1
|
Hu D, Cheng S, Wei X, Man C. Purple-Grain Wheat Regulation of Blood Lipids and Blood Glucose in Diet-Induced Hyperlipidemic Mice and Type 2 Diabetic Mice. Nutrients 2025; 17:1310. [PMID: 40284176 PMCID: PMC12030340 DOI: 10.3390/nu17081310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Disorders of glucose and lipid metabolism can easily lead to metabolic diseases such as hyperlipidemia and diabetes mellitus, with multiple complications. This study evaluated the regulatory effect of purple-grain wheat on glycolipid metabolism. Methods: In this study, we established a hyperlipidemic mouse model by means of a high-fat diet and a type 2 diabetic mouse model using a high-fat and high-sugar diet combined with streptozotocin, and the mice were intervened with 15 g/(kg·d), 7.5 g/(kg·d), and 3.75 g/(kg·d) doses of purple-grain wheat paste (PWP) for 4 and 5 weeks, respectively. Results: The results revealed that PWP reversed the increase in body weight; increased serum high-density lipoprotein cholesterol; and decreased serum total cholesterol, triglycerides, and low-density lipoproteins. In addition, PWP reversed the decrease in body weight and alleviated the sustained increase in blood glucose in type 2 diabetic mice. Conclusions: PWP shows a significant ability to regulate glycolipid levels, which is related to its functional composition and its ability to act as a prebiotic. In conclusion, PWP can be considered a potential functional food for lowering blood glucose and blood lipids.
Collapse
Affiliation(s)
- Dong Hu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (D.H.)
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China;
| | - Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (D.H.)
| | - Xiaoyan Wei
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China;
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (D.H.)
| |
Collapse
|
2
|
Han YH, Cui XW, Li YX, Chen X, Zhang H, Zhang Y, Wang SS, Li M. Bacterial cellulose is a desirable biological macromolecule that can prevent obesity via modulating lipid metabolism and gut microbiota. Int J Biol Macromol 2024; 283:137522. [PMID: 39537056 DOI: 10.1016/j.ijbiomac.2024.137522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/02/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Obesity has attracted great concern because of its undesirable effects on our life quality. Bacterial cellulose (BC) is a biological macromolecule that can improve gut homeostasis and lipid metabolism. However, its potential role in preventing obesity and associated mechanisms is still poorly understood. Herein, a supplement of BC was used to fully evaluate how it prevents obesity based on physio-biochemical and gut microbial analyses. Results showed that BC consumption helped decrease body and liver weight, and fat accumulation in kidney and epididymis. Correspondingly, glucose concentrations, total triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were reversed to the control levels. Consuming BC also improved liver fat metabolism and intestinal function, and alleviated ileum and epididymis inflammation. High-throughput sequencing suggested that a high-fat diet significantly decreased gut microbiota diversity, which could be reversed by consuming BC. A decreased Firmicutes and Proteobacteria and an increased Bacteroidetes following BC consumption were observed. The OTU-based analysis identified that Lachnospiraceae, Desulfovibrio, Lachnoclostridium, Blautia, Anaerotruncus, Bacteroides, Faecalibaculum, Bacteroidales S24-7 group, Prevotellaceae UCG-001 group, and Alloprevotella might be involved in obesity development or prevention. Our data suggest that BC is a good insoluble dietary fiber to prevent obesity via regulating lipid metabolism and gut microbiota.
Collapse
Affiliation(s)
- Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Xi-Wen Cui
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yi-Xi Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xian Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan-Shan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; College of Life Science, Fujian Normal University, Fuzhou 350117, China.
| | - Min Li
- College of Life Science, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
3
|
Annunziato A, Vacca M, Cristofori F, Dargenio VN, Celano G, Francavilla R, De Angelis M. Celiac Disease: The Importance of Studying the Duodenal Mucosa-Associated Microbiota. Nutrients 2024; 16:1649. [PMID: 38892582 PMCID: PMC11174386 DOI: 10.3390/nu16111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
There is increasing evidence indicating that changes in both the composition and functionality of the intestinal microbiome are closely associated with the development of several chronic inflammatory diseases, with celiac disease (CeD) being particularly noteworthy. Thanks to the advent of culture-independent methodologies, the ability to identify and quantify the diverse microbial communities residing within the human body has been significantly improved. However, in the context of CeD, a notable challenge lies in characterizing the specific microbiota present on the mucosal surfaces of the intestine, rather than relying solely on fecal samples, which may not fully represent the relevant microbial populations. Currently, our comprehension of the composition and functional importance of mucosa-associated microbiota (MAM) in CeD remains an ongoing field of research because the limited number of available studies have reported few and sometimes contradictory results. MAM plays a crucial role in the development and progression of CeD, potentially acting as both a trigger and modulator of the immune response within the intestinal mucosa, given its proximity to the epithelial cells and direct interaction. According to this background, this review aims to consolidate the existing literature specifically focused on MAM in CeD. By elucidating the complex interplay between the host immune system and the gut microbiota, we aim to pave the way for new interventions based on novel therapeutic targets and diagnostic biomarkers for MAM in CeD.
Collapse
Affiliation(s)
- Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| |
Collapse
|
4
|
Kadyan S, Park G, Hochuli N, Miller K, Wang B, Nagpal R. Resistant starches from dietary pulses improve neurocognitive health via gut-microbiome-brain axis in aged mice. Front Nutr 2024; 11:1322201. [PMID: 38352704 PMCID: PMC10864001 DOI: 10.3389/fnut.2024.1322201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Cognitive decline is a common consequence of aging. Dietary patterns that lack fibers and are high in saturated fats worsen cognitive impairment by triggering pro-inflammatory pathways and metabolic dysfunctions. Emerging evidence highlights the neurocognitive benefits of fiber-rich diets and the crucial role of gut-microbiome-brain signaling. However, the mechanisms of this diet-microbiome-brain regulation remain largely unclear. Methods Accordingly, we herein investigated the unexplored neuroprotective mechanisms of dietary pulses-derived resistant starch (RS) in improving aging-associated neurocognitive function in an aged (60-weeks old) murine model carrying a human microbiome. Results and discussion Following 20-weeks dietary regimen which included a western-style diet without (control; CTL) or with 5% w/w fortification with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin fiber (INU), we find that RS, particularly from LEN, ameliorate the cognitive impairments induced by western diet. Mechanistically, RS-mediated improvements in neurocognitive assessments are attributed to positive remodeling of the gut microbiome-metabolome arrays, which include increased short-chain fatty acids and reduced branched-chain amino acids levels. This microbiome-metabolite-brain signaling cascade represses neuroinflammation, cellular senescence, and serum leptin/insulin levels, while enhancing lipid metabolism through improved hepatic function. Altogether, the data demonstrate the prebiotic effects of RS in improving neurocognitive function via modulating the gut-brain axis.
Collapse
Affiliation(s)
- Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Nathaniel Hochuli
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Katelyn Miller
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
5
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [PMID: 37797345 DOI: 10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Oat (Avena sativa L.), an annual herbaceous plant belonging to the Gramineae family, is widely grown in various regions including EU, Canada, America, Australia, etc. Due to the nutritional and pharmacological values, oats have been developed into various functional food including fermented beverage, noodle, cookie, etc. Meanwhile, numerous studies have demonstrated that oats may effectively improve metabolic syndrome, such as dyslipidemia, hyperglycemia, atherosclerosis, hypertension, and obesity. However, the systematic pharmacological mechanisms of oats on metabolic syndrome have not been fully revealed. Therefore, in order to fully explore the benefits of oat in food industry and clinic, this review aims to provide up-to-date information on oat and its constituents, focusing on the effects on metabolic syndrome.
Collapse
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People's Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
6
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [DOI: https:/doi.org/10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People’s Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
7
|
Gao Y, Guo M, Wang D, Zhao D, Wang M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int J Biol Macromol 2023; 225:467-483. [PMID: 36379281 DOI: 10.1016/j.ijbiomac.2022.11.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Hemicelluloses, a major component of plant cell walls, are a non-cellulosic heteropolysaccharide composed of several distinct sugars that is second in abundance to cellulose, which are one of the most abundant and cheapest renewable resources on earth. Hemicelluloses structure is complex and its chemical structure varies greatly among the different plant species. In addition to its wide use in production of feed and other chemical materials, hemicelluloses are known for its remarkable biological activities that remain largely underutilised to date. Therefore, comprehensive investigations of hemicelluloses structural and biological properties would be helpful for achieving rational utilisation and high-value conversion of this underutilised substance into agents with enhanced health benefits for incorporation in drugs and health foods. In this review, details of diverse research initiatives that have enhanced our understanding of hemicelluloses properties are summarised, including hemicelluloses sources, extraction and purification methods, structural characteristics and biological activities. Furthermore, hemicelluloses structure-activity relationships and new directions for future hemicelluloses research studies are discussed.
