1
|
Chen Y, Lei X, Zhang T, Dang G, Cheng C, Fang C, Liang Y, Qin Y, Song Y, Wang L, Liu Y. Insight into the effect of geography and variety on the wine flavory distinctness based on the variations of indigenous microbiota in Xinjiang of China. Food Res Int 2025; 211:116364. [PMID: 40356098 DOI: 10.1016/j.foodres.2025.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Wine fermentation and flavour formation are the result of complex biochemical reactions driven by the microbial activity at the influences of multiple scales, of which the regional distinctness is significantly affected by the specific microbiota. In the study, volatile profiles and fungal compositions were examined by analysis of HS-SPME-GC-MS and high-throughput amplicon sequencing. The results indicated that succinic acid levels were significantly altered by regional factor, while tartaric acid, lactic acid, and volatile acidity were significantly affected by varietal factor. A total of 71 volatiles was characterized and quantified in the resultant wines. Chemometric approaches (OPLS-DA and Random Forest clarification) were used to identify the key regional variations of volatiles from different varietal wines. Nine of the key volatiles were clarified in Cabernet Sauvignon wines, including 1-propanol, isoamylol, (E)-3-hexen-1-ol, 1-heptanol, phenylethyl alcohol, ethyl isovalerate, ethyl 2-methylbutanoate, diethyl succinate, and phenethyl acetate, while seven of the regional variations across Marselan wines were identified involving 1-octen-3-ol, 1-heptanol, ethyl acetate, isobutyl isovalerate, diethyl succinate, d-limonene, and nerol. The microbial amplicon-based result showed that the genera of Saccharomyces, Hanseniaspora, Aspergillus, and Cladosporium, were predominant on grape epidermis and during spontaneous fermentations, of which the relative abundances were adjusted by region, subregion, and variety. Correlation analysis highlighted that several non-fermentative fungi were significantly associated with aroma-active compounds with the exception of fermentative yeasts. This study underscores the intricate interplay between regional factors and varietal characteristics in shaping wine aroma characteristics, highlighting the importance of microbial diversity in enhancing wine quality and uniqueness.
Collapse
Affiliation(s)
- Yu Chen
- College of Enology, Northwest A & F University, Yangling 712100, Shaanxi, China; Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Xingmeng Lei
- College of Enology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Tianyuan Zhang
- College of Enology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Guofang Dang
- College of Enology, Northwest A & F University, Yangling 712100, Shaanxi, China; CITIC Niya Wine Co. Ltd, Manasi, 832200, Xinjiang, China
| | - Chifang Cheng
- CITIC Niya Wine Co. Ltd, Manasi, 832200, Xinjiang, China
| | | | - Yanying Liang
- College of Enology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yi Qin
- College of Enology, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shaanxi, China
| | - Yuyang Song
- College of Enology, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shaanxi, China.
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China.
| | - Yanlin Liu
- College of Enology, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Belda I, Izquierdo-Gea S, Benitez-Dominguez B, Ruiz J, Vila JCC. Wine Fermentation as a Model System for Microbial Ecology and Evolution. Environ Microbiol 2025; 27:e70092. [PMID: 40222749 DOI: 10.1111/1462-2920.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
In vitro microbial communities have proven to be invaluable model systems for studying ecological and evolutionary processes experimentally. However, it remains unclear whether quantitative insights obtained from these laboratory systems can be applied to complex communities assembling and evolving in their natural ecological context. To bridge the gap between the lab and the 'real-world', there is a need for laboratory model systems that better approximate natural and semi-natural ecosystems. Wine fermentation presents an ideal system for this purpose, balancing experimental tractability with rich ecological and evolutionary dynamics. In this perspective piece we outline the key features that make wine fermentation a fruitful model system for ecologists and evolutionary biologists. We highlight the diversity of environmentally mediated interactions that shape community dynamics during fermentation, the complex evolutionary history of wine microbial populations, and the opportunity to study the impact of complex ecologies on evolutionary dynamics. By integrating knowledge from both wine research and microbial ecology and evolution we aim to enhance understanding and foster collaboration between these fields.
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - Sergio Izquierdo-Gea
- Department of Genetics, Physiology and Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - Belen Benitez-Dominguez
- Department of Genetics, Physiology and Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
- Institute of Functional Biology & Genomics, IBFG - CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Javier Ruiz
- Department of Genetics, Physiology and Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - Jean C C Vila
- Department of Biology, Stanford University, Stanford, USA
| |
Collapse
|
3
|
Bai C, Yao Y, Wang H, Li H, Wei R. The Fungal Microbiome in the Vineyard Ecosystem Plays a Key Role in Shaping the Regional Characteristics of Wine. Foods 2025; 14:1211. [PMID: 40238343 PMCID: PMC11989012 DOI: 10.3390/foods14071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The regional characteristics of wine are shaped by the synergistic effects of vineyard climate conditions, soil microbial microorganisms, soil properties, and grape must microorganisms; however, their role in shaping regional wine quality is still poorly understood. In this study, soil, grape must, and fermentation samples were collected from Cabernet Sauvignon vineyards in five regions of China. High-throughput sequencing technology was used to analyze the microbiota, and Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) was used to determine the wine metabolite profile. The results showed that the wine metabolite profiles from different vineyards were significantly different and could be distinguished by their volatile compounds, with each vineyard possessing unique characteristic metabolites. The geographical origin of vineyards significantly influenced the microbial diversity of both soil and winery environments. Although the microbiota changed during fermentation, regional microbial signatures were preserved at the end of fermentation. The random forest model indicated that fungal diversity and weather are key predictors influencing wine regionality, with fungal diversity in grape must having the greatest impact. Partial least squares path modeling further revealed that fungal diversity in grape must had the most significant impact on wine metabolite profiles, followed by weather and then soil fungal diversity. In contrast, soil properties and soil bacterial diversity had weaker effects on these profiles and were significantly influenced by the weather. Overall, this study provides a novel perspective for understanding the mechanisms underlying wine regionality and clarifies the key role of microorganisms, particularly fungal communities, in shaping wine regionality.
Collapse
Affiliation(s)
- Chunyan Bai
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Jinzhong 030801, China; (C.B.); (Y.Y.)
- Beijing Hongxing Liuquxiang Co., Ltd., Liuquxiang Branch Company, Industrial Zone, Qixian, Jinzhong 030900, China
| | - Yuan Yao
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Jinzhong 030801, China; (C.B.); (Y.Y.)
| | - Hua Wang
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling 712100, China; (H.W.); (H.L.)
| | - Hua Li
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling 712100, China; (H.W.); (H.L.)
| | - Ruteng Wei
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Jinzhong 030801, China; (C.B.); (Y.Y.)
| |
Collapse
|
4
|
Čuš F, Krebelj AJ, Potisek M. Influence of Vineyard Location, Cluster Thinning and Spontaneous Alcoholic Fermentation on Wine Composition. Foods 2025; 14:1101. [PMID: 40238237 PMCID: PMC11989029 DOI: 10.3390/foods14071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
The influence of the vineyard location, the yield per vine and the type of alcoholic fermentation on the composition of Merlot wine from two consecutive vintages was investigated in a simultaneous experiment. Grapes from two locations and two crop loads per vine, from controlled and thinned vines, were vinified. At the same time, grapes from control vines were vinified with inoculated and spontaneous alcoholic fermentation. Comparisons of the wine composition were made using a targeted metabolomic approach, microbiological analysis and sensory evaluation. It has been confirmed that the composition of Merlot wine is essentially determined by the location of the vineyard. The analytical marker used to distinguish the two locations was the content of 3-mercaptohexan-1-ol (significantly higher in location B with 38-130%). It has also been shown that the type of alcoholic fermentation has a greater influence on the composition of the wine than the crop load. The analytical marker used for the cluster thinning was the pH of the wine, which increased significantly by 0.03 to 0.08 units with the lower crop load, and for the type of alcoholic fermentation, the concentration of 2-phenethyl acetate, which relates to the sum of acetates and 2-phenylethanol, which increased significantly by 58-299%, 54-218%, and 24-46% in the spontaneously fermented wines. Both the location of the vineyard and spontaneous alcoholic fermentation influenced the significant differences in the sensory characteristics of the wine, while cluster thinning had no such influence. The other influences of the two technical factors on the wine composition depended on the location of the vineyard and the vintage. It can also be concluded that spontaneous alcoholic fermentation reduced the influence of the vintage on the wine composition, while the opposite was the case with cluster thinning.
Collapse
Affiliation(s)
- Franc Čuš
- Department of Fruit Growing, Viticulture, and Oenology, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia; (A.J.K.); (M.P.)
| | | | | |
Collapse
|
5
|
Belda I, Benitez‐Dominguez B, Izquierdo‐Gea S, Vila JCC, Ruiz J. Ecology and Evolutionary Biology as Frameworks to Study Wine Fermentations. Microb Biotechnol 2025; 18:e70078. [PMID: 40136006 PMCID: PMC11938380 DOI: 10.1111/1751-7915.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 03/27/2025] Open
Abstract
Winemaking has leveraged microbiology to enhance wine quality, typically by engineering and inoculating individual yeast strains with desirable traits. However, yeast strains do not grow alone during wine fermentation, rather they are embedded in diverse and evolving microbial communities exhibiting complex ecological dynamics. Understanding and predicting the interplay between the yeast community over the course of the species succession and the chemical matrix of wine can benefit from recognising that wine, like all microbial ecosystems, is subject to general ecological and evolutionary rules. In this piece, we outline how conceptual and methodological frameworks from community ecology and evolutionary biology can assist wine yeast researchers in improving wine fermentation processes by understanding the mechanisms governing population dynamics, predicting and engineering these important microcosms, and unlocking the genetic potential for wine strain development.
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Genetics, Physiology and Microbiology, BiologyComplutense University of MadridMadridSpain
| | - Belen Benitez‐Dominguez
- Department of Genetics, Physiology and Microbiology, BiologyComplutense University of MadridMadridSpain
- Institute of Functional Biology & Genomics, IBFG–CSICUniversidad de SalamancaSalamancaSpain
| | - Sergio Izquierdo‐Gea
- Department of Genetics, Physiology and Microbiology, BiologyComplutense University of MadridMadridSpain
| | | | - Javier Ruiz
- Department of Genetics, Physiology and Microbiology, BiologyComplutense University of MadridMadridSpain
| |
Collapse
|
6
|
Aires C, Maioto R, Inês A, Dias AA, Rodrigues P, Egas C, Sampaio A. Microbiome and Microbiota Within Wineries: A Review. Microorganisms 2025; 13:538. [PMID: 40142431 PMCID: PMC11944700 DOI: 10.3390/microorganisms13030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The main goal of this work is to review the winery's microbiota, from the grape to the winery's microbial niches (fermentation tanks, surfaces, air), and their risks to wine and human health. The impact of climate change on the winery microbiome and related challenges are also discussed. Microbial diversity in wineries depends on several factors, such as the grape variety and its ripeness, temperature, relative humidity and the diverse activities of the winemaking process. Winery surfaces and equipment allow the establishment of a microbial community that can impact wine quality, the health of winery workers and visitors and even wine consumers. In the context of climate change, changes in the sugar content, phenolic compounds and the profile of hexoses and amino acids are already evident. These changes interfere with the fermentation microbiota and the quality of the wines, which are more alcoholic and less acidic. Furthermore, periods of drought or heavy rain favor species associated with berry diseases, including some capable of producing mycotoxins or harmful biogenic amines. In order to understand the impact of these changes on microbial communities, the use of various techniques will be discussed, such as flow cytometry, fluorescence in situ hybridization (FISH), quantitative polymerase chain reaction (qPCR) and metagenomic methods.
