora uvarum and C. zemplinina were consistently more attractive to winter morphs. Mixtures of Metschnikowia pulcherrima + Pichia pijperi + H. uvarum in SSJ and M. pulcherrima + P. pijperi yeasts in YPD were also preferred by winter morphs, whilst summer morphs were attracted to SSJ co-cultures of M. pulcherrima + H. uvarum. However, co-culturing yeasts did not enhance attraction compared to post-culture mixes of constituent yeasts for either morph. Differential attraction of morphs to certain yeasts suggests options for new bait formulations in integrated pest management strategies may be tailored to better target morphs.
Collapse
Affiliation(s)
- Rory Jones
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
- NIAB, New Road, East Malling, Kent, ME19 6BJ, UK.
| | - Matthew R Goddard
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Paul E Eady
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - David R Hall
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Daniel P Bray
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Dudley I Farman
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | | |
Collapse
|
4
|
Dumenil C, Yildirim G, Haase A. Differential Coding of Fruit, Leaf, and Microbial Odours in the Brains of Drosophila suzukii and Drosophila melanogaster. INSECTS 2025; 16:84. [PMID: 39859665 PMCID: PMC11766258 DOI: 10.3390/insects16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Drosophila suzukii severely damages the production of berry and stone fruits in large parts of the world. Unlike D. melanogaster, which reproduces on overripe and fermenting fruits on the ground, D. suzukii prefers to lay its eggs in ripening fruits still on the plants. Flies locate fruit hosts by their odorant volatiles, which are detected and encoded by a highly specialised olfactory system before being translated into behaviour. The exact information-processing pathway is not yet fully understood, especially the evaluation of odour attractiveness. It is also unclear what differentiates the brains of D. suzukii and D. melanogaster to cause the crucial difference in host selection. We hypothesised that the basis for different behaviours is already formed at the level of the antennal lobe of D. suzukii and D. melanogaster by different neuronal responses to volatiles associated with ripe and fermenting fruit. We thus investigated by 3D in vivo two-photon calcium imaging how both species encoded odours from ripe fruits, leaves, fermented fruits, bacteria, and their mixtures in the antennal lobe. We then assessed their behavioural responses to mixtures of ripe and fermenting odours. The neural responses reflect species-dependent shifts in the odour code. In addition to this, morphological differences were also observed. However, this was not directly reflected in different behavioural responses to the odours tested.
Collapse
Affiliation(s)
- Claire Dumenil
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy; (C.D.); (G.Y.)
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Gülsüm Yildirim
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy; (C.D.); (G.Y.)
| | - Albrecht Haase
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy; (C.D.); (G.Y.)
- Department of Physics, University of Trento, 38123 Trento, Italy
| |
Collapse
|
5
|
Dzialo MC, Arumugam S, Piampongsant S, Cool L, Vanderaa C, Herrera-Malaver B, Opsomer T, Dehaen W, Wenseleers T, Roncoroni M, Alawamleh A, Wäckers F, Lievens B, Hansson BS, Voordeckers K, Sachse S, Verstrepen KJ. Drosophila suzukii and Drosophila melanogaster prefer distinct microbial and plant aroma compounds in a complex fermented matrix. iScience 2024; 27:111141. [PMID: 39524341 PMCID: PMC11549995 DOI: 10.1016/j.isci.2024.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Volatile aroma compounds are important chemical cues for insects. Behavioral responses to specific odors differ strongly between insect species, and the exact causative molecules are often unknown. Beer is frequently used in insect traps because it combines hundreds of plant and microbial aromas that attract many insects. Here, we analyzed responses of the pest fruit fly Drosophila suzukii and benign Drosophila melanogaster to beers with different chemical compositions. Using extensive chemical and behavioral assays, we identified ecologically relevant chemicals that influence drosophilid behavior and that induce different odor-evoked activity patterns in the antennal lobe of the two species obtained by functional imaging. Specific mixes of compounds increased the species-specificity and sex-specificity of lures in both laboratory and greenhouse settings. Together, our study shows how examining insect responses to highly complex natural mixtures of aroma compounds provides insight into insect-specific behavioral responses and also opens avenues for improved pest control.
Collapse
Affiliation(s)
- Maria C. Dzialo
- VIB – KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Somasundar Arumugam
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str, 8, 07745 Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Hans-Knoell-Str, 8, 07745 Jena, Germany
| | - Supinya Piampongsant
- VIB – KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Lloyd Cool
- VIB – KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Christophe Vanderaa
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Beatriz Herrera-Malaver
- VIB – KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Tomas Opsomer
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Miguel Roncoroni
- VIB – KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Amani Alawamleh
- Biobest NV, Ilse Velden 18, 2260 Westerlo, Belgium
- University of Molise, Department of Agricultural, Environmental and Food Sciences, Via De Sanctis 1, 86100 Campobasso, Italy
| | - Felix Wäckers
- Biobest NV, Ilse Velden 18, 2260 Westerlo, Belgium
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
| | - Bill S. Hansson
- Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Hans-Knoell-Str, 8, 07745 Jena, Germany
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str, 8, 07745 Jena, Germany
| | - Karin Voordeckers
- VIB – KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str, 8, 07745 Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Hans-Knoell-Str, 8, 07745 Jena, Germany
| | - Kevin J. Verstrepen
- VIB – KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Brischetto C, Rossi V, Fedele G. The microbiome analysis of ripen grape berries supports the complex etiology of sour rot. Front Microbiol 2024; 15:1450443. [PMID: 39575185 PMCID: PMC11578972 DOI: 10.3389/fmicb.2024.1450443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Sour rot (SR) is a grapevine disease complex that is not completely understood in its etiology and epidemiology. Recently, SR has received special attention due to its increasing economic importance due to crop losses and reduced wine quality. In this study, the fungal and bacterial microbiota of healthy (i.e., without rot symptoms) and rotten (i.e., exhibiting visual and olfactory SR symptoms) ripe bunches were characterized across 47 epidemics (39 vineyards in six Italian grape-growing areas) over three years. The 16S rRNA gene, ITS high-throughput amplicon sequencing, and quantitative PCR were used to assess the relative abundance and dynamic changes of microorganisms associated with SR. The estimators of genera richness of fungal communities within samples indicated a significantly different diversity between healthy and rotten bunches. For bacterial communities, the healthy and rotten bunches significantly differed in the total number of species, but not in abundance distribution across species. The bunch status (i.e., healthy and rotten) was a significant source of diversity (p < 0.01) when the community composition between samples was evaluated, indicating that microbiome composition varied between healthy and rotten bunches. In particular, healthy and rotten bunches shared 43.1 and 54.8% of fungal and bacterial genera, respectively; 31.3% (fungal) and 26.2% (bacterial) genera were associated with rotten bunches only. The yeast genera Zygosaccharomyces, Zygoascus, Saccharomycopsis, Issatchenkia, and Pichia and the bacterial genera Orbus, Gluconobacter, Komagataeibacter, Gluconacetobacter, and Wolbachia were strongly associated with bunches showing SR symptoms based on a linear discriminant analysis. These microorganisms have been associated with Drosophila insects in literature. The relationships between the microflora associated with SR-affected bunches and the roles of Drosophila in SR development need further investigation, which may open perspectives for more effective disease control.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
7
|
Castellan I, Duménil C, Rehermann G, Eisenstecken D, Bianchi F, Robatscher P, Spitaler U, Favaro R, Schmidt S, Becher PG, Angeli S. Chemical and Electrophysiological Characterisation of Headspace Volatiles from Yeasts Attractive to Drosophila suzukii. J Chem Ecol 2024; 50:830-846. [PMID: 38691267 PMCID: PMC11543737 DOI: 10.1007/s10886-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Chemical control of Drosophila suzukii (Diptera: Drosophilidae) based on the use of insecticides is particularly challenging as the insect attacks ripening fruits shortly before harvest. An alternative strategy may rely on the use of yeasts as phagostimulants and baits, applied on canopy as attract-and-kill formulations. The aim of this research was to identify the most attractive among six yeast species for D. suzukii: Saccharomyces cerevisiae, Hanseniaspora uvarum, Clavispora santaluciae, Saccharomycopsis vini, Issatchenkia terricola, and Metschnikowia pulcherrima. The volatile profile of C. santaluciae was described for the first time. Behavioural experiments identified H. uvarum and S. vini as the most attractive yeasts. The characterization of yeast headspace volatiles using direct headspace (DHS) and solid-phase microextraction (SPME) revealed several strain-specific compounds. With DHS injection, 19 volatiles were characterised, while SPME revealed 71 compounds constituting the yeast headspace. Both analyses revealed terpenoids including β-ocimene, citronellol, (Z)-geraniol (nerol), and geranial as distinct constituents of S. vini. H. uvarum and S. vini were further investigated using closed-loop stripping analysis (CSLA) and electroantennography. Out of 14 compounds quantified by CSLA, ethyl acetate, isoamyl acetate, β-myrcene, benzaldehyde and linalool were detected by D. suzukii antennae and might generate the strong attractiveness of S. vini and H. uvarum. Our results highlight a strong attraction of D. suzukii to various yeasts associated with both the flies and their habitat and demonstrate how different sampling methods can impact the results of volatile compound characterization. It remains to be demonstrated whether the distinct attraction is based on special adaptations to certain yeasts and to what extent the metabolites causing attraction are interchangeable.
Collapse
Affiliation(s)
- Irene Castellan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Claire Duménil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Paul G Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
8
|
Jiménez-Padilla Y, Adewusi B, Lachance MA, Sinclair BJ. Live yeasts accelerate Drosophila melanogaster larval development. J Exp Biol 2024; 227:jeb247932. [PMID: 39234635 PMCID: PMC11463955 DOI: 10.1242/jeb.247932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Insect guts house a complex community of microbes that affect host physiology, performance and behavior. Gut microbiome research has largely focused on bacteria-host symbioses and paid less attention to other taxa, such as yeasts. We found that axenic Drosophila melanogaster (reared free of microbes) develops from egg to adult more slowly (ca. 13 days) than those with a natural microbiota (ca. 11.5 days). Here, we showed that live yeasts are present and reproducing in the guts of flies and that the fast development time can be restored by inoculating larvae with a single yeast species (either Saccharomyces cerevisiae or Lachancea kluyveri). Nutritional supplements (either heat-killed yeasts, or a mix of essential vitamins and amino acids) slightly sped the development of axenic flies (to ca. 12.5 days), but not to the same extent as live yeasts. During the first two instars, this acceleration appears to result from additional macronutrient availability, but during the third instar, when most growth occurs, live yeasts increased feeding rate, implying an effect mediated by the gut-brain axis. Thus, the fly-yeast interaction extends beyond yeasts-as-food to yeasts as beneficial interactive symbionts.
Collapse
Affiliation(s)
| | - Babafemi Adewusi
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
10
|
van Wyk N, Badura J, von Wallbrunn C, Pretorius IS. Exploring future applications of the apiculate yeast Hanseniaspora. Crit Rev Biotechnol 2024; 44:100-119. [PMID: 36823717 DOI: 10.1080/07388551.2022.2136565] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 02/25/2023]
Abstract
As a metaphor, lemons get a bad rap; however the proverb 'if life gives you lemons, make lemonade' is often used in a motivational context. The same could be said of Hanseniaspora in winemaking. Despite its predominance in vineyards and grape must, this lemon-shaped yeast is underappreciated in terms of its contribution to the overall sensory profile of fine wine. Species belonging to this apiculate yeast are known for being common isolates not just on grape berries, but on many other fruits. They play a critical role in the early stages of a fermentation and can influence the quality of the final product. Their deliberate addition within mixed-culture fermentations shows promise in adding to the complexity of a wine and thus provide sensorial benefits. Hanseniaspora species are also key participants in the fermentations of a variety of other foodstuffs ranging from chocolate to apple cider. Outside of their role in fermentation, Hanseniaspora species have attractive biotechnological possibilities as revealed through studies on biocontrol potential, use as a whole-cell biocatalyst and important interactions with Drosophila flies. The growing amount of 'omics data on Hanseniaspora is revealing interesting features of the genus that sets it apart from the other Ascomycetes. This review collates the fields of research conducted on this apiculate yeast genus.