Collapse
Affiliation(s)
- Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingkun Guo
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
8
|
Sun Y, Zhang J, Zhang H, Hou H. Effects of long-term intake of whole wheat and aleurone-enriched Chinese steamed bread on gut microbiome and liver metabolome in mice fed high-fat diet. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2022.103614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Maciejewska-Markiewicz D, Drozd A, Palma J, Ryterska K, Hawryłkowicz V, Załęska P, Wunsh E, Kozłowska-Petriczko K, Stachowska E. Fatty Acids and Eicosanoids Change during High-Fiber Diet in NAFLD Patients-Randomized Control Trials (RCT). Nutrients 2022; 14:nu14204310. [PMID: 36296994 PMCID: PMC9608825 DOI: 10.3390/nu14204310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a wide spectrum condition characterized by excessive liver fat accumulation in people who do not abuse alcohol. There is no effective medical treatment for NAFLD; therefore, most important recommendations to reduce liver steatosis are diet and lifestyle, including proper physical activity. The aim of our study was to analyze the fatty acids and eicosanoids changes in the serum of patients who consumed high-fiber rolls for 8 weeks. MATERIALS AND METHODS The group of 28 Caucasian participants was randomly divided into two groups, those who received 24 g of fiber/day-from 2 buns of 12 g each (n = 14), and those who received 12 g of fiber/day-from 2 buns of 6 g (n = 14). At the beginning and on the last visit of the 8-week intervention, all patients underwent NAFLD evaluation, biochemical parameter measurements, and fatty acids and eicosanoids evaluation. RESULTS Patients who received 12 g of fiber had significantly reduced liver steatosis and body mass index. In the group who received 24 g of fiber/day, we observed a trend to liver steatosis reduction (p = 0.07) and significant decrease in aspartate aminotransferase (p = 0.03) and total cholesterol (p = 0.03). All changes in fatty acid and eicosanoids profile were similar. Fatty acids analysis revealed that extra fiber intake was associated with a significant increase in monounsaturated fatty acids and decrease in saturated fatty acids. Moreover, both groups showed increased concentration of gamma linoleic acid and docosahexaenoic acid. We also observed reduction in prostaglandin E2. CONCLUSIONS Our study revealed that a high amount of fiber in the diet is associated with a reduction in fatty liver, although this effect was more pronounced in patients in the lower fiber group. However, regardless of the amount of fiber consumed, we observed significant changes in the profile of FAs, which may reflect the positive changes in the lipids liver metabolism. Regardless of the amount of fiber consumed, patients decreased the amount of PGE2, which may indicate the lack of disease progression associated with the development of inflammation.
Collapse
Affiliation(s)
- Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Arleta Drozd
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
- Correspondence: (A.D.); (J.P.)
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
- Correspondence: (A.D.); (J.P.)
| | - Karina Ryterska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Patrycja Załęska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Ewa Wunsh
- Translational Medicine Group, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | | | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| |
Collapse
|
10
|
Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization. FERMENTATION 2022. [DOI: 10.3390/fermentation8090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Taiwan djulis (Chenopodium formosanum Koidz.) is a plant native to Taiwan and is a grain rich in nutrients, vitamins, and minerals with antioxidant properties. This paper aimed to use appropriate processing technology and incorporate probiotics, thus combining Taiwan’s high-quality milk sources to develop Taiwan djulis fermented dairy products. Later, FL83B cells have used to evaluate the glucose utilization ability after the administration of djulis. We first screened Lactiplantibacillus plantarum and combined it with the traditional yogurt strains Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for cultivation. Further, the fermentation process was optimized where 7.5% djulis and an inoculum of 107 colony forming unit/mL were fermented at 40 °C for 18 h. Compared to fermented milk without djulis, the analysis of various nutrients and active ingredients showed that free radical scavenging abilities of DPPH and ABTS reached 2.3 and 2.0 times (752.35 ± 29.29 µg and 771.52 ± 3.79 µg TE/g, respectively). The free phenol content increased 2.5 times (169.90 ± 14.59 mg gallic acid/g); the total flavonoid content enhanced 4.8 times (3.05 ± 0.03 mg quercetin/g), and the gamma-aminobutyric acid content was 3.07 ± 0.94 mg/g. In a co-culture of mouse liver cells with fermented products, 100 ppm ethanol extract of fermented products effectively improved glucose utilization with increased glucose transporter expression. This functional fermented dairy product can be developed into the high value added local agricultural products and enhance multiple applications including medical and therapeutic fields.
Collapse
|
11
|
Vargas-Rosvik S, Lazo-Verdugo N, Escandón S, Ochoa-Avilés C, Baldeón-Rojas L, Ochoa-Avilés A. Cardiovascular risk among 6-8-year-old children living in urban and rural communities in Ecuador: A cross-sectional analysis. Front Nutr 2022; 9:925873. [PMID: 35967818 PMCID: PMC9366330 DOI: 10.3389/fnut.2022.925873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiovascular diseases have their origins in childhood. At least 20% of children and adolescents in Latin America are overweight or obese. However, little is known regarding the cardiovascular risk of young children living in the region. This paper aims to identify associations between socio-demographics, adiposity, and dietary intake with cardiometabolic risk among children between 6- and 8-years old living in urban and rural Andean regions of Ecuador. A cross-sectional study was conducted among 267 children attending elementary schools between February and August 2018. Sociodemographic data were collected using a structured interview. Bodyweight, height, and waist circumference were measured in duplicate; blood samples were taken after overnight fasting to determine blood lipids, hepatic enzymes, and adipokines; food intake data was assessed by two 24-h recalls administered to the guardians. Associations between cardiometabolic risk (i.e., blood lipids, hepatic enzymes, and adipokines) with sociodemographic characteristics, dietary intake, and waist circumference were tested using multiple hierarchical regression models. Twenty-nine percent of the children were overweight or obese, 12% had low HDL levels, and over 18% had high levels of LDL and triglycerides. Children living in the urban region had lower levels of HDL (β-4.07 mg/dL; 95% CI: -7.00; -1.15; P = 0.007) but higher levels of LDL cholesterol (β 8.52 mg/dL; 95% CI: 1.38; 15.66; P = 0.019). Hepatic enzymes were also higher among urban children (SGOT: β% 22.13; 95% CI: 17.33; 26.93; P < 0.001; SGPT: β 0.84 U/L; 95% CI: 0.09; 1.59; P = 0.028). Leptin blood levels were higher (β% 29.27; 95% CI: 3.57; 54.97; P = 0.026), meanwhile adiponectin plasma concentrations were lower among urban children (β%-103.24; 95% CI: -58.9; -147.58; P = < 0.001). Fiber intake was inversely associated with total cholesterol (β-9.27 mg/dL; 95% CI -18.09; -0.45; P = 0.040) and LDL cholesterol blood levels (β-9.99 mg/dL; 95% CI: -18.22; -1.75; P = 0.018). Our findings demonstrate that young children are at high cardiovascular risk; if no actions are taken, the burden of non-communicable diseases will be substantial. The differences in risk between rural and urban areas are evident; urbanization might predispose children to a different reality and, in most cases, result in poor habits.
Collapse
Affiliation(s)
| | | | - Samuel Escandón
- Departamento de Biociencias, Universidad de Cuenca, Cuenca, Ecuador
| | | | - Lucy Baldeón-Rojas
- Instituto de Investigación en Biomedicina, Universidad Central del Ecuador, Quito, Ecuador
| | | |
Collapse
|
12
|
Li N, Wang S, Wang T, Liu R, Zhi Z, Wu T, Sui W, Zhang M. Valorization of Wheat Bran by Three Fungi Solid-State Fermentation: Physicochemical Properties, Antioxidant Activity and Flavor Characteristics. Foods 2022; 11:foods11121722. [PMID: 35741920 PMCID: PMC9222537 DOI: 10.3390/foods11121722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
Three medicinal fungi were used to carry out solid-state fermentation (SSF) of wheat bran. The results showed that the use of these fungi for SSF significantly improved wheat bran’s nutritional properties including the extraction yield of soluble dietary fiber (SDF), total phenolic content (TPC), total flavonoid content (TFC), physical properties containing swelling capacity (SC) and oil absorption capacity (OAC), as well as antioxidant activities. Electronic nose and GC–MS analyses showed that fermented wheat bran had different volatiles profiles compared to unfermented wheat bran. The results suggest that SSF by medicinal fungi is a promising way for the high-value utilization of wheat bran.
Collapse
Affiliation(s)
- Ningjie Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Songjun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Tianli Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
- Correspondence: (R.L.); (M.Z.)
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium;
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence: (R.L.); (M.Z.)
| |
Collapse
|
13
|
Kulathunga J, Simsek S. A Review: Cereals on Modulating the Microbiota/Metabolome for Metabolic Health. Curr Nutr Rep 2022; 11:371-385. [PMID: 35657489 DOI: 10.1007/s13668-022-00424-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Diet can modulate both the composition and functionality of the human gut microbiota. Cereals are rich in specific macro and functional elements that are considered important dietary components for maintaining human health; therefore, it is important to examine precise nutritional mechanism involved in exerting the health benefits via modulating gut microbiota. The purpose of this review is to summarize recent research on how different cereals in the diet can regulate the microbiota for health and disease. RECENT FINDINGS There is an increased interest in targeting the gut microbiome for the treatment of chronic diseases. Cereals can alter the gut microbiome and may improve energy and glucose homeostasis, interfere with host energy homeostasis, appetite, blood glucose regulation, insulin sensitivity, and regulation of host metabolism. However, more human research is necessary to confirm the beneficial health outcomes of cereals via modulating gut microbiota. Cereals play an essential role in shaping the intestinal microbiota that contributes to exerting health effects on various diseases.