Collapse
Affiliation(s)
- Cristina Aires
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.A.); (R.M.); (A.A.D.)
| | - Rita Maioto
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.A.); (R.M.); (A.A.D.)
| | - António Inês
- Centro de Química Vila Real (CQ-VR), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Albino Alves Dias
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.A.); (R.M.); (A.A.D.)
- Laboratório Associado Instituto para a Inovação, Capacitação e Sustentabilidade da Produção Agroalimentar (INOV4AGRO), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Conceição Egas
- Genoinseq—Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - Ana Sampaio
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.A.); (R.M.); (A.A.D.)
- Laboratório Associado Instituto para a Inovação, Capacitação e Sustentabilidade da Produção Agroalimentar (INOV4AGRO), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
7
|
Sumerta IN, Ruan X, Howell K. The forgotten wine: Understanding palm wine fermentation and composition. Int J Food Microbiol 2025; 429:111022. [PMID: 39689568 DOI: 10.1016/j.ijfoodmicro.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Palm wine is an alcoholic beverage that has existed for centuries and has important economic and socio-culture values in many tropical and sub-tropical countries. Lesser known than other types of wines, palm wine is made by spontaneous fermentation of palm sap by naturally occurring microbial communities. The palm sap ecosystem has unique microbial composition and diversity, which determines the composition of the eventual wine and is likely affected by geographical distinctiveness. While these features are well understood in grape and rice wine, these features have not been understood in palm wine. Here, we gather information of microbial communities and metabolite profiles from published studies, covering a wide range of methodologies and regions to better understand the causal links between the principal microbial species and major metabolites of palm wine. We assessed palm wine quality across production regions and local practices to provide general characteristics of palm wine and identify specific regional information. These will provide better understandings to the function of microbial communities and metabolite diversity, the contribution of regional variations and to ensure product quality in this unique, yet overlooked, fermented beverage.
Collapse
Affiliation(s)
- I Nyoman Sumerta
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia; National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Xinwei Ruan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Kate Howell
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
8
|
Fuentes-Espinosa JM, Muñoz-Castells R, Moreno-García J, García-Martínez T, Mauricio JC, Moreno J. Analytical Differentiation of Wines from Three Terroirs Located in a Warm Winegrowing Area Based on Their Volatilome. Molecules 2025; 30:238. [PMID: 39860108 PMCID: PMC11768053 DOI: 10.3390/molecules30020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
This research aims to identify aroma compounds, their combinations, and statistical relationships to classify and characterize wines produced in small, defined areas known as "terroirs", which share edaphoclimatic characteristics grape varieties, viticultural practices, harvest timing, and winemaking processes. The goal is to deepen the understanding of the relationship between the terroir and wine typicity. This study analyzed the contents based on enological parameters, the major and minor volatile compounds of the young wines produced in three wineries across two vintages, using the Pedro Ximenez white grape variety cultivated in different terroirs within the same quality zone. Statistical tools, such as Multiple Variable Analysis (MVA) and Principal Component Analysis (PCA), were employed to identify significant differences in the volatilomes of wines. PCA effectively differentiated wines from each terroir and vintage using scores from the first two principal components, calculated based on the absolute concentrations of 12 major volatile compounds and 3 polyols. Conversely, PCA based on the concentrations of 52 minor volatile compounds showed a strong ability to classify wines by vintage year. The minor volatile contents of wines from 2 vintages, grouped into 9 chemical families, provide distinct fingerprints that enable wines to be distinguished by terroir. The results underscore the chemical basis underlying terroir typicity in a production zone within a warm Protected Denomination of Origin (PDO).
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, 14014 Córdoba, Spain; (J.M.F.-E.); (R.M.-C.); (J.M.-G.); (T.G.-M.); (J.C.M.)
| |
Collapse
|
9
|
Palladino G, Nanetti E, Scicchitano D, Cinti N, Foresto L, Cozzi A, Gonzalez Vara Rodriguez A, Interino N, Fiori J, Turroni S, Candela M, Rampelli S. Zonation of the Vitis vinifera microbiome in Vino Nobile di Montepulciano PDO production area. Commun Biol 2024; 7:1626. [PMID: 39653697 PMCID: PMC11628622 DOI: 10.1038/s42003-024-07261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
The microbial dimension of the terroir is crucial for wine quality, as microbiomes contribute to plant biofertilization, stress tolerance and pathogen suppression. While microbial terroir can act as a biological signature at large scale, data for local contexts is lacking, hindering the characterization of regional microbial diversity in vineyards. Here, we define the microbial terroir of vineyards across the 12 sub-areas (Additional Geographic Units -AGUs) of the "Consorzio del Vino Nobile di Montepulciano DOCG" PDO area (Italy), a world-renowned wine-producing region. Rhizospheres of Vitis vinifera cultivar Sangiovese and soil samples were collected throughout the 2022 viticultural season and analyzed through an integrated metabarcoding/shotgun metagenomic approach, targeting bacteria and fungi. Wine metabolomics was also perfomed, projecting compositional and functional variations of the microbial terroir at the AGUs level into a corresponding variation in the product metabolic profile. Our findings reveal a unique taxonomic configuration of the Vino Nobile di Montepulciano terroir compared to other vineyards, with microbiomes being "AGU-specific" in taxonomic abundances and plant growth-promoting functions, confirming the potential relevance of characterizing and preserving the microbial terroir to safeguard high-quality traditional wines.
Collapse
Affiliation(s)
- Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Enrico Nanetti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Nicolò Cinti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Lucia Foresto
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Alice Cozzi
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
| | - Antonio Gonzalez Vara Rodriguez
- Unit of Enzymology, Department of Pharmacy and Biotechnology, University of Bologna, viale Risorgimento 4, 40136, Bologna, Italy
| | - Nicolò Interino
- Laboratorio di Proteomica Metabolomica e Chimica Bioanalitica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Jessica Fiori
- Laboratorio di Proteomica Metabolomica e Chimica Bioanalitica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy.
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy.
| |
Collapse
|
10
|
Whiteley LE, Rieckh G, Diggle FL, Alaga ZM, Nachbaur EH, Nachbaur WT, Whiteley M. Use of commercial or indigenous yeast impacts the S. cerevisiae transcriptome during wine fermentation. Microbiol Spectr 2024; 12:e0119424. [PMID: 39287451 PMCID: PMC11537062 DOI: 10.1128/spectrum.01194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Grapes have been cultivated for wine production for millennia. Wine production involves a complex biochemical process where sugars in grape must are converted into alcohol and other compounds by microbial fermentation, primarily by the yeast Saccharomyces cerevisiae. Commercially available S. cerevisiae strains are often used in winemaking, but indigenous (native) strains are gaining attention for their potential to contribute unique flavors. Recent advancements in high-throughput DNA sequencing have revolutionized our understanding of microbial communities during wine fermentation. Indeed, transcriptomic analysis of S. cerevisiae during wine fermentation has revealed a core gene expression program and provided insights into how this yeast adapts to fermentation conditions. Here, we assessed how the age of vines impacts the grape fungal microbiome and used transcriptomics to characterize microbial functions in grape must fermented with commercial and native S. cerevisiae. We discovered that ~130-year-old Zinfandel vines harbor higher fungal loads on their grapes compared to 20-year-old Zinfandel vines, but fungal diversity is similar. Additionally, a comparison of inoculated and uninoculated fermentations showed distinct fungal dynamics, with uninoculated fermentations harboring the yeasts Metschnikowia and Pichia. Transcriptomic analysis revealed significant differences in gene expression between fermentations inoculated and not inoculated with a commercial S. cerevisiae strain. Genes related to metabolism, stress response, and cell adhesion were differentially expressed, indicating varied functionality of S. cerevisiae in these fermentations. These findings provide insights into S. cerevisiae function during fermentation and highlight the potential for indigenous yeast to contribute to wine diversity. IMPORTANCE Understanding microbial functions during wine fermentation, particularly the role of Saccharomyces cerevisiae, is crucial for enhancing wine quality. While commercially available S. cerevisiae strains are commonly used, indigenous strains can offer unique flavors, potentially reflecting vineyard terroir. By leveraging high-throughput DNA sequencing and transcriptomic analysis, we explored the impact of vine age on the grape mycobiome and characterized microbial functions during grape fermentation. Our findings revealed that older vines harbor higher fungal loads, but fungal diversity remains similar across vine ages. Additionally, uninoculated fermentations exhibited diverse fungal dynamics, including the beneficial wine yeasts Metschnikowia and Pichia. Transcriptomic analysis uncovered significant differences in S. cerevisiae gene expression between inoculated and uninoculated fermentations, highlighting the potential of indigenous yeast to enhance wine diversity and inform winemaking practices.
Collapse
Affiliation(s)
- Lauren E. Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Georg Rieckh
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Frances L. Diggle
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Zach M. Alaga
- Alegría Vineyards and Acorn Winery, Healdsburg, California, USA
| | | | | | - Marvin Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Wicaksono WA, Akinyemi OE, Wassermann B, Bickel S, Suwanto A, Berg G. The terroir of Tempeh: Strong region-specific signatures in the bacterial community structures across Indonesia. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100287. [PMID: 39497934 PMCID: PMC11533015 DOI: 10.1016/j.crmicr.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Tempeh, a soybean product from Indonesia, is created through fermentation by Rhizopus spp. and associated bacteria. Here, we aim to get an overview of the variability of the tempeh microbiota across Indonesia and disentangle influencing factors. We found high variability in bacterial abundance (103 - 109 copies g-1), richness (nASV = 40 - 175 ASVs), and diversity (H' = 0.9 - 3.5) in tempeh. The primary factor affecting this variation was the region, where the tempeh was produced. Interestingly, tempeh samples obtained from geographically close areas tended to share similar bacterial profiles, suggesting a "terroir" of tempeh. Additionally, tempeh wrapped in banana leaves had a higher abundance of enterobacteria in comparison to tempeh wrapped in plastic but also tended to have a higher total bacterial and lactobacilli abundance. Despite all variability, the tempeh core microbiome consists Lactobacillales and Enterobacteriales. This study demonstrates a high variability of bacterial diversity in traditional tempeh from local producers highlighting a strong regional influence across Indonesia.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Samuel Bickel
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Antonius Suwanto
- Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, Indonesia
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
12
|
Snyder T, Osborne J, Curtin C. Contributions of Hanseniaspora species to Pinot Noir microbial terroir in Oregon's Willamette Valley wine region. Appl Environ Microbiol 2024; 90:e0081024. [PMID: 39136488 PMCID: PMC11409673 DOI: 10.1128/aem.00810-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/18/2024] [Indexed: 09/19/2024] Open
Abstract
The apiculate yeast genus Hanseniaspora has appeared frequently in enological research for more than 100 years, mostly focused upon the species H. uvarum due to its notable capacity to cause spoilage. Recently, there has been increased research into the potential benefits of other Hanseniaspora species, such as H. vineae, in producing more complex wines. Furthermore, large-scale DNA sequencing-based (metabarcoding) vineyard ecology studies have suggested that Hanseniaspora species may not be evenly distributed. To address potential differences across geographical areas in Oregon, we sampled extensively from 12 vineyards within the Willamette Valley American Viticultural Area (AVA), across 2 sub-AVAs (Eola-Amity Hills and Yamhill-Carlton). Metabarcoding was then used to assess the contribution of Hanseniaspora to the grape berry fungal community and the impact of wine processing on diversity. While 6 of the 23 recognized Hanseniaspora species were present on Pinot Noir grapes in the Willamette Valley AVA, differences between vineyards were driven by the abundance of H. uvarum. Significant positive correlations between the amount of H. uvarum present in must and at cold soak, and then cold soak to early ferment were observed. While intuitive, it is worth noting that no prior studies have observed this across such a large number of grape samples from different vineyards. Our results provide clear evidence that the abundance of H. uvarum on grapes may be an important predictor of potential impacts on wine quality, particularly if performing cold soak, which acts as an enrichment step. IMPORTANCE Hanseniaspora yeasts are frequently found in uninoculated wine fermentations, and depending upon the species present, their contributions to the wine may be positive or negative. We found that in Oregon's Willamette Valley, the most common species of Hanseniaspora in Pinot Noir vineyards was the known spoilage organism, H. uvarum. This species was one of the strongest contributors to differences in fungal communities between different vineyards and was enriched during typical Pinot Noir processing. These results support Hanseniaspora as an integral and functional component of vineyard "microbial terroir" within Oregon.
