1
|
Rintz E, Celik B, Fnu N, Herreño-Pachón AM, Khan S, Benincore-Flórez E, Tomatsu S. Molecular therapy and nucleic acid adeno-associated virus-based gene therapy delivering combinations of two growth-associated genes to MPS IVA mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102211. [PMID: 38831899 PMCID: PMC11145352 DOI: 10.1016/j.omtn.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is caused by a deficiency of the galactosamine (N-acetyl)-6-sulfatase (GALNS) enzyme responsible for the degradation of specific glycosaminoglycans (GAGs). The progressive accumulation of GAGs leads to various skeletal abnormalities (short stature, hypoplasia, tracheal obstruction) and several symptoms in other organs. To date, no treatment is effective for patients with bone abnormalities. To improve bone pathology, we propose a novel combination treatment with the adeno-associated virus (AAV) vectors expressing GALNS enzyme and a natriuretic peptide C (CNP; NPPC gene) as a growth-promoting agent for MPS IVA. In this study, an MPS IVA mouse model was treated with an AAV vector expressing GALNS combined with another AAV vector expressing NPPC gene, followed for 12 weeks. After the combination therapy, bone growth in mice was induced with increased enzyme activity in tissues (bone, liver, heart, lung) and plasma. Moreover, there were significant changes in bone morphology in CNP-treated mice with increased CNP activity in plasma. Delivering combinations of CNP and GALNS gene therapies enhanced bone growth in MPS IVA mice more than in GALNS gene therapy alone. Enzyme expression therapy alone fails to reach the bone growth region; our results indicate that combining it with CNP offers a potential alternative.
Collapse
Affiliation(s)
- Estera Rintz
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Betul Celik
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nidhi Fnu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Angélica María Herreño-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shaukat Khan
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | | | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
2
|
Leal AF, Inci OK, Seyrantepe V, Rintz E, Celik B, Ago Y, León D, Suarez DA, Alméciga-Díaz CJ, Tomatsu S. Molecular Trojan Horses for treating lysosomal storage diseases. Mol Genet Metab 2023; 140:107648. [PMID: 37598508 DOI: 10.1016/j.ymgme.2023.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Orhan Kerim Inci
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Betul Celik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Yasuhiko Ago
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Daniel León
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland; Faculty of Arts and Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Konozy EHE, Osman MEM, Dirar AI. A Comprehensive Review on Euphorbiaceae lectins: Structural and Biological Perspectives. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1956-1969. [PMID: 38105212 DOI: 10.1134/s0006297923110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023]
Abstract
Euphorbiaceae, also known as the spurge family, is a large group of flowering plants. Despite being tropical natives, they are now widespread. Due to its medicinal and commercial importance, this family of plants attracted a lot of attention in the scientific community. The distinctive characteristic of the family is production of milky latex, which is a rich source of several lectins, the proteins that bind carbohydrates. Although their function is unclear, they are believed to defend plants against damaging phytopathogenic microorganisms, insects, and predatory animals. Additionally, they serve as crucial metabolic regulators under a variety of stressors. Detection, separation, purification, and characterization of lectins from the Euphorbiaceae family - mostly from the latex of plants - began over 40 years ago. This effort produced over 35 original research papers that were published. However, no systematic review that compiles these published data has been presented yet. This review summarizes and describes several procedures and protocols employed for extraction and purification of lectins belonging to this family. Physicochemical properties and biological activities of the lectins, along with their medicinal and pharmacological properties, have also been analyzed. Additionally, using examples of ricin and ricin agglutinin, we have structurally analyzed characteristics of the lectin known as Ribosome Inactivating Protein Type II (RIP-Type II) that belongs to this family. We anticipate that this review article will offer a useful compendium of information on this important family of lectins, show the scientists involved in lectin research the gaps in our knowledge, and offer insights for future research.
Collapse
Affiliation(s)
- Emadeldin Hassan E Konozy
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan.
