1
|
Wang W, Zhai Y, Yang X, Ye L, Lu G, Shi X, Zhai G. Effective design of therapeutic nanovaccines based on tumor neoantigens. J Control Release 2025; 380:17-35. [PMID: 39892648 DOI: 10.1016/j.jconrel.2025.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Neoantigen vaccines are among the most potent immunotherapies for personalized cancer treatment. Therapeutic vaccines containing tumor-specific neoantigens that elicit specific T cell responses offer the potential for long-term clinical benefits to cancer patients. Unlike immune-checkpoint inhibitors (ICIs), which rely on pre-existing specific T cell responses, personalized neoantigen vaccines not only promote existing specific T cell responses but importantly stimulate the generation of neoantigen-specific T cells, leading to the establishment of a persistent specific memory T cell pool. The review discusses the current state of clinical research on neoantigen nanovaccines, focusing on the application of vectors, adjuvants, and combinational strategies to address a range of challenges and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Weilin Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States of America
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Morillo-Huesca M, G López-Cepero I, Conesa-Bakkali R, Tomé M, Watts C, Huertas P, Moreno-Bueno G, Durán RV, Martínez-Fábregas J. Radiotherapy resistance driven by Asparagine endopeptidase through ATR pathway modulation in breast cancer. J Exp Clin Cancer Res 2025; 44:74. [PMID: 40012043 PMCID: PMC11866873 DOI: 10.1186/s13046-025-03334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Tumor resistance represents a major challenge in the current oncology landscape. Asparagine endopeptidase (AEP) overexpression correlates with worse prognosis and reduced overall survival in most human solid tumors. However, the underlying mechanisms of the connection between AEP and reduced overall survival in cancer patients remain unclear. METHODS High-throughput proteomics, cellular and molecular biology approaches and clinical data from breast cancer (BC) patients were used to identify novel, biologically relevant AEP targets. Immunoblotting and qPCR analyses were used to quantify protein and mRNA levels. Flow cytometry, confocal microscopy, chemical inhibitors, siRNA- and shRNA-silencing and DNA repair assays were used as functional assays. In-silico analyses using the TCGA BC dataset and immunofluorescence assays in an independent cohort of invasive ductal (ID) BC patients were used to validate the clinical relevance of our findings. RESULTS Here we showed a dual role for AEP in genomic stability and radiotherapy resistance in BC patients by suppressing ATR and PPP1R10 levels. Reduced ATR and PPP1R10 levels were found in BC patients expressing high AEP levels and correlated with worst prognosis. Mechanistically, AEP suppresses ATR levels, reducing DNA damage-induced cell death, and PPP1R10 levels, promoting Chek1/P53 cell cycle checkpoint activation, allowing BC cells to efficiently repair DNA. Functional studies revealed AEP-deficiency results in genomic instability, increased DNA damage signaling, reduced Chek1/P53 activation, impaired DNA repair and cell death, with phosphatase inhibitors restoring the DNA damage response in AEP-deficient BC cells. Furthermore, AEP inhibition sensitized BC cells to the chemotherapeutic reagents cisplatin and etoposide. Immunofluorescence assays in an independent cohort of IDBC patients showed increased AEP levels in ductal cells. These analyses showed that higher AEP levels in radioresistant IDBC patients resulted in ATR nuclear eviction, revealing AEPhigh/ATRlow protein levels as an efficient predictive biomarker for the stratification of radioresistant patients. CONCLUSION The newly identified AEP/ATR/PPP1R10 axis plays a dual role in genomic stability and radiotherapy resistance in BC. Our work provides new clues to the underlying mechanisms of tumor resistance and strong evidence validating the AEP/ATR axis as a novel predictive biomarker and therapeutic target for the stratification and treatment of radioresistant BC patients.
Collapse
Affiliation(s)
- Macarena Morillo-Huesca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Ignacio G López-Cepero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Ryan Conesa-Bakkali
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, 41012, Spain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Colin Watts
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, 41012, Spain
| | - Gema Moreno-Bueno
- Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), C/ Arturo Duperier 4, Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Fundación MD Anderson Internacional, C/ Gómez Hemans 1, Madrid, 28033, Spain
- Translational Cancer Research Group. Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Jonathan Martínez-Fábregas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain.
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, 41012, Spain.
| |
Collapse
|
3
|
Dias-Oliveira M, Balbinott N, Ramos JMO, Vasconcellos JG, Guma FTCR, Zanatta G, Margis R. Inhibition of human tumor cell migration by a rice-derived chimeric cysteine protease inhibitor. AN ACAD BRAS CIENC 2024; 96:e20240778. [PMID: 39699541 DOI: 10.1590/0001-3765202420240778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 12/20/2024] Open
Abstract
The cystatin superfamily includes proteins crucial for inhibiting cysteine proteases, enzymes involved in many biological processes. In plants, cystatins regulate seed germination, development, and pathogen defense. In humans, inhibiting legumain-type cysteine proteases offers a promising cancer treatment strategy, as this enzyme's expression often rises during tumor progression. We evaluated a novel rice-derived chimeric legumain inhibitor using in silico and in vitro methods. Computational simulations confirmed the inhibitor's stability and nanomolar affinity for legumain's active site. Post-expression and purification assays determined its kinetics and demonstrated its efficacy in reducing HT29 tumor cell migration and viability. Our findings suggest the chimeric Oryzacystatin I mutant with SNSL motifs is a promising candidate for cancer drug development.