Collapse
Affiliation(s)
- Jayani Kulathunga
- Cereal Science Graduate Program, Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Senay Simsek
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
14
|
Wang Z, Chen Y, Wang W, Huang C, Hu Y, Johnston L, Wang F. Dietary Supplementation With Fine-Grinding Wheat Bran Improves Lipid Metabolism and Inflammatory Response via Modulating the Gut Microbiota Structure in Pregnant Sow. Front Microbiol 2022; 13:835950. [PMID: 35418966 PMCID: PMC8999112 DOI: 10.3389/fmicb.2022.835950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effects of fine-grinding wheat bran on pregnant sow body condition, lipid metabolism, inflammatory response, and gut microbiota. In this study, wheat bran was crushed into three particle sizes. A total of 60 Landrace × Yorkshire second parity sows were allotted to two groups: CWB (a diet containing coarse wheat bran with particle size of 605 μm) and FWB (a diet containing fine wheat bran with particle size of 438 μm). Fine-grinding wheat bran had higher soluble dietary fiber concentration, swelling capacity, water-holding capacity, and fermentability than coarse wheat bran. Pregnant sows fed FWB throughout pregnancy had lower body weight and fat deposition than sows fed CWB. And the piglet body weight at birth of the FWB group was remarkably increased. Serum concentrations of lipids (triglycerides, total cholesterol, and free fatty acid), interleukin 6, leptin, and resistin were decreased on day 90 of pregnancy by fine wheat bran supplementation. Feeding FWB significantly decreased abundance of Firmicutes and dramatically increased the abundance of Bacteroidetes at phylum level. At genus level, the abundance of Terrisporobacter was decreased in FWB feeding sows, but the abundance of Parabacteroides was increased. Fecal total short-chain fatty acids, propionate, and butyrate contents were markedly increased in the FWB group. The results suggested that the physicochemical properties of finely ground wheat bran had been improved. Dietary supplementation with fine wheat bran changed the gut microbiota structure and enhanced the short-chain fatty acids level, which improved the maternal body condition, metabolic and inflammatory status, and reproductive performance in sows.
Collapse
Affiliation(s)
- Zijie Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenhui Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongfei Hu
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Lee Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, United States
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Wen S, Yuan G, Li C, Xiong Y, Zhong X, Li X. High cellulose dietary intake relieves asthma inflammation through the intestinal microbiome in a mouse model. PLoS One 2022; 17:e0263762. [PMID: 35271579 PMCID: PMC8912215 DOI: 10.1371/journal.pone.0263762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
Numerous epidemiological studies have shown that a high dietary fiber intake is associated inversely with the incidence of asthma in the population. There have been many studies on the role of soluble dietary fiber, but the mechanism of action for insoluble dietary fiber, such as cellulose-the most widely existing dietary fiber, in asthma is still unclear. The current study investigated the outcomes of a high-cellulose diet in a mouse model of asthma and detected pathological manifestations within the lungs, changes in the intestinal microbiome, and changes in intestinal short-chain fatty acids (SCFAs) in mice. A high-cellulose diet can reduce lung inflammation and asthma symptoms in asthmatic mice. Furthermore, it dramatically changes the composition of the intestinal microbiome. At the family level, a new dominant fungus family Peptostreptococcaceae is produced, and at the genus level, the unique genus Romboutsla, [Ruminococcus]_torques_group was generated. These genera and families of bacteria are closely correlated with lipid metabolism in vivo. Many studies have proposed that the mechanism of dietary fiber regulating asthma may involve the intestinal microbiome producing SCFAs, but the current research shows that a high-cellulose diet cannot increase the content of SCFAs in the intestine. These data suggest that a high-cellulose diet decreases asthma symptoms by altering the composition of the intestinal microbiome, however, this mechanism is thought to be independent of SCFAs and may involve the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Song Wen
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Guifang Yuan
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Cunya Li
- Department of the Traditional Medicine, Chongqing Medical University, Chongqing, China
| | - Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuemei Zhong
- Department of Respiratory Endocrinology, School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaoyu Li
- Laboratory of Innovation, Basic Medical Experimental Teaching Centre, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
16
|
Nurliyani N, Harmayani E, Sunarti S. Synbiotic goat milk kefir improves health status in rats fed a high-fat and high-fructose diet. Vet World 2022; 15:173-181. [PMID: 35369595 PMCID: PMC8924388 DOI: 10.14202/vetworld.2022.173-181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aim: Kefir, a natural probiotic containing bacteria and yeast, is a fermented milk product, whereas glucomannan from porang tuber (Amorphophallus oncophyllus) is prebiotic in vivo. Simvastatin is a potent lipid-lowering statin that can be utilized for pharmacological therapy in obesity. This study aimed to determine the effect of goat milk kefir supplemented with porang glucomannan (synbiotic kefir) and goat milk kefir without glucomannan (probiotic kefir) on blood glucose, hemoglobin A1c (HbA1c), free fatty acids (FFAs), tumor necrosis factor-alpha (TNF-α), gene expression of peroxisome proliferator-activated receptor gamma (PPARg), and insulin-producing cells in rats fed a high-fat and high-fructose (HFHF) diet. Materials and Methods: Male Sprague-Dawley rats were divided into five dietary groups: (1) Normal control, (2) rats fed HFHF, (3) rats fed HFHF+probiotic kefir, (4) rats fed HFHF+synbiotic kefir, and (5) rats fed HFHF+simvastatin. All of these treatments were administered for 4 weeks. Results: There were no significant differences in plasma glucose levels in HFHF diet-fed rats before and after treatment. However, plasma HbA1c and TNF-α decreased, and FFAs were inhibited in rats after treatment with synbiotic kefir. Synbiotic kefir decreased the gene expression of PPARγ2 in HFHF diet-fed rats but did not affect the total number of islets of Langerhans and insulin-producing cells. Conclusion: Synbiotic kefir improved the health of rats fed an HFHF diet by decreasing HbA1c, TNF-α, and PPARγ2 gene expression and preventing an increase in FFAs.
Collapse
Affiliation(s)
- Nurliyani Nurliyani
- Department of Animal Product Technology, Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Kampus UGM, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Eni Harmayani
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora 1 Bulaksumur, Yogyakarta 55281, Indonesia
| | - Sunarti Sunarti
- Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako, Senolowo, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
17
|
Manasa V, Tumaney AW. Evaluation of the anti-dyslipidemic effect of spice fixed oils in the in vitro assays and the high fat diet-induced dyslipidemic mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Red Quinoa Bran Extract Prevented Alcoholic Fatty Liver Disease via Increasing Antioxidative System and Repressing Fatty Acid Synthesis Factors in Mice Fed Alcohol Liquid Diet. Molecules 2021; 26:molecules26226973. [PMID: 34834064 PMCID: PMC8624810 DOI: 10.3390/molecules26226973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Alcohol is metabolized in liver. Chronic alcohol abuse results in alcohol-induced fatty liver and liver injury. Red quinoa (Chenopodium formosanum) was a traditional staple food for Taiwanese aborigines. Red quinoa bran (RQB) included strong anti-oxidative and anti-inflammatory polyphenolic compounds, but it was usually regarded as the agricultural waste. Therefore, this study is to investigate the effect of water and ethanol extraction products of RQB on the prevention of liquid alcoholic diet-induced acute liver injury in mice. The mice were given whole grain powder of red quinoa (RQ-P), RQB ethanol extract (RQB-E), RQB water extract (RQB-W), and rutin orally for 6 weeks, respectively. The results indicated that RQB-E, RQB-W, and rutin decreased alcoholic diet-induced activities of aspartate aminotransferase and alanine aminotransferase, and the levels of serum triglyceride, total cholesterol, and hepatic triglyceride. Hematoxylin and eosin staining of liver tissues showed that RQB-E and RQB-W reduced lipid droplet accumulation and liver injury. However, ethanol extraction process can gain high rutin and antioxidative agents contents from red quinoa, that showed strong effects in preventing alcoholic fatty liver disease and liver injury via increasing superoxide dismutase/catalase antioxidative system and repressing the expressions of fatty acid synthesis enzyme acetyl-CoA carboxylase.
Collapse
|
19
|
Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients 2021; 13:nu13103470. [PMID: 34684471 PMCID: PMC8537956 DOI: 10.3390/nu13103470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is due in part to increased consumption of a Western diet that is low in dietary fiber. Conversely, an increase in fiber supplementation to a diet can have various beneficial effects on metabolic homeostasis including weight loss and reduced adiposity. Fibers are extremely diverse in source and composition, such as high-amylose maize, β-glucan, wheat fiber, pectin, inulin-type fructans, and soluble corn fiber. Despite the heterogeneity of dietary fiber, most have been shown to play a role in alleviating obesity-related health issues, mainly by targeting and utilizing the properties of the gut microbiome. Reductions in body weight, adiposity, food intake, and markers of inflammation have all been reported with the consumption of various fibers, making them a promising treatment option for the obesity epidemic. This review will highlight the current findings on different plant-based fibers as a therapeutic dietary supplement to improve energy homeostasis via mechanisms of gut microbiota.