- Pharmaceutical Research and Development Centre, Faculty of Pharmacy, Karary University, Omdurman, Khartoum State, Sudan
| | | | - Amina I Dirar
- Medicinal, Aromatic Plants, and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Khartoum, Sudan
| |
Collapse
|
4
|
Gupta A, Gupta GS. Applications of mannose-binding lectins and mannan glycoconjugates in nanomedicine. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:228. [PMID: 36373057 PMCID: PMC9638366 DOI: 10.1007/s11051-022-05594-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED Glycosylated nanoparticles (NPs) have drawn a lot of attention in the biomedical field over the past few decades, particularly in applications like targeted drug delivery. Mannosylated NPs and mannan-binding lectins/proteins (MBL/MBP) are emerging as promising tools for delivery of drugs, medicines, and enzymes to targeted tissues and cells as nanocarriers, enhancing their therapeutic benefits while avoiding the adverse effects of the drug. The occurrence of plenty of lectin receptors and their mannan ligands on cell surfaces makes them multifaceted carriers appropriate for specific delivery of bioactive drug materials to their targeted sites. Thus, the present review describes the tethering of mannose (Man) to several nanostructures, like micelles, liposomes, and other NPs, applicable for drug delivery systems. Bioadhesion through MBL-like receptors on cells has involvements applicable to additional arenas of science, for example gene delivery, tissue engineering, biomaterials, and nanotechnology. This review also focuses on the role of various aspects of drug/antigen delivery using (i) mannosylated NPs, (ii) mannosylated lectins, (iii) amphiphilic glycopolymer NPs, and (iv) natural mannan-containing polysaccharides, with most significant applications of MBL-based NPs as multivalent scaffolds, using different strategies. GRAPHICAL ABSTRACT Mannosylated NPs and/or MBL/MBP are coming up as viable and versatile tools as nanocarriers to deliver drugs and enzymes precisely to their target tissues or cells. The presence of abundant number of lectin receptors and their mannan ligands on cell surfaces makes them versatile carriers suitable for the targeted delivery of bioactive drugs.
Collapse
Affiliation(s)
- Anita Gupta
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - G. S. Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
5
|
Grabowski GA, Mistry PK. Therapies for lysosomal storage diseases: Principles, practice, and prospects for refinements based on evolving science. Mol Genet Metab 2022; 137:81-91. [PMID: 35933791 DOI: 10.1016/j.ymgme.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory A Grabowski
- University of Cincinnati College of Medicine, Department of Pediatrics, Department of Molecular Genetics, Biochemistry and Microbiology, United States of America; Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States of America.
| | - Pramod K Mistry
- Yale School of Medicine, Department of Medicine, Department of Pediatrics, Department of Cellular & Molecular Physiology, New Haven, CT, United States of America
| |
Collapse
|
6
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Wang X, Karki U, Abeygunaratne H, UnnoldCofre C, Xu J. Plant cell-secreted stem cell factor stimulates expansion and differentiation of hematopoietic stem cells. Process Biochem 2020; 100:39-48. [PMID: 33071562 DOI: 10.1016/j.procbio.2020.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ex vivo generation of red blood cells (RBCs) from hematopoietic stem cells (HSCs) used for blood transfusion represents one of the focuses in current regenerative medicine. However, massive production of HSCs-based RBCs requires a significant quantity of erythropoietic growth factors, making manufacturing at large scale cost prohibitive. Plant cell culture is proposed to be a promising bioproduction platform for functional human proteins in a safe and cost-efficient manner. This study exploited a proprietary technology, named HypGP engineering technology, for high-yield production of one of the key erythropoietic growth factors--stem cell factor (SCF)--in plant cell culture. Specifically, a designer hydroxyproline (Hyp)-O-glycosylated peptide (HypGP) comprised of 20 tandem repeats of the "Ser-Pro" motif, or (SP)20, was engineered at either the N-terminus or C-terminus of SCF in tobacco BY-2 cells. The (SP)20 tag dramatically increased the secreted yields of SCF up to 2.5 μg/ml. The (SP)20-tagged SCF showed bioactivity in promoting the proliferation of the TF-1 cell line, although the SCF-(SP)20 was 8.4-fold more potent than the (SP)20-SCF. Both the (SP)20-SCF and SCF-(SP)20 exhibited desired function in stimulating the expansion and differentiation of human umbilical cord blood CD34+ cells towards RBCs.