Collapse
Affiliation(s)
- Mateus Dias-Oliveira
- Universidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Biologia Celular e Molecular - PPGBCM, Centro de Biotecnologia, Av. Bento Gonçalves, 9500, Agronomia, 90650-001 Porto Alegre, RS, Brazil
| | - Natalia Balbinott
- Universidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Genética e Biologia Molecular - PPGBM, Av. Bento Gonçalves, 9500, Agronomia, 90650-001 Porto Alegre, RS, Brazil
| | - Jéssica M O Ramos
- Universidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica - PPGBIOQ, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600, Prédio Anexo - Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - João G Vasconcellos
- Universidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica - PPGBIOQ, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600, Prédio Anexo - Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Fátima Theresinha C R Guma
- Universidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica - PPGBIOQ, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600, Prédio Anexo - Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Geancarlo Zanatta
- Universidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Biologia Celular e Molecular - PPGBCM, Centro de Biotecnologia, Av. Bento Gonçalves, 9500, Agronomia, 90650-001 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Biofísica, Campus do Vale - Agronomia, Av. Bento Gonçalves, 9500, Prédio 43422, sala 306, 91501-970 Porto Alegre, RS, Brazil
| | - Rogerio Margis
- Universidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Biologia Celular e Molecular - PPGBCM, Centro de Biotecnologia, Av. Bento Gonçalves, 9500, Agronomia, 90650-001 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Genética e Biologia Molecular - PPGBM, Av. Bento Gonçalves, 9500, Agronomia, 90650-001 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Biofísica, Campus do Vale - Agronomia, Av. Bento Gonçalves, 9500, Prédio 43422, sala 306, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Yang KF, Zhang JY, Feng M, Yao K, Liu YY, Zhou MS, Jia H. Secretase promotes AD progression: simultaneously cleave Notch and APP. Front Aging Neurosci 2024; 16:1445470. [PMID: 39634655 PMCID: PMC11615878 DOI: 10.3389/fnagi.2024.1445470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) involves complex pathological mechanisms. Secretases include membrane protein extracellular structural domain proteases and intramembrane proteases that cleave the topology to type I or type II. Secretases can effectively regulate the activation of Notch and amyloid precursor protein (APP), key factors in the progression of AD and cancer. This article systematically summarizes the intracellular localization, cleavage sites and products, and biological functions of six subtypes of secretases (α-secretase, β-secretase, γ-secretase, δ-secretase, ε-secretase, and η-secretase), and for the first time, elucidates the commonalities and differences between these subtypes of secretases. We found that each subtype of secretase primarily cleaves APP and Notch as substrates, regulating Aβ levels through APP cleavage to impact the progression of AD, while also cleaving Notch receptors to affect cancer progression. Finally, we review the chemical structures, indications, and research stages of various secretase inhibitors, emphasizing the promising development of secretase inhibitors in the fields of cancer and AD.
Collapse
Affiliation(s)
- Ke-Fan Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Jing-Yi Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Mei Feng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Kuo Yao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Yue-Yang Liu
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Ming-Sheng Zhou
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Hui Jia
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Li K, Wang Q, Gao X, Xi H, Hua D, Jiang H, Qiu L, Lin J. Targeted delivery of activatable 131I-radiopharmaceutical for sustained radiotherapy with improved pharmacokinetics. J Control Release 2024; 373:967-977. [PMID: 38971427 DOI: 10.1016/j.jconrel.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Targeted radionuclide therapy (TRT) is an effective treatment for tumors. Self-condensation strategies can enhance the retention of radionuclides in tumors and enhance the anti-tumor effect. Considering legumain is overexpressed in multiple types of human cancers, a 131I-labeled radiopharmaceutical ([131I]MAAN) based on the self-condensation reaction between 2-cyanobenzothiazole (CBT) and cysteine (Cys) was developed by us recently for treating legumain-overexpressed tumors. However, liver enrichment limits its application. In this study, a new radiopharmaceutical [131I]IM(HE)3AAN was designed and synthesized by introducing a hydrophilic peptide sequence His-Glu-His-Glu-His-Glu ((HE)3) into [131I]MAAN to optimize the pharmacokinetics. Upon activation by legumain under a reducing environment, hydrophilic [131I]IM(HE)3AAN could react with its precursor to form heterologous dimer [131I]H-Dimer that is highly hydrophobic. Cerenkov imaging revealed that [131I]IM(HE)3AAN displayed superior tumor selectivity and longer tumor retention time as compared with [131I]MAAN, with a significant reduction in the liver uptake. After an 18-day treatment with [131I]IM(HE)3AAN, the tumor proliferation was obviously inhibited, while no obvious injury was observed in the normal organs. These findings suggest that [131I]IM(HE)3AAN could serve as a promising drug candidate for treating legumain-overexpressed tumors.