Collapse
Affiliation(s)
- Niël van Wyk
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Jennifer Badura
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Christian von Wallbrunn
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
11
|
Tungadi TD, Powell G, Shaw B, Fountain MT. Factors influencing oviposition behaviour of the invasive pest, Drosophila suzukii, derived from interactions with other Drosophila species: potential applications for control. PEST MANAGEMENT SCIENCE 2023; 79:4132-4139. [PMID: 37516913 PMCID: PMC10952728 DOI: 10.1002/ps.7693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/16/2023] [Accepted: 07/30/2023] [Indexed: 07/31/2023]
Abstract
Drosophila suzukii (Matsumura) or spotted wing Drosophila is a worldwide invasive pest of soft- and stone-fruit production. Female D. suzukii lay their eggs in ripening fruit and the hatched larvae damage fruit from the inside, rendering it unmarketable and causing significant economic loss. Current methods to reduce D. suzukii population in the field primarily rely on chemical insecticides which are not a sustainable long-term solution and increase the risk of resistance developing. Several studies demonstrate that when D. suzukii encounter or coexist with other Drosophila on a food source, this is usually a disadvantage to D. suzukii, leading to reduced oviposition and increased larval mortality. These effects have potential to be exploited from a pest management perspective. In this review we summarise recent research articles focusing on the interspecific interactions between D. suzukii and other Drosophila species aimed at understanding how this drives D. suzukii behaviour. Potential semiochemical and microbiome impacts are postulated as determinants of D. suzukii behaviour. Development of control practices focusing on reducing D. suzukii populations and deterring them from laying eggs by utilising factors that drive their behaviour are discussed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Bethan Shaw
- NIABCambridgeUK
- New Zealand Institute for Plant and Food Research LtdAucklandNew Zealand
| | | |
Collapse
|
12
|
Bi Y, Zhang X, Chang X, Li J, Xiao S, Zhang B, Dang C, Sun L, Yao H, Fang Q, Wang F, Ye G. Olfactory behavioral responses of two Drosophila species and their pupal parasitoid to volatiles from bananas. PEST MANAGEMENT SCIENCE 2023; 79:4309-4318. [PMID: 37357260 DOI: 10.1002/ps.7628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 06/25/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Behavior-based manipulation is an essential part of Drosophila integrated pest management (IPM). Effective compounds are useful for improving the efficiency of baits and the development of attract-and-kill or push-pull strategies to manage Drosophila populations. Here, we investigated the olfactory behavior of two Drosophila species, as well as their pupal parasitoid, to volatiles from bananas, for the identification of effective compounds to control fly populations. RESULTS The results showed that overripe bananas were most attractive to both flies, with a higher attraction index (AI) in Drosophila melanogaster than in Drosophila suzukii. The profiles of volatile organic compounds (VOCs) from bananas with three different ripening stages were compared, and six VOCs were selected for behavioral tests. D. suzukii showed significantly different responses to isoamyl alcohol with D. melanogaster. The effects of ethyl butyrate and ethyl isovalerate on the two flies were dose-dependent, with lower concentrations acting as repellent and higher concentrations acting as attractant. Isoamyl acetate, isoamyl butyrate and isoamyl isovalerate (0.005-0.05% v/v) were attractive to both flies. The parasitoid wasp Pachycrepoidus vindemmiae was repelled by isoamyl alcohol and ethyl butyrate, and attracted by ethyl isovalerate, but showed no significant response to isoamyl acetate, isoamyl butyrate and isoamyl isovalerate at the tested concentration. CONCLUSION This study indicated that the behavioral response of Drosophila to the odor of chemical compounds is dose-dependent. Isoamyl alcohol and isoamyl acetate at certain concentrations could be used as repellents, whereas ethyl isovalerate as an attractant in control strategy design for D. suzukii. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaluan Bi
- Hainan Institute, Zhejiang University, Sanya, China
| | - Xuan Zhang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xuefei Chang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiaxin Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Cong Dang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Linlin Sun
- Qixia Agricultural and Technology Extension Center, Qixia, China
| | - Hongwei Yao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Qi Fang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Fang Wang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Guilhot R, Xuéreb A, Lagmairi A, Olazcuaga L, Fellous S. Microbiota acquisition and transmission in Drosophila flies. iScience 2023; 26:107656. [PMID: 37670792 PMCID: PMC10475513 DOI: 10.1016/j.isci.2023.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Understanding the ecological and evolutionary dynamics of host-microbiota associations notably involves exploring how members of the microbiota assemble and whether they are transmitted along host generations. Here, we investigate the larval acquisition of facultative bacterial and yeast symbionts of Drosophila melanogaster and Drosophila suzukii in ecologically realistic setups. Fly mothers and fruit were major sources of symbionts. Microorganisms associated with adult males also contributed to larval microbiota, mostly in D. melanogaster. Yeasts acquired at the larval stage maintained through metamorphosis, adult life, and were transmitted to offspring. All these observations varied widely among microbial strains, suggesting they have different transmission strategies among fruits and insects. Our approach shows microbiota members of insects can be acquired from a diversity of sources and highlights the compound nature of microbiotas. Such microbial transmission events along generations should favor the evolution of mutualistic interactions and enable microbiota-mediated local adaptation of the insect host.
Collapse
Affiliation(s)
- Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Anne Xuéreb
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Auxane Lagmairi
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Laure Olazcuaga
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| |
Collapse
|
14
|
Babin A, Gatti JL, Poirié M. Bacillus thuringiensis bioinsecticide influences Drosophila oviposition decision. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230565. [PMID: 37650056 PMCID: PMC10465210 DOI: 10.1098/rsos.230565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Behavioural avoidance has obvious benefits for animals facing environmental stressors such as pathogen-contaminated foods. Most current bioinsecticides are based on the environmental and opportunistic bacterium Bacillus thuringiensis (Bt) that kills targeted insect pests upon ingestion. While food and oviposition avoidance of Bt bioinsecticide by targeted insect species was reported, this remained to be addressed in non-target organisms, especially those affected by chronic exposure to Bt bioinsecticide such as Drosophila species. Here, using a two-choice oviposition test, we showed that female flies of three Drosophila species (four strains of D. melanogaster, D. busckii and D. suzukii) avoided laying eggs in the presence of Bt var. kurstaki bioinsecticide, with potential benefits for the offspring and female's fitness. Avoidance occurred rapidly, regardless of the fraction of the bioinsecticide suspension (spores and toxin crystals versus soluble toxins/compounds) and independently of the female motivation for egg laying. Our results suggest that, in addition to recent findings of developmental and physiological alterations upon chronic exposure to non-target Drosophila, this bioinsecticide may modify the competitive interactions between Drosophila species in treated areas and the interactions with their associated natural enemies.
Collapse
Affiliation(s)
- Aurélie Babin
- Université Côte d'Azur, INRAE, CNRS, Sophia Agrobiotech Institute (ISA), 06903 Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Sophia Agrobiotech Institute (ISA), 06903 Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Sophia Agrobiotech Institute (ISA), 06903 Sophia Antipolis, France
| |
Collapse
|
15
|
Jindal DA, Leier HC, Salazar G, Foden AJ, Seitz EA, Wilkov AJ, Coutinho-Budd JC, Broihier HT. Early Draper-mediated glial refinement of neuropil architecture and synapse number in the Drosophila antennal lobe. Front Cell Neurosci 2023; 17:1166199. [PMID: 37333889 PMCID: PMC10272751 DOI: 10.3389/fncel.2023.1166199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Glial phagocytic activity refines connectivity, though molecular mechanisms regulating this exquisitely sensitive process are incompletely defined. We developed the Drosophila antennal lobe as a model for identifying molecular mechanisms underlying glial refinement of neural circuits in the absence of injury. Antennal lobe organization is stereotyped and characterized by individual glomeruli comprised of unique olfactory receptor neuronal (ORN) populations. The antennal lobe interacts extensively with two glial subtypes: ensheathing glia wrap individual glomeruli, while astrocytes ramify considerably within them. Phagocytic roles for glia in the uninjured antennal lobe are largely unknown. Thus, we tested whether Draper regulates ORN terminal arbor size, shape, or presynaptic content in two representative glomeruli: VC1 and VM7. We find that glial Draper limits the size of individual glomeruli and restrains their presynaptic content. Moreover, glial refinement is apparent in young adults, a period of rapid terminal arbor and synapse growth, indicating that synapse addition and elimination occur simultaneously. Draper has been shown to be expressed in ensheathing glia; unexpectedly, we find it expressed at high levels in late pupal antennal lobe astrocytes. Surprisingly, Draper plays differential roles in ensheathing glia and astrocytes in VC1 and VM7. In VC1, ensheathing glial Draper plays a more significant role in shaping glomerular size and presynaptic content; while in VM7, astrocytic Draper plays the larger role. Together, these data indicate that astrocytes and ensheathing glia employ Draper to refine circuitry in the antennal lobe before the terminal arbors reach their mature form and argue for local heterogeneity of neuron-glia interactions.
Collapse
Affiliation(s)
- Darren A. Jindal
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Hans C. Leier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Gabriela Salazar
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander J. Foden
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth A. Seitz
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Abigail J. Wilkov
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jaeda C. Coutinho-Budd
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather T. Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
16
|
Cho H, Rohlfs M. Transmission of beneficial yeasts accompanies offspring production in Drosophila-An initial evolutionary stage of insect maternal care through manipulation of microbial load? Ecol Evol 2023; 13:e10184. [PMID: 37332518 PMCID: PMC10276349 DOI: 10.1002/ece3.10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023] Open
Abstract
Parent-to-offspring transmission of beneficial microorganisms is intimately interwoven with the evolution of social behaviors. Ancestral stages of complex sociality-microbe vectoring interrelationships may be characterized by high costs of intensive parental care and hence only a weak link between the transmission of microbial symbionts and offspring production. We investigate the relationship between yeast symbiont transmission and egg-laying, as well as some general factors thought to drive the "farming" of microscopic fungi by the fruit fly Drosophila melanogaster, an insect with no obvious parental care but which is highly dependent on dietary microbes during offspring development. The process of transmitting microbes involves flies ingesting microbes from their previous environment, storing and vectoring them, and finally depositing them to a new environment. This study revealed that fecal materials of adult flies play a significant role in this process, as they contain viable yeast cells that support larval development. During single patch visits, egg-laying female flies transmitted more yeast cells than non-egg-laying females, suggesting that dietary symbiont transmission is not random, but linked to offspring production. The crop, an extension of the foregut, was identified as an organ capable of storing viable yeast cells during travel between egg-laying sites. However, the amount of yeast in the crop reduced rapidly during periods of starvation. Although females starved for 24 h deposited a smaller amount of yeast than those starved for 6 h, the yeast inoculum produced still promoted the development of larval offspring. The results of these experiments suggest that female Drosophila fruit flies have the ability to store and regulate the transfer of microorganisms beneficial to their offspring via the shedding of fecal material. We argue that our observation may represent an initial evolutionary stage of maternal care through the manipulation of microbial load, from which more specialized feedbacks of sociality and microbe management may evolve.