Collapse
Affiliation(s)
- Xiaoting Wang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.,Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.,Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Hasara Abeygunaratne
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Carmela UnnoldCofre
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.,College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
8
|
Acosta W, Cramer CL. Targeting Macromolecules to CNS and Other Hard-to-Treat Organs Using Lectin-Mediated Delivery. Int J Mol Sci 2020; 21:ijms21030971. [PMID: 32024082 PMCID: PMC7037663 DOI: 10.3390/ijms21030971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
The greatest challenges for therapeutic efficacy of many macromolecular drugs that act on intracellular are delivery to key organs and tissues and delivery into cells and subcellular compartments. Transport of drugs into critical cells associated with disease, including those in organs protected by restrictive biological barriers such as central nervous system (CNS), bone, and eye remains a significant hurdle to drug efficacy and impacts commercial risk and incentives for drug development for many diseases. These limitations expose a significant need for the development of novel strategies for macromolecule delivery. RTB lectin is the non-toxic carbohydrate-binding subunit B of ricin toxin with high affinity for galactose/galactosamine-containing glycolipids and glycoproteins common on human cell surfaces. RTB mediates endocytic uptake into mammalian cells by multiple routes exploiting both adsorptive-mediated and receptor-mediated mechanisms. In vivo biodistribution studies in lysosomal storage disease models provide evidence for the theory that the RTB-lectin transports corrective doses of enzymes across the blood–brain barrier to treat CNS pathologies. These results encompass significant implications for protein-based therapeutic approaches to address lysosomal and other diseases having strong CNS involvement.
Collapse
|
9
|
Single enzyme nanoparticle, an effective tool for enzyme replacement therapy. Arch Pharm Res 2020; 43:1-21. [PMID: 31989476 DOI: 10.1007/s12272-020-01216-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 01/10/2023]
Abstract
The term "single enzyme nanoparticle" (SEN) refers to a chemically or biologically engineered single enzyme molecule. SENs are distinguished from conventional protein nanoparticles in that they can maintain their individual structure and enzymatic activity following modification. Furthermore, SENs exhibit enhanced properties as biopharmaceuticals, such as reduced antigenicity, and increased stability and targetability, which are attributed to the introduction of specific moieties, such as poly(ethylene glycol), carbohydrates, and antibodies. Enzyme replacement therapy (ERT) is a crucial therapeutic option for controlling enzyme-deficiency-related disorders. However, the unfavorable properties of enzymes, including immunogenicity, lack of targetability, and instability, can undermine the clinical significance of ERT. As shown in the cases of Adagen®, Revcovi®, Palynziq®, and Strensiq®, SEN can be an effective technology for overcoming these obstacles. Based on these four licensed products, we expect that additional SENs will be introduced for ERT in the near future. In this article, we review the concepts and features of SENs, as well as their preparation methods. Additionally, we summarize different types of enzyme deficiency disorders and the corresponding therapeutic enzymes. Finally, we focus on the current status of SENs in ERT by reviewing FDA-approved products.