Collapse
Affiliation(s)
- Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qiqi Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiaoqing Gao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongjie Xi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Di Hua
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
6
|
Li J, Li K, Wang H, Wang L, Li X, Liu F. Role of legumain in metabolic dysfunction, diagnosis, and prognosis of patients with atherosclerosis. Medicine (Baltimore) 2024; 103:e38896. [PMID: 39029045 PMCID: PMC11398792 DOI: 10.1097/md.0000000000038896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The purpose of this study was to investigate the role of legumain in metabolic dysfunction, diagnosis, and prognosis in patients with atherosclerosis. METHODS Plasma levels of legumain from patients with atherosclerosis (n = 320) and healthy controls (n = 320), expression of legumain in atheromatous plaque and secreted from monocyte-derived macrophages were measured using enzyme-linked-immunosorbent assay, reverse transcription-polymerase chain reaction, Western blot, immunohistochemistry, and fluorescence. RESULTS Data demonstrated that atherosclerotic patients had higher plasma level of legumain than healthy controls, which was a diagnostic and prognostic marker and corrected with the degree of atherosclerosis. It found that atheromatous plaque and endothelial cell had higher legumain expression than non-atherosclerotic arteries (controls). Legumain showed significantly increased secretion from pro-inflammatory M1 compared to pro-resolving M2 macrophages during monocyte-derived macrophages, which was localized to structures resembling foam cells. CONCLUSION In conclusion, our data indicate that legumain expression is upregulated in both plasma and plaques of patients with atherosclerosis, which is associated with metabolic dysfunction of endothelial cell and might be a diagnostic and prognostic marker of atherosclerosis.
Collapse
Affiliation(s)
- Jingchao Li
- The Second Department of Neurology, Circulation Medicine, Department of Infectious Diseases, Medical Records Room of Red Flag Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Kun Li
- The Second Department of Neurology, Circulation Medicine, Department of Infectious Diseases, Medical Records Room of Red Flag Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Huiqi Wang
- The Second Department of Neurology, Circulation Medicine, Department of Infectious Diseases, Medical Records Room of Red Flag Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Le Wang
- The Second Department of Neurology, Circulation Medicine, Department of Infectious Diseases, Medical Records Room of Red Flag Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Xiaoping Li
- The Second Department of Neurology, Circulation Medicine, Department of Infectious Diseases, Medical Records Room of Red Flag Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Feifei Liu
- The Second Department of Neurology, Circulation Medicine, Department of Infectious Diseases, Medical Records Room of Red Flag Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| |
Collapse
|
7
|
Xu H, Xu D, Zheng Y, Wang H, Li A, Zheng X. Investigation of prognostic values of immune infiltration and LGMN expression in the microenvironment of osteosarcoma. Discov Oncol 2024; 15:275. [PMID: 38980440 PMCID: PMC11233489 DOI: 10.1007/s12672-024-01123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS), the most common primary malignant bone tumor, predominantly affects children and young adults and is characterized by high invasiveness and poor prognosis. Despite therapeutic advancements, the survival rate remains suboptimal, indicating an urgent need for novel biomarkers and therapeutic targets. This study aimed to investigate the prognostic significance of LGMN expression and immune cell infiltration in the tumor microenvironment of OS. METHODS We performed an integrative bioinformatics analysis utilizing the GEO and TARGET-OS databases to identify differentially expressed genes (DEGs) associated with LGMN in OS. We conducted Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to explore the biological pathways and functions. Additionally, we constructed protein-protein interaction (PPI) networks, a competing endogenous RNA (ceRNA) network, and applied the CIBERSORT algorithm to quantify immune cell infiltration. The diagnostic and prognostic values of LGMN were evaluated using the area under the receiver operating characteristic (ROC) curve and Cox regression analysis. Furthermore, we employed Consensus Clustering Analysis to explore the heterogeneity within OS samples based on LGMN expression. RESULTS The analysis revealed significant upregulation of LGMN in OS tissues. DEGs were enriched in immune response and antigen processing pathways, suggesting LGMN's role in immune modulation within the TME. The PPI and ceRNA network analyses provided insights into the regulatory mechanisms involving LGMN. Immune cell infiltration analysis indicated a correlation between high LGMN expression and increased abundance of M2 macrophages, implicating an immunosuppressive role. The diagnostic AUC for LGMN was 0.799, demonstrating its potential as a diagnostic biomarker. High LGMN expression correlated with reduced overall survival (OS) and progression-free survival (PFS). Importantly, Consensus Clustering Analysis identified two distinct subtypes of OS, highlighting the heterogeneity and potential for personalized medicine approaches. CONCLUSIONS Our study underscores the prognostic value of LGMN in osteosarcoma and its potential as a therapeutic target. The identification of LGMN-associated immune cell subsets and the discovery of distinct OS subtypes through Consensus Clustering Analysis provide new avenues for understanding the immunosuppressive TME of OS and may aid in the development of personalized treatment strategies. Further validation in larger cohorts is warranted to confirm these findings.
