1
|
Deng Q, Yao X, Fang S, Sun Y, Liu L, Li C, Li G, Guo Y, Liu J. Mast cell-mediated microRNA functioning in immune regulation and disease pathophysiology. Clin Exp Med 2025; 25:38. [PMID: 39812911 PMCID: PMC11735496 DOI: 10.1007/s10238-024-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation. In addition to their role in allergic inflammation, MCs are components of the tumor microenvironment (TME). MicroRNAs (miRNAs) are small RNA molecules that do not encode proteins, but regulate post-transcriptional gene expression by binding to the 3' non-coding regions of mRNAs. This plays a crucial role in the function of MC, including the key processes of MC proliferation, maturation, apoptosis, and activation. It has been demonstrated that miRNAs are also present in extracellular vesicles (EVs) secreted by MCs. EVs derived from MCs mediate intercellular communication by carrying miRNAs, affecting various diseases including allergic diseases, intestinal disorders, neuroinflammation, and tumors. These findings provide important insights into the therapeutic mechanisms and targets of miRNAs in MCs that affect diseases. This review discusses the relevance of miRNA production by MCs in regulating their own activity and the effect of miRNAs putatively produced by other cells in the control of MC activity and their participation in selected pathologies.
Collapse
Affiliation(s)
- Qiuping Deng
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Xiuju Yao
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Siyun Fang
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Chao Li
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Guangquan Li
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| | - Jinbo Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Taruselli MT, Qayum AA, Abebayehu D, Caslin HL, Dailey JM, Kotha A, Burchett JR, Kee SA, Maldonado TD, Ren B, Chao W, Zou L, Haque TT, Straus D, Ryan JJ. IL-33 Induces Cellular and Exosomal miR-146a Expression as a Feedback Inhibitor of Mast Cell Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1277-1286. [PMID: 38381001 PMCID: PMC10984763 DOI: 10.4049/jimmunol.2200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
IL-33 is an inflammatory cytokine that promotes allergic disease by activating group 2 innate lymphoid cells, Th2 cells, and mast cells. IL-33 is increased in asthmatics, and its blockade suppresses asthma-like inflammation in mouse models. Homeostatic control of IL-33 signaling is poorly understood. Because the IL-33 receptor, ST2, acts via cascades used by the TLR family, similar feedback mechanisms may exist. MicroRNA (miR)-146a is induced by LPS-mediated TLR4 signaling and serves as a feedback inhibitor. Therefore, we explored whether miR-146a has a role in IL-33 signaling. IL-33 induced cellular and exosomal miR-146a expression in mouse bone marrow-derived mast cells (BMMCs). BMMCs transfected with a miR-146a antagonist or derived from miR-146a knockout mice showed enhanced cytokine expression in response to IL-33, suggesting that miR-146a is a negative regulator of IL-33-ST2 signaling. In vivo, miR-146a expression in plasma exosomes was elevated after i.p. injection of IL-33 in wild-type but not mast cell-deficient KitW-sh/W-sh mice. Finally, KitW-sh/W-sh mice acutely reconstituted with miR-146a knockout BMMCs prior to IL-33 challenge had elevated plasma IL-6 levels compared with littermates receiving wild-type BMMCs. These results support the hypothesis that miR-146a is a feedback regulator of IL-33-mediated mast cell functions associated with allergic disease.
Collapse
Affiliation(s)
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Heather L. Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Jordan M. Dailey
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Aditya Kotha
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Jason R. Burchett
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Sydney A. Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Tania D. Maldonado
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Boyang Ren
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Wei Chao
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Lin Zou
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Tamara T. Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - David Straus
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|
3
|
Li H, Wang Y, Han X. ESP-B4 promotes nasal epithelial cell-derived extracellular vesicles containing miR-146a-5p to modulate Smad3/GATA-3 thus relieving allergic rhinitis: ESP-B4/miR-146a-5p in AR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154516. [PMID: 36370637 DOI: 10.1016/j.phymed.2022.154516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Though generally a mild affliction, allergic rhinitis (AR) is very common and causes considerable discomfort. Ephedra sinica polysaccharide is a candidate cost-effective therapy to relieve AR symptoms. PURPOSE We explore the molecular mechanism of pure polysaccharide ESP-B4 action in AR. METHODS RPMI2650 cells were treated with lipopolysaccharide to induce an in vitro sensitization model, and extracellular vesicles (EVs) were isolated. A rat model of AR was established using ovalbumin as the allergen and was treated with Ephedra sinica polysaccharide to observe changes in rhinitis symptoms, nasal mucosa histopathology and molecular pathology. ESP-B4-treated sensitized cells were adopted in vitro to verify effect of Ephedra sinica polysaccharide on miR-146a-5p expression in RPMI2650 cell-derived EVs and helper T cell differentiation. RESULTS miR-146a-5p inhibited Smad3, impeded the Smad3/GATA-3 interaction, upregulated IFN-γ expression, and promoted CD4+T cell Th1 differentiation. Treatment with ESP-B4 relieved AR in rats, and elevated miR-146a-5p in the EVs from the nasal epithelial cells, apparently in relation to effects on helper T cell Th1/Th2 equilibrium. CONCLUSION Overall, ESP-B4 can promote miR-146a-5p secretion, affect the Th1/Th2 balance of helper T cells, and relieve AR symptoms through Smad3/GATA-3 interaction, thus presenting a potential strategy for AR treatment.
Collapse
Affiliation(s)
- He Li
- Department of Otolaryngology, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan 250001, PR China
| | - Yuming Wang
- Department of Otolaryngology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan 250014, PR China.
| | - Xiuli Han
- Department of Otolaryngology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan 250014, PR China
| |
Collapse
|
4
|
Czerwaty K, Dżaman K, Miechowski W. Application of Extracellular Vesicles in Allergic Rhinitis: A Systematic Review. Int J Mol Sci 2022; 24:ijms24010367. [PMID: 36613810 PMCID: PMC9820222 DOI: 10.3390/ijms24010367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The pathophysiology of allergic rhinitis (AR), one of the most common diseases in the world, is still not sufficiently understood. Extracellular vesicles (EVs), which are secreted by host and bacteria cells and take part in near and distant intracellular communication, can provide information about AR. Recently, attention has been drawn to the potential use of EVs as biomarkers, vaccines, or transporters for drug delivery. In this review, we present an up-to-date literature overview on EVs in AR to reveal their potential clinical significance in this condition. A comprehensive and systematic literature search was conducted following PRISMA statement guidelines for original, completed articles, available in English concerning EVs and AR. For this purpose, PubMed/MEDLINE, Scopus, Web of Science, and Cochrane, were searched up until 10 Novenmber 2022. From 275 records, 18 articles were included for analysis. The risk of bias was assessed for all studies as low or moderate risk of overall bias using the Office and Health Assessment and Translation Risk of Bias Rating Tool for Human and Animal Studies. We presented the role of exosomes in the pathophysiology of AR and highlighted the possibility of using exosomes as biomarkers and treatment in this disease.