Collapse
Affiliation(s)
- Hanna Cho
- Institute of Ecology, Insect and Chemical Ecology GroupUniversity of BremenBremenGermany
| | - Marko Rohlfs
- Institute of Ecology, Insect and Chemical Ecology GroupUniversity of BremenBremenGermany
| |
Collapse
|
17
|
Baig F, Farnier K, Ishtiaq M, Cunningham JP. Volatiles produced by symbiotic yeasts improve trap catches of Carpophilus davidsoni (Coleoptera: Nitidulidae): an important pest of stone fruits in Australia. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:505-512. [PMID: 36881679 DOI: 10.1093/jee/toad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 05/30/2023]
Abstract
Carpophilus davidsoni (Dobson) is an important pest of Australian stone fruit. Current management practices for this beetle include the use of a trap that contains an attractant lure comprised of aggregation pheromones and a 'co-attractant' mixture of volatiles from fruit juice fermented using Baker's yeast, Saccharomyces cerevisiae (Hansen). We explored whether volatiles from yeasts Pichia kluyveri (Bedford) and Hanseniaspora guilliermondii (Pijper), which are closely associated with C. davidsoni in nature, might improve the effectiveness of the co-attractant. Field trials using live yeast cultures revealed that P. kluyveri trapped higher numbers of C. davidsoni compared to H. guilliermondii, and comparative GC-MS of volatile emissions of the two yeasts led to the selection of isoamyl acetate and 2-phenylethyl acetate for further investigation. In subsequent field trials, trap catches of C. davidsoni were significantly increased when 2-phenylethyl acetate was added to the co-attractant, compared to when isoamyl acetate was added, or both isoamyl acetate and 2-phenylethyl acetate. We also tested different concentrations of ethyl acetate in the co-attractant (the only ester in the original lure) and found contrasting results in cage bioassays and field trails. Our study demonstrates how exploring volatile emissions from microbes that are ecologically associated with insect pests can result in more potent lures for use in integrated pest management strategies. Results from laboratory bioassays screening volatile compounds should be treated with caution when making inferences regarding attraction under field conditions.
Collapse
Affiliation(s)
- Farrukh Baig
- Queensland University of Technology, Gardens Point, Brisbane, QLD 4001, Australia
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC 3083, Australia
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - Kevin Farnier
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Muhammad Ishtiaq
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - John Paul Cunningham
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
18
|
Buonocore Biancheri MJ, Núñez-Campero SR, Suárez L, Ponssa MD, Kirschbaum DS, Garcia FRM, Ovruski SM. Implications of the Niche Partitioning and Coexistence of Two Resident Parasitoids for Drosophila suzukii Management in Non-Crop Areas. INSECTS 2023; 14:222. [PMID: 36975907 PMCID: PMC10051101 DOI: 10.3390/insects14030222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Understanding the mechanisms associated with the coexistence of competing parasitoid species is critical in approaching any biological control strategy against the globally invasive pest spotted-wing drosophila (=SWD), Drosophila suzukii (Matsumura). This study assessed the coexistence of two resident pupal parasitoids, Trichopria anastrephae Lima and Pachycrepoideus vindemiae Rondani, in SWD-infested fruit, in disturbed wild vegetation areas of Tucumán, northwestern Argentina, based on niche segregation. Drosophilid puparia were collected between December/2016 and April/2017 from three different pupation microhabitats in fallen feral peach and guava. These microhabitats were "inside flesh (mesocarp)", "outside flesh", but associated with the fruit, and "soil", i.e., puparia buried close to fruit. Saprophytic drosophilid puparia (=SD) belonging to the Drosophila melanogaster group and SWD were found in all tested microhabitats. SD predominated in both inside and outside flesh, whereas SWD in soil. Both parasitoids attacked SWD puparia. However, T. anastrephae emerged mainly from SD puparia primarily in the inside flesh, whereas P. vindemiae mostly foraged SWD puparia in less competitive microhabitats, such as in the soil or outside the flesh. Divergence in host choice and spatial patterns of same-resource preferences between both parasitoids may mediate their coexistence in non-crop environments. Given this scenario, both parasitoids have potential as SWD biocontrol agents.
Collapse
Affiliation(s)
- María Josefina Buonocore Biancheri
- Planta Piloto de Procesos Industriales Microbiológicos y Biotecnología (PROIMI-CONICET), División Control Biológico, Avda. Belgrano y Pje. Caseros, San Miguel de Tucumán 4000, Tucumán, Argentina
| | - Segundo Ricardo Núñez-Campero
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza s/n, Anillaco 5301, La Rioja, Argentina
- Departamento de Ciencias Exactas, Físicas y Naturales, Instituto de Biología de la Conservación y Paleobiología, Universidad Nacional de La Rioja (UNLaR), Av. Luis M. de la Fuente s/n., Ciudad de La Rioja 5300, La Rioja, Argentina
| | - Lorena Suárez
- Dirección de Sanidad Vegetal, Animal y Alimentos de San Juan (DSVAA)—Gobierno de la Provincia de San Juan, CONICET, Nazario Benavides 8000 Oeste, Rivadavia 5413, San Juan, Argentina
- CCT CONICET San Juan, Argentina Av. Libertador Gral. San Martín 1109, Capital 5400, San Juan, Argentina
| | - Marcos Darío Ponssa
- Planta Piloto de Procesos Industriales Microbiológicos y Biotecnología (PROIMI-CONICET), División Control Biológico, Avda. Belgrano y Pje. Caseros, San Miguel de Tucumán 4000, Tucumán, Argentina
| | - Daniel Santiago Kirschbaum
- INTA Estación Experimental Agropecuaria Famaillá, Tucumán Ruta Prov. 301, km 32, Famaillá 4132, Tucumán, Argentina
- Cátedra Horticultura, Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán 4000, Tucumán, Argentina
| | - Flávio Roberto Mello Garcia
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96000, Rio Grande do Sul, Brazil
| | - Sergio Marcelo Ovruski
- Planta Piloto de Procesos Industriales Microbiológicos y Biotecnología (PROIMI-CONICET), División Control Biológico, Avda. Belgrano y Pje. Caseros, San Miguel de Tucumán 4000, Tucumán, Argentina
| |
Collapse
|
19
|
Santamaria B, Verbeken A, Haelewaters D. Mycophagy: A Global Review of Interactions between Invertebrates and Fungi. J Fungi (Basel) 2023; 9:163. [PMID: 36836278 PMCID: PMC9968043 DOI: 10.3390/jof9020163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Fungi are diverse organisms that occupy important niches in natural settings and agricultural settings, acting as decomposers, mutualists, and parasites and pathogens. Interactions between fungi and other organisms, specifically invertebrates, are understudied. Their numbers are also severely underestimated. Invertebrates exist in many of the same spaces as fungi and are known to engage in fungal feeding or mycophagy. This review aims to provide a comprehensive, global view of mycophagy in invertebrates to bring attention to areas that need more research, by prospecting the existing literature. Separate searches on the Web of Science were performed using the terms "mycophagy" and "fungivore". Invertebrate species and corresponding fungal species were extracted from the articles retrieved, whether the research was field- or laboratory-based, and the location of the observation if field-based. Articles were excluded if they did not list at least a genus identification for both the fungi and invertebrates. The search yielded 209 papers covering seven fungal phyla and 19 invertebrate orders. Ascomycota and Basidiomycota are the most represented fungal phyla whereas Coleoptera and Diptera make up most of the invertebrate observations. Most field-based observations originated from North America and Europe. Research on invertebrate mycophagy is lacking in some important fungal phyla, invertebrate orders, and geographic regions.
Collapse
Affiliation(s)
- Brianna Santamaria
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Centro de Investigaciones Micológicas (CIMi), Universidad Autónoma de Chiriquí, David 0427, Panama
| |
Collapse
|
20
|
Fanara JJ, Beti MIL, Gandini L, Hasson E. Oviposition behaviour in Drosophila melanogaster: Genetic and behavioural decoupling between oviposition acceptance and preference for natural fruits. J Evol Biol 2023; 36:251-263. [PMID: 36357966 DOI: 10.1111/jeb.14109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022]
Abstract
In phytophagous insects, oviposition behaviour is an important component of habitat selection and, given the multiplicity of genetic and environmental factors affecting its expression, is defined as a complex character resulting from the sum of interdependent traits. Here, we study two components of egg-laying behaviour: oviposition acceptance (OA) and oviposition preference (OP) in Drosophila melanogaster using three natural fruits as resources (grape, tomato and orange) by means of no-choice and two-choice experiments, respectively. This experimental design allowed us to show that the results obtained in two-choice assays (OP) cannot be accounted for by those resulting from no-choice assays (OA). Since the genomes of all lines used are completely sequenced, we perform a genome-wide association study to identify and characterize the genetic underpinnings of these oviposition behaviour traits. The analyses revealed different candidate genes affecting natural genetic variation of both OA and OP traits. Moreover, our results suggest behavioural and genetic decoupling between OA and OP and that egg-laying behaviour is plastic and context-dependent. Such independence in the genetic architectures of OA and OP variation may influence different aspects of oviposition behaviour, including plasticity, canalization, host shift and maintenance of genetic variability, which contributes to the adoption of adaptive strategies during habitat selection.
Collapse
Affiliation(s)
- Juan J Fanara
- Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina.,Laboratorio de Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Maria I L Beti
- Laboratorio de Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Luciano Gandini
- Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Esteban Hasson
- Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina.,Laboratorio de Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
21
|
Jones R, Eady PE, Goddard MR, Fountain MT. The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii. INSECTS 2022; 13:995. [PMID: 36354819 PMCID: PMC9696471 DOI: 10.3390/insects13110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Drosophila suzukii (Matsumura), is a globally invasive pest of soft and stone fruit. To survive winter in temperate zones it enters a reproductive diapause in a morphologically distinct phenotype. Phagostimulant baits can be combined with insecticides in attract-and-kill strategies for control. We investigated the effectiveness of single yeast species and combinations of co-fermented yeast phagostimulant baits when combined with insecticides in laboratory assays against both summer- and winter-morph D. suzukii. Candida zemplininia or Hanseniaspora uvarum + C. zemplininia combined with lambda-cyhalothrin or cyantraniliprole, and H. uvarum combined with cyantraniliprole caused significantly higher mortality in winter- compared to summer-morph D. suzukii. Additionally, lambda-cyhalothrin combined with M. pulcherrima + H. uvarum resulted in greater mortality compared to single yeasts, H. uvarum for both summer- and winter-morphs and C. zemplininia for summer-morphs. M. pulcherrima + H. uvarum with spinosad significantly reduced the time-to-kill (50%) of summer-morphs compared to insecticide alone. Most yeast-based baits were comparable in terms of attract-and-kill efficacy to Combi-protec, a commercially available bait, although M. pulcherrima or H. uvarum + C. zemplininia in with cyantraniliprole were less effective. Our study suggests that yeast phagostimulants in attract-and-kill strategies should be adjusted for summer- and winter-morph D. suzukii for more effective control.
Collapse
Affiliation(s)
- Rory Jones
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK
- NIAB, East Malling, Kent ME19 6BJ, UK
| | - Paul E. Eady
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK
| | | | | |
Collapse
|
22
|
Babu A, Rodriguez-Saona C, Sial AA. Factors Influencing the Efficacy of Novel Attract-and-Kill (ACTTRA SWD) Formulations Against Drosophila suzukii. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:981-989. [PMID: 35078242 DOI: 10.1093/jee/toab273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 06/14/2023]
Abstract
In the continental United States, the invasive spotted-wing drosophila (SWD), Drosophila suzukii Matsumura, has become a primary pest of multiple stone and soft-skinned fruits. A new innovative adjuvant formulation, ACTTRA SWD, mixed with a suitable insecticide, constitutes a novel attract-and-kill tactic to manage D. suzukii in fruit crops. We hypothesized that background odors present in crop fields, particularly odors from host fruits, negatively affect the effectiveness of this attract-and-kill formulation, as odors from these sources can compete for insect attraction. Additionally, we evaluated the influence of adult D. suzukii sex and physiological status (age and mating status), and fruit ripeness on its response to the ACTTRA SWD formulation. For this, we used two-choice bioassays to test the response of adult D. suzukii to three ACTTRA SWD formulations (named OR1, TD, and HOOK SWD) in the presence and absence of host fruits (blueberries, raspberries, blackberries, and strawberries). Odors from raspberries were significantly more attractive than those from the TD formulation mixed with spinosad (Entrust). For the HOOK SWD formulation and OR1+Entrust formulation, odors from all the fruit types tested were significantly more attractive than the adjuvants. Compared with females, male D. suzukii were more attracted to the TD formulation over the blueberry fruits. Additionally, age and female mating status but not fruit ripeness influenced D. suzukii attraction to both OR1 and TD formulations. The results from this study indicate that D. suzukii physiological status and host fruit availability impact the efficacy of new attract-and-kill adjuvants such as ACTTRA SWD.