Collapse
|
20
|
Hussain S, Sharma M, Bhat R. Valorisation of Sea Buckthorn Pomace by Optimization of Ultrasonic-Assisted Extraction of Soluble Dietary Fibre Using Response Surface Methodology. Foods 2021; 10:foods10061330. [PMID: 34207730 PMCID: PMC8228464 DOI: 10.3390/foods10061330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Sea buckthorn pomace is a valuable industrial waste/by-product obtained after juice production that contains bioactive, health-promoting dietary fibres. This pomace finds usage as animal feed or simply discarded, owed to the lack of appropriate handling or processing facilities. The present study was aimed to evaluate the effects of green extraction technologies such as ultrasonic-assisted extraction on the yield of soluble dietary fibre (SDF) from sea buckthorn pomace. Response surface methodology (RSM) coupled with Box–Behnken design (BBD) was applied for optimization of SDF yield. The effects of sonication temperature (60–80 °C), sonication power (100–130 W) and extraction time (30–60 min) on the yield of SDF were also investigated. Furthermore, colour measurement and hydration properties of sea buckthorn pomace powder (STP) and dietary fibre fractions (SDF and insoluble dietary fibre, IDF) were also investigated. From the RSM results, the optimal sonication temperature (67.83 °C), sonication power (105.52 W) and extraction time (51.18 min) were identified. Based on this, the modified optimum conditions were standardised (sonication temperature of 70 °C, sonication power of 105 W and extraction time of 50 min). Accordingly, the yield of SDF obtained was 16.08 ± 0.18%, which was close to the predicted value (15.66%). Sonication temperature showed significant effects at p ≤ 0.01, while sonication power and extraction time showed significant effects at p ≤ 0.05 on the yield of SDF. The result on colour attributes of STP, SDF and IDF differed (L* (STP: 54.71 ± 0.72, IDF: 72.64 ± 0.21 and SDF: 54.53 ± 0.31), a* (STP: 52.35 ± 1.04, IDF: 32.85 ± 0.79 and SDF: 43.54 ± 0.03), b* (STP: 79.28 ± 0.62, IDF: 82.47 ± 0.19 and SDF: 71.33 ± 0.50), and ∆E* (STP: 79.93 ± 0.50, IDF: 74.18 ± 0.30 and SDF: 68.40 ± 0.39)). Higher values of hydration properties such as the water holding, swelling and oil holding capacities were found in SDF (7.25 ± 0.10 g g−1, 7.24 ± 0.05 mL g−1 and 1.49 ± 0.02 g g−1), followed by IDF (6.30 ± 0.02, 5.75 ± 0.07 and 1.25 ± 0.03) and STP (4.17 ± 0.04, 3.48 ± 0.06 and 0.89 ± 0.03), respectively. Based on our results, response surface methodology is recommended to be adopted to optimize the ultrasonic-assisted extraction to obtain maximum yield of SDF from sea buckthorn pomace. These results can be of practical usage while designing future functional food formulations using sea buckthorn pomace.
Collapse
|
21
|
A maternal high-fat/low-fiber diet impairs glucose tolerance and induces the formation of glycolytic muscle fibers in neonatal offspring. Eur J Nutr 2021; 60:2709-2718. [PMID: 33386892 DOI: 10.1007/s00394-020-02461-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE In our previous study, the maternal high-fat/low-fiber (HF-LF) diet was suggested to induce metabolic disorders and placental dysfunction of the dam, but the effects of this diet on glucose metabolism of neonatal offspring remain largely unknown. Here, a neonatal pig model was used to evaluate the effects of maternal HF-LF diet during pregnancy on glucose tolerance, transition of skeletal muscle fiber types, and mitochondrial function in offspring. METHODS A total of 66 pregnant gilts (Guangdong Small-ear Spotted pig) at day 60 of gestation were randomly divided into two groups: control group (CON group; 2.86% crude fat, 9.37% crude fiber), and high-fat/low-fiber diet group (HF-LF group; 5.99% crude fat, 4.13% crude fiber). RESULTS The maternal HF-LF diet was shown to impair the glucose tolerance of neonatal offspring, downregulate the protein level of slow-twitch fiber myosin heavy chain I (MyHC I), and upregulate the protein levels of fast-twitch fiber myosin heavy chain IIb (MyHC IIb) and IIx (MyHC IIx) in soleus muscle. Additionally, compared with the CON group, the HF-LF offspring showed inhibition of insulin signaling pathway and decrease in mitochondrial function in liver and soleus muscle. CONCLUSION Maternal HF-LF diet during pregnancy impairs glucose tolerance, induces the formation of glycolytic muscle fibers, and decreases the hepatic and muscular mitochondrial function in neonatal piglets.
Collapse
|
22
|
Oat fiber attenuates circulating oxysterols levels and hepatic inflammation via targeting TLR4 signal pathway in LDL receptor knockout mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
23
|
Rahman SU, Huang Y, Zhu L, Chu X, Junejo SA, Zhang Y, Khan IM, Li Y, Feng S, Wu J, Wang X. Tea polyphenols attenuate liver inflammation by modulating obesity-related genes and down-regulating COX-2 and iNOS expression in high fat-fed dogs. BMC Vet Res 2020; 16:234. [PMID: 32641048 PMCID: PMC7346471 DOI: 10.1186/s12917-020-02448-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background Tea polyphenols (TPs) attenuate obesity related liver inflammation; however, the anti-obesity effects and anti-inflammatory mechanisms are not clearly understood. This study aimed to determine whether the anti-obesity and anti-inflammatory TPs mechanisms associated with cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression levels, and obesity-related gene response in dogs. Results Dogs fed TPs displayed significantly decreased (p < 0.01) mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) compared to dogs that consumed high-fat diet (HFD) alone. TPs significantly (p < 0.01) inhibited COX-2 and iNOS expression level, and decreased liver fat content and degeneration. Conclusion These results suggested that TPs act as a therapeutic agent for obesity, liver inflammation, and fat degeneration via COX-2 and iNOS inhibition, with TNF-α, IL-1β, and IL-6 involvement.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Lei Zhu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Xiaoyan Chu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Shahid Ahmed Junejo
- School of Tea and Food Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Yafei Zhang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.
| |
Collapse
|
24
|
Gut microbial metabolism of dietary fibre protects against high energy feeding induced ovarian follicular atresia in a pig model. Br J Nutr 2020; 125:38-49. [PMID: 32600501 DOI: 10.1017/s0007114520002378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To investigate the effects of dietary fibre on follicular atresia in pigs fed a high-fat diet, we fed thirty-two prepubescent gilts a basal diet (CON) or a CON diet supplemented with 300 g/d dietary fibre (fibre), 240 g/d soya oil (SO) or both (fibre + SO). At the 19th day of the 4th oestrus cycle, gilts fed the SO diet showed 112 % more atretic follicles and greater expression of the apoptotic markers, Bax and caspase-3, and these effects were reversed by the fibre diet. The abundance of SCFA-producing microbes was decreased by the SO diet, but this effect was reversed by fibre treatment. Concentrations of serotonin and melatonin in the serum and follicular fluid were increased by the fibre diet. Overall, dietary fibre protected against high fat feeding-induced follicular atresia at least partly via gut microbiota-related serotonin-melatonin synthesis. These results provide insight into preventing negative effects on fertility in humans consuming a high-energy diet.
Collapse
|
25
|
Junejo SA, Geng H, Li S, Kaka AK, Rashid A, Zhou Y. Superfine wheat bran improves the hyperglycemic and hyperlipidemic properties in a high-fat rat model. Food Sci Biotechnol 2020; 29:559-567. [PMID: 32296567 DOI: 10.1007/s10068-019-00684-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/31/2019] [Accepted: 09/16/2019] [Indexed: 11/29/2022] Open
Abstract
Wheat bran (WB) is an abundant source of fiber, promoting the health for constipation, irritable bowel syndrome, and gastrointestinal disorders. However, the role of superfine-WB in improving the obesity, hyperglycemia, and hyperlipidemia needs to be revealed. The superfine-WB (low and high treatments) was studied on body-weight, blood sugar, serum, and liver lipids in a high-fat rat model for 5-weeks. The high-fat diet substantially increased body-weight, sugar levels, lipids, and malondialdehyde in serum and liver. In contrast, the superfine-WB treatments reduced food and energy intake, postprandial glucose, body-weight, blood and liver cholesterol, triglycerides, malondialdehyde, low-density lipoprotein, and increased the level of high-density lipoprotein. Additionally, when the two different concentrations were compared, the maximum impact was exhibited by the superfine-WB containing high concentration. These results suggest that the superfine-WB significantly improves the hyperglycemia, hyperlipidemia, and possibly also protecting against other acute, recurrent, or chronic diseases.
Collapse
Affiliation(s)
- Shahid Ahmed Junejo
- 1Key Laboratory of Agricultural Products Processing Engineering, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, 230036 People's Republic of China.,2School of Food Science and Engineering, The Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou, 510640 People's Republic of China
| | - Huihui Geng
- 1Key Laboratory of Agricultural Products Processing Engineering, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, 230036 People's Republic of China
| | - Songnan Li
- 2School of Food Science and Engineering, The Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou, 510640 People's Republic of China
| | - Ajeet Kumar Kaka
- Department of Post-Harvest Technology and Process Engineering, Khairpur College of Agricultural Engineering and Technology, Khairpur Mir's, Pakistan
| | - Alam Rashid
- 1Key Laboratory of Agricultural Products Processing Engineering, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, 230036 People's Republic of China
| | - Yibin Zhou
- 1Key Laboratory of Agricultural Products Processing Engineering, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, 230036 People's Republic of China
| |
Collapse
|
26
|
Hypolipidemic and Hepatoprotective Effects of High-Polydextrose Snack Food on Swiss Albino Mice. J Nutr Metab 2020; 2020:5104231. [PMID: 32257429 PMCID: PMC7097762 DOI: 10.1155/2020/5104231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, the hepatoprotective and hypolipidemic effects of high-polydextrose snack food on Swiss albino mice were investigated. The mice were randomly divided into three groups: control diet, high-fat diet, and high-fat and fiber diet groups. Addition of high-polydextrose snack to the high-fat diet resulted in significant reduction in the liver weight, the accumulation of lipid droplets in liver, and the liver damage of hyperlipidemic mice in comparison with the high-fat diet. The high-polydextrose snack also decreased the content of total triglyceride, cholesterol, and low-density lipoprotein cholesterol as well as the alanine aminotransferase and aspartate aminotransferase activities in the mice serum. In addition, the high-polydextrose snack significantly increased the high-density lipoprotein cholesterol content of the hyperlipidemic mice. Consequently, use of high-polydextrose snack generated hepatoprotective and hypolipidemic effects on hyperlipidemic mice.