Collapse
Affiliation(s)
- Katarzyna Czerwaty
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Karolina Dżaman
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Wiktor Miechowski
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
5
|
Zheng Z, Yu Y. A review of recent advances in exosomes and allergic rhinitis. Front Pharmacol 2022; 13:1096984. [PMID: 36588711 PMCID: PMC9799977 DOI: 10.3389/fphar.2022.1096984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Allergic rhinitis is a chronic inflammatory disease of nasal mucosa caused by the presence of IgE after exposure to allergens, characterized by nasal irritation, hypersecretion of the nasal passages and sneezing, which frequently occurs in children and adolescents. There has been an increase in allergic rhinitis over the past few years due to air pollution. Exosomes have been discovered to be nano-sized vesicles, which contain a wide range of substances, including proteins and nucleic acids, numerous studies indicates that exosomes play a vital role in cells communication. Recently there have been more and more studies exploring the role of exosomes in allergic rhinitis. Therefore, here we will present a comprehensive review of the research on exosomes and their role in allergic rhinitis for the purpose of providing new understanding of potential value of exosomes applied to the treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Child Otorhinolaryngology, Anhui Provincial Children’s Hospital, Hefei, China,*Correspondence: Zhong Zheng,
| | - Yangyang Yu
- Department of Function Examination Center, Anhui Chest Hospital, Hefei, China
| |
Collapse
|
6
|
Bauer KM, Round JL, O'Connell RM. No small matter: emerging roles for exosomal miRNAs in the immune system. FEBS J 2022; 289:4021-4037. [PMID: 34087046 PMCID: PMC9545694 DOI: 10.1111/febs.16052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Extracellular communication is critical to the function of an organism. Exosomes, small lipid extracellular vesicles, have been recently appreciated to participate in this vital function. Within these vesicles lie critical bioactive molecules including mRNAs, proteins, and a plethora of noncoding RNAs, including microRNAs (miRNAs). Exosomal miRNAs have been shown to be produced by, trafficked between, and function in many distinct donor and recipient cell types, including cells of the immune system. For instance, loss of these critical communicators can alter the cellular response to endotoxin, and when tumor cells lose the ability to secrete these vesicles, the immune system is able to effectively suppress tumor growth. This review will highlight key findings on the known communication to and from the immune system, highlighting exosomal miRNA research in macrophages, dendritic cells, B lymphocytes, and T cells. Additionally, we will focus on three major areas of exosomal studies that involve immune responses including mucosal barriers, adipose tissue, and the tumor microenvironment. These environments are heterogeneous and dynamic, and rapidly respond to the microbiota, metabolic shifts, and immunotherapies, respectively. It is clear that exosomal miRNAs play pivotal roles in regulating cross-talk between cells in these tissues, and this represents a novel layer of cellular communication proving critical in human health and disease.
Collapse
Affiliation(s)
- Kaylyn M. Bauer
- Divison of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
| | - June L. Round
- Divison of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
- Hunstman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
| | - Ryan M. O'Connell
- Divison of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
- Hunstman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
7
|
The Role of Small Extracellular Vesicles and MicroRNAs in the Diagnosis and Treatment of Allergic Rhinitis and Nasal Polyps. Mediators Inflamm 2022; 2022:4428617. [PMID: 35757106 PMCID: PMC9225904 DOI: 10.1155/2022/4428617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
Allergic rhinitis and nasal polyps are common otorhinolaryngological diseases. Small extracellular vesicles and microRNAs have recently become major research topics of interest due to their key regulatory roles in cancer, inflammation, and various diseases. Although very detailed and in-depth studies on the pathogenesis and pathophysiology of allergic rhinitis and nasal polyps have been conducted, few studies have assessed the regulatory effects of exosomes and microRNAs on allergic rhinitis and nasal polyps. This paper reviews the studies on small extracellular vesicles and microRNAs in allergic rhinitis and nasal polyps conducted in recent years and focuses on the regulation of small extracellular vesicles and microRNAs in allergic rhinitis and nasal polyps with the aim of providing insights for the future diagnosis and treatment of allergic rhinitis and nasal polyps.
Collapse
|
8
|
Specjalski K, Maciejewska A, Romantowski J, Pawłowski R, Jassem E, Niedoszytko M. miRNA profiles change during grass pollen immunotherapy irrespective of clinical outcome. Immunotherapy 2022; 14:433-444. [DOI: 10.2217/imt-2021-0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Subcutaneous immunotherapy (SCIT) is widely used in the treatment of allergic rhinitis (AR). This study aimed to determine the expression of 48 miRNAs in patients with AR undergoing grass pollen SCIT and investigate relations with clinical outcomes. Methodology: Expression of selected miRNAs was determined using RT-PCR in the full blood of 16 patients with AR and seven healthy controls. Results: miR-136, miR-208 and miR-190 were upregulated in the AR group. After 6 months of SCIT, significant downregulation of some proinflammatory miRNAs and upregulation of several miRNAs regulating Th1/Th2 balance were found. No differences were found between good and poor responders. Conclusion: miRNAs may play a regulatory role in SCIT, leading to tolerance induction.
Collapse
Affiliation(s)
- Krzysztof Specjalski
- Department of Allergology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| | - Agnieszka Maciejewska
- Laboratory of Forensic Genetics, Department of Forensic Medicine, Medical University of Gdansk, ul. Debowa 23, Gdansk, 80-208, Poland
| | - Jan Romantowski
- Department of Allergology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| | - Ryszard Pawłowski
- Laboratory of Forensic Genetics, Department of Forensic Medicine, Medical University of Gdansk, ul. Debowa 23, Gdansk, 80-208, Poland
| | - Ewa Jassem
- Department of Pneumonology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| |
Collapse
|
9
|
Mo LH, Han HY, Jin QR, Song YN, Wu GH, Zhang Y, Yang LT, Liu T, Liu ZG, Feng Y, Yang PC. T cell activator-carrying extracellular vesicles induce antigen-specific regulatory T cells. Clin Exp Immunol 2021; 206:129-140. [PMID: 34418066 DOI: 10.1111/cei.13655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
The mechanism of antigen-specific regulatory T cell (Treg ) induction is not yet fully understood. Curcumin has an immune regulatory function. This study aims to induce antigen-specific Tregs by employing extracellular vesicles (EVs) that carry two types of T cell activators. Two types of T cell activators, ovalbumin (OVA)/major histocompatibility complex-II (MHC-II) and tetramethylcurcumin (FLLL31) (a curcumin analog) were carried by dendritic cell-derived extracellular vesicles, designated OFexo. A murine model of allergic rhinitis (AR) was developed with OVA as the specific antigen. AR mice were treated with a nasal instillation containing OFexo. We observed that OFexo recognized antigen-specific T cell receptors (TCR) on CD4+ T cells and enhanced Il10 gene transcription in CD4+ T cells. Administration of the OFexo-containing nasal instillation induced antigen-specific type 1 Tregs (Tr1 cells) in the mouse airway tissues. OFexo-induced Tr1 cells showed immune suppressive functions on CD4+ T cell proliferation. Administration of OFexo efficiently alleviated experimental AR in mice. In conclusion, OFexo can induce antigen-specific Tr1 cells that can efficiently alleviate experimental AR. The results suggest that OFexo has the translational potential to be employed for the treatment of AR or other allergic disorders.