Collapse
Affiliation(s)
- Arun Babu
- Department of Entomology, University of Georgia, Athens, GA, USA
| | | | - Ashfaq A Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
23
|
Kleman I, Rehermann G, Kwadha CA, Witzgall P, Becher PG. Hanseniaspora uvarum Attracts Drosophila suzukii (Diptera: Drosophilidae) With High Specificity. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:999-1007. [PMID: 35385117 PMCID: PMC9365507 DOI: 10.1093/jee/toac029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 05/10/2023]
Abstract
Since the early phase of the intercontinental dispersal of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), fermentation baits have been used for monitoring. Self-made lures and commercial products are often based on wine and vinegar. From an ecological perspective, the formulation of these baits is expected to target especially vinegar flies associated with overripe fruit, such as Drosophila melanogaster (Meigen) (Diptera: Drosophilidae). Hanseniaspora uvarum (Niehaus) (Ascomycota: Saccharomyceta) is a yeast closely associated with D. suzukii and fruit, and furthermore attractive to the flies. Based on this relation, H. uvarum might represent a suitable substrate for the development of lures that are more specific than vinegar and wine. In the field, we therefore, compared H. uvarum to a commercial bait that was based on vinegar and wine with respect to the number of trapped D. suzukii relative to other drosophilids and arthropods. Trap captures were higher with the commercial bait but specificity for D. suzukii was greater with H. uvarum. Moreover, H. uvarum headspace extracts, as well as a synthetic blend of H. uvarum volatiles, were assayed for attraction of D suzukii in a wind tunnel and in the field. Headspace extracts and the synthetic blend induced strong upwind flight in the wind tunnel and confirmed attraction to H. uvarum volatiles. Furthermore, baited with H. uvarum headspace extract and a drowning solution of aqueous acetic acid and ethanol, 74% of field captured arthropods were D. suzukii. Our findings suggest that synthetic yeast headspace formulations might advance the development of more selective monitoring traps with reduced by-catch.
Collapse
Affiliation(s)
- Isabella Kleman
- Department of Plant Protection Biology, Unit Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Box 190, 234 22 Lomma, Sweden
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Unit Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Box 190, 234 22 Lomma, Sweden
| | - Charles A Kwadha
- Department of Plant Protection Biology, Unit Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Box 190, 234 22 Lomma, Sweden
| | - Peter Witzgall
- Department of Plant Protection Biology, Unit Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Box 190, 234 22 Lomma, Sweden
| | - Paul G Becher
- Department of Plant Protection Biology, Unit Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Box 190, 234 22 Lomma, Sweden
| |
Collapse
|
24
|
Guo Q, Yao Z, Cai Z, Bai S, Zhang H. Gut fungal community and its probiotic effect on Bactrocera dorsalis. INSECT SCIENCE 2022; 29:1145-1158. [PMID: 34918476 DOI: 10.1111/1744-7917.12986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) is a destructive horticultural pest which causes considerable economic losses every year. A collection of microorganisms live within the B. dorsalis gut, and they are involved in its development, physiology, and behavior. However, knowledge regarding the composition and function of the gut mycobiota in B. dorsalis are still limited. Here, we comprehensively characterized the gut mycobiota in B. dorsalis across different developmental stages. High-throughput sequencing results showed a significant difference in fungal species abundance and diversity among different developmental stages of B. dorsalis. Quantitative polymerase chain reaction and culture-dependent methods showed that yeast species was the dominant group in the larval stage. We isolated 13 strains of yeast from the larval gut, and found that GF (germ-free) larvae mono-associated with strain Hanseniaspora uvarum developed faster than those mono-associated with other tested fungal strains. Supplementing the larval diet with H. uvarum fully rescued B. dorsalis development, shortened the larval developmental time, and increased adult wing lengths, as well as the body sizes and weights of both pupae and adults. Thus, our study highlights the close interactions between gut fungi, especially H. uvarum, and B. dorsalis. These findings can be applied to the sterile insect technique program to promote host development during mass insect rearing.
Collapse
Affiliation(s)
- Qiongyu Guo
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Yao
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Cai
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Bai
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Tungadi TD, Shaw B, Powell G, Hall DR, Bray DP, Harte SJ, Farman DI, Wijnen H, Fountain MT. Live Drosophila Melanogaster Larvae Deter Oviposition by Drosophila suzukii. INSECTS 2022; 13:insects13080688. [PMID: 36005313 PMCID: PMC9408982 DOI: 10.3390/insects13080688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023]
Abstract
Simple Summary The invasive insect pest, Drosophila suzukii Matsumura or spotted-wing drosophila (SWD) lays its eggs in soft and stone fruit. Eggs hatch into larvae, which feed on fruit, causing fruit collapse and significant economic losses worldwide. Current control methods rely primarily on foliar insecticide applications, which are not sustainable long-term solutions. In nature, D. suzukii interacts with and encounters other Drosophila species, especially towards the end of the growing season when ripening fruits are scarce. We showed previously that D. suzukii were deterred from laying eggs on artificial media exposed to egg laying Drosophila melanogaster, its sister species. It was hypothesized that a signal was left by D. melanogaster which deterred D. suzukii from laying eggs. This study aimed to identify from which D. melanogaster life stage the egg laying deterrent signal originated and we showed that the presence of live D. melanogaster larvae on the egg laying media deter D. suzukii from laying eggs. Drosophila melanogaster cuticular hydrocarbons were examined as the signal source, but no evidence was found for their involvement. These results have improved our understanding of the interspecific interactions between D. suzukii and other Drosophila species and could provide new innovative approaches to D. suzukii management strategies. Abstract The worldwide invasive insect pest, Drosophila suzukii Matsumura (spotted-wing Drosophila), lays eggs in soft and stone fruit before harvest. Hatched larvae cause fruit collapse and significant economic losses. Current control methods rely primarily on foliar insecticide applications, which are not sustainable long-term solutions due to regulatory restrictions and the risk of insecticide resistance developing. We showed before that D. suzukii were deterred from laying eggs on artificial media previously visited by its sister species—Drosophila melanogaster. In the current study, laboratory choice test experiments were conducted to identify which D. melanogaster life stage (eggs, larvae, or adult) deterred D. suzukii oviposition. We demonstrated that the presence of live D. melanogaster larvae on the egg-laying media consistently deterred D. suzukii oviposition. Drosophila melanogaster cuticular hydrocarbons (CHCs) were examined as candidate for the oviposition deterrent. CHCs of larval and adult D. melanogaster and D. suzukii were analyzed. In both species, the composition of the CHCs of larvae was similar to that of adults, although quantities present were much lower. Furthermore, the CHC profiles of the two species were markedly different. However, when assayed as deterrents in the laboratory choice test experiment, CHC extracts from D. melanogaster did not deter oviposition by D. suzukii.
Collapse
Affiliation(s)
| | - Bethan Shaw
- NIAB, East Malling, West Malling ME19 6BJ, UK; (T.D.T.); (B.S.)
| | | | - David R. Hall
- Natural Resources Institute, University of Greenwich, Southampton ME4 4TB, UK; (D.R.H.); (D.P.B.); (S.J.H.); (D.I.F.)
| | - Daniel P. Bray
- Natural Resources Institute, University of Greenwich, Southampton ME4 4TB, UK; (D.R.H.); (D.P.B.); (S.J.H.); (D.I.F.)
| | - Steven J. Harte
- Natural Resources Institute, University of Greenwich, Southampton ME4 4TB, UK; (D.R.H.); (D.P.B.); (S.J.H.); (D.I.F.)
| | - Dudley I. Farman
- Natural Resources Institute, University of Greenwich, Southampton ME4 4TB, UK; (D.R.H.); (D.P.B.); (S.J.H.); (D.I.F.)
| | - Herman Wijnen
- School of Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | | |
Collapse
|
26
|
Jones R, Fountain MT, Andreani NA, Günther CS, Goddard MR. The relative abundances of yeasts attractive to Drosophila suzukii differ between fruit types and are greatest on raspberries. Sci Rep 2022; 12:10382. [PMID: 35725889 PMCID: PMC9209449 DOI: 10.1038/s41598-022-14275-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023] Open
Abstract
Fungal metabolic volatiles attract Drosophila suzukii which oviposits in ripening fruits, but there are few data describing the fungal microbiomes of commercial fruits susceptible to this insect pest. We tested the hypothesis that fruit type and ripening stage have a significant effect on fruit surface fungal communities using DNA metabarcoding approaches and found strong support for differences in all three fungal community biodiversity metrics analysed (numbers, types, and abundances of taxa). There was an average fivefold greater difference in fungal communities between sites with different fruit types (strawberry, cherry, raspberry, and blueberry) than across fruit developmental stages, demonstrating site and/or fruit type is the greater factor defining fungal community assemblage. The addition of a fungal internal standard (Plectosphaerella cucumerina) showed cherry had relatively static fungal populations across ripening. Raspberry had a greater prevalence of Saccharomycetales yeasts attractive to D. suzukii, including Hanseniaspora uvarum, which aligns with reports that raspberry is among the fruits with greatest susceptibility and attraction to D. suzukii. Greater knowledge of how yeast communities change during fruit maturation and between species or sites may be valuable for developing methods to manipulate fruit microbiomes for use in integrated pest management strategies to control D. suzukii.
Collapse
Affiliation(s)
- Rory Jones
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
- NIAB EMR, New Road, East Malling, Kent, ME19 6BJ, UK.
| | | | - Nadia A Andreani
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Catrin S Günther
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The New Zealand Institute of Plant and Food Research Ltd, Ruakura Research Campus, Bisley Road, Hamilton, 3214, New Zealand
| | - Matthew R Goddard
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Chakraborty A, Mori B, Rehermann G, Garcia AH, Lemmen‐Lechelt J, Hagman A, Khalil S, Håkansson S, Witzgall P, Becher PG. Yeast and fruit fly mutual niche construction and antagonism against mould. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amrita Chakraborty
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences Czech University of Life Sciences Kamýcka 129 16500 Prague Czech Republic
| | - Boyd Mori
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
- Department of Agricultural, Food and Nutritional Science University of Alberta Agriculture/Forestry Centre 4‐10 Edmonton Alberta Canada T6G 2P5
| | - Guillermo Rehermann
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Armando Hernández Garcia
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
- Division of Biotechnology Department of Chemistry Faculty of Engineering Lund University Box 124 221 00 Lund Sweden
| | - Joelle Lemmen‐Lechelt
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Arne Hagman
- Division of Biotechnology Department of Chemistry Faculty of Engineering Lund University Box 124 221 00 Lund Sweden
| | - Sammar Khalil
- Department of Biosystems and Technology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Sebastian Håkansson
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
- Division of Applied Microbiology Department of Chemistry Faculty of Engineering Lund University Lund Sweden
| | - Peter Witzgall
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Paul G Becher
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| |
Collapse
|
28
|
Bolton LG, Piñero JC, Barrett BA. Behavioral Responses of Drosophila suzukii (Diptera: Drosophilidae) to Blends of Synthetic Fruit Volatiles Combined With Isoamyl Acetate and β-Cyclocitral. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.825653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Baits and lures for trapping and monitoring the invasive vinegar fly Drosophila suzukii Matsumura (Diptera: Drosophilidae) are currently derived from fermentation volatiles. Volatile organic compounds from alternative sources could improve monitoring efforts and optimize capture of gravid females. Through electroantennography and behavioral assays, we evaluated male and female D. suzukii responses to blends of selected synthetic fruit volatiles in combination with the fruit compound isoamyl acetate and the strawberry leaf terpenoid β-cyclocitral. Blends that were attractive to both male and female D. suzukii were then evaluated for attractiveness to a non-target drosophilid, Drosophila melanogaster. A simple 3-component blend of isoamyl acetate, β-cyclocitral and methyl butyrate was attractive to D. suzukii, particularly females, relative to fresh blueberry volatiles. The 3-component blend was not attractive to D. melanogaster. Additional research is needed to determine the effectiveness of this blend to attract D. suzukii under field conditions.