Collapse
|
10
|
Enzyme replacement therapy for mucopolysaccharidoses; past, present, and future. J Hum Genet 2019; 64:1153-1171. [PMID: 31455839 DOI: 10.1038/s10038-019-0662-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders, which lack an enzyme corresponding to the specific type of MPS. Enzyme replacement therapy (ERT) has been the standard therapeutic option for some types of MPS because of the ability to start immediate treatment with feasibility and safety and to improve prognosis. There are several disadvantages for current ERT, such as limited impact to the brain and avascular cartilage, weekly or biweekly infusions lasting 4-5 h, the immune response against the infused enzyme, a short half-life, and the high cost. Clinical studies of ERT have shown limited efficacy in preventing or resolving progression in neurological, cardiovascular, and skeletal diseases. One focus is to penetrate the avascular cartilage area to at least stabilize, if not reverse, musculoskeletal diseases. Although early intervention in some types of MPS has shown improvements in the severity of skeletal dysplasia and stunted growth, this limits the desired effect of ameliorating musculoskeletal disease progression to young MPS patients. Novel ERT strategies are under development to reach the brain: (1) utilizing a fusion protein with monoclonal antibody to target a receptor on the BBB, (2) using a protein complex from plant lectin, glycan, or insulin-like growth factor 2, and (3) direct infusion across the BBB. As for MPS IVA and VI, bone-targeting ERT will be an alternative to improve therapeutic efficacy in bone and cartilage. This review summarizes the effect and limitations on current ERT for MPS and describes the new technology to overcome the obstacles of conventional ERT.
Collapse
|
11
|
Safary A, Akbarzadeh Khiavi M, Omidi Y, Rafi MA. Targeted enzyme delivery systems in lysosomal disorders: an innovative form of therapy for mucopolysaccharidosis. Cell Mol Life Sci 2019; 76:3363-3381. [PMID: 31101939 PMCID: PMC11105648 DOI: 10.1007/s00018-019-03135-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
Abstract
Mucopolysaccharidoses (MPSs), which are inherited lysosomal storage disorders caused by the accumulation of undegraded glycosaminoglycans, can affect the central nervous system (CNS) and elicit cognitive and behavioral issues. Currently used enzyme replacement therapy methodologies often fail to adequately treat the manifestations of the disease in the CNS and other organs such as bone, cartilage, cornea, and heart. Targeted enzyme delivery systems (EDSs) can efficiently cross biological barriers such as blood-brain barrier and provide maximal therapeutic effects with minimal side effects, and hence, offer great clinical benefits over the currently used conventional enzyme replacement therapies. In this review, we provide comprehensive insights into MPSs and explore the clinical impacts of multimodal targeted EDSs.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mostafa Akbarzadeh Khiavi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
12
|
Thomas R, Kermode AR. Enzyme enhancement therapeutics for lysosomal storage diseases: Current status and perspective. Mol Genet Metab 2019; 126:83-97. [PMID: 30528228 DOI: 10.1016/j.ymgme.2018.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/28/2023]
Abstract
Small-molecule- enzyme enhancement therapeutics (EETs) have emerged as attractive agents for the treatment of lysosomal storage diseases (LSDs), a broad group of genetic diseases caused by mutations in genes encoding lysosomal enzymes, or proteins required for lysosomal function. The underlying enzyme deficiencies characterizing LSDs cause a block in the stepwise degradation of complex macromolecules (e.g. glycosaminoglycans, glycolipids and others), such that undegraded or partially degraded substrates progressively accumulate in lysosomal and non-lysosomal compartments, a process leading to multisystem pathology via primary and secondary mechanisms. Missense mutations underlie many of the LSDs; the resultant mutant variant enzyme hydrolase is often impaired in its folding and maturation making it subject to rapid disposal by endoplasmic reticulum (ER)-associated degradation (ERAD). Enzyme deficiency in the lysosome is the result, even though the mutant enzyme may retain significant catalytic functioning. Small molecule modulators - pharmacological chaperones (PCs), or proteostasis regulators (PRs) are being identified through library screens and computational tools, as they may offer a less costly approach than enzyme replacement therapy (ERT) for LSDs, and potentially treat neuronal forms of the diseases. PCs, capable of directly stabilizing the mutant protein, and PRs, which act on other cellular elements to enhance protein maturation, both allow a proportion of the synthesized variant protein to reach the lysosome and function. Proof-of-principle for PCs and PRs as therapeutic agents has been demonstrated for several LSDs, yet definitive data of their efficacy in disease models and/or in downstream clinical studies in many cases has yet to be achieved. Basic research to understand the cellular consequences of protein misfolding such as perturbed organellar crosstalk, redox status, and calcium balance is needed. Likewise, an elucidation of the early in cellulo pathogenic events underlying LSDs is vital and may lead to the discovery of new small molecule modulators and/or to other therapeutic approaches for driving proteostasis toward protein rescue.