Collapse
Affiliation(s)
- Hualiang Xu
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, No. 396, Tongfu Middle Road, Haizhu District, Guangzhou, Guangdong, People's Republic of China
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Dawei Xu
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, No. 396, Tongfu Middle Road, Haizhu District, Guangzhou, Guangdong, People's Republic of China
| | - Yinfeng Zheng
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, No. 396, Tongfu Middle Road, Haizhu District, Guangzhou, Guangdong, People's Republic of China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Aiguo Li
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, No. 396, Tongfu Middle Road, Haizhu District, Guangzhou, Guangdong, People's Republic of China.
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Hua D, Xi H, Xie Q, Cai S, Zhou Y, Hu X, Qiu L, Lin J. Lysosome-targeting and legumain-triggered 68Ga-labeled probe for enhanced tumor PET imaging. Biochem Biophys Res Commun 2024; 703:149646. [PMID: 38350212 DOI: 10.1016/j.bbrc.2024.149646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Legumain is overexpressed in diverse tumors, serving as a significant tumor biomarker. Our study aimed to develop a new positron emission tomography (PET) probe [68Ga]Ga-NOTA-SF-AANM for imaging the expression level of legumain in vivo. The radio-labeling of [68Ga]Ga-NOTA-SF-AANM was accomplished within 15 min. The probe has good stability in vitro. NOTA-SF-AANM exhibited rapid response to recombinant human legumain enzyme, enabling intramolecular condensation cyclization. Cellular uptake and lysosomal co-localization experiments demonstrated that the probe was able to differentiate specifically between MDA-MB-468 and PC-3 cancer cells with varying degrees of legumain expression. PET imaging displayed a significant and persistent signal (3.59 ± 0.30 %ID/mL at 60 min) in MDA-MB-468 tumors, while PC-3 tumors exhibited lower radioactivity (1.08 ± 0.35 %ID/mL at 60 min), further validating the specific targeting of [68Ga]Ga-NOTA-SF-AANM towards legumain. [68Ga]Ga-NOTA-SF-AANM is a promising tool for precise diagnosis of legumain-related diseases due to its advantages in radio-labeling and accurate monitoring of legumain expression levels.
Collapse
Affiliation(s)
- Di Hua
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Hongjie Xi
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Quan Xie
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Shuyue Cai
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Yuxuan Zhou
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Xin Hu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Ling Qiu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jianguo Lin
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| |
Collapse
|
9
|
Bandi DR, Chitturi CMK, Aswathanarayan JB, Veeresh PKM, Bovilla VR, Sukocheva OA, Devi PS, Natraj SM, Madhunapantula SV. Pigmented Microbial Extract (PMB) from Exiguobacterium Species MB2 Strain (PMB1) and Bacillus subtilis Strain MB1 (PMB2) Inhibited Breast Cancer Cells Growth In Vivo and In Vitro. Int J Mol Sci 2023; 24:17412. [PMID: 38139241 PMCID: PMC10743659 DOI: 10.3390/ijms242417412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer (BC) continues to be one of the major causes of cancer deaths in women. Progress has been made in targeting hormone and growth factor receptor-positive BCs with clinical efficacy and success. However, little progress has been made to develop a clinically viable treatment for the triple-negative BC cases (TNBCs). The current study aims to identify potent agents that can target TNBCs. Extracts from microbial sources have been reported to contain pharmacological agents that can selectively inhibit cancer cell growth. We have screened and identified pigmented microbial extracts (PMBs) that can inhibit BC cell proliferation by targeting legumain (LGMN). LGMN is an oncogenic protein expressed not only in malignant cells but also in tumor microenvironment cells, including tumor-associated macrophages. An LGMN inhibition assay was performed, and microbial extracts were evaluated for in vitro anticancer activity in BC cell lines, angiogenesis assay with chick chorioallantoic membrane (CAM), and tumor xenograft models in Swiss albino mice. We have identified that PMB from the Exiguobacterium (PMB1), inhibits BC growth more potently than PMB2, from the Bacillus subtilis strain. The analysis of PMB1 by GC-MS showed the presence of a variety of fatty acids and fatty-acid derivatives, small molecule phenolics, and aldehydes. PMB1 inhibited the activity of oncogenic legumain in BC cells and induced cell cycle arrest and apoptosis. PMB1 reduced the angiogenesis and inhibited BC cell migration. In mice, intraperitoneal administration of PMB1 retarded the growth of xenografted Ehrlich ascites mammary tumors and mitigated the proliferation of tumor cells in the peritoneal cavity in vivo. In summary, our findings demonstrate the high antitumor potential of PMB1.