Collapse
|
29
|
Rehermann G, Spitaler U, Sahle K, Cossu CS, Donne LD, Bianchi F, Eisenstecken D, Angeli S, Schmidt S, Becher PG. Behavioral manipulation of Drosophila suzukii for pest control: high attraction to yeast enhances insecticide efficacy when applied on leaves. PEST MANAGEMENT SCIENCE 2022; 78:896-904. [PMID: 34716651 DOI: 10.1002/ps.6699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The invasive pest, Drosophila suzukii attacks fresh soft-skinned fruit. Broad-spectrum insecticides are implemented for control but there is a need to reduce environmental risks and insecticide residues on fruits. Hanseniaspora uvarum is a yeast frequently found on ripe fruits and associated with D. suzukii. We aim to exploit the ecological association and attraction of D. suzukii to H. uvarum by developing an attract-and-kill strategy, with spray-application on canopy but not fruit. We therefore investigated D. suzukii attraction, egg-laying and mortality when exposed to insecticidal yeast-based formulations. RESULTS Hanseniaspora uvarum strongly attracted D. suzukii when applied on leaves of grapevine, Vitis vinifera. Notably, this attractiveness was competitive to ripe grape berries that were susceptible to D. suzukii infestation. Moreover, adding H. uvarum enhanced the efficacy of insecticidal formulations against D. suzukii. Flies exposed to leaves treated with yeast-insecticide formulations showed higher mortality and laid a lower number of eggs compared to flies exposed to insecticide alone. In a wind tunnel, all treatments containing H. uvarum alone or in combination with insecticides, caused similar upwind flight and landing at the odor source, which provides evidence that the addition of insecticide did not reduce D. suzukii attraction to yeast. CONCLUSION Hanseniaspora uvarum can be used to manipulate the behavior of D. suzukii by attracting flies to insecticide formulations. Yeast attraction is competitive to grape berries and improves insecticide effectiveness, suggesting that sprays covering canopy only, could reduce residues on fruit without compromising management efficacy.
Collapse
Affiliation(s)
- Guillermo Rehermann
- Chemical Ecology - Horticulture, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer (Ora), Italy
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karolina Sahle
- Chemical Ecology - Horticulture, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Carlo S Cossu
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer (Ora), Italy
| | - Lorenz Delle Donne
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer (Ora), Italy
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer (Ora), Italy
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer (Ora), Italy
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer (Ora), Italy
| | - Paul G Becher
- Chemical Ecology - Horticulture, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
30
|
Spitaler U, Cossu CS, Delle Donne L, Bianchi F, Rehermann G, Eisenstecken D, Castellan I, Duménil C, Angeli S, Robatscher P, Becher PG, Koschier EH, Schmidt S. Field and greenhouse application of an attract-and-kill formulation based on the yeast Hanseniaspora uvarum and the insecticide spinosad to control Drosophila suzukii in grapes. PEST MANAGEMENT SCIENCE 2022; 78:1287-1295. [PMID: 34854220 PMCID: PMC9299924 DOI: 10.1002/ps.6748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND The invasive insect Drosophila suzukii (Matsumura) is an important pest of several red grape varieties. The yeast Hanseniaspora uvarum (Niehaus), which is associated with D. suzukii, strongly attracts flies and stimulates them to feed on yeast-laden food. In the present study, a formulation based on H. uvarum culture with spinosad insecticide was applied to the foliage of vineyards and control of D. suzukii was compared to applying spinosad to the whole plant. After successful H. uvarum and insecticide application in the vineyard, we tested additional H. uvarum-based formulations with spinosad in a greenhouse to determine their capacity to control D. suzukii. RESULTS Application of the H. uvarum-spinosad formulation at 36.4 g of spinosad per hectare reduced the D. suzukii field infestation at the same rate as applying 120 g of spinosad per hectare and prevented spinosad residues on grapes. Leaves treated with H. uvarum and spinosad in the field and transferred to a laboratory assay caused high mortality to flies and reduced the number of eggs laid on fruits. Formulations with spinosad applied in the greenhouse showed that both H. uvarum culture and the yeast cell-free supernatant of a centrifuged culture increased fly mortality and reduced the number of eggs laid compared to the unsprayed control. CONCLUSION In comparison to typical spinosad spray applications, the use of H. uvarum in combination with spinosad as an attract-and-kill formulation against D. suzukii reduces pesticide residues on the fruits by targeting the treatment to the canopy and decreasing the amount of insecticide per hectare without compromising control efficacy.
Collapse
Affiliation(s)
- Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
- Institute of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Carlo S Cossu
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
| | - Lorenz Delle Donne
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
- Institute of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food QualityLaimburg Research CentreSouth TyrolItaly
| | - Guillermo Rehermann
- Chemical Ecology – Horticulture, Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food QualityLaimburg Research CentreSouth TyrolItaly
| | - Irene Castellan
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoSouth TyrolItaly
| | - Claire Duménil
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoSouth TyrolItaly
| | - Sergio Angeli
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoSouth TyrolItaly
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food QualityLaimburg Research CentreSouth TyrolItaly
| | - Paul G Becher
- Chemical Ecology – Horticulture, Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Elisabeth H Koschier
- Institute of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
| |
Collapse
|
31
|
Mass Trapping Drosophila suzukii, What Would It Take? A Two-Year Field Study on Trap Interference. INSECTS 2022; 13:insects13030240. [PMID: 35323538 PMCID: PMC8953694 DOI: 10.3390/insects13030240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/22/2023]
Abstract
Simple Summary Drosophila suzukii is an invasive fruit fly that have became a key pest of soft-skinned fruits during the past decade. Today, the control of this pest relies strongly on broad-spectrum insecticides. Deploying attractive traps to control the pest population (mass trapping) could be part of the management strategy of D. suzukii. The present study analyses whether mass trapping with different attractants could be viable for D. suzukii control and how far traps should be maximally spaced in a grid. Traps in a grid compete for the same insects when they are spaced close enough and their radii of attraction overlap. Since the traps on the corners of a grid have fewer competing traps around than fully surrounded centre traps, the ratio of the catches in the corner traps and the centre traps indicates whether the traps are spaced close enough. By quantifying that trap interference in 4 × 4 trapping grids, it was found in this two-year field study that workable trap densities can be expected to control D. suzukii. From June onwards, synthetic lures in dry traps show equal or better results than the same traps with a reference liquid bait (apple cider vinegar). Abstract The invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) worldwide has disrupted existing or developing integrated pest management (IPM) programs in soft-skinned fruits. Currently, with a reliance on only broad-spectrum insecticides, there is a critical call for alternative control measures. Behavioural control is one of the pillars of IPM, and, in the present study, it is investigated whether mass trapping could be viable for D. suzukii management. By quantifying trap interference in 4 × 4 replicate trapping grids, an estimate of the attraction radius for a certain attractant and context can be obtained. Traps designed for dry trapping (no drowning solution, but a killing agent inside) and synthetic controlled released experimental lures were tested in a two-year field study. Apple cider vinegar (ACV) was included as a reference bait and trials were performed with 5, 10 and 15 m inter-trap spacings at different seasonal timings. Clear trap interference and, hence, overlapping attraction radii were observed both in spring and summer for both the synthetic lures and ACV. In early spring, ACV shows the most potential for mass trapping, however from June onwards, the experimental dry lures show equal or better results than ACV. Based on our findings, workable trap densities are deemed possible, encouraging further development of mass trapping strategies for the control of D. suzukii.
Collapse
|
32
|
Giannetti D, Schifani E, Reggiani R, Mazzoni E, Reguzzi MC, Castracani C, Spotti FA, Giardina B, Mori A, Grasso DA. Do It by Yourself: Larval Locomotion in the Black Soldier Fly Hermetia illucens, with a Novel “Self-Harvesting” Method to Separate Prepupae. INSECTS 2022; 13:insects13020127. [PMID: 35206701 PMCID: PMC8879302 DOI: 10.3390/insects13020127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The black soldier fly Hermetia illucens is a widespread species of fly of American origins, which is increasingly used to develop sustainable waste recycling processes as it is able to develop by consuming a wide variety of wastes as food, while both its body and the residuals of its feeding activity can be re-used in a variety of processes. However, many aspects of its larval biology remain unknown. Among these, there is larval movement and its variation in response to external stimuli and environmental conditions. Larvae of the black soldier fly eventually reach the prepupal stage, during which they stop feeding and seek a shelter to pupate. Sorting prepupae from the younger larvae and feeding substratum can be important in rearing processes, since they are used to obtain adults but are also particularly rich in protein and lipids. We focused our study on behavioural differences between prepupae and younger larvae, describing tonic immobility as an anti-predatory response of both, but also their very different ways of locomotion and reactions to stress. Finally, we developed a practical system to exploit these differences, inducing prepupae to move away from the substratum and other larvae to be efficiently collected. Abstract The neotropical insect Hermetia illucens has become a cosmopolite species, and it is considered a highly promising insect in circular and sustainable economic processes. Being able to feed on a wide variety of organic substrates, it represents a source of lipids and proteins for many uses and produces recyclable waste. We investigated the characteristics and differences in the poorly-known locomotory behaviour of larvae of different instars, paying particular attention to the unique characteristics of the prepupal stage, key to farming and industrial processes. Moreover, we attempted to develop a “self-harvesting” system relying on the behavioural traits of prepupae to obtain their separation from younger larvae under rearing condition with minimum effort. Prepupae differ from younger larvae in their response to physical disturbance in the form of tonic immobility and significantly differ in their locomotory movements. Both prepupae and younger larvae reacted similarly to heat or light-induced stress, but low light and high moisture induced only prepupae to migrate away, which resulted in the development of a highly efficient separation methodology. The new data on the behaviour of H. illucens not only shed new light on some unexplored aspects of its biology, but also led to develop an inexpensive self-harvesting system that can be implemented in small-scale and industrial farming.
Collapse
Affiliation(s)
- Daniele Giannetti
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (E.S.); (C.C.); (F.A.S.); (B.G.); (A.M.); (D.A.G.)