Collapse
Affiliation(s)
- Ryan Thomas
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby B.C. V5A 1S6, Canada
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby B.C. V5A 1S6, Canada.
| |
Collapse
|
13
|
Cardon F, Pallisse R, Bardor M, Caron A, Vanier J, Ele Ekouna JP, Lerouge P, Boitel‐Conti M, Guillet M. Brassica rapa hairy root based expression system leads to the production of highly homogenous and reproducible profiles of recombinant human alpha-L-iduronidase. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:505-516. [PMID: 30058762 PMCID: PMC6335068 DOI: 10.1111/pbi.12994] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/02/2018] [Accepted: 07/22/2018] [Indexed: 05/28/2023]
Abstract
The Brassica rapa hairy root based expression platform, a turnip hairy root based expression system, is able to produce human complex glycoproteins such as the alpha-L-iduronidase (IDUA) with an activity similar to the one produced by Chinese Hamster Ovary (CHO) cells. In this article, a particular attention has been paid to the N- and O-glycosylation that characterize the alpha-L-iduronidase produced using this hairy root based system. This analysis showed that the recombinant protein is characterized by highly homogeneous post translational profiles enabling a strong batch to batch reproducibility. Indeed, on each of the 6 N-glycosylation sites of the IDUA, a single N-glycan composed of a core Man3 GlcNAc2 carrying one beta(1,2)-xylose and one alpha(1,3)-fucose epitope (M3XFGN2) was identified, highlighting the high homogeneity of the production system. Hydroxylation of proline residues and arabinosylation were identified during O-glycosylation analysis, still with a remarkable reproducibility. This platform is thus positioned as an effective and consistent expression system for the production of human complex therapeutic proteins.
Collapse
Affiliation(s)
| | | | - Muriel Bardor
- Laboratoire Glyco‐MEV EA4358UNIROUENNormandie UniversitéRouenFrance
- Institut Universitaire de France (I.U.F.)Paris Cedex 05France
| | | | - Jessica Vanier
- Laboratoire Glyco‐MEV EA4358UNIROUENNormandie UniversitéRouenFrance
| | - Jean Pierre Ele Ekouna
- Biologie des Plantes et Innovation (BIOPI)Université de Picardie Jules VerneAmiensFrance
| | - Patrice Lerouge
- Laboratoire Glyco‐MEV EA4358UNIROUENNormandie UniversitéRouenFrance
| | - Michèle Boitel‐Conti
- Biologie des Plantes et Innovation (BIOPI)Université de Picardie Jules VerneAmiensFrance
| | | |
Collapse
|
14
|
Abstract
Biotechnology has revolutionized therapeutics for the treatment of a wide range of diseases. Recent advances in protein engineering and material science have made the targeted delivery of enzyme therapeutics using nanocarriers (NCs) a new model of treatment. Several NCs have been approved for clinical use in drug delivery. Despite their advantages, few NCs have been approved to deliver enzyme cargo in a targeted manner. This review details the current arsenal of platforms developed to deliver enzyme therapeutics as well as the advantages and challenges of using enzymes as drugs, with examples from the literature, and discusses the benefits and liabilities of a given approach. We conclude by providing a perspective on how this field may evolve over the near and long-term.