Collapse
Affiliation(s)
- Li-Hua Mo
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Hai-Yang Han
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Otolaryngology, Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| | - Qiao-Ruo Jin
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| | - Yan-Nan Song
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| | - Gao-Hui Wu
- Department of Respirology, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Youming Zhang
- Department of Respirology, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Li-Teng Yang
- Department of Respirology, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Tao Liu
- Department of Otolaryngology, Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi-Gang Liu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yan Feng
- Department of Otolaryngology, Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ping-Chang Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| |
Collapse
|
10
|
Hovhannisyan L, Czechowska E, Gutowska-Owsiak D. The Role of Non-Immune Cell-Derived Extracellular Vesicles in Allergy. Front Immunol 2021; 12:702381. [PMID: 34489951 PMCID: PMC8417238 DOI: 10.3389/fimmu.2021.702381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate information exchange between distant cells; this process directly affects the biological characteristics and functionality of the recipient cell. As such, EVs significantly contribute to the shaping of immune responses in both physiology and disease states. While vesicles secreted by immune cells are often implicated in the allergic process, growing evidence indicates that EVs from non-immune cells, produced in the stroma or epithelia of the organs directly affected by inflammation may also play a significant role. In this review, we provide an overview of the mechanisms of allergy to which those EVs contribute, with a particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding the utilization of the EV-mediated communication route for the benefit of allergic patients.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Ewa Czechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Danuta Gutowska-Owsiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Tubita V, Callejas‐Díaz B, Roca‐Ferrer J, Marin C, Liu Z, Wang DY, Mullol J. Role of microRNAs in inflammatory upper airway diseases. Allergy 2021; 76:1967-1980. [PMID: 33314198 DOI: 10.1111/all.14706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a conserved family of small endogenous noncoding RNA molecules that modulate post-transcriptional gene expression in physiological and pathological processes. miRNAs can silence target mRNAs through degradation or inhibition of translation, showing their pivotal role in the pathogenesis of many human diseases. miRNAs play a role in regulating immune functions and inflammation and are implicated in controlling the development and activation of T and B cells. Inflammatory chronic upper airway diseases, such as rhinitis and rhinosinusitis, are spread all over the world and characterized by an exaggerated inflammation involving a complex interaction between immune and resident cells. Until now and despite allergy, little is known about their etiology and the processes implicated in the immune response and tuning inflammation of these diseases. This review highlights the knowledge of the current literature about miRNAs in inflammatory chronic upper airways diseases and how this may be exploited in the development of new clinical and therapeutic strategies.
Collapse
Affiliation(s)
- Valeria Tubita
- INGENIO Immunoal·lèrgia Respiratòria Clínica i Experimental (IRCE) Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
| | - Borja Callejas‐Díaz
- INGENIO Immunoal·lèrgia Respiratòria Clínica i Experimental (IRCE) Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
- CIBER of Respiratory Diseases (CIBERES) Carlos III Institute Barcelona Spain
| | - Jordi Roca‐Ferrer
- INGENIO Immunoal·lèrgia Respiratòria Clínica i Experimental (IRCE) Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
- CIBER of Respiratory Diseases (CIBERES) Carlos III Institute Barcelona Spain
| | - Concepció Marin
- INGENIO Immunoal·lèrgia Respiratòria Clínica i Experimental (IRCE) Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
- CIBER of Respiratory Diseases (CIBERES) Carlos III Institute Barcelona Spain
| | - Zheng Liu
- Department of Otolaryngology Head and Neck Surgery Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - De Yun Wang
- Department of Otolaryngology Yong Loo Lin School of MedicineNational University of SingaporeNational University Health System Singapore Singapore
| | - Joaquim Mullol
- INGENIO Immunoal·lèrgia Respiratòria Clínica i Experimental (IRCE) Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
- CIBER of Respiratory Diseases (CIBERES) Carlos III Institute Barcelona Spain
- ENT Department Rhinology Unit & Smell Clinic Hospital Clínic de BarcelonaUniversitat de Barcelona Barcelona Spain
| |
Collapse
|
12
|
Toyoshima S, Sakamoto-Sasaki T, Kurosawa Y, Hayama K, Matsuda A, Watanabe Y, Terui T, Gon Y, Matsumoto K, Okayama Y. miR103a-3p in extracellular vesicles from FcεRI-aggregated human mast cells enhances IL-5 production by group 2 innate lymphoid cells. J Allergy Clin Immunol 2021; 147:1878-1891. [PMID: 33465368 DOI: 10.1016/j.jaci.2021.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mast cells (MCs) are key regulators of IgE-mediated allergic inflammation. Cell-derived extracellular vesicles (EVs) contain bioactive compounds such as microRNAs. EVs can transfer signals to recipient cells, thus using a novel mechanism of cell-to-cell communication. However, whether MC-derived EVs are involved in FcεRI-mediated allergic inflammation is unclear. OBJECTIVE We sought to investigate the effect of EVs derived from FcεRI-aggregated human MCs on the function of human group 2 innate lymphoid cells (ILC2s). METHODS Human cultured MCs were sensitized with and without IgE for 1 hour and then incubated with anti-IgE antibody, IL-33, or medium alone for 24 hours. EVs in the MC supernatant were isolated by using ExoQuick-TC. RESULTS Coculture of ILC2s with EVs derived from the FcεRI-aggregated MCs significantly enhanced IL-5 production and sustained upregulation of IL-5 mRNA expression in IL-33-stimulated ILC2s, but IL-13 production and IL-13 mRNA expression were unchanged. miR103a-3p expression was upregulated in IL-33-stimulated ILC2s that had been cocultured with EVs derived from anti-IgE antibody-stimulated MCs. Transduction of an miR103a-3p mimic to ILC2s significantly enhanced IL-5 production by IL-33-stimulated ILC2s. miR103a-3p promoted demethylation of an arginine residue of GATA3 by downregulating protein arginine methyltransferase 5 (PRMT5) mRNA. Reduction of protein arginine methyltransferase 5 expression in ILC2s by using a small interfering RNA technique resulted in upregulation of IL-5 production by IL-33-stimulated ILC2s. Furthermore, the level of miR103a-3p expression was significantly higher in EVs from sera of patients with atopic dermatitis than in EVs from nonatopic healthy control subjects. CONCLUSION Eosinophilic allergic inflammation may be exacerbated owing to ILC2 activation by MC-derived miR103a-3p.