- Correspondence:
| | - Enrico Schifani
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (E.S.); (C.C.); (F.A.S.); (B.G.); (A.M.); (D.A.G.)
| | - Roberto Reggiani
- Azienda Agraria Sperimentale Stuard, Strada Madonna dell’Aiuto, 7/a, San Pancrazio, 43126 Parma, Italy;
| | - Emanuele Mazzoni
- Department of Sustainable Crop Production, Section Sustainable Crop and Food Protection, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.M.); (M.C.R.)
| | - Maria Cristina Reguzzi
- Department of Sustainable Crop Production, Section Sustainable Crop and Food Protection, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.M.); (M.C.R.)
| | - Cristina Castracani
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (E.S.); (C.C.); (F.A.S.); (B.G.); (A.M.); (D.A.G.)
| | - Fiorenza A. Spotti
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (E.S.); (C.C.); (F.A.S.); (B.G.); (A.M.); (D.A.G.)
| | - Beatrice Giardina
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (E.S.); (C.C.); (F.A.S.); (B.G.); (A.M.); (D.A.G.)
| | - Alessandra Mori
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (E.S.); (C.C.); (F.A.S.); (B.G.); (A.M.); (D.A.G.)
| | - Donato A. Grasso
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (E.S.); (C.C.); (F.A.S.); (B.G.); (A.M.); (D.A.G.)
| |
Collapse
|
33
|
Mozūraitis R, Apšegaitė V, Radžiutė S, Aleknavičius D, Būdienė J, Stanevičienė R, Blažytė-Čereškienė L, Servienė E, Būda V. Volatiles Produced by Yeasts Related to Prunus avium and P. cerasus Fruits and Their Potentials to Modulate the Behaviour of the Pest Rhagoletis cerasi Fruit Flies. J Fungi (Basel) 2022; 8:95. [PMID: 35205850 PMCID: PMC8876962 DOI: 10.3390/jof8020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Yeast produced semiochemicals are increasingly used in pest management programs, however, little is known on which yeasts populate cherry fruits and no information is available on the volatiles that modify the behaviour of cherry pests including Rhagoletis cerasi flies. Eighty-two compounds were extracted from the headspaces of eleven yeast species associated with sweet and sour cherry fruits by solid phase micro extraction. Esters and alcohols were the most abundant volatiles released by yeasts. The multidimensional scaling analysis revealed that the odour blends emitted by yeasts were species-specific. Pichia kudriavzevii and Hanseniaspora uvarum yeasts released the most similar volatile blends while P. kluyveri and Cryptococcus wieringae yeasts produced the most different blends. Combined gas chromatographic and electroantennographic detection methods showed that 3-methybutyl acetate, 3-methylbutyl propionate, 2-methyl-1-butanol, and 3-methyl-1-butanol elicited antennal responses of both R. cerasi fruit fly sexes. The two-choice olfactometric tests revealed that R. cerasi flies preferred 3-methylbutyl propionate and 3-methyl-1-butanol but avoided 3-methybutyl acetate. Yeast-produced behaviourally active compounds indicated a potential for use in pest monitoring and control of R. cerasi fruit flies, an economically important pest of cherry fruits.
Collapse
Affiliation(s)
- Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Dominykas Aleknavičius
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Jurga Būdienė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (R.S.); (E.S.)
| | - Laima Blažytė-Čereškienė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (R.S.); (E.S.)
| | - Vincas Būda
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (S.R.); (D.A.); (J.B.); (L.B.-Č.); (V.B.)
| |
Collapse
|
34
|
Guilhot R, Rombaut A, Xuéreb A, Howell K, Fellous S. Influence of bacteria on the maintenance of a yeast during Drosophila melanogaster metamorphosis. Anim Microbiome 2021; 3:68. [PMID: 34602098 PMCID: PMC8489055 DOI: 10.1186/s42523-021-00133-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Interactions between microorganisms associated with metazoan hosts are emerging as key features of symbiotic systems. Little is known about the role of such interactions on the maintenance of host-microorganism association throughout the host’s life cycle. We studied the influence of extracellular bacteria on the maintenance of a wild isolate of the yeast Saccharomyces cerevisiae through metamorphosis of the fly Drosophila melanogaster reared in fruit. Yeasts maintained through metamorphosis only when larvae were associated with extracellular bacteria isolated from D. melanogaster faeces. One of these isolates, an Enterobacteriaceae, favoured yeast maintenance during metamorphosis. Such bacterial influence on host-yeast association may have consequences for the ecology and evolution of insect-yeast-bacteria symbioses in the wild.
Collapse
Affiliation(s)
- Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Antoine Rombaut
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Anne Xuéreb
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Kate Howell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
35
|
Bizarria R, Pagnocca FC, Rodrigues A. Yeasts in the attine ant-fungus mutualism: Diversity, functional roles, and putative biotechnological applications. Yeast 2021; 39:25-39. [PMID: 34473375 DOI: 10.1002/yea.3667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Insects interact with a wide variety of yeasts, often providing a suitable substrate for their growth. Some yeast-insect interactions are tractable models for understanding the relationships between the symbionts. Attine ants are prominent insects in the Neotropics and have performed an ancient fungiculture of mutualistic basidiomycete fungi for more than 55-65 million years. Yeasts gain access to this sophisticated mutualism, prompting diversity, ecological, and biotechnological studies in this environment. We review half a century research in this field, surveying for recurrent yeast taxa and their putative ecological roles in this environment. We found that previous studies mainly covered the yeast diversity from a small fraction of attine ants, being Saccharomycetales, Tremellales, and Trichosporonales as the most frequent yeast or yeast-like orders found. Apiotrichum, Aureobasidium, Candida, Cutaneotrichosporon, Debaryomyces, Meyerozyma, Papiliotrema, Rhodotorula, Trichomonascus, and Trichosporon are the most frequent recovered genera. On the other hand, studies of yeasts' ecological roles on attine ant-fungus mutualism only tapped the tip of the iceberg. Previous established hypotheses in the literature cover the production of lignocellulosic enzymes, chemical detoxification, and fungus garden protection. Some of these roles have parallels in biotechnological processes. In conclusion, the attine ant environment has a hidden potential for studying yeast biodiversity, ecology, and biotechnology, which has been particularly unexplored considering the vast diversity of fungus-growing ants.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil.,Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | | | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil.,Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
36
|
Fanning P, Lanka S, Mermer S, Collins J, Van Timmeren S, Andrews H, Hesler S, Loeb G, Drummond F, Wiman NG, Walton V, Sial AA, Isaacs R. Field and Laboratory Testing of Feeding Stimulants to Enhance Insecticide Efficacy Against Spotted-Wing Drosophila, Drosophila suzukii (Matsumura). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1638-1646. [PMID: 34021580 DOI: 10.1093/jee/toab084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The invasive spotted-wing drosophila, Drosophila suzukii (Matsumura), is a key insect pest of berries globally, causing lost revenues and increased production costs associated with applications of insecticides. The insecticides utilized are commonly broad-spectrum pyrethroids, organophosphates, or carbamates in conventionally managed fields and spinosad in organically managed fields. Adoption of more selective insecticides has been limited due to their lower residual activity, and the requirement that some must be ingested to be effective. We investigated the use of feeding stimulants for D. suzukii as a method to improve longevity and efficacy in a range of insecticides. In laboratory bioassays, sugar increased the efficacy of all chemical classes tested; however, the inclusion of yeast only showed a benefit with malathion. Feeding stimulants had a limited effect in some cases under field conditions. Similarly, infestation in field plots and a semifield bioassay showed no significant decreases in infestation with the inclusion of feeding stimulants for the insecticides tested in these trials. We discuss the implications of these findings for managing D. suzukii in fruit crops to help ensure the harvest of marketable fruit.
Collapse
Affiliation(s)
- Philip Fanning
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Srinivas Lanka
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Judith Collins
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Steven Van Timmeren
- Department of Entomology, Michigan State University, 578 Wilson Road, East Lansing, MI 48824, USA
| | - Heather Andrews
- North Willamette Research and Extension Center, Oregon State University, Aurora, Oregon 97002, and USA
| | - Stephen Hesler
- Department of Entomology, Cornell AgriTech, Cornell University, 15 W. Castle Creed Drive, Geneva, NY 14456, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Cornell University, 15 W. Castle Creed Drive, Geneva, NY 14456, USA
| | - Francis Drummond
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Nik G Wiman
- North Willamette Research and Extension Center, Oregon State University, Aurora, Oregon 97002, and USA
| | - Vaughn Walton
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, 578 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
37
|
Effect of Drosophila suzukii on Blueberry VOCs: Chemical Cues for a Pupal Parasitoid, Trichopria anastrephae. J Chem Ecol 2021; 47:1014-1024. [PMID: 34273036 DOI: 10.1007/s10886-021-01294-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
Biocontrol agents such as parasitic wasps use long-range volatiles and host-associated cues from lower trophic levels to find their hosts. However, this chemical landscape may be altered by the invasion of exotic insect species. The spotted-wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), is a highly polyphagous fruit pest native to eastern Asia and recently arrived in South America. Our study aimed to characterize the effect of SWD attack on the volatile organic compounds (VOCs) of blueberries, a common host fruit, and to correlate these odor changes with the olfactory-mediated behavioral response of resident populations of Trichopria anastrephae parasitoids, here reported for the first time in Uruguay. Using fruit VOC chemical characterization followed by multivariate analyses of the odor blends of blueberries attacked by SWD, we showed that the development of SWD immature stages inside the fruit generates a different odor profile to that from control fruits (physically damaged and free of damage). These differences can be explained by the diversity, frequency, and amounts of fruit VOCs. The behavioral response of T. anastrephae in Y-tube bioassays showed that female wasps were significantly attracted to volatiles from SWD-attacked blueberries when tested against both clean air and undamaged blueberries. Therefore, T. anastrephae females can use chemical cues from SWD-infested fruits, which may lead to a successful location of their insect host. Since resident parasitoids are able to locate this novel potential host, biological control programs using local populations may be plausible as a strategy for control of SWD.
Collapse
|
38
|
Đurović G, Van Neerbos FAC, Bossaert S, Herrera-Malaver B, Steensels J, Arnó J, Wäckers F, Sobhy IS, Verstrepen KJ, Jacquemyn H, Lievens B. The Pupal Parasitoid Trichopria drosophilae Is Attracted to the Same Yeast Volatiles as Its Adult Host. J Chem Ecol 2021; 47:788-798. [PMID: 34269959 DOI: 10.1007/s10886-021-01295-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
There is increasing evidence that microorganisms, particularly fungi and bacteria, emit volatile compounds that mediate the foraging behaviour of insects and therefore have the potential to affect key ecological relationships. However, to what extent microbial volatiles affect the olfactory response of insects across different trophic levels remains unclear. Adult parasitoids use a variety of chemical stimuli to locate potential hosts, including those emitted by the host's habitat, the host itself, and microorganisms associated with the host. Given the great capacity of parasitoids to utilize and learn odours to increase foraging success, parasitoids of eggs, larvae, or pupae may respond to the same volatiles the adult stage of their hosts use when locating their resources, but compelling evidence is still scarce. In this study, using Saccharomyces cerevisiae we show that Trichopria drosophilae, a pupal parasitoid of Drosophila species, is attracted to the same yeast volatiles as their hosts in the adult stage, i.e. acetate esters. Parasitoids significantly preferred the odour of S. cerevisiae over the blank medium in a Y-tube olfactometer. Deletion of the yeast ATF1 gene, encoding a key acetate ester synthase, decreased attraction of T. drosophilae, while the addition of synthetic acetate esters to the fermentation medium restored parasitoid attraction. Bioassays with individual compounds revealed that the esters alone were not as attractive as the volatile blend of S. cerevisiae, suggesting that other volatile compounds also contribute to the attraction of T. drosophilae. Altogether, our results indicate that pupal parasitoids respond to the same volatiles as the adult stage of their hosts, which may aid them in locating oviposition sites.