Collapse
|
15
|
Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting. Oncotarget 2018; 8:26896-26910. [PMID: 28460472 PMCID: PMC5432305 DOI: 10.18632/oncotarget.15849] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/20/2017] [Indexed: 01/03/2023] Open
Abstract
Lectins have been recognized as promising carrier molecules for targeted drug delivery. They specifically bind carbohydrate moieties on cell membranes and trigger cell internalization. Fungal lectin MpL (Macrolepiota procera lectin) does not provoke cancer cell cytotoxicity but is able to bind aminopeptidase N (CD13) and integrin α3β1, two glycoproteins that are overexpressed on the membrane of tumor cells. Upon binding, MpL is endocytosed in a clathrin-dependent manner and accumulates initially in the Golgi apparatus and, finally, in the lysosomes. For effective binding and internalization a functional binding site on the α-repeat is needed. To test the potential of MpL as a carrier for delivering protein drugs to cancer cells we constructed fusion proteins consisting of MpL and the cysteine peptidase inhibitors cystatin C and clitocypin. The fused proteins followed the same endocytic route as the unlinked MpL. Peptidase inhibitor-MpL fusions impaired both the intracellular degradation of extracellular matrix and the invasiveness of cancer cells. MpL is thus shown in vitro to be a lectin that can enable protein drugs to enter cancer cells, enhance their internalization and sort them to lysosomes and the Golgi apparatus.
Collapse
|
16
|
Abstract
Plant molecular farming depends on a diversity of plant systems for production of useful recombinant proteins. These proteins include protein biopolymers, industrial proteins and enzymes, and therapeutic proteins. Plant production systems include microalgae, cells, hairy roots, moss, and whole plants with both stable and transient expression. Production processes involve a narrowing diversity of bioreactors for cell, hairy root, microalgae, and moss cultivation. For whole plants, both field and automated greenhouse cultivation methods are used with products expressed and produced either in leaves or seeds. Many successful expression systems now exist for a variety of different products with a list of increasingly successful commercialized products. This chapter provides an overview and examples of the current state of plant-based production systems for different types of recombinant proteins.
Collapse
Affiliation(s)
| | - Thomas Bley
- Bioprocess Engineering, Institute of Food Technology and Bioprocess Engineering, TU Dresden, Dresden, Germany
| |
Collapse
|
17
|
Ou L, Przybilla MJ, Koniar B, Whitley CB. RTB lectin-mediated delivery of lysosomal α-l-iduronidase mitigates disease manifestations systemically including the central nervous system. Mol Genet Metab 2018; 123:105-111. [PMID: 29198892 PMCID: PMC5808854 DOI: 10.1016/j.ymgme.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal disease resulting from deficiency in the α-L-iduronidase (IDUA) hydrolase and subsequent accumulation of glycosaminoglycan (GAG). Clinically, enzyme replacement therapy (ERT) with IDUA achieves negligible neurological benefits presumably due to blood-brain-barrier (BBB) limitations. To investigate the plant lectin ricin B chain (RTB) as a novel carrier for enzyme delivery to the brain, an IDUA:RTB fusion protein (IDUAL), produced in N. benthamiana leaves, was tested in a murine model of Hurler syndrome (MPS I). Affect mice (n=3 for each group) were intravenously injected with a single dose of IDUAL (0.58, 2 or 5.8mgIDUAequivalents/kg) and analyzed after 24h. IDUA activities in liver, kidney and spleen increased significantly, and liver GAG levels were significantly reduced in all three groups. Plasma IDUA levels for all treated groups were high at 1h after injection and decreased by 95% at 4h, indicating efficient distribution into tissues. For long-term evaluations, IDUAL (0.58 or 2mg/kg, 8 weekly injections) was intravenously injected into MPS I mice (n=12 for each group). Thirteen days after the 8th injection, significant IDUA activity was detected in the liver and spleen. GAG levels in tissues including the brain cortex and cerebellum were significantly reduced in treated animals. Treated MPS I mice also showed significant improvement in neurocognitive testing. ELISA results showed that while there was a significant antibody response against IDUAL and plant-derived IDUA, there was no significant antibody response to RTB. No major toxicity or adverse events were observed. Together, these results showed that infusion of IDUAL allowed for significant IDUA levels and GAG reduction in the brain and subsequent neurological benefits. This RTB-mediated delivery may have significant implications for therapeutic protein delivery impacting a broad spectrum of lysosomal, and potentially neurological diseases.