Collapse
Affiliation(s)
- Tess Snyder
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - James Osborne
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Chris Curtin
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
13
|
Zhang XK, Liu PT, Zheng XW, Li ZF, Sun JP, Fan JS, Ye DQ, Li DM, Wang HQ, Yu QQ, Ding ZY. The Role of Indigenous Yeasts in Shaping the Chemical and Sensory Profiles of Wine: Effects of Different Strains and Varieties. Molecules 2024; 29:4279. [PMID: 39275126 PMCID: PMC11396908 DOI: 10.3390/molecules29174279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
The microbial terroir is an indispensable part of the terroir panorama, and can improve wine quality with special characteristics. In this study, eight autochthonous yeasts (Saccharomyces cerevisiae), selected in Huailai country, China, were trailed in small-scale and pilot fermentations for both white (Riesling and Sémillon) and red (Cabernet Sauvignon and Syrah) wines and evaluated by GC-MS analysis and the rate-all-that-apply (RATA) method. Compared to commercial yeast strains, the indigenous yeasts were able to produce higher concentrations of ethyl esters and fatty acid ethyl esters, and higher alcohol, resulting in higher odor activity values of fruity, floral attributes. Marked varietal effects were observed in the pilot fermentation, but yeast strains exerted a noticeable impact in modulating wine aroma and sensory profile. Overall, indigenous yeast could produce more preferred aroma compounds and sensory characteristics for both white and red wines, demonstrating the potential for improving wine quality and regional characteristics.
Collapse
Affiliation(s)
- Xin-Ke Zhang
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
- "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Pei-Tong Liu
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xiao-Wei Zheng
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Ze-Fu Li
- COFCO Greatwall Chateau Sungod (Huailai) Co., Ltd., Zhangjiakou 075499, China
| | - Jian-Ping Sun
- COFCO Greatwall Chateau Sungod (Huailai) Co., Ltd., Zhangjiakou 075499, China
| | - Jia-Shuo Fan
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Dong-Qing Ye
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - De-Mei Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
- "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Hai-Qi Wang
- COFCO Greatwall Chateau Sungod (Huailai) Co., Ltd., Zhangjiakou 075499, China
| | - Qing-Quan Yu
- COFCO Greatwall Chateau Sungod (Huailai) Co., Ltd., Zhangjiakou 075499, China
| | - Zi-Yuan Ding
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| |
Collapse
|
14
|
Shibayama K, Kondo K, Otoguro M. Yeast Diversity in Wine Grapes from Japanese Vineyards and Enological Traits of Indigenous Saccharomyces cerevisiae Strains. Microorganisms 2024; 12:1769. [PMID: 39338444 PMCID: PMC11433644 DOI: 10.3390/microorganisms12091769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Japan has numerous vineyards with distinct geographical and climatic conditions. To the best of our knowledge, there is no comprehensive analysis of the diversity of yeasts associated with wine grapes from Japan. This study aimed to determine yeast diversity in wine grapes from four wine-producing regions in Japan and to evaluate the physicochemical characteristics of wines produced with indigenous Saccharomyces cerevisiae strains isolated from two regions. A total of 2648 strains were isolated from nine wine grape samples. MALDI-TOF MS and 26S rDNA sequence analyses revealed that the strains belonged to 21 non-Saccharomyces yeasts and 1 Saccharomyces yeast (S. cerevisiae). Non-Saccharomyces yeasts were found in high quantities and were highly distributed among the wine grape samples. Differences in the distribution of the identified yeast species were noted among the different wine grape varieties and regions. Indigenous S. cerevisiae strains of different genotypes from different regions exhibit distinct physiological traits. Our findings are expected to enhance our understanding of the local yeasts associated with Japanese vineyards and contribute to obtaining cultures that can provide region-specific organoleptic characteristics to local wines produced in Japan.
Collapse
Affiliation(s)
- Kaito Shibayama
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Japan
| | - Kozue Kondo
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Japan
| | - Misa Otoguro
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Japan
| |
Collapse
|
15
|
Agarbati A, Comitini F, Ciani M, Canonico L. Occurrence and Persistence of Saccharomyces cerevisiae Population in Spontaneous Fermentation and the Relation with "Winery Effect". Microorganisms 2024; 12:1494. [PMID: 39065262 PMCID: PMC11278986 DOI: 10.3390/microorganisms12071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The yeast Saccharomyces cerevisiae ensures successful fermentation in winemaking, although the persistent use of commercial strains lead to the loss of aroma complexity of wines. Hence, the research of indigenous S. cerevisiae with proper oenological features and well adapted to specific wine-growing areas become of great interest for winemakers. Here, 206 pure cultures of S. cerevisiae were isolated from two wineries during a two-year sampling campaign and bio-typed through interdelta sequences analyses with the aim to evaluate the occurrence and persistence of the S. cerevisiae wild population linked to each winery. Both wineries belong to the same Verdicchio DOC wine area (Castelli di Jesi), and never used commercial yeasts during fermentation. Results showed 19 different biotypes with a specific population of S. cerevisiae in each winery, without cross-contamination with each other and with commercial starter strains. Moreover, inside each winery a persistence of some dominant biotypes was observed over time (three biotypes in winery 1; 95% of isolates in the two years and one biotype in winery 2; 20% of isolates in the two years), indicating a sort of "winery-effect". The evaluation of S. cerevisiae populations for the oenological characters by microfermentations showed a proper and well distinct aromatic imprinting on the resulted wines supporting the concept of "winery effect".
Collapse
Affiliation(s)
| | | | - Maurizio Ciani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (A.A.); (F.C.); (L.C.)
| | | |
Collapse
|
16
|
Bae S, Choi YJ, Park SE, Kim EJ, Lee MJ, Chung YB, Park SH, Min SG, Ku KM, Seo HY, Son HS. Effects of seasonal harvest of kimchi cabbage on microbial and metabolic profiles of kimchi. Food Res Int 2024; 188:114476. [PMID: 38823866 DOI: 10.1016/j.foodres.2024.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Kimchi cabbage, the key ingredient in kimchi, is cultivated year-round to meet high production demands. This study aimed to examine the effects of seasonal harvesting (spring, summer, fall, and winter) on the microbial and metabolic profiles of kimchi during 30 days of fermentation. Lactic acid bacteria distribution is notably influenced by seasonal variations, with Latilactobacillus dominant in fall-harvested kimchi group and Weissella prevailing in spring, summer, and winter. The microbial communities of spring and fall group exhibited similar profiles before fermentation, whereas the microbial communities and metabolic profiles of spring and summer group were similar after 30 days of fermentation. Seasonal disparities in metabolite concentrations, including glutamic acid, serine, and cytosine, persist throughout fermentation. This study provides a comprehensive understanding of the substantial impact of seasonal harvesting of kimchi cabbage on the microbial and metabolic characteristics of kimchi, providing valuable insights into producing kimchi with diverse qualities.
Collapse
Affiliation(s)
- Soobin Bae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Yun-Jeong Choi
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Eun-Ju Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Min Jung Lee
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Young Bae Chung
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Sung Hee Park
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Sung Gi Min
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Kang-Mo Ku
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Hye-Young Seo
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
Zhang J, Plowman JE, Tian B, Clerens S, On SLW. Genotyping and Phenotyping of Indigenous Saccharomyces cerevisiae from a New Zealand Organic Winery and Commercial Sources Using Inter-Delta and MALDI-TOF MS Typing. Microorganisms 2024; 12:1299. [PMID: 39065067 PMCID: PMC11278687 DOI: 10.3390/microorganisms12071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
We used inter-delta typing (IDT) and MALDI-TOF profiling to characterize the genetic and phenotypic diversity of 45 commercially available winemaking Saccharomyces cerevisiae strains and 60 isolates from an organic winemaker from Waipara, New Zealand, as a stratified approach for predicting the commercial potential of indigenous isolates. A total of 35 IDTs were identified from the commercial strains, with another 17 novel types defined among the Waipara isolates. IDT 3 was a common type among strains associated with champagne production, and the only type in commercial strains also observed in indigenous isolates. MALDI-TOF MS also demonstrated its potential in S. cerevisiae typing, particularly when the high-mass region (m/z 2000-20,000) was used, with most indigenous strains from each of two fermentation systems distinguished. Furthermore, the comparison between commercial strains and indigenous isolates assigned to IDT 3 revealed a correlation between the low-mass data (m/z 500-4000) analysis and the recommended use of commercial winemaking strains. Both IDT and MALDI-TOF analyses offer useful insights into the genotypic and phenotypic diversity of S. cerevisiae, with MALDI-TOF offering potential advantages for the prediction of applications for novel, locally isolated strains that may be valuable for product development and diversification.
Collapse
Affiliation(s)
- Junwen Zhang
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P.O. Box 85054, Lincoln 7674, New Zealand; (J.Z.); (B.T.)
| | - Jeffrey E. Plowman
- Food and Bio-Based Products, AgResearch Ltd., Lincoln 7674, New Zealand; (J.E.P.); (S.C.)
| | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P.O. Box 85054, Lincoln 7674, New Zealand; (J.Z.); (B.T.)
| | - Stefan Clerens
- Food and Bio-Based Products, AgResearch Ltd., Lincoln 7674, New Zealand; (J.E.P.); (S.C.)
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand
- Riddet Institute, Massey University, Palmerston North 4472, New Zealand
| | - Stephen L. W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P.O. Box 85054, Lincoln 7674, New Zealand; (J.Z.); (B.T.)
| |
Collapse
|
18
|
Onetto CA, Ward CM, Van Den Heuvel S, Hale L, Cuijvers K, Borneman AR. Temporal and spatial dynamics within the fungal microbiome of grape fermentation. Environ Microbiol 2024; 26:e16660. [PMID: 38822592 DOI: 10.1111/1462-2920.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Over 6 years, we conducted an extensive survey of spontaneous grape fermentations, examining 3105 fungal microbiomes across 14 distinct grape-growing regions. Our investigation into the biodiversity of these fermentations revealed that a small number of highly abundant genera form the core of the initial grape juice microbiome. Consistent with previous studies, we found that the region of origin had the most significant impact on microbial diversity patterns. We also discovered that certain taxa were consistently associated with specific geographical locations and grape varieties, although these taxa represented only a minor portion of the overall diversity in our dataset. Through unsupervised clustering and dimensionality reduction analysis, we identified three unique community types, each exhibiting variations in the abundance of key genera. When we projected these genera onto global branches, it suggested that microbiomes transition between these three broad community types. We further investigated the microbial community composition throughout the fermentation process. Our observations indicated that the initial microbial community composition could predict the diversity during the early stages of fermentation. Notably, Hanseniaspora uvarum emerged as the primary non-Saccharomyces species within this large collection of samples.