Collapse
Affiliation(s)
- Deepa R. Bandi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Ch M. Kumari Chitturi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Jamuna Bai Aswathanarayan
- Department of Microbiology, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India;
| | - Prashant Kumar M. Veeresh
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - Olga A. Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Potireddy Suvarnalatha Devi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Suma M. Natraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
- Special Interest Group (SIG) in Cancer Biology and Cancer Stem Cells (CBCSC), JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India
| |
Collapse
|
10
|
Timóteo AT. Legumain - Another Piece in the Complex Puzzle of Atherosclerotic Plaque Formation and Vulnerability. Arq Bras Cardiol 2023; 120:e20230743. [PMID: 38126488 PMCID: PMC10802184 DOI: 10.36660/abc.20230743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Ana Teresa Timóteo
- Serviço de CardiologiaHospital Santa MartaCentro Hospitalar Universitário Lisboa CentralPortugal Serviço de Cardiologia , Hospital Santa Marta - Centro Hospitalar Universitário Lisboa Central , Lisboa – Portugal
- Faculdade de Medicina NOVAFaculdade de Ciências MédicasUniversidade Nova LisboaPortugal Faculdade de Medicina NOVA - Faculdade de Ciências Médicas - Universidade Nova Lisboa , Lisboa – Portugal
| |
Collapse
|
11
|
Moreno RY, Juetten KJ, Panina SB, Butalewicz JP, Floyd BM, Venkat Ramani MK, Marcotte EM, Brodbelt JS, Zhang YJ. Distinctive interactomes of RNA polymerase II phosphorylation during different stages of transcription. iScience 2023; 26:107581. [PMID: 37664589 PMCID: PMC10470302 DOI: 10.1016/j.isci.2023.107581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
During eukaryotic transcription, RNA polymerase II undergoes dynamic post-translational modifications on the C-terminal domain (CTD) of the largest subunit, generating an information-rich PTM landscape that transcriptional regulators bind. The phosphorylation of Ser5 and Ser2 of CTD heptad occurs spatiotemporally with the transcriptional stages, recruiting different transcriptional regulators to Pol II. To delineate the protein interactomes at different transcriptional stages, we reconstructed phosphorylation patterns of the CTD at Ser5 and Ser2 in vitro. Our results showed that distinct protein interactomes are recruited to RNA polymerase II at different stages of transcription by the phosphorylation of Ser2 and Ser5 of the CTD heptads. In particular, we characterized calcium homeostasis endoplasmic reticulum protein (CHERP) as a regulator bound by phospho-Ser2 heptad. Pol II association with CHERP recruits an accessory splicing complex whose loss results in broad changes in alternative splicing events. Our results shed light on the PTM-coded recruitment process that coordinates transcription.
Collapse
Affiliation(s)
| | - Kyle J. Juetten
- Department of Chemistry, University of Texas, Austin, TX, USA
| | - Svetlana B. Panina
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Brendan M. Floyd
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| |
Collapse
|
12
|
Zhu Y, Archer WR, Morales KF, Schulz MD, Wang Y, Matson JB. Enzyme-Triggered Chemodynamic Therapy via a Peptide-H 2 S Donor Conjugate with Complexed Fe 2. Angew Chem Int Ed Engl 2023; 62:e202302303. [PMID: 37078735 PMCID: PMC10241505 DOI: 10.1002/anie.202302303] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 04/21/2023]
Abstract
Inducing high levels of reactive oxygen species (ROS) inside tumor cells is a cancer therapy method termed chemodynamic therapy (CDT). Relying on delivery of Fenton reaction promoters such as Fe2+ , CDT takes advantage of overproduced ROS in the tumor microenvironment. We developed a peptide-H2 S donor conjugate, complexed with Fe2+ , termed AAN-PTC-Fe2+ . The AAN tripeptide was specifically cleaved by legumain, an enzyme overexpressed in glioma cells, to release carbonyl sulfide (COS). Hydrolysis of COS by carbonic anhydrase formed H2 S, an inhibitor of catalase, an enzyme that detoxifies H2 O2 . Fe2+ and H2 S together increased intracellular ROS levels and decreased viability in C6 glioma cells compared with controls lacking either Fe2+ , the AAN sequence, or the ability to generate H2 S. AAN-PTC-Fe2+ performed better than temezolimide while exhibiting no cytotoxicity toward H9C2 cardiomyocytes. This study provides an H2 S-amplified, enzyme-responsive platform for synergistic cancer treatment.