Collapse
Affiliation(s)
- Shota Toyoshima
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan; Center for Allergy, Nihon University Itabashi Hospital, Tokyo, Japan; Center for Medical Education, Nihon University School of Medicine, Tokyo, Japan
| | - Tomomi Sakamoto-Sasaki
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan; Center for Allergy, Nihon University Itabashi Hospital, Tokyo, Japan; Center for Medical Education, Nihon University School of Medicine, Tokyo, Japan
| | - Yusuke Kurosawa
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan; Center for Allergy, Nihon University Itabashi Hospital, Tokyo, Japan; Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Koremasa Hayama
- Center for Allergy, Nihon University Itabashi Hospital, Tokyo, Japan; Divison of Cutaneous Science, Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Watanabe
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadashi Terui
- Center for Allergy, Nihon University Itabashi Hospital, Tokyo, Japan; Divison of Cutaneous Science, Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Center for Allergy, Nihon University Itabashi Hospital, Tokyo, Japan; Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan; Center for Allergy, Nihon University Itabashi Hospital, Tokyo, Japan; Center for Medical Education, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
13
|
Straumfors A, Duale N, Foss OAH, Mollerup S. Circulating miRNAs as molecular markers of occupational grain dust exposure. Sci Rep 2020; 10:11317. [PMID: 32647120 PMCID: PMC7347934 DOI: 10.1038/s41598-020-68296-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Dust from grain and feed production may cause adverse health effects in exposed workers. In this study we explored circulating miRNAs as potential biomarkers of occupational grain dust exposure. Twenty-two serum miRNAs were analyzed in 44 grain dust exposed workers and 22 controls. Exposed workers had significantly upregulated miR-18a-5p, miR-124-3p and miR-574-3p, and downregulated miR-19b-3p and miR-146a-5p, compared to controls. Putative target genes for the differentially expressed miRNAs were involved in a range of Kyoto Encyclopedia of Genes and Genomes signaling pathways, and ‘Pathways in cancer’ and ‘Wnt signaling pathway’ were common for all the five miRNAs. MiRNA-diseases association analysis showed a link between the five identified miRNAs and several lung diseases terms. A positive correlation between miR-124-3p, miR-18a-5p, and miR-574-3p and IL-6 protein level was shown, while miR-19b-3p was inversely correlated with CC-16 and sCD40L protein levels. Receiver-operating characteristic analysis of the five miRNA showed that three miRNAs (miR-574-3p, miR-124-3p and miR-18a-5p) could distinguish the grain dust exposed group from the control group, with miR-574-3p as the strongest predictor of grain dust exposure. In conclusion, this study identified five signature miRNAs as potential novel biomarkers of grain dust exposure that may have potential as early disease markers.
Collapse
Affiliation(s)
- Anne Straumfors
- National Institute of Occupational Health, Gydas vei 8, PO Box 5330, 0304, Majorstuen, Oslo, Norway.
| | - Nur Duale
- Department of Molecular Biology, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Oda A H Foss
- National Institute of Occupational Health, Gydas vei 8, PO Box 5330, 0304, Majorstuen, Oslo, Norway
| | - Steen Mollerup
- National Institute of Occupational Health, Gydas vei 8, PO Box 5330, 0304, Majorstuen, Oslo, Norway
| |
Collapse
|
14
|
Pan X, Thymann T, Gao F, Sangild PT. Rapid Gut Adaptation to Preterm Birth Involves Feeding-Related DNA Methylation Reprogramming of Intestinal Genes in Pigs. Front Immunol 2020; 11:565. [PMID: 32351501 PMCID: PMC7174650 DOI: 10.3389/fimmu.2020.00565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 01/26/2023] Open
Abstract
Following preterm birth, the immature gut function and immunology must rapidly adapt to cope with bacterial colonization and enteral milk feeding. We hypothesized that intestinal epigenetic changes are involved in the gut response to preterm birth and the first feeding. Using piglets as models for infants, preterm, and term pigs were fed total parenteral nutrition (TPN) or partial enteral feeding for 5 days, followed by exclusive enteral feeding with bovine milk until day 26 (weaning age). Intestinal structure, function, microbiome, DNA methylome, and gene expressions were compared between preterm and term pigs on days 0, 5, and 26 (n = 8 in each group). At birth, the intestine of preterm pigs showed villus atrophy and global hypermethylation, affecting genes related to the Wnt signaling pathway. Hypermethylation-associated lowered expression of lipopolysaccharide-binding protein and genes related to the Toll-like receptor 4 pathway were evident during the first 5 days of life, but most early methylation differences disappeared by day 26. Regardless, sucrase and maltase activities (adult-type brush border enzymes) remained reduced, and the gut microbiota altered (fewer Akkermansia, more Lachnoclostridia and Lactobacilli) until day 26 in preterm pigs. During the 0- to 5-day period, many new preterm–term methylation differences appeared, but mainly when no enteral feed was provided (TPN feeding). These methylation differences affected intestinal genes related to cell metabolism, including increased GCK (glucokinase) expression via promoter hypomethylation. In conclusion, the immature intestine has a remarkable capacity to adapt its gene methylation and expression after preterm birth, and only few preterm-related defects persisted until weaning. Early enteral feeding may be important to stimulate the methylation reprogramming of intestinal genes, allowing rapid intestinal adaptation to preterm birth.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fei Gao
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
15
|
Shao JB, Yang G, Zhang YY, Ma F, Luo XQ, Mo LH, Liu ZQ, Liao WJ, Qiu QH, Li DC, Yang LT, Zhang XW, Liu DB, Yang PC. Mal-deficiency impairs the tolerogenicity of dendritic cell of patients with allergic rhinitis. Cell Immunol 2019; 344:103930. [PMID: 31196568 DOI: 10.1016/j.cellimm.2019.103930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/23/2023]
Abstract
The tolerogenic dendritic cell dysfunction is associated with the pathogenesis of immune diseases. Microbial stimulus is required in the maintenance of immune functions. This study aims to elucidate the role of Mal signal in the maintenance of DEC205+ DC (decDC) immune tolerogenic function. In this study, peripheral DCs were collected from allergic rhinitis (AR) patients and healthy control (HC) subjects to assess the functional status of decDCs. An AR murine model was developed to test the role of Mal signals in the maintenance of decDCs' functions. We observed that AR decDCs (decDCs obtained from AR patients) were incompetent in the induction of type 1 regulatory T cells (Tr1 cells). AR decDCs expressed less IL-10 than that in HC decDCs. IL-10 mRNA decayed spontaneously in AR decDCs. Tat-activating regulatory DNA-binding protein-43 (TDP43) protected IL-10 mRNA from decay. AR decDCs expressed lower levels of Mal than that in HC decDCs. Mal depletion resulted in IL-10 mRNA decay in HC decDCs. Reconstitution of Mal in AR decDCs restored the capacity of inducing Tr1 cells and attenuated experimental AR in mice. In conclusion, Mal plays a critical role in the maintenance of decDC's immune tolerogenic function. The absence or insufficient Mal signal impairs decDC's tolerogenic property. Reconstitution of Mal in AR decDCs can restore the immune tolerogenic capacity, which may have translational potential in the treatment of AR and other allergic diseases.