Collapse
Affiliation(s)
- Cristobal A Onetto
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chris M Ward
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | | | - Laura Hale
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Kathleen Cuijvers
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Bunbury-Blanchette AL, Fan L, Kernaghan G. Yeast communities of a North American hybrid wine grape differ between organic and conventional vineyards. J Appl Microbiol 2024; 135:lxae092. [PMID: 38621715 DOI: 10.1093/jambio/lxae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
AIMS To compare the species diversity and composition of indigenous yeast communities of hybrid grapes from conventionally and organically cultivated vineyards of an emerging cool-climate wine producing region. METHODS AND RESULTS Illumina MiSeq sequences from L'Acadie blanc grape musts were processed and filtered to characterize indigenous yeast communities in organic and conventional vineyards of the Annapolis Valley wine region in Nova Scotia, Canada. While cultivation practice was not associated with yeast diversity or species richness, there was a strong effect on yeast community composition, with conventional vineyards characterized by higher proportions of Sporidiobolales and Filobasidium magnum, and organic vineyards supporting Filobasidium species other than F. magnum and higher proportions of Symmetrospora. There was also variation in yeast community composition among individual vineyards, and from year to year. CONCLUSIONS This is the first comprehensive assessment of yeasts associated with hybrid grapes grown using different cultivation practices in a North American cool climate wine region. Communities were dominated by basidiomycete yeasts and species composition of these yeasts differed significantly between vineyards employing organic and conventional cultivation practices. The role of basidiomycete yeasts in winemaking is not well understood, but some species may influence wine characteristics.
Collapse
Affiliation(s)
- Adele L Bunbury-Blanchette
- Saint Mary's University, Faculty of Graduate Studies and Research, 923 Robie St, Atrium Building, Suite 210, Halifax, Nova Scotia B3H 1G3, Canada
| | - Lihua Fan
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St, Kentville, Nova Scotia B4N 1J5, Canada
| | - Gavin Kernaghan
- Mount Saint Vincent University, Department of Biology, 166 Bedford Highway, Halifax, Nova Scotia, B3M 1J9, Canada
| |
Collapse
|
20
|
Iorizzo M, Bagnoli D, Vergalito F, Testa B, Tremonte P, Succi M, Pannella G, Letizia F, Albanese G, Lombardi SJ, Coppola R. Diversity of fungal communities on Cabernet and Aglianico grapes from vineyards located in Southern Italy. Front Microbiol 2024; 15:1399968. [PMID: 38725687 PMCID: PMC11079197 DOI: 10.3389/fmicb.2024.1399968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Grape-associated microbial community is influenced by a combination of viticultural, climatic, pedological and anthropological factors, collectively known as terroir. Therefore, grapes of the same cultivar grown in different areas can be appreciated for their distinctive biogeographic characteristics. In our previous study, we showed that the phenotypic response of Aglianico and Cabernet grapevines from Molise and Sicily regions is significantly influenced by the prevailing pedoclimatic conditions, particularly soil physical properties. However, the scale at which microbial communities differ could be important in clarifying the concept of terroir, including whether it is linked to the grape variety present in a particular vineyard. To explore this further, in the research presented here, a comparative study on the fungal communities inhabiting the berry surfaces of Cabernet and Aglianico cultivars was conducted on different vineyards located in Southern Italy (Molise, Sicily and Campania regions, the first two of which had been involved in our previous study) by using high-throughput sequencing (HTS) and multivariate data analysis. The descriptive approach through relative abundance analysis showed the most abundant phyla (Ascomycota, Basidiomycota, and Chytridiomycota), families (Cladosporiaceae, Saccotheciaceae, Pleosporaceae, Saccharomycodaceae, Sporidiobolaceae, Didymellaceae, Filobasidiaceae, Bulleribasidiaceae, and Saccharomycetaceae) and genera (Cladosporium, Aureobasidium, Alternaria, Stemphylium and Filobasidium) detected on grape berries. The multivariate data analysis performed by using different packages (phyloseq, Vegan, mixOmics, microbiomeMarker and ggplot2) highlighted that the variable "vineyard location" significantly affect the fungal community, while the variable "grape variety" has no significant effect. Thus, some taxa are found to be part of specific vineyard ecosystems rather than specific grape varieties, giving additional information on the microbial contribution to wine quality, thanks to the presence of fermentative yeasts or, conversely, to the involvement in negative or detrimental roles, due to the presence of grape-deriving fungi implied in the spoilage of wine or in grapevine pathogenesis. In this connection, the main functions of core taxa fungi, whose role in the vineyard environment is still poorly understood, are also described.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Diletta Bagnoli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Rome, Italy
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Gianluca Albanese
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
21
|
Remenyik J, Csige L, Dávid P, Fauszt P, Szilágyi-Rácz AA, Szőllősi E, Bacsó ZR, Szepsy Jnr I, Molnár K, Rácz C, Fidler G, Kállai Z, Stündl L, Dobos AC, Paholcsek M. Exploring the interplay between the core microbiota, physicochemical factors, agrobiochemical cycles in the soil of the historic tokaj mád wine region. PLoS One 2024; 19:e0300563. [PMID: 38626236 PMCID: PMC11020696 DOI: 10.1371/journal.pone.0300563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/29/2024] [Indexed: 04/18/2024] Open
Abstract
A Hungarian survey of Tokaj-Mád vineyards was conducted. Shotgun metabarcoding was applied to decipher the microbial-terroir. The results of 60 soil samples showed that there were three dominant fungal phyla, Ascomycota 66.36% ± 15.26%, Basidiomycota 18.78% ± 14.90%, Mucoromycota 11.89% ± 8.99%, representing 97% of operational taxonomic units (OTUs). Mutual interactions between microbiota diversity and soil physicochemical parameters were revealed. Principal component analysis showed descriptive clustering patterns of microbial taxonomy and resistance gene profiles in the case of the four historic vineyards (Szent Tamás, Király, Betsek, Nyúlászó). Linear discriminant analysis effect size was performed, revealing pronounced shifts in community taxonomy based on soil physicochemical properties. Twelve clades exhibited the most significant shifts (LDA > 4.0), including the phyla Verrucomicrobia, Bacteroidetes, Chloroflexi, and Rokubacteria, the classes Acidobacteria, Deltaproteobacteria, Gemmatimonadetes, and Betaproteobacteria, the order Sphingomonadales, Hypomicrobiales, as well as the family Sphingomonadaceae and the genus Sphingomonas. Three out of the four historic vineyards exhibited the highest occurrences of the bacterial genus Bradyrhizobium, known for its positive influence on plant development and physiology through the secretion of steroid phytohormones. During ripening, the taxonomical composition of the soil fungal microbiota clustered into distinct groups depending on altitude, differences that were not reflected in bacteriomes. Network analyses were performed to unravel changes in fungal interactiomes when comparing postveraison and preharvest samples. In addition to the arbuscular mycorrhiza Glomeraceae, the families Mycosphaerellacae and Rhyzopodaceae and the class Agaricomycetes were found to have important roles in maintaining soil microbial community resilience. Functional metagenomics showed that the soil Na content stimulated several of the microbiota-related agrobiogeochemical cycles, such as nitrogen and sulphur metabolism; steroid, bisphenol, toluene, dioxin and atrazine degradation and the synthesis of folate.
Collapse
Affiliation(s)
- Judit Remenyik
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - László Csige
- Research Laboratory and Wine Academy of Mad, University of Debrecen, Mád, Hungary
| | - Péter Dávid
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Péter Fauszt
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Anna Anita Szilágyi-Rácz
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Szőllősi
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Zsófia Réka Bacsó
- Research Laboratory and Wine Academy of Mad, University of Debrecen, Mád, Hungary
| | - István Szepsy Jnr
- Research Laboratory and Wine Academy of Mad, University of Debrecen, Mád, Hungary
| | - Krisztina Molnár
- Centre for Precision Farming R&D Services, Faculty of Agriculture, Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Csaba Rácz
- Centre for Precision Farming R&D Services, Faculty of Agriculture, Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Gábor Fidler
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kállai
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Attila Csaba Dobos
- Centre for Precision Farming R&D Services, Faculty of Agriculture, Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Kovács B, Andreolli M, Lampis S, Biró B, Kotroczó Z. Bacterial Community Structure Responds to Soil Management in the Rhizosphere of Vine Grape Vineyards. BIOLOGY 2024; 13:254. [PMID: 38666866 PMCID: PMC11048173 DOI: 10.3390/biology13040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
The microbial communities of the rhizospheres of vineyards have been subject to a considerable body of research, but it is still unclear how the applied soil cultivation methods are able to change the structure, composition, and level of diversity of their communities. Rhizosphere samples were collected from three neighbouring vineyards with the same time of planting and planting material (rootstock: Teleki 5C; Vitis vinifera: Müller Thurgau). Our objective was to examine the diversity occurring in bacterial community structures in vineyards that differ only in the methods of tillage procedure applied, namely intensive (INT), extensive (EXT), and abandoned (AB). For that we took samples from two depths (10-30 cm (shallow = S) and 30-50 cm (deep = D) of the grape rhizosphere in each vineyard and the laboratory and immediately prepared the slices of the roots for DNA-based analysis of the bacterial communities. Bacterial community structure was assessed by means of PCR-DGGE analysis carried out on the v3 region of 16S rRNA gene. Based on the band composition of the DGGE profiles thus obtained, the diversity of the microbial communities was evaluated and determined by the Shannon-Weaver index (H'). Between the AB and EXT vineyards at the S depth, the similarity of the community structure was 55%; however, the similarity of the D samples was more than 80%, while the difference between the INT samples and the other two was also higher than 80%. Based on our results, we can conclude that intensive cultivation strongly affects the structure and diversity of the bacterial community.
Collapse
Affiliation(s)
- Barnabás Kovács
- Institute of Viticulture and Enology, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
| | - Marco Andreolli
- Department of Biotechnology & Verona University Culture Collection-Department of Biotechnology (VUCC-DBT), University of Verona, 37134 Verona, Italy; (M.A.); (S.L.)
| | - Silvia Lampis
- Department of Biotechnology & Verona University Culture Collection-Department of Biotechnology (VUCC-DBT), University of Verona, 37134 Verona, Italy; (M.A.); (S.L.)
| | - Borbála Biró
- Department of Agro-Environmental Studies, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (B.B.); (Z.K.)
| | - Zsolt Kotroczó
- Department of Agro-Environmental Studies, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (B.B.); (Z.K.)
| |
Collapse
|
23
|
Tenea GN, Reyes P, Molina D. Fungal Mycobiome of Mature Strawberry Fruits ( Fragaria x ananassa Variety 'Monterey') Suggests a Potential Market Site Contamination with Harmful Yeasts. Foods 2024; 13:1175. [PMID: 38672848 PMCID: PMC11049331 DOI: 10.3390/foods13081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to investigate the diversity of fungi associated with mature strawberries collected from a volcanic orchard and open-air market stands. Based on the Kruskal-Wallis test, no statistically significant differences were observed in both non-phylogenetic and phylogenetic alpha diversity indices. According to beta diversity analyses, significant differences in fungal communities were found between groups (orchard vs. market). Taxonomic assignment of amplicon sequence variables (ASVs) revealed 7 phyla and 31 classes. The prevalent fungal phyla were Basidiomycota (29.59-84.58%), Ascomycota (15.33-70.40%), and Fungi-phy-Insertae-sedis (0.45-2.89%). The most predominant classes among the groups were Saccharomycetes in the market group, and Microbotryomycetes and Tremellomycetes in the orchard group. Based on the analysis of microbiome composition (ANCOM), we found that the most differentially fungal genera were Hanseniaspora, Kurtzmaniella, and Phyllozyma. Endophytic yeasts Curvibasidium cygneicollum were prevalent in both groups, while Candida railenensis was detected in fruits originating only from the market. In addition, Rhodotorula graminis (relative abundance varying from 1.7% to 21.18%) and Papiliotrema flavescens (relative abundance varying from 1.58% to 16.55%) were detected in all samples regardless of origin, while Debaryomyces prosopidis was detected in samples from the market only, their relative abundance varying with the sample (from 0.80% to 19.23%). Their role in fruit quality and safety has not been yet documented. Moreover, several clinically related yeasts, such as Meyerozyma guilliermondii and Candida parapsilosis, were detected in samples only from the market. Understanding the variety and makeup of the mycobiome in ripe fruits during the transition from the orchard to the market is crucial for fruit safety after harvest.