Collapse
Affiliation(s)
- Gordana Đurović
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.,Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all'Adige, Italy.,Biobest, B-2260, Westerlo, Belgium
| | - Francine A C Van Neerbos
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium
| | - Sofie Bossaert
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, B-3001, Leuven, Belgium
| | - Jan Steensels
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, B-3001, Leuven, Belgium
| | | | - Felix Wäckers
- Biobest, B-2260, Westerlo, Belgium.,Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Islam S Sobhy
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.,Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Kevin J Verstrepen
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, B-3001, Leuven, Belgium
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.,Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, B-3001, Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium. .,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.
| |
Collapse
|
39
|
Bing XL, Winkler J, Gerlach J, Loeb G, Buchon N. Identification of natural pathogens from wild Drosophila suzukii. PEST MANAGEMENT SCIENCE 2021; 77:1594-1606. [PMID: 33342014 DOI: 10.1002/ps.6235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/15/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Drosophila suzukii (Matsumura, 1931) (spotted wing drosophila), an invasive species, has recently become a significant global pest of soft-skinned fruits such as berries. Unlike other Drosophila species, female D. suzukii have evolved a specialized sharp, serrated ovipositor that pierces and penetrates ripe and ripening fruits, causing them to lose commercial value and preventing their sale. A first step for the development of biological control agents for pest management may be achieved through the identification of microbes infectious for D. suzukii in the wild. RESULTS We first determined that D. suzukii is susceptible to chemicals commonly used to rear Drosophilids in the laboratory and established a diet able to sustain healthy D. suzukii growth. Using this diet, we demonstrated that of 25 species of culturable bacteria and fungi isolated from field-collected D. suzukii, eight microbes decreased host survival when injected. Three of the eight bacteria (Alcaligenes faecalis, Achromobacter spanius and Serratia marcescens) were acutely pathogenic to both D. suzukii and Drosophila melanogaster adults by injection. Feeding of these bacteria resulted in susceptibility only in larvae. CONCLUSION We successfully identified multiple microbes from field-collected D. suzukii that are pathogenic to both larvae and adults through different routes of infection, some of which could be candidates for biocontrol of this species. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jessica Winkler
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Joseph Gerlach
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Gregory Loeb
- Department of Entomology, Cornell University, Geneva, NY, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
40
|
Huang J, Gut LJ. Impact of Background Fruit Odors on Attraction of Drosophila suzukii (Diptera: Drosophilidae) to Its Symbiotic Yeast. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6166187. [PMID: 33693806 PMCID: PMC7947983 DOI: 10.1093/jisesa/ieab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 05/25/2023]
Abstract
Background odors produced by plants in the environment can interfere with the response of insects to a point-releasing attractant, especially when their compositions overlap. In this study, a series of binary choice tests was conducted in a wind tunnel to investigate whether background odors emitted from cherry, blueberry, blackberry, or raspberry fruits would affect the level of Drosophila suzukii (Matsumura) attraction to its symbiotic yeast, Hanseniaspora uvarum (Niehaus) (Saccharomycetales: Saccharomycetaceae). Whether an increase in the intensity of background odors would affect the attractiveness of H. uvarum to D. suzukii was also investigated, either by increasing the number of cherry or raspberry fruit per cup or by increasing the number of fruit cups surrounding the cup baited with the yeast. In wind tunnel assays, background fruit odors interfering with D. suzukii attraction to the yeast varied among fruit types. Raspberry odor inhibited the attractiveness of H. uvarum to the fly the most, followed by blackberry odor, whereas cherry and blueberry odors had no significant impact on the attraction. An increase in the intensity of odors by adding more cherry or raspberry fruit per cup did not increase the impact of fruit odor on the attraction; however, adding more raspberry cups around H. uvarum linearly decreased its attractiveness, suggesting that background host fruit abundance and likely increase in host odor may influence D. suzukii attraction to yeast odor depending on host species.
Collapse
Affiliation(s)
- Juan Huang
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Larry J Gut
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
41
|
Elsensohn JE, Aly MFK, Schal C, Burrack HJ. Social signals mediate oviposition site selection in Drosophila suzukii. Sci Rep 2021; 11:3796. [PMID: 33589670 PMCID: PMC7884846 DOI: 10.1038/s41598-021-83354-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/29/2021] [Indexed: 01/30/2023] Open
Abstract
The information that female insects perceive and use during oviposition site selection is complex and varies by species and ecological niche. Even in relatively unexploited niches, females interact directly and indirectly with conspecifics at oviposition sites. These interactions can take the form of host marking and re-assessment of prior oviposition sites during the decision-making process. Considerable research has focused on the niche breadth and host preference of the polyphagous invasive pest Drosophila suzukii Matsumura (Diptera: Drosophilidae), but little information exists on how conspecific signals modulate oviposition behavior. We investigated three layers of social information that female D. suzukii may use in oviposition site selection-(1) pre-existing egg density, (2) pre-existing larval occupation, and (3) host marking by adults. We found that the presence of larvae and host marking, but not egg density, influenced oviposition behavior and that the two factors interacted over time. Adult marking appeared to deter oviposition only in the presence of an unmarked substrate. These results are the first behavioral evidence for a host marking pheromone in a species of Drosophila. These findings may also help elucidate D. suzukii infestation and preference patterns within crop fields and natural areas.
Collapse
Affiliation(s)
- Johanna E. Elsensohn
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, NC State University, Raleigh, NC USA
| | - Marwa F. K. Aly
- grid.411806.a0000 0000 8999 4945Department of Plant Protection, Faculty of Agriculture, Minia University, El-Minya, Egypt
| | - Coby Schal
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, NC State University, Raleigh, NC USA
| | - Hannah J. Burrack
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, NC State University, Raleigh, NC USA
| |
Collapse
|
42
|
Goelen T, Vuts J, Sobhy IS, Wäckers F, Caulfield JC, Birkett MA, Rediers H, Jacquemyn H, Lievens B. Identification and application of bacterial volatiles to attract a generalist aphid parasitoid: from laboratory to greenhouse assays. PEST MANAGEMENT SCIENCE 2021; 77:930-938. [PMID: 32975888 DOI: 10.1002/ps.6102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Recent studies have shown that microorganisms emit volatile compounds that affect insect behaviour. However, it remains largely unclear whether microbes can be exploited as a source of attractants to improve biological control of insect pests. In this study, we used a combination of coupled gas chromatography-electroantennography (GC-EAG) and Y-tube olfactometer bioassays to identify attractive compounds in the volatile extracts of three bacterial strains that are associated with the habitat of the generalist aphid parasitoid Aphidius colemani, and to create mixtures of synthetic compounds to find attractive blends for A. colemani. Subsequently, the most attractive blend was evaluated in two-choice cage experiments under greenhouse conditions. RESULTS GC-EAG analysis revealed 20 compounds that were linked to behaviourally attractive bacterial strains. A mixture of two EAG-active compounds, styrene and benzaldehyde applied at a respective dose of 1 μg and 10 ng, was more attractive than the single compounds or the culture medium of the bacteria in Y-tube olfactometer bioassays. Application of this synthetic mixture under greenhouse conditions resulted in significant attraction of the parasitoids, and outperformed application of the bacterial culture medium. CONCLUSION Compounds isolated from bacterial blends were capable of attracting parasitoids both in laboratory and greenhouse assays, indicating that microbial cultures are an effective source of insect attractants. This opens new opportunities to attract and retain natural enemies of pest species and to enhance biological pest control.
Collapse
Affiliation(s)
- Tim Goelen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems (M2S), Leuven, Belgium
| | - József Vuts
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Islam S Sobhy
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems (M2S), Leuven, Belgium
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Felix Wäckers
- Biobest, Westerlo, Belgium
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - John C Caulfield
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Michael A Birkett
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems (M2S), Leuven, Belgium
| | - Hans Jacquemyn
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems (M2S), Leuven, Belgium
| |
Collapse
|
43
|
Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metabolic volatiles are attractive to Drosophila suzukii in the laboratory and field. Sci Rep 2021; 11:1201. [PMID: 33441642 PMCID: PMC7806593 DOI: 10.1038/s41598-020-79691-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Drosophila suzukii flies cause economic losses to fruit crops globally. Previous work shows various Drosophila species are attracted to volatile metabolites produced by individual fruit associated yeast isolates, but fruits naturally harbour a rich diversity of yeast species. Here, we report the relative attractiveness of D. suzukii to yeasts presented individually or in combinations using laboratory preference tests and field trapping data. Laboratory trials revealed four of 12 single yeast isolates were attractive to D. suzukii, of which Metschnikowia pulcherrima and Hanseniaspora uvarum were also attractive in field trials. Four out of 10 yeast combinations involving Candida zemplinina, Pichia pijperi, M. pulcherrima and H. uvarum were attractive in the laboratory. Whilst a combination of M. pulcherrima + H. uvarum trapped the greatest number of D. suzukii in the field, the efficacy of the M. pulcherrima + H. uvarum combination to trap D. suzukii was not significantly greater than traps primed with volatiles from only H. uvarum. While volatiles from isolates of M. pulcherrima and H. uvarum show promise as baits for D. suzukii, further research is needed to ascertain how and why flies are attracted to certain baits to optimise control efficacy.
Collapse
|
44
|
Ðurović G, Alawamleh A, Carlin S, Maddalena G, Guzzon R, Mazzoni V, Dalton DT, Walton VM, Suckling DM, Butler RC, Angeli S, De Cristofaro A, Anfora G. Liquid Baits with Oenococcus oeni Increase Captures of Drosophila suzukii. INSECTS 2021; 12:insects12010066. [PMID: 33450937 PMCID: PMC7828427 DOI: 10.3390/insects12010066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary Among the challenges arising from climate change and the transformation of agroecosystems is that agricultural production is heavily affected by invasive insect species. Invasive insects can establish in new areas where their development can progress due to a suitable climate and lack of natural enemies. Farmers have few options to mitigate those insects’ attacks. Current control tactics using pesticides must be replaced with more sustainable methods to counter invasive insect species. We approached the control of the invasive spotted-wing drosophila Drosophila suzukii, using a baiting system that manipulates insect behavior without use of toxic or non-sustainable chemicals. The results of our work are utilized for the monitoring and mass trapping of this devastating invasive species. In our innovative smart-design trap system, we use odors that attract flies and decrease damage in open field scenarios. Our trapping system can efficiently detect the first spring arrival of D. suzukii in agricultural fields and as a such, represents a good early monitoring tool. We conducted four years of laboratory and open-field trials in different berry crops. As a source of odor attraction, we used a mixture of wine, apple cider vinegar, and different commercially available strains of lactic acid bacteria. Abstract The spotted-wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), native to Eastern Asia, is an invasive alien species in Europe and the Americas, where it is a severe pest of horticultural crops, including soft fruits and wine grapes. The conventional approach to controlling infestations of SWD involves the use of insecticides, but the frequency of application for population management is undesirable. Consequently, alternative strategies are urgently needed. Effective and improved trapping is important as an early risk detection tool. This study aimed to improve Droskidrink® (DD), a commercially available attractant for SWD. We focused on the chemical and behavioral effects of adding the bacterium Oenococcus oeni (Garvie) to DD and used a new trap design to enhance the effects of attractive lures. We demonstrate that microbial volatile compounds produced by O. oeni are responsible for the increase in the attractiveness of the bait and could be later utilized for the development of a better trapping system. Our results showed that the attractiveness of DD was increased up to two-fold by the addition of commercially available O. oeni when combined with an innovative trap design. The new trap-bait combination increased the number of male and especially female catches at low population densities.
Collapse
Affiliation(s)
- Gordana Ðurović
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
- Biobest Group NV, Ilse Velden, 2260 Westerlo, Belgium;
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Amani Alawamleh
- Biobest Group NV, Ilse Velden, 2260 Westerlo, Belgium;
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Silvia Carlin
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
| | - Giuseppe Maddalena
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Raffaele Guzzon
- Technology Transfer Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (R.G.); (D.M.S.)
| | - Valerio Mazzoni
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
| | - Daniel T. Dalton
- Department of Horticulture, Oregon State University, 4017 Ag and Life Sciences Bldg., Corvallis, OR 97331, USA; (D.T.D.); (V.M.W.)
| | - Vaughn M. Walton
- Department of Horticulture, Oregon State University, 4017 Ag and Life Sciences Bldg., Corvallis, OR 97331, USA; (D.T.D.); (V.M.W.)
| | - David M. Suckling
- Technology Transfer Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (R.G.); (D.M.S.)