Collapse
Affiliation(s)
- Jian-Bo Shao
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gui Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China; Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Yuan-Yi Zhang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Fei Ma
- Department of Otolaryngology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang-Qian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Li-Hua Mo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhi-Qiang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China; Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Wen-Jing Liao
- Department of Otolaryngology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian-Hui Qiu
- Department of Otolaryngology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Dong-Cai Li
- Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Li-Tao Yang
- Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Xiao-Wen Zhang
- Department of Otolaryngology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Da-Bo Liu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Ping-Chang Yang
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Wang H, Li X, Li T, Wang L, Wu X, Liu J, Xu Y, Wei W. Multiple roles of microRNA-146a in immune responses and hepatocellular carcinoma. Oncol Lett 2019; 18:5033-5042. [PMID: 31612014 PMCID: PMC6781720 DOI: 10.3892/ol.2019.10862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs/miRs), consisting of ~22 nucleotides of single-stranded RNA, participate in post-transcriptional gene regulation by binding to the 3′-untranslated region (UTR) of mRNAs, repressing their translation and promoting their degradation. Studies have shown that certain miRNAs play a key role in the control of various cellular activities, such as inhibiting inflammation, modulating cell differentiation and suppressing cancer growth. The role of miR-146a in the immune response and in the pathogenesis of hepatocellular carcinoma (HCC) has also been investigated. Although some studies have shown that increased miR-146a levels are associated with HCC, others have revealed that miR-146a suppresses cancer cell proliferation, invasion and metastasis. Toll-like receptor 4 (TLR4) signaling has an important role in regulating innate and adaptive immune responses. In addition, TLR4 is functionally expressed in HCC cells and promotes HCC cell proliferation, which can be regulated by miR-146a. The present review focuses on the recent progress in analyzing the multiple roles of miR-146a in mediating the TLR4 pathway and adaptive immune response. Finally, the function of miR-146a in the pathogenesis of HCC is also discussed.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xuemei Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lianzi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xian Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiaqing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
17
|
Zeng XH, Yang G, Liu JQ, Geng XR, Cheng BH, Liu ZQ, Yang PC. Nasal instillation of probiotic extracts inhibits experimental allergic rhinitis. Immunotherapy 2019; 11:1315-1323. [PMID: 31478418 DOI: 10.2217/imt-2019-0119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Allergic rhinitis (AR) is a common disease. The therapeutic efficacy of AR needs to be improved. This study aims to evaluate the effects of local administration of probiotic extracts on inhibiting experimental AR. Methods: Epithelial cells (ECs) were primed by exposing to Clostridium butyricum extracts (CBe) in the culture to upregulate the expression of IL-10. A mouse AR model was developed to assess the therapeutic potential of CBe in AR. Results: CBe markedly induced the expression of IL-10 in ECs. Co-culture of naive B cells with CBe-primed ECs significantly increased IL-10 expression in the B cells (iB10 cells). The iB10 cells showed immune suppressive function in suppressing effector CD4+ T-cell proliferation. Treatment with nasal drops containing CBe efficiently inhibited experimental AR in mice. Conclusion: Local administration of CBe can efficiently inhibit experimental AR.
Collapse
Affiliation(s)
- Xian-Hai Zeng
- Affiliated ENT Hospital & Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China. Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Gui Yang
- Affiliated ENT Hospital & Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China. Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Jiang-Qi Liu
- Affiliated ENT Hospital & Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China. Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Xiao-Rui Geng
- Affiliated ENT Hospital & Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China. Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Bao-Hui Cheng
- Affiliated ENT Hospital & Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China. Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Zhi-Qiang Liu
- Affiliated ENT Hospital & Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China. Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Ping-Chang Yang
- Affiliated ENT Hospital & Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China. Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| |
Collapse
|
18
|
Specjalski K, Jassem E. MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Arch Immunol Ther Exp (Warsz) 2019; 67:213-223. [PMID: 31139837 PMCID: PMC6597590 DOI: 10.1007/s00005-019-00547-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that are 18-22 nucleotides long and highly conserved throughout evolution. Currently, they are considered one of the fundamental regulatory mechanisms of genes expression. It has been demonstrated that miRNAs are involved in many biologic processes, such as signal transduction, cell proliferation and differentiation, apoptosis and stress responses. More recently, the role of miRNA has also been revealed in numerous immunological and inflammatory disorders, including allergic inflammation. Specific miRNA profiles were demonstrated in asthma, allergic rhinitis and atopic dermatitis. A core set of miRNAs involved in atopic diseases include upregulated miR-21, miR-223, miR-146a, miR-142-5p, miR-142-3p, miR-146b, miR-155 and downregulated let-7 family, miR-193b and miR-375. Most of the involved miRNAs increase secretion of Th2 cytokines (miR-1248, miR-146b), decrease secretion of Th1 cytokines (miR-513-5p, miR-625-5p) or promote differentiation of T cells towards Th2 (miR-21, miR-19a). In asthma miR-140-3p, miR-708 and miR-142-3p play a role in hyperplasia and hypertrophy of bronchial smooth muscle cells. Some single miRNAs or, more probably, their sets hold the promise for their use as biomarkers of atopic diseases. They are also promising target of future therapies.