Collapse
|
27
|
Khatun MA, Sato S, Konishi T. Obesity preventive function of novel edible mushroom, Basidiomycetes-X (Echigoshirayukidake): Manipulations of insulin resistance and lipid metabolism. J Tradit Complement Med 2020; 10:245-251. [PMID: 32670819 PMCID: PMC7340980 DOI: 10.1016/j.jtcme.2020.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 01/04/2023] Open
Abstract
Echigoshirayukidake is an edible mushroom found in Uonuma, Japan in 1994. It was assigned to a new species of Basidiomycetes (BDM-X) but is uniquely defect of forming bashidium. The high antioxidant activity and β-glucan content of BDM-X suggest possible functions preventing type 2 diabetes. In the present study, anti-obesity and insulin resistance preventive functions of BDM-X were examined using genetically defined obese model rat, OLETF (Otsuka Long Evans Tokushima Fatty) by feeding regular diet with and without supplementation of 5% dried BDM-X powder (BDMP) for 15 weeks. BDMP supplementation to the diet significantly (p < 0.01) suppressed the body weight gain and also visceral fat accumulation during the feeding period compared to control diet. Simultaneously, the insulin resistance and the plasma levels of adiponectin and triglycerides were significantly (p = 0.003) ameliorated in the BDMP supplemented diet group. A statistical multivariate analysis showed the weight of three types of adipose tissue (epididymal, retroperirenal, and mesenteric fat) positively correlated with HOMA-IR (Homeostasis Model Assessment of Insulin Resistance), and negatively correlated with plasma adiponectin. These results indicate BDM-X is a new resource applicable to the functional foods or the complementary biomedicines to prevent metabolic syndromes leading to type 2 diabetes. A new mushroom, Echigoshirayukidake (BDM-X), ameliorates postprandial sugar and insulin spike enhancing insulin sensitivity. BDM-X prevented body weight gain, hyperlipidemia, NEFA, and visceral fat deposition. HOMA-IR was improved by BDM-X. Anti-metabolic syndrome effect of BDM-X could be related to increase of adiponectin level.
Collapse
Affiliation(s)
- Mst Afifa Khatun
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan.,Food Safety and Quality Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar, Dhaka, 1000, Bangladesh
| | - Shinji Sato
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Tetsuya Konishi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan.,Office HALD Food Function Research, Yuzawa, Minami-Uonuma City, Niigata, 949-6103, Japan
| |
Collapse
|
28
|
Ruiz-Canizales J, Domínguez-Avila JA, Wall-Medrano A, Ayala-Zavala JF, González-Córdova AF, Vallejo-Córdoba B, Salazar-López NJ, González-Aguilar GA. Fiber and phenolic compounds contribution to the hepatoprotective effects of mango diets in rats fed high cholesterol/sodium cholate. Phytother Res 2019; 33:2996-3007. [PMID: 31418509 DOI: 10.1002/ptr.6479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Abstract
The present study evaluated the contribution of mango fiber (MF) and mango phenolic compounds (MP) to the hepatoprotective effect of freeze-dried mango pulp (FDM) cultivar (cv.) "Ataulfo" diets in high cholesterol/sodium cholate (HCC)-fed rats. Male Wistar rats were fed with a HCC diet for 12 weeks, either untreated, or supplemented with MF, MP, FDM, or a control diet (no HCC; n = 6/group). All mango treatments significantly decreased hepatic cholesterol deposition and altered its fatty acid profile, whereas MF and MP mitigated adipose tissue hypertrophy. MF caused a lower level of proinflammatory cytokines (IL-1α/β, IFN-γ, TNF-α) whereas FDM increased the anti-inflammatory ones (IL-4, 6, 10). Mango treatments increased catalase (CAT) activity and its mRNA expression; superoxide dismutase (SOD) activity was normalized by MF and FDM, but its activity was unrelated to its hepatic mRNA expression. Changes in CAT and SOD mRNA expression were unrelated to altered Nrf2 mRNA expression. Higher hepatic PPARα and LXRα mRNA levels were found in MP and MF. We concluded that MF and MP are highly bioactive, according to the documented hepatoprotection in HCC-fed rats; their mechanism of action appears to be related to modulating cholesterol and fatty acid metabolism as well as to stimulating the endogenous antioxidant system.
Collapse
Affiliation(s)
- Jacqueline Ruiz-Canizales
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, México
| | | | - Abraham Wall-Medrano
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - J Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, México
| | - Aarón F González-Córdova
- Coordinación de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, México
| | - Belinda Vallejo-Córdoba
- Coordinación de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, México
| | | | - Gustavo A González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, México
| |
Collapse
|
29
|
Li S, Yu W, Guan X, Huang K, Liu J, Liu D, Duan R. Effects of millet whole grain supplementation on the lipid profile and gut bacteria in rats fed with high-fat diet. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
30
|
de Sousa AR, de Castro Moreira ME, Grancieri M, Toledo RCL, de Oliveira Araújo F, Mantovani HC, Queiroz VAV, Martino HSD. Extruded sorghum (Sorghum bicolor L.) improves gut microbiota, reduces inflammation, and oxidative stress in obese rats fed a high-fat diet. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
31
|
Oat fiber inhibits atherosclerotic progression through improving lipid metabolism in ApoE−/− mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
32
|
Junejo SA, Zhang L, Yang L, Wang N, Zhou Y, Xia Y, Wang H. Anti-hyperlipidemic and hepatoprotective properties of wheat bran with different particle sizes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1990-1996. [PMID: 30270442 DOI: 10.1002/jsfa.9397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Wheat bran has been shown to have health-promoting benefits in relation to diabetes, colorectal cancer, cardiovascular disease, constipation, irritable bowel syndrome, diverticulitis, and gastrointestinal disease. However, its effects on obesity, hyperglycemia, hepatotoxicity, and hyperlipidemia are not yet clear. The effects of the consumption of wheat bran of different particle sizes (coarse, 427.55 µm versus ultra-fine, 11.63 µm) on body weight, serum glucose, liver, and blood lipid metabolism levels in high-fat-diet induced rats fed for 5 weeks were investigated. RESULTS The high-fat diet significantly increased body weight, serum glucose, serum and liver lipids, and malondialdehyde levels. However, addition of coarse and ultra-fine wheat bran to a high-fat diet decreased weight gain, reduced the levels of serum and liver total cholesterol, triglycerides, malondialdehyde, serum low-density lipoprotein, and serum glucose, and improved serum high-density lipoprotein. Moreover, when two particle sizes were compared, the highest impact was exhibited by the wheat bran containing the larger particle size. CONCLUSIONS The results suggest that micronized wheat bran significantly improves anti-hyperlipidemic and hepatoprotective properties that might provide a safeguard to protect humans against metabolic syndrome abnormalities and other acute, recurrent, or chronic diseases. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahid A Junejo
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liping Yang
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| | - Naifu Wang
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| | - Yibin Zhou
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| | - Yuesheng Xia
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| | - Haisong Wang
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| |
Collapse
|
33
|
Wu W, Qiu J, Wang A, Li Z. Impact of whole cereals and processing on type 2 diabetes mellitus: a review. Crit Rev Food Sci Nutr 2019; 60:1447-1474. [DOI: 10.1080/10408398.2019.1574708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weijing Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
- Laboratory of nutrition and food safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Ju Qiu
- Ministry of Agriculture, Institute of Food and Nutrition Development, Haidian, Beijing, China
| | - Aili Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, USA
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
34
|
Han S, Zhang W, Zhang R, Jiao J, Fu C, Tong X, Zhang W, Qin L. Cereal fiber improves blood cholesterol profiles and modulates intestinal cholesterol metabolism in C57BL/6 mice fed a high-fat, high-cholesterol diet. Food Nutr Res 2019; 63:1591. [PMID: 30863273 PMCID: PMC6403461 DOI: 10.29219/fnr.v63.1591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/06/2023] Open
Abstract
Background Dietary intake of cereal fiber has been reported to benefit lipid metabolism through multiple mechanisms. The present study aimed to discover the potential mechanisms by which cereal fiber could modify the intestinal cholesterol metabolism. Design Male C57BL/6 mice were fed a reference chow (RC) diet; high-fat, high-cholesterol (HFC) diet; HFC plus oat fiber diet; or HFC plus wheat bran fiber diet for 24 weeks. Serum lipids were measured by enzymatic methods. Western blot was used to determine the protein expressions involved in intestinal cholesterol metabolism. Results Our results showed that HFC-induced elevations of serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol were normalized in both groups that received cereal fiber. At the protein level, compared with the HFC diet group, the two cereal fibers, especially the oat fiber, significantly increased the protein expression of peroxisome proliferator-activated receptor alpha, liver X receptor alpha, sterol regulatory element-binding protein (SREBP) 2, low-density lipoprotein receptor, adenosine triphosphate (ATP)-binding cassette A1, and ATP-binding cassette G1, while decreasing the protein expression of Niemann-Pick C1-like protein 1, SREBP-1, fatty acid synthase, and acetyl-coenzyme A carboxylase, which were involved in intestinal cholesterol metabolism. Conclusion Taken together, increased intake of cereal fiber improved blood cholesterol profiles and increased the intestinal cholesterol efflux and cholesterol clearance in C57BL/6 mice fed a HFC diet. Oat fiber had a stronger effect than wheat bran fiber on cholesterol metabolism by modulating the PPARα, LXRα, and SREBP signaling pathways.