Collapse
Affiliation(s)
- Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, 100150 Ibarra, Ecuador
| | | | | |
Collapse
|
24
|
Ohwofasa A, Dhami M, Zhang J, Tian B, Winefield C, On SLW. Influence of climatic variation on microbial communities during organic Pinot noir wine production. PLoS One 2024; 19:e0296859. [PMID: 38416719 PMCID: PMC10901304 DOI: 10.1371/journal.pone.0296859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/20/2023] [Indexed: 03/01/2024] Open
Abstract
To assess the possible impact of climatic variation on microbial community composition in organic winemaking, we employed a metabarcoding approach to scrutinize the microbiome in a commercial, organic, Pinot noir wine production system that utilizes autochthonous fermentation. We assessed microbial composition across two vintages (2018 and 2021) using biological replicates co-located at the same winery. Microbial dynamics were monitored over four important fermentation time points and correlated with contemporaneous climate data. Bacterial (RANOSIM = 0.4743, p = 0.0001) and fungal (RANOSIM = 0.4738, p = 0.0001) compositions were different in both vintages. For bacteria, Lactococcus dominated the diversity associated with the 2018 vintage, while Tatumella dominated the 2021 vintage. For fungal populations, while Saccharomyces were abundant in both vintages, key differences included Starmerella, copious in the 2018 vintage; and Metschnikowia, substantive in the 2021 vintage. Ordination plots correlated the climatic variables with microbial population differences, indicating temperature as a particularly important influence; humidity values also differed significantly between these vintages. Our data illustrates how climatic conditions may influence microbial diversity during winemaking, and further highlights the effect climate change could have on wine production.
Collapse
Affiliation(s)
- Aghogho Ohwofasa
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln, New Zealand
| | | | - Junwen Zhang
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Christopher Winefield
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Stephen L. W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
25
|
Koide RT, Kanauchi M, Hashimoto Y. Variation Among Japanese Miso Breweries in Indoor Microbiomes is Mainly Ascribed to Variation in Type of Indoor Surface. Curr Microbiol 2024; 81:68. [PMID: 38236285 PMCID: PMC10796754 DOI: 10.1007/s00284-023-03591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Miso is a microbially-fermented soybean food. The miso brewery indoor microbiome contributes to miso fermentation. Japanese breweries are not climate-controlled, so indoor spaces are strongly affected by the prevailing climate. Because climate influences microorganism distribution, our first hypothesis is that latitude, as a proxy for climate, is a major determinant of brewery indoor microbiome structure. Breweries vary in interior surface materials and in the way operations (steaming, processing, fermenting) are apportioned among rooms. Therefore, our second hypothesis is that more variability in indoor microbiomes exists among breweries than can be ascribed to a latitudinal gradient. Most miso produced today is inoculated with commercial microbial strains to standardize fermentation. If commercial strains outcompete indigenous microbes for membership in the indoor microbiome, this practice may homogenize indoor microbiomes among regions or breweries. Therefore, our third hypothesis is that inoculant fungal species dominate indoor fungal communities and make it impossible to distinguish communities among breweries or across their latitudinal gradient. We tested these hypotheses by sampling indoor surfaces in several breweries across a latitudinal gradient in Japan. We found that latitude had a significant but relatively small impact on indoor fungal and bacterial communities, that the effect of brewery was large relative to latitude, and that inoculant fungi made such small contributions to the indoor microbiome that distinctions among breweries and along the latitudinal gradient remained apparent. Recently, the Japanese Ministry of Agriculture, Forestry and Fisheries specified fungal inoculants to standardize miso production. However, this may not be possible so long as the indoor microbiome remains uncontrolled.
Collapse
Affiliation(s)
- Roger T Koide
- Department of Biology, Brigham Young University, Provo, UT, USA.
| | - Makoto Kanauchi
- Department of Food Management, Miyagi University, Sendai, Japan
| | - Yasushi Hashimoto
- Section of Ecology and Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
26
|
Leal CM, Geiger A, Molnár A, Váczy KZ, Kgobe G, Zsófi Z, Geml J. Disentangling the effects of terroir, season, and vintage on the grapevine fungal pathobiome. Front Microbiol 2024; 14:1322559. [PMID: 38298541 PMCID: PMC10829339 DOI: 10.3389/fmicb.2023.1322559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
The composition, diversity and dynamics of microbial communities associated with grapevines may be influenced by various environmental factors, including terroir, vintage, and season. Among these factors, terroir stands out as a unique possible determinant of the pathobiome, the community of plant-associated pathogens. This study employed high-throughput molecular techniques, including metabarcoding and network analysis, to investigate the compositional dynamics of grapevine fungal pathobiome across three microhabitats (soil, woody tissue, and bark) using the Furmint cultivar. Samples were collected during late winter and late summer in 2020 and 2021, across three distinct terroirs in Hungary's Tokaj wine region. Of the 123 plant pathogenic genera found, Diplodia, Phaeomoniella, and Fusarium displayed the highest richness in bark, wood, and soil, respectively. Both richness and abundance exhibited significant disparities across microhabitats, with plant pathogenic fungi known to cause grapevine trunk diseases (GTDs) demonstrating highest richness and abundance in wood and bark samples, and non-GTD pathogens prevailed soil. Abundance and richness, however, followed distinct patterns Terroir accounted for a substantial portion of the variance in fungal community composition, ranging from 14.46 to 24.67%. Season and vintage also contributed to the variation, explaining 1.84 to 2.98% and 3.67 to 6.39% of the variance, respectively. Notably, significant compositional differences in fungi between healthy and diseased grapevines were only identified in wood and bark samples. Cooccurrence networks analysis, using both unweighted and weighted metrics, revealed intricate relationships among pathogenic fungal genera. This involved mostly positive associations, potentially suggesting synergism, and a few negative relationships, potentially suggesting antagonistic interactions. In essence, the observed differences among terroirs may stem from environmental filtering due to varied edaphic and mesoclimatic conditions. Temporal weather and vine management practices could explain seasonal and vintage fungal dynamics. This study provides insights into the compositional dynamics of grapevine fungal pathobiome across different microhabitats, terroirs, seasons, and health statuses. The findings emphasize the importance of considering network-based approaches in studying microbial communities and have implications for developing improved viticultural plant health strategies.
Collapse
Affiliation(s)
- Carla Mota Leal
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Gödöllő, Hungary
| | - Adrienn Geiger
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Gödöllő, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Anna Molnár
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Kálmán Z. Váczy
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Glodia Kgobe
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Gödöllő, Hungary
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
27
|
Kerruish DWM, Cormican P, Kenny EM, Kearns J, Colgan E, Boulton CA, Stelma SNE. The origins of the Guinness stout yeast. Commun Biol 2024; 7:68. [PMID: 38216745 PMCID: PMC10786833 DOI: 10.1038/s42003-023-05587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2023] [Indexed: 01/14/2024] Open
Abstract
Beer is made via the fermentation of an aqueous extract predominantly composed of malted barley flavoured with hops. The transforming microorganism is typically a single strain of Saccharomyces cerevisiae, and for the majority of major beer brands the yeast strain is a unique component. The present yeast used to make Guinness stout brewed in Dublin, Ireland, can be traced back to 1903, but its origins are unknown. To that end, we used Illumina and Nanopore sequencing to generate whole-genome sequencing data for a total of 22 S. cerevisiae yeast strains: 16 from the Guinness collection and 6 other historical Irish brewing. The origins of the Guinness yeast were determined with a SNP-based analysis, demonstrating that the Guinness strains occupy a distinct group separate from other historical Irish brewing yeasts. Assessment of chromosome number, copy number variation and phenotypic evaluation of key brewing attributes established Guinness yeast-specific SNPs but no specific chromosomal amplifications. Our analysis also demonstrated the effects of yeast storage on phylogeny. Altogether, our results suggest that the Guinness yeast used today is related to the first deposited Guinness yeast; the 1903 Watling Laboratory Guinness yeast.
Collapse
Affiliation(s)
| | | | | | - Jessica Kearns
- Diageo Ireland, St James's Gate, The Liberties, Dublin, Ireland
| | - Eibhlin Colgan
- Diageo Ireland, St James's Gate, The Liberties, Dublin, Ireland
| | | | | |
Collapse
|
28
|
Gao J, Geng H, Chai R, Wu T, Huang W, You Y, Zhan J. Fungal Community Composition and Its Relationship with Volatile Compounds during Spontaneous Fermentation of Cabernet Sauvignon from Two Chinese Wine-Growing Regions. Foods 2023; 13:106. [PMID: 38201134 PMCID: PMC10778937 DOI: 10.3390/foods13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The microbial community structure associated with wine in a wine-growing region is shaped by diverse ecological factors within that region, profoundly impacting the wine flavor. In wine fermentation, fungi contribute more sensory-active biochemical compounds than bacteria. In this study, we employed amplicon sequencing to measure samples from the spontaneous fermentation process of cabernet sauvignon wines from two wine-growing regions in China to study the diversity and structural evolution of fungi during spontaneous fermentation and analyze the correlation between fungi and volatile compounds. The results showed significant differences in fungal community structure and diversity in cabernet sauvignon musts from different geographical origins, and these differences affected the flavor quality of the wines. As alcoholic fermentation progressed, Saccharomyces became the dominant fungal genus and reshaped the fungal community structure, and the diversity of the fungal community decreased. However, the fungal communities of each wine-growing region remained distinct throughout the fermentation process. Furthermore, the correlation between the fungal community and volatile compounds indicated that wine is a product of fermentation involving multiple fungal genera, and the flavor is influenced by a variety of fungi. Our study enhances the comprehension of fungal communities in Chinese wine-growing regions, explaining the regulatory role of wine-related fungal microorganisms in wine flavor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (J.G.); (H.G.); (R.C.); (T.W.); (W.H.); (Y.Y.)
| |
Collapse
|
29
|
Swift JF, Migicovsky Z, Trello GE, Miller AJ. Grapevine bacterial communities display compartment-specific dynamics over space and time within the Central Valley of California. ENVIRONMENTAL MICROBIOME 2023; 18:84. [PMID: 37996903 PMCID: PMC10668525 DOI: 10.1186/s40793-023-00539-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Plant organs (compartments) host distinct microbiota which shift in response to variation in both development and climate. Grapevines are woody perennial crops that are clonally propagated and cultivated across vast geographic areas, and as such, their microbial communities may also reflect site-specific influences. These site-specific influences along with microbial differences across sites compose 'terroir', the environmental influence on wine produced in a given region. Commercial grapevines are typically composed of a genetically distinct root (rootstock) grafted to a shoot system (scion) which adds an additional layer of complexity via genome-to-genome interactions. RESULTS To understand spatial and temporal patterns of bacterial diversity in grafted grapevines, we used 16S rRNA amplicon sequencing to quantify soil and compartment microbiota (berries, leaves, and roots) for grafted grapevines in commercial vineyards across three counties in the Central Valley of California over two successive growing seasons. Community composition revealed compartment-specific dynamics. Roots assembled site-specific bacterial communities that reflected rootstock genotype and environment influences, whereas bacterial communities of leaves and berries displayed associations with time. CONCLUSIONS These results provide further evidence of a microbial terroir within the grapevine root systems but also reveal that the microbiota of above-ground compartments are only weakly associated with the local soil microbiome in the Central Valley of California.