Collapse
Affiliation(s)
- Yumeng Zhu
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - William R. Archer
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Katlyn F. Morales
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
13
|
Wang Y, Dragovic RA, Greaves E, Becker CM, Southcombe JH. Macrophages and small extracellular vesicle mediated-intracellular communication in the peritoneal microenvironment: Impact on endometriosis development. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1130849. [PMID: 37077181 PMCID: PMC10106708 DOI: 10.3389/frph.2023.1130849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Endometriosis is an inflammatory disease that is defined as the growth of endometrium-like tissue outside the uterus, commonly on the lining of the pelvic cavity, visceral organs and in the ovaries. It affects around 190 million women of reproductive age worldwide and is associated with chronic pelvic pain and infertility, which greatly impairs health-related life quality. The symptoms of the disease are variable, this combined with a lack of diagnostic biomarkers and necessity of surgical visualisation to confirm disease, the prognosis can take an average timespan of 6-8 years. Accurate non-invasive diagnostic tests and the identification of effective therapeutic targets are essential for disease management. To achieve this, one of the priorities is to define the underlying pathophysiological mechanisms that contribute to endometriosis. Recently, immune dysregulation in the peritoneal cavity has been linked to endometriosis progression. Macrophages account for over 50% of immune cells in the peritoneal fluid and are critical for lesion growth, angiogenesis, innervation and immune regulation. Apart from the secretion of soluble factors like cytokines and chemokines, macrophages can communicate with other cells and prime disease microenvironments, such as the tumour microenvironment, via the secretion of small extracellular vesicles (sEVs). The sEV-mediated intracellular communication pathways between macrophages and other cells within the peritoneal microenvironment in endometriosis remain unclear. Here, we give an overview of peritoneal macrophage (pMΦ) phenotypes in endometriosis and discuss the role of sEVs in the intracellular communication within disease microenvironments and the impact they may have on endometriosis progression.
Collapse
Affiliation(s)
- Yifan Wang
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| | - Rebecca A. Dragovic
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Christian M. Becker
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| | - Jennifer H. Southcombe
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Wilkinson IVL, Castro-Falcón G, Roda-Serrat MC, Purdy TN, Straetener J, Brauny MM, Maier L, Brötz-Oesterhelt H, Christensen LP, Sieber SA, Hughes CC. The Cyanobacterial "Nutraceutical" Phycocyanobilin Inhibits Cysteine Protease Legumain. Chembiochem 2023; 24:e202200455. [PMID: 36538283 DOI: 10.1002/cbic.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The blue biliprotein phycocyanin, produced by photo-autotrophic cyanobacteria including spirulina (Arthrospira) and marketed as a natural food supplement or "nutraceutical," is reported to have anti-inflammatory, antioxidant, immunomodulatory, and anticancer activity. These diverse biological activities have been specifically attributed to the phycocyanin chromophore, phycocyanobilin (PCB). However, the mechanism of action of PCB and the molecular targets responsible for the beneficial properties of PCB are not well understood. We have developed a procedure to rapidly cleave the PCB pigment from phycocyanin by ethanolysis and then characterized it as an electrophilic natural product that interacts covalently with thiol nucleophiles but lacks any appreciable cytotoxicity or antibacterial activity against common pathogens and gut microbes. We then designed alkyne-bearing PCB probes for use in chemical proteomics target deconvolution studies. Target identification and validation revealed the cysteine protease legumain (also known as asparaginyl endopeptidase, AEP) to be a target of PCB. Inhibition of this target may account for PCB's diverse reported biological activities.
Collapse
Affiliation(s)
- Isabel V L Wilkinson
- Center for Protein Assemblies (CPA), Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
| | - Maria C Roda-Serrat
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Trevor N Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Melanie M Brauny
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, University of Tübingen, 72076, Tübingen, Germany
- Microbiome-Host-Interaction Lab, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Lisa Maier
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, University of Tübingen, 72076, Tübingen, Germany
- Microbiome-Host-Interaction Lab, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, University of Tübingen, 72076, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72076, Tübingen, Germany
| | - Lars P Christensen
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Stephan A Sieber
- Center for Protein Assemblies (CPA), Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Chambers C Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, University of Tübingen, 72076, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
15
|
Chu Y, Shi D, Wang N, Ren L, Liu N, Hu F, Meng W, Hong SJ, Bai X. Clonorchis sinensis legumain promotes migration and invasion of cholangiocarcinoma cells via regulating tumor-related molecules. Parasit Vectors 2023; 16:71. [PMID: 36797792 PMCID: PMC9933405 DOI: 10.1186/s13071-023-05694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Clonorchis sinensis infection causes serious pathological changes in the bile duct and is highly correlated with cholangiocarcinoma. The excretory-secretory products (ESP) of C. sinensis play a critical role in the oncogenesis and progression of cholangiocarcinoma, while the components and precise mechanism remain unclear. Here, we evaluated the function of C. sinensis legumain (Cslegumain) in promoting the invasion and migration of cholangiocarcinoma cells and the mechanism involved. METHODS The structural and molecular characteristics of Cslegumain were predicted and analyzed using the online program Phyre2. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining were performed to test the transcriptional level of Cslegumain and its localization in the adult. Native Cslegumain was detected by western blotting assay. The effects of Cslegumain on the proliferation, invasion and migration of cholangiocarcinoma cells were checked using CCK-8 assay, Matrigel transwell assay and scratch wound healing assay. Expression levels of tumor-related molecules regulated by Cslegumain were evaluated by qRT-PCR and western blotting assay. RESULTS Cslegumain showed high similarity with human legumain in the secondary and tertiary structures and displayed higher transcriptional levels in the adult worm than in the metacercariae. Native Cslegumain was detected in a catalytic form and was localized mainly in the intestine of the C. sinensis adult and epithelial cells of the intrahepatic bile duct. After transfection into RBE cells, Cslegumain showed high ability in promoting the invasion and migration but not the proliferation of cholangiocarcinoma RBE cells. Furthermore, the expression levels of some molecules including E-cadherin and N-cadherin were downregulated, while the levels of α-actinin 4, β-catenin and inducible nitric oxide synthase (iNOS) were upregulated. CONCLUSIONS Our findings indicated that Cslegumain showed very similar structures as those of human legumain and could promote the invasion and migration of cholangiocarcinoma cells by regulating some tumor-related molecules.