Collapse
Affiliation(s)
- Krzysztof Specjalski
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210, Gdańsk, Poland.
| | - Ewa Jassem
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210, Gdańsk, Poland
| |
Collapse
|
19
|
Toll-like receptor signal is required in maintenance of immune suppressive capacity of regulatory T cells. Immunol Lett 2019; 210:47-54. [PMID: 31029633 DOI: 10.1016/j.imlet.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/27/2019] [Accepted: 04/19/2019] [Indexed: 02/05/2023]
|
20
|
Epigenetic changes: An emerging potential pharmacological target in allergic rhinitis. Int Immunopharmacol 2019; 71:76-83. [PMID: 30878818 DOI: 10.1016/j.intimp.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
The importance of epigenetics has increased due to identification of its role in the pathophysiology of a number of diseases including allergic rhinitis. Amongst the different epigenetic changes in allergic retinitis, deacetylation of histone proteins by histone deacetylase (HDACs), hypermethylation of DNA by DNA methyltransferases (DNMT) and alteration in post-transcriptional process by the changes in the levels of miRNA are widely studied. Studies conducted related to allergic rhinitis have shown the elevation in the levels of HDAC1, 3 and 11 in the nasal epithelia and HDAC inhibitors have shown effectiveness in decreasing the symptoms of rhinitis. Their beneficial effects are attributed to restoration of the expression of TWIK-related potassium channel-1, correction of cytokine profile along with normalization of Th1/Th2 imbalance. Another epigenetic change due to increase in DNMT activity may induce DNA hypermethylation in CpG sites in the airway epithelial cells and CD4+ T-cells. The reduction in DNA methylation decreases allergic symptoms and normalizes the over-reactive immune system. Mechanistically, allergens may promote the hypermethylation in the promoter region of IFN-γ gene in CD4+ T cells via activation of ERK pathway to decrease the expression of IFN-γ. In allergic rhinitis patients, there is also a downregulation of certain miRNAs including miR-135a, miR-146a, miR-181a, miR-155 and upregulation of miRNA19a. This review discusses the studies describing the epigenetic changes taking place in the host cells in response to allergen along with possible mechanisms.
Collapse
|
21
|
Luukkainen A, Puan KJ, Yusof N, Lee B, Tan KS, Liu J, Yan Y, Toppila-Salmi S, Renkonen R, Chow VT, Rotzschke O, Wang DY. A Co-culture Model of PBMC and Stem Cell Derived Human Nasal Epithelium Reveals Rapid Activation of NK and Innate T Cells Upon Influenza A Virus Infection of the Nasal Epithelium. Front Immunol 2018; 9:2514. [PMID: 30467502 PMCID: PMC6237251 DOI: 10.3389/fimmu.2018.02514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022] Open
Abstract
Background: We established an in vitro co-culture model involving H3N2-infection of human nasal epithelium with peripheral blood mononuclear cells (PBMC) to investigate their cross-talk during early H3N2 infection. Methods: Nasal epithelium was differentiated from human nasal epithelial stem/progenitor cells and cultured wtih fresh human PBMC. PBMC and supernatants were harvested after 24 and 48 h of co-culture with H3N2-infected nasal epithelium. We used flow cytometry and Luminex to characterize PBMC subpopulations, their activation and secretion of cytokine and chemokines. Results: H3N2 infection of the nasal epithelium associated with significant increase in interferons (IFN-α, IFN-γ, IL-29), pro-inflammatory cytokines (TNF-α, BDNF, IL-3) and viral-associated chemokines (IP-10, MCP-3, I-TAC, MIG), detectable already after 24 h. This translates into rapid activation of monocytes, NK-cells and innate T-cells (MAIT and γδ T cells), evident with CD38+ and/or CD69+ upregulation. Conclusions: This system may contribute to in vitro mechanistic immunological studies bridging systemic models and possibly enable the development of targeted immunomodulatory therapies.
Collapse
Affiliation(s)
- Annika Luukkainen
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Nurhashikin Yusof
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sanna Toppila-Salmi
- Haartman Institute, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto Renkonen
- Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Feng S, Zeng D, Zheng J, Zhao D. MicroRNAs: Mediators and Therapeutic Targets to Airway Hyper Reactivity After Respiratory Syncytial Virus Infection. Front Microbiol 2018; 9:2177. [PMID: 30254626 PMCID: PMC6141694 DOI: 10.3389/fmicb.2018.02177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most important pathogen correlated to the first-time infant wheezing and later recurrence after its primary infection. RSV infection promotes the bronchial smooth muscle sensitivity to leukotrienes (LTs) in acute stage, causes the extensive inflammatory reaction and the aggregation of Th2-like cells during respiratory tract obstruction. Infants and young children infected with RSV exhibit an increased susceptibility to the exposure of exogenous allergens, easy to suffer from the recurrent wheezing, which prompts that the body is still in a state of inflammation or immunological bias. However, the pathological mechanism is unclear. The recent researches demonstrate that abnormal expression of non-coding microRNAs (miRNAs) can be detected from the peripheral blood and airway tract epithelial of RSV infected infants, which participate the regulation of immune cells polarization and LTs synthesis. Improving the immune tolerance can significantly relieve the airway inflammation and broncho-spasm caused by RSV. In this review, we discuss recent advances in understanding the mechanism of RSV-induced inflammatory reaction and immune dysfunction leading to airway hyper-reactivity. Further, we summarize the potential molecular basis that, in this process, miRNAs, which are produced by airway epithelial cells or peripheral blood mononuclear cells, directly or in the form of exosome to regulate the inflammation programs as well as the function, differentiation and proliferation of immune cells. miRNAs may become a potential bio-marker of detecting severe RSV infection and a novel target of early intervention and therapeutic strategy in recurrent wheezing or asthma related to RSV infection.
Collapse
Affiliation(s)
| | | | | | - Dongchi Zhao
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Jordakieva G, Jensen-Jarolim E. The impact of allergen exposure and specific immunotherapy on circulating blood cells in allergic rhinitis. World Allergy Organ J 2018; 11:19. [PMID: 30128065 PMCID: PMC6092783 DOI: 10.1186/s40413-018-0197-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated inflammatory disease of the nasal mucosa with well described local immune responses during allergen exposure. The frequent association of AR with general extra-nasal symptoms and other allergic conditions, such as conjunctivitis and asthma, however, support a more systemic disease impact. In addition to acute elevation of soluble inflammatory mediators in periphery blood, a growing number of studies have reported changes in circulating blood cells after specific nasal allergen challenge or environmental allergen exposure. These findings imply an involvement of specific blood leukocyte subsets, thrombocytes and recently, erythrocytes. This review summarizes the circulating blood cell dynamics associated with allergen exposure in AR subjects reported so far. Additionally, the impact of therapy, particularly allergen-specific immunotherapy (AIT), the only currently available causal treatment reducing AR-related symptoms, is further considered in this context.