Collapse
Affiliation(s)
- Joel F Swift
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA.
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Grace E Trello
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
| |
Collapse
|
30
|
Chen Y, Lei X, Jiang J, Qin Y, Jiang L, Liu YL. Microbial diversity on grape epidermis and wine volatile aroma in spontaneous fermentation comprehensively driven by geography, subregion, and variety. Int J Food Microbiol 2023; 404:110315. [PMID: 37467530 DOI: 10.1016/j.ijfoodmicro.2023.110315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
On their journey from the wine grape to the resulting wine, microbiota from grape surfaces controlled by multiple factors is transferred to wine spontaneous fermentation process with indisputable consequences for wine quality parameters. The associated microbiota was regionally distinct (defined to microbial terroir) but how these microbial patterns with significantly regional distinctiveness quantitatively drive the wine regional characteristics are not definite within a complete grape ecosystem at different geographical (> 300 km), subregional (< 10 km), and varietal scales. Here, we collected 24 samples (containing two grape varieties) from four subregions of two regions in Xinjiang wine production area to investigate fungal distribution patterns and the association with wine chemical composition at different evaluation scales. Meanwhile, the relationships were established between geographical, subregional, varietal community of fungi, and wine volatile aroma using partial least squares regression (PLSR) and structural equation modeling (SEM). Results show that microbial and volatile samples present the significantly regional difference inside the complete ecosystem. Microbiota showed a stronger heterogeneity at geography scales, which drove the distributions of subregional and varietal microbiota thereby influencing the volatile composition of finished wines. Moreover, geographical microbiota seems to weaken the effects of varietal community on wine aroma compounds. Microbial communities respond to environmental changes within a completely set grape-related ecosystem at different scales, and these responses resulted in the wine regional distinctiveness based on the volatile profiles. Our findings further confirmed the important role of microbial terroir in shaping wine styles and provided the new cerebration for the terroir drivers of microbiota.
Collapse
Affiliation(s)
- Yu Chen
- College of Enology, Northwest A & F University, Yangling, China
| | - Xingmeng Lei
- College of Enology, Northwest A & F University, Yangling, China
| | - Jiao Jiang
- College of Enology, Northwest A & F University, Yangling, China
| | - Yi Qin
- College of Enology, Northwest A & F University, Yangling, China
| | - Lei Jiang
- College of Life and Geographical Sciences, Kashi University, Kashi, China.
| | - Yan-Lin Liu
- College of Enology, Northwest A & F University, Yangling, China.
| |
Collapse
|
31
|
Chalvantzi I, Mallouchos A, Banilas G, Nisiotou A. Single versus dual inoculation with indigenous Saccharomyces cerevisiae strains in winemaking. Lett Appl Microbiol 2023; 76:ovad129. [PMID: 37985714 DOI: 10.1093/lambio/ovad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/22/2023]
Abstract
Indigenous Saccharomyces cerevisiae strains and their combinations may be used to diversify wines and add complexity to sensory profiles. Here, two S. cerevisiae strains that represent regional genetic and phenotypic specificities for two major winegrowing areas of Greece were used in single- and mixed-culture fermentations. The kinetics and metabolic activities of the strains were analyzed to evaluate the influence of each strain individually or in combination on wine quality. The two strains differentially affected the kinetics and the outcome of fermentation. They showed significant differences in the production of important metabolites that strongly affect the organoleptic profile of wines, such as volatile acidity, acetaldehyde, certain esters, and terpenes. Furthermore, the chemical and sensory profiles of wines produced by single cultures were different from those fermented by mixed-culture inoculum. The concentration of certain metabolites was enhanced (e.g. isoamyl acetate, 1-heptanol), while others were suppressed (e.g. hexyl acetate, octyl acetate). Results highlight the potential worth of indigenous S. cerevisiae strains to differentiate local wines. The mixed-culture S. cerevisiae inoculum was shown to generate novel wine characteristics, as compared to single cultures, thus offering alternatives to further diversify wines and increase their complexity.
Collapse
Affiliation(s)
- Ioanna Chalvantzi
- Hellenic Agricultural Organization "Dimitra", Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lykovryssi, Greece
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Aegaleo, Greece
| | - Athanasios Mallouchos
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Aegaleo, Greece
| | - Aspasia Nisiotou
- Hellenic Agricultural Organization "Dimitra", Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lykovryssi, Greece
| |
Collapse
|
32
|
Di Paola M, Gori A, Stefanini I, Meriggi N, Renzi S, Nenciarini S, Cerasuolo B, Moriondo M, Romoli R, Pieraccini G, Baracchi D, Turillazzi F, Turillazzi S, Cavalieri D. Using wasps as a tool to restore a functioning vine grape mycobiota and preserve the mycobial "terroir". Sci Rep 2023; 13:16544. [PMID: 37783736 PMCID: PMC10545793 DOI: 10.1038/s41598-023-43541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
In the last one-hundred years, the exponential expansion of wine making has artificialized the agricultural landscape as well as its microbial diversity, spreading human selected Saccharomyces cerevisiae strains. Evidence showed that social wasps can harbor a significant fraction of the yeast phenotypic diversity of a given area of wine production, allowing different strains to overwinter and mate in their gut. The integrity of the wasp-yeast ecological interaction is of paramount importance to maintain the resilience of microbial populations associated to wine aromatic profiles. In a field experiment, we verified whether Polistes dominula wasps, reared in laboratory and fed with a traceable S. cerevisiae strain, could be a useful tool to drive the controlled yeast dispersion directly on grapes. The demonstration of the biotechnological potential of social insects in organic wine farming lays the foundations for multiple applications including maintenance of microbial biodiversity and rewilding vineyards through the introduction of wasp associated microbiomes.
Collapse
Affiliation(s)
- Monica Di Paola
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Agnese Gori
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Sonia Renzi
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Stefano Nenciarini
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Benedetta Cerasuolo
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Marco Moriondo
- National Research Council, Bioeconomy Institute, Sesto Fiorentino, 50019, Florence, Italy
| | - Riccardo Romoli
- Mass Spectrometry Centre (CISM), University of Florence, via U. Schiff, 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Centre (CISM), University of Florence, via U. Schiff, 6, Sesto Fiorentino, 50019, Florence, Italy
| | - David Baracchi
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Francesco Turillazzi
- LABREMMA-Laboratory for Medical Entomotherapy, Microbiology and Environment, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Stefano Turillazzi
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
- LABREMMA-Laboratory for Medical Entomotherapy, Microbiology and Environment, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy.
- LABREMMA-Laboratory for Medical Entomotherapy, Microbiology and Environment, University of Florence, Sesto Fiorentino, 50019, Florence, Italy.
| |
Collapse
|
33
|
Sessitsch A, Wakelin S, Schloter M, Maguin E, Cernava T, Champomier-Verges MC, Charles TC, Cotter PD, Ferrocino I, Kriaa A, Lebre P, Cowan D, Lange L, Kiran S, Markiewicz L, Meisner A, Olivares M, Sarand I, Schelkle B, Selvin J, Smidt H, van Overbeek L, Berg G, Cocolin L, Sanz Y, Fernandes WL, Liu SJ, Ryan M, Singh B, Kostic T. Microbiome Interconnectedness throughout Environments with Major Consequences for Healthy People and a Healthy Planet. Microbiol Mol Biol Rev 2023; 87:e0021222. [PMID: 37367231 PMCID: PMC10521359 DOI: 10.1128/mmbr.00212-22] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.
Collapse
Affiliation(s)
| | | | | | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Tomislav Cernava
- University of Southampton, Faculty of Environmental and Life Sciences, Southampton, United Kingdom
| | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | | | - Aicha Kriaa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pedro Lebre
- University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- University of Pretoria, Pretoria, South Africa
| | - Lene Lange
- LL-BioEconomy, Valby, Copenhagen, Denmark
| | | | - Lidia Markiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Immunology and Food Microbiology, Olsztyn, Poland
| | - Annelein Meisner
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Inga Sarand
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Tallinn, Estonia
| | | | | | - Hauke Smidt
- Wageningen University and Research, Laboratory of Microbiology, Wageningen, The Netherlands
| | - Leo van Overbeek
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | | | | | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | - S. J. Liu
- Chinese Academy of Sciences, Institute of Microbiology, Beijing, China
| | - Matthew Ryan
- Genetic Resources Collection, CABI, Egham, United Kingdom
| | - Brajesh Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
34
|
Marr RA, Moore J, Formby S, Martiniuk JT, Hamilton J, Ralli S, Konwar K, Rajasundaram N, Hahn A, Measday V. Whole genome sequencing of Canadian Saccharomyces cerevisiae strains isolated from spontaneous wine fermentations reveals a new Pacific West Coast Wine clade. G3 (BETHESDA, MD.) 2023; 13:jkad130. [PMID: 37307358 PMCID: PMC10411583 DOI: 10.1093/g3journal/jkad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Vineyards in wine regions around the world are reservoirs of yeast with oenological potential. Saccharomyces cerevisiae ferments grape sugars to ethanol and generates flavor and aroma compounds in wine. Wineries place a high-value on identifying yeast native to their region to develop a region-specific wine program. Commercial wine strains are genetically very similar due to a population bottleneck and in-breeding compared to the diversity of S. cerevisiae from the wild and other industrial processes. We have isolated and microsatellite-typed hundreds of S. cerevisiae strains from spontaneous fermentations of grapes from the Okanagan Valley wine region in British Columbia, Canada. We chose 75 S. cerevisiae strains, based on our microsatellite clustering data, for whole genome sequencing using Illumina paired-end reads. Phylogenetic analysis shows that British Columbian S. cerevisiae strains cluster into 4 clades: Wine/European, Transpacific Oak, Beer 1/Mixed Origin, and a new clade that we have designated as Pacific West Coast Wine. The Pacific West Coast Wine clade has high nucleotide diversity and shares genomic characteristics with wild North American oak strains but also has gene flow from Wine/European and Ecuadorian clades. We analyzed gene copy number variations to find evidence of domestication and found that strains in the Wine/European and Pacific West Coast Wine clades have gene copy number variation reflective of adaptations to the wine-making environment. The "wine circle/Region B", a cluster of 5 genes acquired by horizontal gene transfer into the genome of commercial wine strains is also present in the majority of the British Columbian strains in the Wine/European clade but in a minority of the Pacific West Coast Wine clade strains. Previous studies have shown that S. cerevisiae strains isolated from Mediterranean Oak trees may be the living ancestors of European wine yeast strains. This study is the first to isolate S. cerevisiae strains with genetic similarity to nonvineyard North American Oak strains from spontaneous wine fermentations.