Collapse
Affiliation(s)
- Li Ou
- Gene Therapy Center, Department of Pediatrics, United States
| | | | - Brenda Koniar
- Research Animal Resources, University of Minnesota, Minneapolis, MN 55455, United States
| | | |
Collapse
|
18
|
Coelho LCBB, Silva PMDS, Lima VLDM, Pontual EV, Paiva PMG, Napoleão TH, Correia MTDS. Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1594074. [PMID: 28367220 PMCID: PMC5359455 DOI: 10.1155/2017/1594074] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Lectins are proteins extensively used in biomedical applications with property to recognize carbohydrates through carbohydrate-binding sites, which identify glycans attached to cell surfaces, glycoconjugates, or free sugars, detecting abnormal cells and biomarkers related to diseases. These lectin abilities promoted interesting results in experimental treatments of immunological diseases, wounds, and cancer. Lectins obtained from virus, microorganisms, algae, animals, and plants were reported as modulators and tool markers in vivo and in vitro; these molecules also play a role in the induction of mitosis and immune responses, contributing for resolution of infections and inflammations. Lectins revealed healing effect through induction of reepithelialization and cicatrization of wounds. Some lectins have been efficient agents against virus, fungi, bacteria, and helminths at low concentrations. Lectin-mediated bioadhesion has been an interesting characteristic for development of drug delivery systems. Lectin histochemistry and lectin-based biosensors are useful to detect transformed tissues and biomarkers related to disease occurrence; antitumor lectins reported are promising for cancer therapy. Here, we address lectins from distinct sources with some biological effect and biotechnological potential in the diagnosis and therapeutic of diseases, highlighting many advances in this growing field.
Collapse
Affiliation(s)
| | - Priscila Marcelino dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| |
Collapse
|
19
|
Current Strategies for the Delivery of Therapeutic Proteins and Enzymes to Treat Brain Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:1-28. [DOI: 10.1016/bs.irn.2017.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Schuh RS, Baldo G, Teixeira HF. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin Drug Deliv 2016; 13:1709-1718. [DOI: 10.1080/17425247.2016.1202235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roselena S. Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da UFRGS, Faculdade de Farmácia, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Genética e Biologia Molecular da UFRGS, Departamento de Fisiologia, Porto Alegre, RS, Brazil
| | - Helder F. Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da UFRGS, Faculdade de Farmácia, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett RA, Aflaki E, Jung O, Tamargo R, Rodriguez-Gil JL, Acosta W, Hendrix A, Behre B, Tayebi N, Fujiwara H, Sidhu R, Renvoise B, Ginns EI, Dutra A, Pak E, Cramer C, Ory DS, Pavan WJ, Sidransky E. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech 2016; 9:769-78. [PMID: 27482815 PMCID: PMC4958308 DOI: 10.1242/dmm.024588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies. Summary: This work describes the generation of a novel immortalized glucocerebrosidase-deficient neuronal cell model with utility for pathophysiology research and therapeutic development in Gaucher disease.