Collapse
Affiliation(s)
- Shufen Han
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China.,Suzhou Maternal and Child Health Care and Family Planning Service Center, Suzhou, China
| | - Ru Zhang
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Jun Jiao
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Chunling Fu
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Xing Tong
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | | | - Liqiang Qin
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
35
|
A mix of dietary fermentable fibers improves lipids handling by the liver of overfed minipigs. J Nutr Biochem 2018; 65:72-82. [PMID: 30654277 DOI: 10.1016/j.jnutbio.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/17/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
Obesity induced by overfeeding ultimately can lead to nonalcoholic fatty liver disease, whereas dietary fiber consumption is known to have a beneficial effect. We aimed to determine if a supplementation of a mix of fibers (inulin, resistant starch and pectin) could limit or alleviate overfeeding-induced metabolic perturbations. Twenty female minipigs were fed with a control diet (C) or an enriched fat/sucrose diet supplemented (O + F) or not (O) with fibers. Between 0 and 56 days of overfeeding, insulin (+88%), HOMA (+102%), cholesterol (+45%) and lactate (+63%) were increased, without any beneficial effect of fibers supplementation. However, fibers supplementation limited body weight gain (vs. O, -15% at D56) and the accumulation of hepatic lipids droplets induced by overfeeding. This could be explained by a decreased lipids transport potential (-50% FABP1 mRNA, O + F vs. O) inducing a down-regulation of regulatory elements of lipids metabolism / lipogenesis (-36% SREBP1c mRNA, O + F vs. O) but not to an increased oxidation (O + F not different from O and C for proteins and mRNA measured). Glucose metabolism was also differentially regulated by fibers supplementation, with an increased net hepatic release of glucose in the fasted state (diet × time effect, P<.05 at D56) that can be explained partially by a possible increased glycogen synthesis in the fed state (+82% GYS2 protein, O + F vs. O, P=.09). The direct role of short chain fatty acids on gluconeogenesis stimulation is questioned, with probably a short-term impact (D14) but no effect on a long-term (D56) basis.
Collapse
|
36
|
Sui W, Xie X, Liu R, Wu T, Zhang M. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
37
|
Kristek A, Schär MY, Soycan G, Alsharif S, Kuhnle GGC, Walton G, Spencer JPE. The gut microbiota and cardiovascular health benefits: A focus on wholegrain oats. NUTR BULL 2018. [DOI: 10.1111/nbu.12354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- A. Kristek
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
| | - M. Y. Schär
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
| | - G. Soycan
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
| | - S. Alsharif
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
| | - G. G. C. Kuhnle
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
| | - G. Walton
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
| | - J. P. E. Spencer
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
| |
Collapse
|
38
|
Wang XZ, Jiang WD, Feng L, Wu P, Liu Y, Zeng YY, Jiang J, Kuang SY, Tang L, Tang WN, Zhou XQ. Low or excess levels of dietary cholesterol impaired immunity and aggravated inflammation response in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 78:202-221. [PMID: 29684613 DOI: 10.1016/j.fsi.2018.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The present study explored the effect of cholesterol on the immunity and inflammation response in the immune organs (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella) fed graded levels of dietary cholesterol (0.041-1.526%) for 60 days and then infected with Aeromonas hydrophila for 14 days. The results showed that low levels of cholesterol (1) depressed the innate immune components [lysozyme (LZ), acid phosphatase (ACP), complements and antimicrobial peptides] and adaptive immune component [immunoglobulin M (IgM)], (2) up-regulated the mRNA levels of pro-inflammatory cytokines [interleukin 1β (IL-1β), IL-6, IL-8, IL-12p35, IL-12p40, IL-15, IL-17D, tumor necrosis factor α (TNF-α) and interferon γ2 (IFN-γ2)], partly due to the activated nuclear factor kappa B (NF-κB) signalling, and (3) down-regulated the mRNA levels of anti-inflammatory cytokines [IL-4/13B, IL-10, IL-11, transforming growth factor (TGF)-β1 and TGF-β2], partly due to the suppression of target of rapamycin (TOR) signalling in the immune organs of young grass carp. Interestingly, dietary cholesterol had no influences on the IκB kinase α (IKKα) and IL-4/13A mRNA levels in the head kidney, spleen and skin, the IL-1β and IL-12p40 mRNA levels in the spleen and skin, or the β-defensin-1 mRNA level in the skin of young grass carp. Additionally, low levels of cholesterol increased the skin haemorrhage and lesion morbidity. In summary, low levels of cholesterol impaired immunity by depressing the innate and adaptive immune components, and low levels of cholesterol aggravated the inflammation response via up-regulating the expression of pro-inflammatory cytokines as well as down-regulating the expression of anti-inflammatory cytokines partly through the modulation of NF-κB and TOR signalling in the immune organs of fish. Similar to the low level of cholesterol, the excess level of dietary cholesterol impaired immunity and aggravated inflammation response in the immune organs of fish. Finally, based on the percent weight gain (PWG), the ability against skin haemorrhage and lesions as well as the LZ activity in the head kidney and the ACP activity in the spleen, the optimal dietary cholesterol levels for young grass carp were estimated as 0.721, 0.826, 0.802 and 0.772% diet, respectively.
Collapse
Affiliation(s)
- Xiao-Zhong Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
39
|
Do MH, Lee E, Oh MJ, Kim Y, Park HY. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients 2018; 10:E761. [PMID: 29899272 PMCID: PMC6024874 DOI: 10.3390/nu10060761] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
High fat diet-induced changes in gut microbiota have been linked to intestinal permeability and metabolic endotoxemia, which is related to metabolic disorders. However, the influence of a high-glucose (HGD) or high-fructose (HFrD) diet on gut microbiota is largely unknown. We performed changes of gut microbiota in HGD- or HFrD-fed C57BL/6J mice by 16S rRNA analysis. Gut microbiota-derived endotoxin-induced metabolic disorders were evaluated by glucose and insulin tolerance test, gut permeability, Western blot and histological analysis. We found that the HGD and HFrD groups had comparatively higher blood glucose and endotoxin levels, fat mass, dyslipidemia, and glucose intolerance without changes in bodyweight. The HGD- and HFrD-fed mice lost gut microbial diversity, characterized by a lower proportion of Bacteroidetes and a markedly increased proportion of Proteobacteria. Moreover, the HGD and HFrD groups had increased gut permeability due to alterations to the tight junction proteins caused by gut inflammation. Hepatic inflammation and lipid accumulation were also markedly increased in the HGD and HFrD groups. High levels of glucose or fructose in the diet regulate the gut microbiota and increase intestinal permeability, which precedes the development of metabolic endotoxemia, inflammation, and lipid accumulation, ultimately leading to hepatic steatosis and normal-weight obesity.
Collapse
Affiliation(s)
- Moon Ho Do
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
| | - Eunjung Lee
- Research Division of Strategic Food Technology, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
| | - Mi-Jin Oh
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
| | - Yoonsook Kim
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
| | - Ho-Young Park
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
| |
Collapse
|
40
|
Zhang R, Han S, Zhang Z, Zhang W, Yang J, Wan Z, Qin L. Cereal Fiber Ameliorates High-Fat/Cholesterol-Diet-Induced Atherosclerosis by Modulating the NLRP3 Inflammasome Pathway in ApoE -/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4827-4834. [PMID: 29664631 DOI: 10.1021/acs.jafc.8b00380] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cereal fiber is associated with decreasing the risk of cardiovascular diseases. However, whether cereal fiber modulates inflammatory response and improves atherosclerosis remains unclear. This study evaluated the anti-atherosclerotic effect of cereal fibers from oat or wheat bran and explored the potential anti-inflammatory mechanisms. Male ApoE-/- mice were given a high-fat/cholesterol (HFC) diet or a HFC diet supplemented with 0.8% oat fiber or wheat bran fiber. After 18 weeks of the feeding period, serum lipids and inflammatory cytokines were measured. The relative protein levels of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway and nuclear factor κB (NF-κB) were determined by the western blot method in aorta tissues. Pathologically, oat fiber and wheat fiber significantly reduced atherosclerotic plaques by 43.3 and 27.1%, respectively. Biochemically, cereal fiber markedly decreased the protein levels of myeloid differentiation factor 88 (MyD88) and toll-like receptor 4 (TLR4) in aortic tissues. The expression of NF-κB was similarly inhibited by both cereal fibers. In comparison to wheat bran fiber, oat fiber had greater effects in reducing the plague size and inhibiting TLR4/MyD88/NF-κB pathways. Such differences might come from modulation of the NLRP3 inflammasome pathway because the expressions of the cleavage of caspase-1 and interleukin (IL)-1β were inhibited only by oat fiber. The present study demonstrates that cereal fibers can attenuate inflammatory response and atherosclerosis in ApoE-/- mice. Such effects are pronounced with oat fiber and likely mediated by specific inhibition of oat fiber on the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health , Soochow University , 199 Renai Road , Suzhou , Jiangsu 215123 , People's Republic of China
| | - Shufen Han
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health , Soochow University , 199 Renai Road , Suzhou , Jiangsu 215123 , People's Republic of China
| | - Zheng Zhang
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health , Soochow University , 199 Renai Road , Suzhou , Jiangsu 215123 , People's Republic of China
| | - Weiguo Zhang
- Human Nutrition and Health , DSM Nutritional Products , 1-3 Xinyuan South Road , Beijing 100027 , People's Republic of China
| | - Jing Yang
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health , Soochow University , 199 Renai Road , Suzhou , Jiangsu 215123 , People's Republic of China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health , Soochow University , 199 Renai Road , Suzhou , Jiangsu 215123 , People's Republic of China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health , Soochow University , 199 Renai Road , Suzhou , Jiangsu 215123 , People's Republic of China
| |
Collapse
|
41
|
Sahin K, Orhan C, Tuzcu M, Sahin N, Erten F, Juturu V. Capsaicinoids improve consequences of physical activity. Toxicol Rep 2018; 5:598-607. [PMID: 29854630 PMCID: PMC5977905 DOI: 10.1016/j.toxrep.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/16/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022] Open
Abstract
Capsaicinoids (CAPs) are active compounds in Capsicum fruits. CAPs have anti-inflammatory and antioxidant properties. CAPs with regular exercise may enhance lipid metabolism. CAPs down-regulate muscle SREBP-1c, LXRs, ACLY, FAS in exercised rats.