Collapse
Affiliation(s)
- R Alexander Marr
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jackson Moore
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sean Formby
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Jonathan T Martiniuk
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Food Science Graduate Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonah Hamilton
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sneha Ralli
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive East K9625, Burnaby, BC V5A 1S6, Canada
| | - Kishori Konwar
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Nisha Rajasundaram
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Aria Hahn
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Vivien Measday
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
35
|
Pulcini L, Bona E, Vaudano ET, Tsolakis C, Garcia-Moruno E, Costantini A, Gamalero E. The Impact of a Commercial Biostimulant on the Grape Mycobiota of Vitis vinifera cv. Barbera. Microorganisms 2023; 11:1873. [PMID: 37630432 PMCID: PMC10457965 DOI: 10.3390/microorganisms11081873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Reducing the use of fungicides, insecticides, and herbicides in order to limit environmental pollution and health risks for agricultural operators and consumers is one of the goals of European regulations. In fact, the European Commission developed a package of measures (the European Green Deal) to promote the sustainable use of natural resources and strengthen the resilience of European agri-food systems. As a consequence, new plant protection products, such as biostimulants, have been proposed as alternatives to agrochemicals. Their application in agroecosystems could potentially open new scenarios regarding the microbiota. In particular, the vineyard microbiota and the microbiota on the grape surface can be affected by biostimulants and lead to different wine features. The aim of this work was to assess the occurrence of a possible variation in the mycobiota due to the biostimulant application. Therefore, our attention has been focused on the yeast community of grape bunches from vines subjected to the phytostimulant BION®50WG treatment. This work was carried out in the CREA-VE experimental vineyard of Vitis vinifera cv. Barbera in Asti (Piedmont, Italy). The composition of fungal communities on grapes from three experimental conditions such as IPM (integrated pest management), IPM+BION®50WG, and IPM+water foliar nebulization was compared by a metabarcoding approach. Our results revealed the magnitude of alpha and beta diversity, and the microbial biodiversity index and specific fungal signatures were highlighted by comparing the abundance of yeast and filamentous fungi in IPM and BION®50WG treatments. No significant differences in the mycobiota of grapevines subjected to the three treatments were detected.
Collapse
Affiliation(s)
- Laura Pulcini
- Consiglio per la Ricerca e l’analisi dell’Economia Agraria—Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via P. Micca 35, 14100 Asti, Italy; (E.T.V.); (C.T.); (E.G.-M.)
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Elisa Bona
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università del Piemonte Orientale, Piazza San Eusebio 5, 13100 Vercelli, Italy;
| | - Enrico Tommaso Vaudano
- Consiglio per la Ricerca e l’analisi dell’Economia Agraria—Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via P. Micca 35, 14100 Asti, Italy; (E.T.V.); (C.T.); (E.G.-M.)
| | - Christos Tsolakis
- Consiglio per la Ricerca e l’analisi dell’Economia Agraria—Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via P. Micca 35, 14100 Asti, Italy; (E.T.V.); (C.T.); (E.G.-M.)
| | - Emilia Garcia-Moruno
- Consiglio per la Ricerca e l’analisi dell’Economia Agraria—Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via P. Micca 35, 14100 Asti, Italy; (E.T.V.); (C.T.); (E.G.-M.)
| | - Antonella Costantini
- Consiglio per la Ricerca e l’analisi dell’Economia Agraria—Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via P. Micca 35, 14100 Asti, Italy; (E.T.V.); (C.T.); (E.G.-M.)
| | - Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| |
Collapse
|
36
|
Pilot Scale Evaluation of Wild Saccharomyces cerevisiae Strains in Aglianico. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In winemaking, the influence of Saccharomyces cerevisiae strains on the aromatic components of wine is well recognized on a laboratory scale, but few studies deal with the comparison of numerous strains on a pilot scale fermentation. In this scenario, the present work aimed to validate the fermentative behavior of seven wild S. cerevisiae strains on pilot-scale fermentations to evaluate their impact on the aromatic profiles of the resulting wines. The strains, isolated from grapes of different Italian regional varieties, were tested in pilot-scale fermentation trials performed in the cellar in 1 hL of Aglianico grape must. Then, wines were analyzed for their microbiological cell loads, main chemical parameters of enological interest (ethanol, total sugars, fructose, glucose, total and volatile acidity, malic and lactic acids) and volatile aroma profiles by GC/MS/SPME. Seventy-six volatile compounds belonging to six different classes (esters, alcohols, terpenes, aldehydes, acids, and ketones) were identified. The seven strains showed different trends and significant differences, and for each class of compounds, high-producing and low-producing strains were found. Since the present work was performed at a pilot-scale level, mimicking as much as possible real working conditions, the results obtained can be considered as a validation of the screened S. cerevisiae strains and a strategy to discriminate in real closed conditions strains able to impart desired wine sensory features.
Collapse
|
37
|
Castrillo D, Blanco P, Vélez S. Can Satellite Remote Sensing Assist in the Characterization of Yeasts Related to Biogeographical Origin? SENSORS (BASEL, SWITZERLAND) 2023; 23:2059. [PMID: 36850656 PMCID: PMC9962804 DOI: 10.3390/s23042059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Biogeography is a key concept associated with microbial terroir, which is responsible for the differentiation and uniqueness of wines. One of the factors influencing this microbial terroir is the vegetation, which in turn is influenced by climate, soil, and cultural practices. Remote sensing instruments can provide useful information about vegetation. This study analyses the relationship between NDVI, calculated using Sentinel-2 and Landsat-8 satellite images of different veraison dates, and microbial data obtained in 2015 from 14 commercial (organic and conventional) vineyards belonging to four Designations of Origin (DOs) from Galicia (northwest Spain). Microbial populations in grapes and musts were identified using PCR techniques and confirmed by sequencing. Statistical analyses were made using PCA, CCA, TB-PLS, and correlation analyses. This study confirms that the NDVI is positively correlated with the diversity of yeasts, both in grapes' surface and must samples. Moreover, the results of this study show: (i) Sentinel-2 images, as well as Landsat-8 images, can establish differences in NDVI related to yeast terroir in grapes and musts, as it is the most relevant DO factor, (ii) Sentinel-2 NDVI and yeast biogeography are moderately to strongly correlated, (iii) Sentinel-2 achieved a better delimitation of the DOs than Landsat-8 and can establish more accurate differences in NDVI-yeast terroir correlations, and (iv) a higher NDVI was associated with the yeast biogeographical patterns of the DOs with higher species richness (S) consisting of weakly fermenting yeasts (Hanseniaspora uvarum, Pichia spp., Starmerella bacillaris, and Zygosaccharomyces spp). However, NDVI values did not correlate well with biogeographic patterns of yeasts previously studied at frequency level (proportion or percentage of each species) in each particular DO. This study suggests that satellite imagery has the potential to be a valuable tool for wine quality management and a decision-making instrument for DO regulators and winegrowers.
Collapse
Affiliation(s)
- David Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro-Ourense, Spain
| | - Pilar Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro-Ourense, Spain
| | - Sergio Vélez
- Information Technology Group, Wageningen University & Research, 6708 Wageningen, The Netherlands
| |
Collapse
|
38
|
Martiniuk JT, Hamilton J, Dodsworth T, Measday V. Grape-associated fungal community patterns persist from berry to wine on a fine geographical scale. FEMS Yeast Res 2023; 23:6967134. [PMID: 36592956 PMCID: PMC9876423 DOI: 10.1093/femsyr/foac067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Wine grape fungal community composition is influenced by abiotic factors including geography and vintage. Compositional differences may correlate with different wine metabolite composition and sensory profiles, suggesting a microbial role in the shaping of a wine's terroir, or regional character. While grape and wine-associated fungal community composition has been studied extensively at a regional and sub-regional scale, it has not been explored in detail on fine geographical scales over multiple harvests. Over two years, we examined the fungal communities on Vitis Vinifera cv. Pinot noir grape berry surfaces, in crushed grapes, and in lab spontaneous fermentations from three vineyards within a < 1 km radius in Canada's Okanagan Valley wine region. We also evaluated the effect of winery environment exposure on fungal community composition by sampling grapes crushed and fermented in the winery at commercial scale. Spatiotemporal community structure was evident among grape berry surface, crushed grape and fermentation samples, with each vineyard exhibiting a distinct fungal community signature. Crushed grape fungal populations were richer in fermentative yeast species compared to grape berry surface fungal populations. Our study suggests that, as on a regional level, fungal populations may contribute to fine-scale -terroir,' with significant implications for single-vineyard wines.
Collapse
Affiliation(s)
- Jonathan T Martiniuk
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonah Hamilton
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas Dodsworth
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Vivien Measday
- Corresponding author: Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada. E-mail:
| |
Collapse
|
39
|
Bunbury-Blanchette AL, Fan L, English MM, Kernaghan G. Yeast communities before and after spontaneous fermentation of wine grapes: a case study from Nova Scotia. Can J Microbiol 2023; 69:32-43. [PMID: 36288607 DOI: 10.1139/cjm-2022-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Wine fermentations are generally completed by the domestic yeast Saccharomyces cerevisiae, but many indigenous vineyard yeasts also influence wine flavour and aroma. Despite the flourishing wine industry in Nova Scotia, there has yet to be any systematic evaluation of these yeasts in Atlantic Canada. The yeast communities of pressed L'Acadie blanc grapes sampled from an organic vineyard in the Annapolis Valley in 2018 and 2019 were characterized before and after spontaneous fermentation by both Illumina and PacBio sequencing, to address and compare potential platform biases. Chemical and sensory evaluations were also conducted. Basidiomycete yeasts, including Vishniacozyma carnescens, Filobasidium globisporum, and Curvibasidium cygneicollum, dominated pre-fermentation diversity. Species of Saccharomyces made up ∼0.04% of sequences prior to fermentation, but 85%-100% after fermentation, with some replicates dominated by S. cerevisiae and some by S. uvarum. PacBio sequencing detected high proportions of Hanseniaspora uvarum, while Illumina sequencing did not. A better understanding of Nova Scotia vineyard yeast communities will allow local wine makers to make better use of non-traditional yeasts and spontaneous fermentations to produce high-quality wines unique to the region.