Collapse
Affiliation(s)
- Galateja Jordakieva
- 1Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090 Austria
| | - Erika Jensen-Jarolim
- 2Department of Pathophysiology and Allergy Research, Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria.,The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Veterinaerplatz 1, Vienna, 1210 Austria.,AllergyCare, Allergy Diagnosis and Study Center Vienna, Vienna, Austria
| |
Collapse
|
24
|
Yang Q, Cao W, Wang Z, Zhang B, Liu J. Regulation of cancer immune escape: The roles of miRNAs in immune checkpoint proteins. Cancer Lett 2018; 431:73-84. [PMID: 29800685 DOI: 10.1016/j.canlet.2018.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/01/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Immune checkpoint proteins (ICPs) are regulators of immune system. The ICP dysregulation silences the host immune response to cancer-specific antigens, contributing to the occurrence and progress of various cancers. MiRNAs are regulatory molecules and function in mRNA silencing and post-transcriptional regulation of gene expression. MiRNAs that modulate the immunity via ICPs have received increasing attention. Many studies have shown that the expressions of ICPs are directly or indirectly repressed by miRNAs in multiple types of cancers. MiRNAs are also subject to regulation by ICPs. In this review, recent studies of the relationship between miRNAs and ICPs (including the PD-1, PD-L1, CTLA-4, ICOS, B7-1, B7-2, B7-H2, B7-H3, CD27, CD70, CD40, and CD40L) in cancer immune escape are comprehensively discussed, which provide critical detailed mechanistic insights into the functions of the miRNA-ICP axes and their effects on immune escape, and will be beneficial for the potential applications of immune checkpoint therapy and miRNA-based guidance for personalized medicine as well as for predicting the prognosis.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; School of Medical Laboratory, Shao Yang University, Hunan Province, 422000, China
| | - Wenjie Cao
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zi Wang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
25
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
26
|
Bui TM, Mascarenhas LA, Sumagin R. Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair. Tissue Barriers 2018; 6:e1431038. [PMID: 29424657 PMCID: PMC6179129 DOI: 10.1080/21688370.2018.1431038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 12/19/2022] Open
Abstract
Tightly controlled communication among the various resident and recruited cells in the intestinal tissue is critical for maintaining tissue homeostasis, re-establishment of the barrier function and healing responses following injury. Emerging evidence convincingly implicates extracellular vesicles (EVs) in facilitating this important cell-to-cell crosstalk by transporting bioactive effectors and genetic information in healthy tissue and disease. While many aspects of EV biology, including release mechanisms, cargo packaging, and uptake by target cells are still not completely understood, EVs contribution to cellular signaling and function is apparent. Moreover, EV research has already sparked a clinical interest, as a potential diagnostic, prognostic and therapeutic tool. The current review will discuss the function of EVs originating from innate immune cells, namely, neutrophils, monocytes and macrophages, as well as intestinal epithelial cells in healthy tissue and inflammatory disorders of the intestinal tract. Our discussion will specifically emphasize the contribution of EVs to the regulation of vascular and epithelial barrier function in inflamed intestines, wound healing, as well as trafficking and activity of resident and recruited immune cells.
Collapse
Affiliation(s)
- Triet M. Bui
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| | - Lorraine A. Mascarenhas
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| | - Ronen Sumagin
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| |
Collapse
|
27
|
Chen BB, Li ZH, Gao S. Circulating miR-146a/b correlates with inflammatory cytokines in COPD and could predict the risk of acute exacerbation COPD. Medicine (Baltimore) 2018; 97:e9820. [PMID: 29443743 PMCID: PMC5839872 DOI: 10.1097/md.0000000000009820] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to investigate the predicting value of miR-146a/b for acute exacerbation chronic obstructive pulmonary disease (AECOPD) and COPD, and to explore their associations with inflammatory cytokines in AECOPD and stable COPD patients.One hundred six AECOPD, 122 stable COPD patients, and 110 health volunteers with age and sex matched to total COPD patients (AECOPD and stable COPD) were enrolled. Blood samples were collected from all participants. Relative expression of miR-146a/b was determined by real-time polymerase chain reaction. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), leukotriene B4 (LTB-4) expression in serum from AECOPD and stable COPD patients were assessed using commercial ELISA kit.Serum levels of miR-146a and miR-146b were down regulated in AECOPD patients compared with stable COPD patients and HCs. miR-146a and miR-146b are of good values for predicting the risk of AECOPD in HCs with AUC of 0.702 and 0.715. Additionally, miR-146a and miR-146b could distinguish AECOPD from stable COPD patients with AUC of 0.670 and 0.643. In AECOPD patients, levels of miR-146a in AECOPD patients were negatively associated with TNF-α, IL-6, IL-8, and LTE-4 expression. In stable COPD patients, miR-146a expressions were negatively correlated with TNF-α, IL-1β, IL-6, IL-8, and LTE-4 levels. And, the expressions of miR-146b in AECOPD patients were negatively associated with IL-1β and LTB-4 expression. While in stable COPD patients, miR-146b expressions were only negatively correlated with TNF-α level.In conclusion, miR-146a and miR-146b were negatively correlated with inflammatory cytokines, and could be promising biomarkers for predicting the risk of AECOPD in stable COPD patients and healthy individuals.
Collapse
|
28
|
Rothenberg ME, Saito H, Peebles RS. Advances in mechanisms of allergic disease in 2016. J Allergy Clin Immunol 2017; 140:1622-1631. [PMID: 29038009 DOI: 10.1016/j.jaci.2017.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/30/2022]
Abstract
This review highlights advances in mechanisms of allergic disease, particularly type 2 innate lymphoid cells; TH2 lymphocytes; eicosanoid regulation of inflammation; extracellular vesicles in allergic responses; IL-33; microbiome properties, especially as they relate to mucosal barrier function; and a series of findings concerning the allergic inflammatory cells eosinophils, basophils, and mast cells. During the last year, mechanistic advances occurred in understanding type 2 innate lymphoid cells, particularly related to their response to ozone, involvement with experimental food allergy responses, and regulation by IL-33. Novel ways of regulating TH2 cells through epigenetic regulation of GATA-3 through sirtuin-1, a class III histone deacetylase, were published. The understanding of eicosanoid regulation of inflammation increased and focused on additional properties of phospholipase A2 and the role of prostaglandin D2 and its receptors and inhibitory prostaglandin E2 pathways. Mechanisms through which extracellular vesicles are released and contribute to allergic responses were reported. There was a deeper appreciation of mucosal barrier function, the epithelial alarmin IL-33, and the microbiome. Finally, there were advances concerning allergic inflammatory cells (mast cells, basophils, and eosinophils) that will undoubtedly have an effect on disease understanding and new therapeutic strategies.
Collapse
Affiliation(s)
- Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - Hirohisa Saito
- National Research Institute for Child Health & Development, Tokyo, Japan
| | - R Stokes Peebles
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| |
Collapse
|
29
|
Abstract
There are several advances in diagnosis and management for the otolaryngologist treating allergy. These include new technologies and the refinement of current techniques, and reflect overall trends in health care toward personalized medicine. Local immunoglobulin, urinary leukotriene E4, lipidomics, microRNA within extracellular vesicles, and optical rhinometry all offer to improve the diagnostic accuracy of allergy and related nonallergic conditions. New delivery systems for intranasal steroids and antihistamines, recombinant allergens, advances in allergen immunotherapy delivery, and biologics will improve current management options. These developments will aid the otolaryngologist in diagnosing and treating allergy and related diseases.