The purpose of this study was to investigate the effects of capsaicinoids (CAPs) on lipid metabolism, inflammation, antioxidant status and the changes in gene products involved in these metabolic functions in exercised rats. A total of 28 male Wistar albino rats were randomly divided into four groups (n = 7) (i) No exercise and no CAPs, (ii) No exercise + CAPs (iii) Regular exercise, (iv) Regular exercise + CAPs. Rats were administered as 0.2 mg capsaicinoids from 10 mg/kg BW/day Capsimax® daily for 8 weeks. A significant decrease in lactate and malondialdehyde (MDA) levels and increase in activities of antioxidant enzymes were observed in the combination of regular exercise and CAPs group (P < 0.0001). Regular exercise + CAPs treated rats had greater nuclear factor-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) levels in muscle than regular exercise and no exercise rats (P < 0.001). Nevertheless, regular exercise + CAPs treated had lower nuclear factor kappa B (NF-κB) and IL-10 levels in muscle than regular exercise and control rats (P < 0.001). Muscle sterol regulatory element-binding protein 1c (SREBP-1c), liver X receptors (LXR), ATP citrate lyase (ACLY) and fatty acid synthase (FAS) levels in the regular exercise + CAPs group were lower than all groups (P < 0.05). However, muscle PPAR-γ level was higher in the regular exercise and CAPs alone than the no exercise rats. These results suggest CAPs with regular exercise may enhance lipid metabolism by regulation of gene products involved in lipid and antioxidant metabolism including SREBP-1c, PPAR-γ, and Nrf2 pathways in rats.
Collapse
Key Words
- ACLY, ATP-citrate lyase
- ACS, acetyl-CoA synthetase
- AMPK, phosphorylated AMP-activated protein kinase
- ARE, antioxidant response element
- CAPs, capsaicinoids
- Capsaicinoid
- Exercise
- FAS, fatty acid synthase
- GSH-Px, glutathione peroxidase
- HO-1, heme-oxygenase 1
- IL-10, interleukin-10
- LXR-s, liver X receptor-s
- MDA, malondialdehyde
- MMP-9, matrix metalloproteinase-9
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- Nrf2
- Nrf2, nuclear factor (erythroid-derived 2)-like 2
- PGC-la, peroxisomal proliferator activator receptor c coactivator
- PPAR-γ
- PPAR-γ, peroxisome proliferator-activated receptor gamma
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- SREBP-1c
- SREBP-1c, sterol regulatory element-binding protein1c
- TC, total serum cholesterol
- TG, triglyceride
- TNF-α, tumor necrosis factor-α
- TRPV1, transient receptor potential vanilloid subtype 1
- Tfam, mitochondrial transcription factor A
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
- Corresponding author: Veterinary Faculty, Firat University, 23119, Elazig, Turkey.
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Fusun Erten
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Vijaya Juturu
- Research and Development, Clinical Affairs, OmniActive Health Technologies Inc., Morristown, NJ, USA
| |
Collapse
|
42
|
Wang H, Hong T, Li N, Zang B, Wu X. Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota. Biochem Biophys Res Commun 2018; 498:146-151. [PMID: 29462619 DOI: 10.1016/j.bbrc.2018.02.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023]
Abstract
Intervention with dietary fibers is an important strategy to combat the global epidemic of obesity which is a consequence of energy imbalance. However, a possible role of the gut microbiota in effects of dietary fibers on energy homeostasis remains unclear. Here, we treated a high fat diet-induced obese (DIO) mouse model with soluble dietary fiber. Our results showed that soluble dietary fiber reduced body weight gain and the excessive accumulation of white fat tissue in DIO mice. Notably, soluble dietary fiber increased energy expenditure, but not change energy intake in DIO mice. In accordance, 16S rRNA sequencing revealed that the diversity of the gut microbiota was restored by soluble dietary fiber. Moreover, compared with controls, soluble dietary fiber resulted in a decreased ratio of Firmicutes/Bacteroidetes at the phylum level, and an increased relative abundance of the genera Roseburia at the genus level. Taken together, these findings indicate that soluble dietary fiber improves energy homeostasis and prevents obesity by increasing the diversity of the gut microbiota and the colonization of beneficial bacteria.
Collapse
Affiliation(s)
- Haiyuan Wang
- Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tao Hong
- Pain Manage Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Li
- Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bin Zang
- Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xingmao Wu
- Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
43
|
Zhang N, Ju Z, Zuo T. Time for food: The impact of diet on gut microbiota and human health. Nutrition 2018; 51-52:80-85. [PMID: 29621737 DOI: 10.1016/j.nut.2017.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
There is growing recognition of the role of diet on modulating the composition and metabolic activity of the human gut microbiota, which in turn influence health. Dietary ingredients and food additives have a substantial impact on the gut microbiota and hence affect human health. Updates on current understanding of the gut microbiota in diseases and metabolic disorders are addressed in this review, providing insights into how this can be transferred from bench to bench side as gut microbes are integrated with food. The potency of microbiota-targeted biomarkers as a state-of-art tool for diagnosis of diseases was also discussed, and it would instruct individuals with healthy dietary consumption. Herein, recent advances in understanding the effect of diet on gut microbiota from an ecological perspective, and how these insights might promote health by guiding development of prebiotic and probiotic strategies and functional foods, were explored.
Collapse
Affiliation(s)
- Na Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhongjie Ju
- Yantai Center for Food and Drug Control, Yantai, Shandong, China
| | - Tao Zuo
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Digestive Disease, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| |
Collapse
|
44
|
Zhou P, Zhao Y, Zhang P, Li Y, Gui T, Wang J, Jin C, Che L, Li J, Lin Y, Xu S, Feng B, Fang Z, Wu D. Microbial Mechanistic Insight into the Role of Inulin in Improving Maternal Health in a Pregnant Sow Model. Front Microbiol 2017; 8:2242. [PMID: 29204137 PMCID: PMC5698696 DOI: 10.3389/fmicb.2017.02242] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023] Open
Abstract
General consumption of “western diet” characterized by high refined carbohydrates, fat and energy intake has resulted in a global obesity epidemics and related metabolic disturbance even for pregnant women. Pregnancy process is accompanied by substantial hormonal, metabolic and immunological changes during which gut microbiota is also remarkably remodeled. Dietary fiber has been demonstrated to have a striking role in shifting the microbial composition so as to improve host metabolism and health in non-pregnant individuals. The present study was conducted to investigate effects of adding a soluble dietary fiber inulin (0 or 1.5%) to low- or high- fat (0 or 5% fat addition) gestational diet on maternal and neonatal health and fecal microbial composition in a sow model. Results showed that inulin addition decreased the gestational body weight gain and fat accumulation induced by fat addition. Circulating concentrations of pro-inflammatory cytokine IL-6, adipokine leptin and chemerin were decreased by inulin supplementation. Inulin addition remarkably reduced the average BMI of newborn piglets and the within litter BMI distributions (%) ranging between 17 and 20 kg/m2, and increased the BMI distribution ranging between 14 and 17 kg/m2. 16S rRNA gene sequencing of the V3-V4 region showed that fecal microbial changes at different taxonomic levels triggered by inulin addition predisposed the pregnant sow to be thinner and lower inflammatory. Meanwhile, fecal microbial composition was also profoundly altered by gestation stage with distinct changes occurring at perinatal period. Most representative volatile fatty acid (VFA) producing-related genera changed dramatically when reaching the perinatal period and varied degrees of increases were detected with inulin addition. Fecal VFA concentrations failed to show any significant effect with dietary intervention, however, were markedly increased at perinatal period. Our findings indicate that positive microbial changes resulted by 1.5% soluble fiber inulin addition would possibly be the potential mechanisms under which maternal body weight, metabolic and inflammatory status and neonatal BMI were improved. Besides, distinct changes of microbial community at perinatal period indicated the mother sow is undergoing a catabolic state with increased energy loss and inflammation response at that period compared with other stages of gestation.