- Biosecurity Group, The New Zealand Institute for Plant and Food Research Limited, PB 4704, Christchurch 8140, New Zealand;
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Ruth C. Butler
- Biosecurity Group, The New Zealand Institute for Plant and Food Research Limited, PB 4704, Christchurch 8140, New Zealand;
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy;
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
- Correspondence:
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
- Centre Agriculture Food Environment (C3A), University of Trento, 38100 San Michele all’Adige, Italy
| |
Collapse
|
45
|
Josek T, Sperrazza J, Alleyne M, Syed Z. Neurophysiological and behavioral responses of blacklegged ticks to host odors. JOURNAL OF INSECT PHYSIOLOGY 2021; 128:104175. [PMID: 33253713 DOI: 10.1016/j.jinsphys.2020.104175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The blacklegged tick, Ixodes scapularis (Ixodida, Ixodidae), is one of the major disease vectors in the United States, and due to multiple human impact factors, such as decreasing forest size for land development and climate change, it has expanded its range and established across the United States. Throughout the life cycle, ticks locate hosts for their blood-meal, and although the ecologies of this tick and their hosts have been studied in depth, the sensory physiology behind host location largely remains unexplored. Here, we report establishing a robust paradigm to isolate and identify odors from the natural milieu for I. scapularis. We performed single sensillum recordings (SSR) from the olfactory sensilla on the tick tarsi, and used the SSR system as a biological detector to isolate natural compounds that elicited biological activity. The SSR setup was further tested in tandem with gas chromatography (GC) wherein the ticks' olfactory sensillum activity served as a biological detector. The GC-SSR recordings from the wall pore sensilla in the Haller's organ, and further identification of the biologically active deer gland constituents by GC-mass spectrometry (GC-MS) revealed methyl substituted phenols as strong chemostimuli, as compared to ethyl or propyl substitutions. The strongest electrophysiological activity was elicited by m- cresol followed by p- cresol. Ethyl- and propylphenols with any of the three substitutions (ortho, meta or para), did not induce any neurophysiological activity. Finally, a behavioral analysis in a dual-choice olfactometer of all these phenols at three different doses revealed no significant behavioral response, except for p- cresol at -3 dilution. Overall, this study contributes to our understanding of I. scapularis tick's neurophysiology and provides a robust platform to isolate and identify natural attractants and repellents.
Collapse
Affiliation(s)
- Tanya Josek
- Center of Mathematics, Science, and Technology, Illinois State University, Normal, IL 61790, USA
| | - Jared Sperrazza
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Marianne Alleyne
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
46
|
Physiological and molecular correlates of the screwworm fly attraction to wound and animal odors. Sci Rep 2020; 10:20771. [PMID: 33247186 PMCID: PMC7695851 DOI: 10.1038/s41598-020-77541-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The screwworm fly, Cochliomyia hominivorax (Coquerel), was successfully eradicated from the United States by the sterile insect technique (SIT). However, recent detection of these flies in the Florida Keys, and increased risk of introductions to the other areas warrant novel tools for management of the flies. Surveillance, a key component of screwworm control programs, utilizes traps baited with rotting liver or a blend of synthetic chemicals such as swormlure-4. In this work, we evaluated the olfactory physiology of the screwworm fly and compared it with the non-obligate ectoparasitic secondary screwworm flies, C. macellaria, that invade necrotic wound and feed on dead tissue. These two species occur in geographically overlapping regions. C. macellaria, along with other blowflies such as the exotic C. megacephala, greatly outnumber C. hominivorax in the existing monitoring traps. Olfactory responses to swormlure-4 constituents between sex and mating status (mated vs unmated) in both species were recorded and compared. Overall, responses measured by the antennograms offered insights into the comparative olfactory physiology of the two fly species. We also present detailed analyses of the antennal transcriptome by RNA-Sequencing that reveal significant differences between male and female screwworm flies. The differential expression patterns were confirmed by quantitative PCR. Taken together, this integrated study provides insights into the physiological and molecular correlates of the screwworm’s attraction to wounds, and identifies molecular targets that will aid in the development of odorant-based fly management strategies.
Collapse
|
47
|
Bianchi F, Spitaler U, Castellan I, Cossu CS, Brigadoi T, Duménil C, Angeli S, Robatscher P, Vogel RF, Schmidt S, Eisenstecken D. Persistence of a Yeast-Based ( Hanseniaspora uvarum) Attract-and-Kill Formulation against Drosophila suzukii on Grape Leaves. INSECTS 2020; 11:insects11110810. [PMID: 33217960 PMCID: PMC7698740 DOI: 10.3390/insects11110810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
The production of phagostimulant and attractive volatile organic compounds (VOCs) by yeasts can be exploited to improve the efficacy of attract-and-kill formulations against the spotted wing drosophila (SWD). This study evaluated the persistence over one week of a yeast-based formulation under greenhouse conditions. Potted grape plants were treated with: (i) potato dextrose broth (PDB), (ii) PDB containing spinosad (PDB + S), and (iii) H. uvarum fermentation broth grown on PDB containing spinosad (H. u. + S). Laboratory trials were performed to determine the survival and the oviposition rate of SWD after exposure to treated leaves. Ion-exchange chromatography was performed to measure carbohydrates, sugar alcohols, and organic acids on leaf surfaces, while amino acids were assessed through liquid chromatography-mass-spectrometry. Additionally, the VOCs released by plants treated with H.uvarum were collected via closed-loop-stripping analysis and compared to those emitted by untreated leaves. A higher mortality was observed for adult SWDs in contact with H. uvarum containing spinosad compared to PDB containing spinosad. Generally, a decrease in the amounts of non-volatile compounds was observed over time, though numerous nutrients were still present one week after treatment. The application of the yeast-based formulation induced the emission of VOCs by the treated leaves. The concentration of 2-phenylethanol, one of the main VOCs emitted by yeasts, decreased over time. These findings describe the presence of potential phagostimulants and compounds attractive to SWD in a yeast-based attract-and-kill formulation and demonstrate the efficacy of the formulation over one week.
Collapse
Affiliation(s)
- Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
- Chair of Technical Microbiology, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (U.S.); (C.S.C.); (S.S.)
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Irene Castellan
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (I.C.); (C.D.); (S.A.)
| | - Carlo S. Cossu
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (U.S.); (C.S.C.); (S.S.)
| | - Timothy Brigadoi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
| | - Claire Duménil
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (I.C.); (C.D.); (S.A.)
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (I.C.); (C.D.); (S.A.)
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
| | - Rudi F. Vogel
- Chair of Technical Microbiology, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (U.S.); (C.S.C.); (S.S.)
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
- Correspondence:
| |
Collapse
|
48
|
McMullen JG, Peters-Schulze G, Cai J, Patterson AD, Douglas AE. How gut microbiome interactions affect nutritional traits of Drosophila melanogaster. ACTA ACUST UNITED AC 2020; 223:223/19/jeb227843. [PMID: 33051361 DOI: 10.1242/jeb.227843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Most research on the impact of the gut microbiome on animal nutrition is designed to identify the effects of single microbial taxa and single metabolites of microbial origin, without considering the potentially complex network of interactions among co-occurring microorganisms. Here, we investigated how different microbial associations and their fermentation products affect host nutrition, using Drosophila melanogaster colonized with three gut microorganisms (the bacteria Acetobacter fabarum and Lactobacillus brevis, and the yeast Hanseniaspora uvarum) in all seven possible combinations. Some microbial effects on host traits could be attributed to single taxa (e.g. yeast-mediated reduction of insect development time), while other effects were sex specific and driven by among-microbe interactions (e.g. male lipid content determined by interactions between the yeast and both bacteria). Parallel analysis of nutritional indices of microbe-free flies administered different microbial fermentation products (acetic acid, acetoin, ethanol and lactic acid) revealed a single consistent effect: that the lipid content of both male and female flies is reduced by acetic acid. This effect was recapitulated in male flies colonized with both yeast and A. fabarum, but not for any microbial treatment in females or males with other microbial complements. These data suggest that the effect of microbial fermentation products on host nutritional status is strongly context dependent, with respect to both the combination of associated microorganisms and host sex. Taken together, our findings demonstrate that among-microbe interactions can play a critically important role in determining the physiological outcome of host-microbiome interactions in Drosophila and, likely, in other animal hosts.
Collapse
Affiliation(s)
- John G McMullen
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA .,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
49
|
Repellent, oviposition-deterrent, and insecticidal activity of the fungal pathogen Colletotrichum fioriniae on Drosophila suzukii (Diptera: Drosophilidae) in highbush blueberries. Sci Rep 2020; 10:14467. [PMID: 32879373 PMCID: PMC7468138 DOI: 10.1038/s41598-020-71341-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022] Open
Abstract
Spotted-wing drosophila, Drosophila suzukii, and the anthracnose pathogen Colletotrichum fioriniae are an important insect pest and fungal disease of highbush blueberries, respectively, in the United States. However, whether C. fioriniae infection affects D. suzukii preference and performance remains unknown. Here, we conducted choice and no-choice studies to determine the repellent, oviposition-deterrent, and insecticidal effects of C. fioriniae on D. suzukii. In choice tests, blueberry fruit treated with anthracnose solutions containing spores from either field-collected infected fruit (‘fruit’) or a laboratory C. fioriniae culture (‘colony’) were less attractive to sexually mature D. suzukii females, but not males, than untreated fruit. The plant tissue (fruit or leaves) did not influence C. fioriniae repellency effects on D. suzukii. In no-choice tests, 55% fewer numbers of eggs were laid on, and 65% fewer adults emerged from, blueberry fruit treated with either the ‘fruit’ or ‘colony’ anthracnose solution than untreated fruit. Egg-to-adult D. suzukii survival was also 12% lower on C. fioriniae-infected fruit. No repellency or negative effects on survival were observed when C. fioriniae spores were filtered out of the solution. These findings will help efforts towards the discovery of microbial-derived repellent/oviposition-deterrent compounds that could be used in behavior-based management strategies for D. suzukii.
Collapse
|
50
|
Bianchi F, Spitaler U, Robatscher P, Vogel RF, Schmidt S, Eisenstecken D. Comparative Lipidomics of Different Yeast Species Associated to Drosophila suzukii. Metabolites 2020; 10:E352. [PMID: 32872268 PMCID: PMC7569767 DOI: 10.3390/metabo10090352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
Yeasts constitute a dietary source for the spotted wing drosophila (SWD) and produce compounds that attract these flies. The study of the chemical composition of the yeast communities associated with SWD should therefore help to understand the relationship between the biology of the insect and the yeast's metabolism. In the present study, the lipidome of five yeast species isolated from grapes infested by SWD (three Hanseniaspora uvarum strains, Candida sp., Issatchenkia terricola, Metschnikowia pulcherrima and Saccharomycopsis vini) and a laboratory strain of Saccharomyces cerevisiae was explored using an untargeted approach. Additionally, the lipid profile of two species, S. cerevisiae and H. uvarum, which were reported to elicit different responses on SWD flies based on feeding and behavioral trials, was compared with a chemical enrichment approach. Overall, 171 lipids were annotated. The yeast species could be distinguished from each other based on their lipid profile, except for the three strains of H. uvarum, which were very similar to each other. The chemical enrichment analysis emphasized diversities between S. cerevisiae and H. uvarum, that could not be detected based on their global lipid profile. The information concerning differences between species in their lipidome may be of interest to future entomological studies concerning the yeast-insect interaction and could help to explain the responses of SWD to diverse yeast species.
Collapse
Affiliation(s)
- Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (F.B.); (P.R.)
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (U.S.); (S.S.)
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (F.B.); (P.R.)
| | - Rudi F. Vogel
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (U.S.); (S.S.)
| | - Daniela Eisenstecken
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| |
Collapse
|