Collapse
Affiliation(s)
- Michael J Marino
- Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School at the University of Texas Health Science Center, 6431 Fannin Street, MSB 5.036, Houston, TX 77030, USA
| | - Amber U Luong
- Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School at the University of Texas Health Science Center, 6431 Fannin Street, MSB 5.036, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Luo XQ, Shao JB, Xie RD, Zeng L, Li XX, Qiu SQ, Geng XR, Yang LT, Li LJ, Liu DB, Liu ZG, Yang PC. Micro RNA-19a interferes with IL-10 expression in peripheral dendritic cells of patients with nasal polyposis. Oncotarget 2017; 8:48915-48921. [PMID: 28388587 PMCID: PMC5564735 DOI: 10.18632/oncotarget.16555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/14/2017] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of nasal polyp is to be further investigated. Micro RNA (miR) plays a role in the development of allergic inflammation. Interleukin (IL)-10-producing dendritic cells (DC) have immune tolerogenic properties. This study test a hypothesis that miR-17-92 cluster is associated with suppressing IL-10 in peripheral DC. In this study, peripheral blood samples were obtained from 26 patients with nasal polyp. The CD11c DCs were isolated from the blood samples and analyzed for the expression of IL-10. We observed that, as compared with healthy subjects, the IL-10 expression in peripheral DC was significantly lower in polyp patients. The levels of miR-19a, but not the rest 5 members of the miR-17-92 cluster, were markedly higher in DCs in polyp group. Exposure to recombinant IL-4 suppressed the IL-10 expression in DCs, which was abolished by blocking histone deacetylase-11 or knocking down the miR-19a gene in DCs. We conclude that miR-19a plays a critical role in the suppression of IL-10 in peripheral DCs, which may be a target in the immune therapy for nasal polyp.
Collapse
Affiliation(s)
- Xiang-Qian Luo
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510010, China
- The Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Jian-Bo Shao
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510010, China
- The Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Rui-Di Xie
- The Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Lu Zeng
- The Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Xiao-Xi Li
- The Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Shu-Qi Qiu
- Longgang ENT Hospital, Shenzhen 518116, China
| | | | - Li-Tao Yang
- Longgang ENT Hospital, Shenzhen 518116, China
- Brain Body Institute, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Lin-Jing Li
- Brain Body Institute, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Da-Bo Liu
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510010, China
| | - Zhi-Gang Liu
- The Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Ping-Chang Yang
- The Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| |
Collapse
|
31
|
Luo XQ, Yang SB, Qiu SQ, Xie RD, Yang LT, Ke YX, Zhao HX, Geng XR, Yang G, Liu ZQ, Liu JQ, Wang S, Liu DB, Liu J. Post-transcriptional regulation of interleukin-10 in peripheral B cells of airway allergy patients. Am J Transl Res 2016; 8:5766-5772. [PMID: 28078048 PMCID: PMC5209528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
The dysfunction of peripheral immune tolerance plays an important role in the pathogenesis of allergic diseases. Recent reports indicate that micro RNA (miR)-98 is associated with the process of aberrant immune responses. This study aims to test a hypothesis that miR-98 is associated with the pathogenesis of airway allergy via interfering with the development of regulatory B cells (Breg). In this study, patients with airway allergy were recruited into this study. The frequency of Bregs was assessed by flow cytometry. The levels of miR-98 in peripheral B cells were determined by RT-qPCR. A cell-culture model of B cells was developed to test the role of miR-98 in the repressing of interleukin (IL)-10 in B cells. The results showed that the levels of IL-10 in peripheral B cells were significantly lower in patients with airway allergy as compared with healthy subjects. High levels of miR-98 (one of the miR-98 members) were detected in peripheral B cells of patients with airway allergy, which was mimicked by stimulating B cells with IL-4. Histone acetyltransferase p300 was involved in the IL-4-induced miR-98 expression. miR-98 mediated the IL-4-inhibited IL-10 expression in B cells. In conclusion, miR-98 affects the expression of IL-10 in B cells and may be a novel therapeutic target for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Xiang-Qian Luo
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical UniversityGuangzhou 510010, China
| | - Shao-Bo Yang
- Department of Cadre Clinic, Chinese PLA General HospitalBeijing 100853, China
| | - Shu-Qi Qiu
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Rui-Di Xie
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Li-Tao Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Yu-Xing Ke
- Shenzhen Maternity & Child Health HospitalShenzhen 518052, China
| | - Hong-Xia Zhao
- Shenzhen Maternity & Child Health HospitalShenzhen 518052, China
| | - Xiao-Rui Geng
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Gui Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Zhi-Qiang Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Jiang-Qi Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Shuai Wang
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Da-Bo Liu
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical UniversityGuangzhou 510010, China
| | - Jun Liu
- Shenzhen Maternity & Child Health HospitalShenzhen 518052, China
| |
Collapse
|
32
|
Nazimek K, Bryniarski K, Askenase PW. Functions of Exosomes and Microbial Extracellular Vesicles in Allergy and Contact and Delayed-Type Hypersensitivity. Int Arch Allergy Immunol 2016; 171:1-26. [PMID: 27820941 PMCID: PMC5131095 DOI: 10.1159/000449249] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles, such as exosomes, are newly recognized intercellular conveyors of functional molecular mechanisms. Notably, they transfer RNAs and proteins between different cells that can then participate in the complex pathogenesis of allergic and related hypersensitivity responses and disease mechanisms, as described herein. This review highlights this important new appreciation of the in vivo participation of such extracellular vesicles in the interactions between allergy-mediating cells. We take into account paracrine epigenetic exchanges mediated by surrounding stromal cells and the endocrine receipt of exosomes from distant cells via the circulation. Exosomes are natural ancient nanoparticles of life. They are made by all cells and in some form by all species down to fungi and bacteria, and are present in all fluids. Besides a new focus on their role in the transmission of genetic regulation, exosome transfer of allergens was recently shown to induce allergic inflammation. Importantly, regulatory and tolerogenic exosomes can potently inhibit allergy and hypersensitivity responses, usually acting nonspecifically, but can also proceed in an antigen-specific manner due to the coating of the exosome surface with antibodies. Deep analysis of processes mediated by exosomes should result in the development of early diagnostic biomarkers, as well as allergen-specific, preventive and therapeutic strategies. These will likely significantly diminish the risks of current allergen-specific parenteral desensitization procedures, and of the use of systemic immunosuppressive drugs. Since extracellular vesicles are physiological, they can be fashioned for the specific delivery of therapeutic molecular instructions through easily tolerated, noninvasive routes, such as oral ingestion, nasal administration, and perhaps even inhalation.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Philip W. Askenase
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|