Collapse
Affiliation(s)
- Pan Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pan Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Taotao Gui
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Jin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
45
|
Qin S, Han H, Zhang K, Ding X, Bai S, Wang J, Zeng Q. Dietary fibre alleviates hepatic fat deposition via inhibiting lipogenic gene expression in meat ducks. J Anim Physiol Anim Nutr (Berl) 2017; 102:e736-e745. [DOI: 10.1111/jpn.12828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/01/2017] [Indexed: 02/03/2023]
Affiliation(s)
- S. Qin
- Institute of Animal Nutrition; Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education; Sichuan Agricultural University; Chengdu China
| | - H. Han
- Institute of Animal Nutrition; Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education; Sichuan Agricultural University; Chengdu China
| | - K. Zhang
- Institute of Animal Nutrition; Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education; Sichuan Agricultural University; Chengdu China
| | - X. Ding
- Institute of Animal Nutrition; Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education; Sichuan Agricultural University; Chengdu China
| | - S. Bai
- Institute of Animal Nutrition; Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education; Sichuan Agricultural University; Chengdu China
| | - J. Wang
- Institute of Animal Nutrition; Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education; Sichuan Agricultural University; Chengdu China
| | - Q. Zeng
- Institute of Animal Nutrition; Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education; Sichuan Agricultural University; Chengdu China
| |
Collapse
|
46
|
Luo X, Wang Q, Zheng B, Lin L, Chen B, Zheng Y, Xiao J. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food Chem Toxicol 2017; 109:1003-1009. [PMID: 28237776 DOI: 10.1016/j.fct.2017.02.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/10/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Abstract
In the bamboo shoot processing industries, bamboo shoot shells are discarded without any utilization. As a cheap potential dietary fibers resource, bamboo shoot (Leleba oldhami Nakal) shell was decomposed to dietary fibers by multiple enzymes. The extraction yields of insoluble dietary fiber and soluble dietary fiber were 56.21% and 8.67%, respectively. The resulting fibers showed significant swelling capacity, water holding capacity and exhibit in vitro binding capacities to fat, cholesterol, bile acids and nitrites. The administration of bamboo shoot shell fibers improved the lipid metabolism disorderly situation of hyperlipidemia mice. Compared with normal group, total dietary fiber supplement could exhibit the lowest body weight gain (2.84%) in mice, and decrease total cholesterol, triglyceride and low density lipoprotein-cholesterol by 31.53%, 21.35% and 31.53%, respectively; while it can increase high density lipoprotein-cholesterol by 37.6%. The bamboo shoot shell fibers could be a potentially available dietary ingredient in functional food industries.
Collapse
Affiliation(s)
- Xianliang Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Agricultural Engineering, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangmei Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bingyan Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau.
| |
Collapse
|
47
|
Hosoda Y, Okahara F, Mori T, Deguchi J, Ota N, Osaki N, Shimotoyodome A. Dietary steamed wheat bran increases postprandial fat oxidation in association with a reduced blood glucose-dependent insulinotropic polypeptide response in mice. Food Nutr Res 2017; 61:1361778. [PMID: 28970776 PMCID: PMC5614337 DOI: 10.1080/16546628.2017.1361778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/19/2017] [Indexed: 10/25/2022] Open
Abstract
Obesity is a global epidemic associated with a higher risk of cardiovascular disease and metabolic disorders, such as type 2 diabetes. Previous studies demonstrated that chronic feeding of steamed wheat bran (WB) decreases obesity. To clarify the underlying mechanism and the responsible component for the anti-obesity effects of steamed WB, we investigated the effects of dietary steamed WB and arabinoxylan on postprandial energy metabolism and blood variables. Overnight-fasted male C57BL/6J mice were fed an isocaloric diet with or without steamed WB (30%). Energy metabolism was evaluated using an indirect calorimeter, and plasma glucose, insulin, and glucose-dependent insulinotropic polypeptide (GIP) levels were measured for 120 min after feeding. We similarly investigated the effect of arabinoxylan, a major component of steamed WB. Mice fed the WB diet had higher postprandial fat oxidation and a lower blood GIP response compared with mice fed the control diet. Mice fed the arabinoxylan diet exhibited a dose-dependent postprandial blood GIP response; increasing the arabinoxylan content in the diet led to a lower postprandial blood GIP response. The arabinoxylan-fed mice also had higher fat oxidation and energy expenditure compared with the control mice. In conclusion, the findings of the present study revealed that dietary steamed WB increases fat oxidation in mice. Increased fat oxidation may have a significant role in the anti-obesity effects of steamed WB. The postprandial effects of steamed WB are due to arabinoxylan, a major component of WB. The reduction of the postprandial blood GIP response may be responsible for the increase in postprandial fat utilization after feeding on a diet containing steamed WB and arabinoxylan.
Collapse
Affiliation(s)
- Yayoi Hosoda
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Fumiaki Okahara
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuya Mori
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Jun Deguchi
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Noriyasu Ota
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Noriko Osaki
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | | |
Collapse
|
48
|
Yin M, Zhang P, Yu F, Zhang Z, Cai Q, Lu W, Li B, Qin W, Cheng M, Wang H, Gao H. Grape seed procyanidin B2 ameliorates hepatic lipid metabolism disorders in db/db mice. Mol Med Rep 2017; 16:2844-2850. [PMID: 28677803 DOI: 10.3892/mmr.2017.6900] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 04/27/2017] [Indexed: 11/06/2022] Open
Abstract
Diabetes is commonly associated with liver lipid metabolism disorders. AMP-activated protein kinase (AMPK) has a key role in regulating lipid metabolism. Grape seed procyanidin B2 (GSPB2), a natural polyphenol polymer, ameliorates mitochondrial dysfunction and inhibits oxidative stress or apoptosis via AMPK pathways. In the present study, the hypothesis that GSPB2 treatment may ameliorate liver lipid metabolic disorders by activating AMPK and downstream pathways was tested in diabetic mice. Db/m mice were used as controls, and diabetic db/db mice were randomly divided into 2 groups for treatment: Vehicle and GSPB2 (30 mg/kg/day for 10 weeks). Animals were weighed every week. Fasting blood was collected prior to sacrifice to measure fasting blood glucose (FBG), triglycerides (TG) and total cholesterol (TC). Hepatic TG and free fatty acid (FFA) levels were analyzed. Hepatic sections were examined by light microscopy following hematoxylin and eosin staining. The expression of hepatic AMPK, phosphorylated acetyl‑CoA carboxylase (ACC), carnitine palmitoyl transferase 1 (CPT1) and 4‑hydroxynonenal (4‑HNE) was measured by western blot analysis. Liver mitochondria were isolated to assess electron transport complex I (CI), complex II (CII) and complex IV by high-resolution respirometry. The results demonstrated that GSPB2 significantly decreased body weight and serum TG, TC and FFA levels, but not FBG levels in diabetic mice. GSPB2 visibly decreased lipid droplet accumulation in the liver and significantly reduced hepatic TG and FFA levels. In diabetic mice, GSPB2 restored liver AMPK and ACC phosphorylation, increased CPT1 protein expression, ameliorated lipid peroxidation damage, which was assessed by comparing 4‑HNE levels, and partially restored the damaged mitochondrial respiratory capacity of CI and CII in the liver. In conclusion, long‑term oral treatment with GSPB2 may benefit hepatic lipid metabolism disorders, potentially by decreasing hepatic lipid synthesis and increasing hepatic FFA β‑oxidation via the AMPK‑ACC pathway.
Collapse
Affiliation(s)
- Mei Yin
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Pei Zhang
- Department of Endocrinology, Liaocheng People's Hospital Affiliated to Taishan Medical College, Liaocheng, Shandong 252000, P.R. China
| | - Fei Yu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhen Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qian Cai
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Weida Lu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Baoying Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Weidong Qin
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mei Cheng
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiqing Gao
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
49
|
Sheng K, Qu H, Liu C, Yan L, You J, Shui S, Zheng L. A comparative assess of high hydrostatic pressure and superfine grinding on physicochemical and antioxidant properties of grape pomace. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kangliang Sheng
- School of Food Science and Engineering; Hefei University of Technology; Hefei 230009 China
| | - Hao Qu
- School of Biological and Medical Engineering; Hefei University of Technology; Hefei 230009 China
| | - Changhong Liu
- School of Food Science and Engineering; Hefei University of Technology; Hefei 230009 China
| | - Ling Yan
- School of Food Science and Engineering; Hefei University of Technology; Hefei 230009 China
| | - Ju You
- School of Food Science and Engineering; Hefei University of Technology; Hefei 230009 China
| | - Shanshan Shui
- School of Food Science and Engineering; Hefei University of Technology; Hefei 230009 China
| | - Lei Zheng
- School of Food Science and Engineering; Hefei University of Technology; Hefei 230009 China
| |
Collapse
|
50
|
Fu A, Shi X, Zhang H, Fu B. Mitotherapy for Fatty Liver by Intravenous Administration of Exogenous Mitochondria in Male Mice. Front Pharmacol 2017; 8:241. [PMID: 28536524 PMCID: PMC5422541 DOI: 10.3389/fphar.2017.00241] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/18/2017] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial dysfunction is a major and common mechanism in developing non-alcoholic fatty liver disease (NAFLD). Replacement of dysfunctional mitochondria by functional exogenous mitochondria may attenuate intrahepatic excessive lipid and recover hepatocyte function. However, no data shows that mitochondria can be systemically administrated to animals to date. Here we suggest that mitochondria isolated from hepatoma cells are used as a mitotherapy agent to treat mouse fatty liver induced by high-fat diets. When the mitochondria were intravenously injected into the mice, serum aminotransferase activity and cholesterol level decreased in a dose-dependent manner. Also, the mitotherapy reduced lipid accumulation and oxidation injury of the fatty liver mice, improved energy production, and consequently restored hepatocyte function. The mitotherapy strategy offers a new potential therapeutic approach for treating NAFLD.
Collapse
Affiliation(s)
- Ailing Fu
- School of Pharmaceutical Sciences, Southwest UniversityChongqing, China
| | - Xianxun Shi
- School of Pharmaceutical Sciences, Southwest UniversityChongqing, China
| | - Huajing Zhang
- School of Pharmaceutical Sciences, Southwest UniversityChongqing, China
| | - Bin Fu
- School of Pharmaceutical Sciences, Southwest UniversityChongqing, China
| |
Collapse
|