Collapse
Affiliation(s)
- Yanfei Chu
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Doufei Shi
- grid.452240.50000 0004 8342 6962Department of Geriatric Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Nan Wang
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Lebin Ren
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Naiguo Liu
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Fengai Hu
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Wei Meng
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Sung-Jong Hong
- grid.254224.70000 0001 0789 9563Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Dongjak-Gu, Seoul, 156-756 Republic of Korea
| | - Xuelian Bai
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Chen B, Wang M, Qiu J, Liao K, Zhang W, Lv Q, Ma C, Qian Z, Shi Z, Liang R, Lin Y, Ye J, Qiu Y, Lin Y. Cleavage of tropomodulin-3 by asparagine endopeptidase promotes cancer malignancy by actin remodeling and SND1/RhoA signaling. J Exp Clin Cancer Res 2022; 41:209. [PMID: 35765111 PMCID: PMC9238189 DOI: 10.1186/s13046-022-02411-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Abnormal proliferation and migration of cells are hallmarks of cancer initiation and malignancy. Asparagine endopeptidase (AEP) has specific substrate cleavage ability and plays a pro-cancer role in a variety of cancers. However, the underlying mechanism of AEP in cancer proliferation and migration still remains unclear.
Methods
Co-immunoprecipitation and following mass spectrometry were used to identify the substrate of AEP. Western blotting was applied to measure the expression of proteins. Single cell/nuclear-sequences were done to detect the heterogeneous expression of Tmod3 in tumor tissues. CCK-8 assay, flow cytometry assays, colony formation assay, Transwell assay and scratch wound-healing assay were performed as cellular functional experiments. Mouse intracranial xenograft tumors were studied in in vivo experiments.
Results
Here we showed that AEP cleaved a ubiquitous cytoskeleton regulatory protein, tropomodulin-3 (Tmod3) at asparagine 157 (N157) and produced two functional truncations (tTmod3-N and tTmod3-C). Truncated Tmod3 was detected in diverse tumors and was found to be associated with poor prognosis of high-grade glioma. Functional studies showed that tTmod3-N and tTmod3-C enhanced cancer cell migration and proliferation, respectively. Animal models further revealed the tumor-promoting effects of AEP truncated Tmod3 in vivo. Mechanistically, tTmod3-N was enriched in the cell cortex and competitively inhibited the pointed-end capping effect of wild-type Tmod3 on filamentous actin (F-actin), leading to actin remodeling. tTmod3-C translocated to the nucleus, where it interacted with Staphylococcal Nuclease And Tudor Domain Containing 1 (SND1), facilitating the transcription of Ras Homolog Family Member A/Cyclin Dependent Kinases (RhoA/CDKs).
Conclusion
The newly identified AEP-Tmod3 protease signaling axis is a novel “dual-regulation” mechanism of tumor cell proliferation and migration. Our work provides new clues to the underlying mechanisms of cancer proliferation and invasive progression and evidence for targeting AEP or Tmod3 for therapy.
Collapse
|
17
|
He C, Zhang G, Lu Y, Zhou J, Ren Z. DDX17 modulates the expression and alternative splicing of genes involved in apoptosis and proliferation in lung adenocarcinoma cells. PeerJ 2022; 10:e13895. [PMID: 36164607 PMCID: PMC9508879 DOI: 10.7717/peerj.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Background The DEAD-box RNA-binding protein (RBP) DDX17 has been found to be involved in the tumorigenesis of many types of cancers. However, the role of DDX17 in lung adenocarcinoma (LUAD) remains unclear. Methods We silenced DDX17 expression in A549 LUAD cells by small interfering RNA (siRNA). Cell proliferation and apoptosis assays were performed to explore the functions of DDX17. Knockdown of DDX17 by siRNA significantly inhibited proliferation and induced apoptosis in A549 cells. We used high-throughput RNA sequencing (RNA-seq) to identify differentially expressed genes (DEGs) and alternative splicing (AS) events in DDX17 knockdown LUAD cells. Results DDX17 knockdown increased the expression levels of proapoptotic genes and decreased those of proproliferative genes. Moreover, the DDX17-regulated AS events in A549 cells revealed by computational analysis using ABLas software were strongly validated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and were also validated by analysis of The Cancer Genome Atlas (TCGA)-LUAD dataset. These findings suggest that DDX17 may function as an oncogene by regulating both the expression and AS of proliferation- and apoptosis-associated genes in LUAD cells. Our findings may offer new insights into understanding the molecular mechanisms of LUAD and provide a new therapeutic direction for LUAD.