Collapse
Affiliation(s)
- Wendy Westbroek
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Nguyen
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marina Siebert
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA Postgraduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Taylor Lindstrom
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Burnett
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elma Aflaki
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olive Jung
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Tamargo
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jorge L Rodriguez-Gil
- Genomics, Development, and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent 9000, Belgium
| | - Bahafta Behre
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nahid Tayebi
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hideji Fujiwara
- Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Rohini Sidhu
- Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Benoit Renvoise
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward I Ginns
- Lysosomal Disorders Treatment and Research Program, Clinical Labs, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Amalia Dutra
- Cytogenetics Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evgenia Pak
- Cytogenetics Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Daniel S Ory
- Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - William J Pavan
- Genomics, Development, and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Condori J, Acosta W, Ayala J, Katta V, Flory A, Martin R, Radin J, Cramer CL, Radin DN. Enzyme replacement for GM1-gangliosidosis: Uptake, lysosomal activation, and cellular disease correction using a novel β-galactosidase:RTB lectin fusion. Mol Genet Metab 2016; 117:199-209. [PMID: 26766614 PMCID: PMC6116835 DOI: 10.1016/j.ymgme.2015.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/04/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
Abstract
New enzyme delivery technologies are required for treatment of lysosomal storage disorders with significant pathologies associated with the so-called "hard-to-treat" tissues and organs. Genetic deficiencies in the GLB1 gene encoding acid β-galactosidase lead to GM1-gangliosidosis or Morquio B, lysosomal diseases with predominant disease manifestation associated with the central nervous system or skeletal system, respectively. Current lysosomal ERTs are delivered into cells based on receptor-mediated endocytosis and do not effectively address several hard-to-treat organs including those critical for GM1-gangliosidosis patients. Lectins provide alternative cell-uptake mechanisms based on adsorptive-mediated endocytosis and thus may provide unique biodistribution for lysosomal disease therapeutics. In the current study, genetic fusions of the plant galactose/galactosamine-binding lectin, RTB, and the human acid β-galactosidase enzyme were produced using a plant-based bioproduction platform. β-gal:RTB and RTB:β-gal fusion products retained both lectin activity and β-galactosidase activity. Purified proteins representing both fusion orientations were efficiently taken up into GM1 patient fibroblasts and mediated the reduction of GM1 ganglioside substrate with activities matching mammalian cell-derived β-galactosidase. In contrast, plant-derived β-gal alone was enzymatically active but did not mediate uptake or correction indicating the need for either lectin-based (plant product) or mannose-6-phosphate-based (mammalian product) delivery. Native β-galactosidase undergoes catalytic activation (cleavage within the C-terminal region) in lysosomes and is stabilized by association with protective protein/cathepsin A. Enzymatic activity and lysosomal protein processing of the RTB fusions were assessed following internalization into GM1 fibroblasts. Within 1-4h, both β-gal:RTB and RTB:β-gal were processed to the ~64kDa "activated" β-gal form; the RTB lectin was cleaved and rapidly degraded. The activated β-gal was still detected at 48h suggesting interactions with protective protein/cathepsin A. Uptake-saturation analyses indicated that the RTB adsorptive-mediated mechanisms of β-gal:RTB supported significantly greater accumulation of β-galactose activity in fibroblasts compared to the receptor-mediated mechanisms of the mammalian cell-derived β-gal. These data demonstrate that plant-made β-gal:RTB functions as an effective replacement enzyme for GM1-gangliosidosis - delivering enzyme into cells, enabling essential lysosomal processing, and mediating disease substrate clearance at the cellular level. RTB provides novel uptake behaviors and thus may provide new receptor-independent strategies that could broadly impact lysosomal disease treatments.
Collapse
Affiliation(s)
- Jose Condori
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Walter Acosta
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Jorge Ayala
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Varun Katta
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Ashley Flory
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Reid Martin
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA; Arkansas Biosciences Institute & Dept. Biological Sciences, P.O Box 639, Arkansas State University-Jonesboro, State University, AR 72467, USA
| | - Jonathan Radin
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Carole L Cramer
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA; Arkansas Biosciences Institute & Dept. Biological Sciences, P.O Box 639, Arkansas State University-Jonesboro, State University, AR 72467, USA.
| | - David N Radin
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| |
Collapse
|