Collapse
Affiliation(s)
- Adele L Bunbury-Blanchette
- Faculty of Graduate Studies and Research, Saint Mary's University, 923 Robie St, Atrium Building, Suite 210, Halifax, NS, Canada
| | - Lihua Fan
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, 32 Main St, Kentville, NS, Canada
| | - Marcia M English
- Department of Human Nutrition, St. Francis-Xavier University, 2320 Notre Dame Ave, J. Bruce Brown Hall 208, Antigonish, NS, Canada
| | - Gavin Kernaghan
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, Canada
| |
Collapse
|
40
|
Croatian white grape variety Maraština: First taste of its indigenous mycobiota. Food Res Int 2022; 162:111917. [DOI: 10.1016/j.foodres.2022.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/09/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
|
41
|
Liu S, Jiang Z, Ma D, Liu X, Li Y, Ren D, Zhu Y, Zhao H, Qin H, Huang M, Zhang S, Mao J. Distance decay pattern of fermented-related microorganisms in the sauce-flavor Baijiu producing region. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Assessment of chitosan antimicrobial effect on wine microbes. Int J Food Microbiol 2022; 381:109907. [DOI: 10.1016/j.ijfoodmicro.2022.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
|
43
|
Englezos V, Jolly NP, Di Gianvito P, Rantsiou K, Cocolin L. Microbial interactions in winemaking: Ecological aspects and effect on wine quality. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Englezos V, Mota-Gutierrez J, Giacosa S, Río Segade S, Pollon M, Gambino G, Rolle L, Ferrocino I, Rantsiou K. Effect of alternative fungicides and inoculation strategy on yeast biodiversity and dynamics from the vineyard to the winery. Food Res Int 2022; 162:111935. [DOI: 10.1016/j.foodres.2022.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
|
45
|
Assessment of Spontaneous Fermentation and Non-Saccharomyces Sequential Fermentation in Verdicchio Wine at Winery Scale. BEVERAGES 2022. [DOI: 10.3390/beverages8030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of non-Saccharomyces yeasts in sequential fermentation is a suitable biotechnological process to provide specific oenological characteristics and to increase the complexity of wines. In this work, selected strains of Lachancea thermotolerans and Starmerella bombicola were used in sequential fermentations with Saccharomyces cerevisiae and compared with spontaneous and pure S. cerevisiae fermentation trials in Verdicchio grape juice. Torulaspora delbrueckii together with the other two non-Saccharomyces strains (L. thermotolerans, S. bombicola) in multi-sequential fermentations was also evaluated. Wines, obtained under winery vinification conditions, were evaluated for their analytical and sensorial profile. The results indicated that each fermentation gave peculiar analytical and aromatic features of the final wine. L. thermotolerans trials are characterized by an increase of total acidity, higher alcohols and monoterpenes as well as citric and herbal notes. S. bombicola trials showed a general significantly high concentration of phenylethyl acetate and hexyl acetate and a softness sensation while multi-sequential fermentations showed a balanced profile. Spontaneous fermentation was characterized by the production of acetate esters (ethyl acetate and isoamyl acetate), citrus and herbal notes, and tannicity. The overall results indicate that multi-starter fermentations could be a promising tool tailored to the desired features of different Verdicchio wine styles.
Collapse
|
46
|
de Celis M, Ruiz J, Vicente J, Acedo A, Marquina D, Santos A, Belda I. Expectable diversity patterns in wine yeast communities. FEMS Yeast Res 2022; 22:6648099. [PMID: 35862862 DOI: 10.1093/femsyr/foac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
Wine fermentations are dominated by Saccharomyces yeast. However, dozens of non-Saccharomyces yeast genera can be found in grape musts and in the early and intermediate stages of wine fermentation, where they co-exist with S. cerevisiae. The diversity of non-Saccharomyces species is determinant for the sensorial attributes of the resulting wines, both directly (by producing aroma impact compounds) and indirectly (modulating the performance of Saccharomyces). Many research groups worldwide are exploring the great diversity of wine yeasts to exploit their metabolic potential to improve wine flavor or to prevent wine spoilage. In this work, we share a new dataset from a wide ITS amplicon survey of 272 wine samples, and we perform a preliminary exploration to build a catalogue of 242 fungal and yeast genera detectable in wine samples, estimating global figures of their prevalence and relative abundance patterns across wine samples. Thus, our mycobiome survey provides a broad measure of the yeast diversity potentially found in wine fermentations; we hope that the wine yeast research community finds it useful, and we also want to encourage further discussion on the advantages and limitations that meta-taxonomic studies may have in wine research and industry.
Collapse
Affiliation(s)
- Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Ruiz
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Vicente
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Domingo Marquina
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
47
|
Chen Y, Jiang J, Song Y, Zang X, Wang G, Pei Y, Song Y, Qin Y, Liu Y. Yeast Diversity during Spontaneous Fermentations and Oenological Characterisation of Indigenous Saccharomyces cerevisiae for Potential as Wine Starter Cultures. Microorganisms 2022; 10:microorganisms10071455. [PMID: 35889174 PMCID: PMC9325129 DOI: 10.3390/microorganisms10071455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diversity of regional yeast can be influenced by geography, grape cultivars and the use of SO2, but at single vineyard scale in China, the impact of these factors on yeast population, particularly Saccharomyces cerevisiae, is not well studied. Here, we characterised yeast species and dynamics during spontaneous fermentations with/without SO2 using eight typical grape cultivars from Yuma vineyard in Ningxia wine region of China. Results show that distribution and abundance of yeast species varied by grape varieties, fermentation stage and SO2 treatment. A number of 290 S. cerevisiae isolates were further classified into 33 genotypes by Interdelta fingerprinting. A prevailing role of grape varieties in shaping the genetic divergence of S. cerevisiae in Yuma vineyard was observed, as compared to the impacts of fermentation stage and SO2 treatment. Pre-selected S. cerevisiae strains were subjected to vinification with Cabernet Sauvignon and Chardonnay. All strains completed fermentations but the physiochemical parameters and volatile profiles of wines were strain-specific. Some indigenous S. cerevisiae yielded more desirable aroma compounds compared to the commercial strains, among which NX16 and NX18 outcompeted others, therefore having potential for use as starters. This study provides comprehensive analysis on yeast diversity at vineyard scale in Ningxia. Information on the vinification using indigenous S. cerevisiae is of great value for improving Ningxia wine regionality.
Collapse
Affiliation(s)
- Yu Chen
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Jiao Jiang
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
| | - Yaoyao Song
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Xiaomin Zang
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Guoping Wang
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Yingfang Pei
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Yuyang Song
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Xianyang 712100, China
| | - Yi Qin
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Xianyang 712100, China
- Correspondence: (Y.Q.); (Y.L.)
| | - Yanlin Liu
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Xianyang 712100, China
- Correspondence: (Y.Q.); (Y.L.)
| |
Collapse
|
48
|
Wine Microbial Consortium: Seasonal Sources and Vectors Linking Vineyard and Winery Environments. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Winemaking involves a wide diversity of microorganisms with different roles in the process. The wine microbial consortium (WMC) includes yeasts, lactic acid bacteria and acetic acid bacteria with different implications regarding wine quality. Despite this technological importance, their origin, prevalence, and routes of dissemination from the environment into the winery have not yet been fully unraveled. Therefore, this study aimed to evaluate the WMC diversity and incidence associated with vineyard environments to understand how wine microorganisms overwinter and enter the winery during harvest. Soils, tree and vine barks, insects, vine leaves, grapes, grape musts, and winery equipment were sampled along four seasons. The isolation protocol included: (a) culture-dependent microbial recovery; (b) phenotypical screening to select fermenting yeasts, lactic acid, and acetic acid bacteria; and (c) molecular identification. The results showed that during all seasons, only 11.4% of the 1424 isolates presumably belonged to the WMC. The increase in WMC recovery along the year was mostly due to an increase in the number of sampled sources. Acetic acid bacteria (Acetobacter spp., Gluconobacter spp., Gluconoacetobacter spp.) were mostly recovered from soils during winter while spoilage lactic acid bacteria (Leuconostoc mesenteroides and Lactobacillus kunkeii) were only recovered from insects during véraison and harvest. The fermenting yeast Saccharomyces cerevisiae was only isolated from fermented juice and winery equipment. The spoilage yeast Zygosaccharomyces bailii was only recovered from fermented juice. The single species bridging both vineyard and winery environments was the yeast Hanseniaspora uvarum, isolated from insects, rot grapes and grape juice during harvest. Therefore, this species appears to be the best surrogate to study the dissemination of the WMC from vineyard into the winery. Moreover, the obtained results do not evidence the hypothesis of a perennial terroir-dependent WMC given the scarcity of their constituents in the vineyard environment along the year and the importance of insect dissemination.
Collapse
|
49
|
Stefanini I, Di Paola M, Liti G, Marranci A, Sebastiani F, Casalone E, Cavalieri D. Resistance to Arsenite and Arsenate in Saccharomyces cerevisiae Arises through the Subtelomeric Expansion of a Cluster of Yeast Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138119. [PMID: 35805774 PMCID: PMC9266342 DOI: 10.3390/ijerph19138119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023]
Abstract
Arsenic is one of the most prevalent toxic elements in the environment, and its toxicity affects every organism. Arsenic resistance has mainly been observed in microorganisms, and, in bacteria, it has been associated with the presence of the Ars operon. In Saccharomyces cerevisiae, three genes confer arsenic resistance: ARR1, ARR2, and ARR3. Unlike bacteria, in which the presence of the Ars genes confers per se resistance to arsenic, most of the S. cerevisiae isolates present the three ARR genes, regardless of whether the strain is resistant or sensitive to arsenic. To assess the genetic features that make natural S. cerevisiae strains resistant to arsenic, we used a combination of comparative genomic hybridization, whole-genome sequencing, and transcriptomics profiling with microarray analyses. We observed that both the presence and the genomic location of multiple copies of the whole cluster of ARR genes were central to the escape from subtelomeric silencing and the acquisition of resistance to arsenic. As a result of the repositioning, the ARR genes were expressed even in the absence of arsenic. In addition to their relevance in improving our understanding of the mechanism of arsenic resistance in yeast, these results provide evidence for a new cluster of functionally related genes that are independently duplicated and translocated.
Collapse
Affiliation(s)
- Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy;
| | - Monica Di Paola
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (M.D.P.); (E.C.)
| | - Gianni Liti
- National Centre for Scientific Research (CNRS), National Institute of Health and Medical Research (INSERM), Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 06103 Nice, France;
| | - Andrea Marranci
- Core Research Laboratory, Oncogenomics Unit, Istituto di Fisiologia Clinica, Institute for Cancer Research and Pre-vention (ISPRO), 56124 Pisa, Italy;
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Sesto Fiorentino, 50019 Florence, Italy;
| | - Enrico Casalone
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (M.D.P.); (E.C.)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (M.D.P.); (E.C.)
- Correspondence:
| |
Collapse
|
50
|
Jones R, Fountain MT, Andreani NA, Günther CS, Goddard MR. The relative abundances of yeasts attractive to Drosophila suzukii differ between fruit types and are greatest on raspberries. Sci Rep 2022; 12:10382. [PMID: 35725889 PMCID: PMC9209449 DOI: 10.1038/s41598-022-14275-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023] Open
Abstract
Fungal metabolic volatiles attract Drosophila suzukii which oviposits in ripening fruits, but there are few data describing the fungal microbiomes of commercial fruits susceptible to this insect pest. We tested the hypothesis that fruit type and ripening stage have a significant effect on fruit surface fungal communities using DNA metabarcoding approaches and found strong support for differences in all three fungal community biodiversity metrics analysed (numbers, types, and abundances of taxa). There was an average fivefold greater difference in fungal communities between sites with different fruit types (strawberry, cherry, raspberry, and blueberry) than across fruit developmental stages, demonstrating site and/or fruit type is the greater factor defining fungal community assemblage. The addition of a fungal internal standard (Plectosphaerella cucumerina) showed cherry had relatively static fungal populations across ripening. Raspberry had a greater prevalence of Saccharomycetales yeasts attractive to D. suzukii, including Hanseniaspora uvarum, which aligns with reports that raspberry is among the fruits with greatest susceptibility and attraction to D. suzukii. Greater knowledge of how yeast communities change during fruit maturation and between species or sites may be valuable for developing methods to manipulate fruit microbiomes for use in integrated pest management strategies to control D. suzukii.
Collapse
Affiliation(s)
- Rory Jones
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
- NIAB EMR, New Road, East Malling, Kent, ME19 6BJ, UK.
| | | | - Nadia A Andreani
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Catrin S Günther
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The New Zealand Institute of Plant and Food Research Ltd, Ruakura Research Campus, Bisley Road, Hamilton, 3214, New Zealand
| | - Matthew R Goddard
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|