Collapse
Affiliation(s)
- Cheng He
- Department of Thoracic Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China,Department of Thoracic Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Gan Zhang
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yanhong Lu
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Jingyue Zhou
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Zixue Ren
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| |
Collapse
|
18
|
Xuan W, Hsu WH, Khan F, Dunterman M, Pang L, Wainwright DA, Ahmed AU, Heimberger AB, Lesniak MS, Chen P. Circadian Regulator CLOCK Drives Immunosuppression in Glioblastoma. Cancer Immunol Res 2022; 10:770-784. [PMID: 35413115 PMCID: PMC9177794 DOI: 10.1158/2326-6066.cir-21-0559] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/12/2021] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
The symbiotic interactions between cancer stem cells and the tumor microenvironment (TME) are critical for tumor progression. However, the molecular mechanism underlying this symbiosis in glioblastoma (GBM) remains enigmatic. Here, we show that circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like 1 (BMAL1) in glioma stem cells (GSC) drive immunosuppression in GBM. Integrated analyses of the data from transcriptome profiling, single-cell RNA sequencing, and TCGA datasets, coupled with functional studies, identified legumain (LGMN) as a direct transcriptional target of the CLOCK-BMAL1 complex in GSCs. Moreover, CLOCK-directed olfactomedin-like 3 (OLFML3) upregulates LGMN in GSCs via hypoxia-inducible factor 1-alpha (HIF1α) signaling. Consequently, LGMN promotes microglial infiltration into the GBM TME via upregulating CD162 and polarizes infiltrating microglia toward an immune-suppressive phenotype. In GBM mouse models, inhibition of the CLOCK-OLFML3-HIF1α-LGMN-CD162 axis reduces intratumoral immune-suppressive microglia, increases CD8+ T-cell infiltration, activation, and cytotoxicity, and synergizes with anti-programmed cell death protein 1 (anti-PD-1 therapy). In human GBM, the CLOCK-regulated LGMN signaling correlates positively with microglial abundance and poor prognosis. Together, these findings uncover the CLOCK-OLFML3-HIF1α-LGMN axis as a molecular switch that controls microglial biology and immunosuppression, thus revealing potential new therapeutic targets for patients with GBM.
Collapse
Affiliation(s)
- Wenjing Xuan
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- These authors contributed equally to this work
| | - Fatima Khan
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- These authors contributed equally to this work
| | - Madeline Dunterman
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- These authors contributed equally to this work
| | - Lizhi Pang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- These authors contributed equally to this work
| | - Derek A. Wainwright
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Bayramoglu Z, Kılınc ANU, Omeroglu E, Yilmaz F, Bayramoglu D, Unlu Y, Aydin HA. Expression of extracellular matrix proteins nidogen-1 and legumain in endometrial carcinomas. J Obstet Gynaecol Res 2022; 48:1019-1025. [PMID: 35128760 DOI: 10.1111/jog.15158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Our purpose was to comparatively investigate the expressions of nidogen-1 (NID1) and legumain (LGMN) in patients with endometrial cancer, endometrial intraepithelial neoplasia, and proliferative endometrium. METHODS A cross-sectional, single-center study was performed by the obstetrics and gynecology and pathology departments of our institution. The relationships between descriptive data, clinicopathologic information, and immunohistochemical expressions of NID1 and LGMN were investigated. RESULTS The histological grades of endometrial cancers (n = 124) as classified by FIGO included 1 (41, 21.1%), 2 (48, 24.7%), and 3 (35, 18.0%). The medians and ranges of deep and superficial NID1 expressions were 50.00 (0-285) and 5.00 (0-100), respectively. The intensity of legumain expression was noted as negative (30, 24.2%), mild (16, 12.9%), moderate (27, 21.8%), or strong (51, 41.1%). Median disease-free survival and overall survival were 75.00 (range: 1 to 170) months and 77.00 (range: 1 to 170) months, respectively. Patients with more intense expression of NID1 and LGMN displayed a higher histological grade. These patients were more likely to have a positive peritoneal cytology, larger tumor size, higher tendency for myometrial or lymphovascular invasion, involvement of ovaries, cervix, omentum, as well as lymph node metastasis, and recurrence. CONCLUSION Our data indicated that the expressions of NID1 and LGMN may have important diagnostic implications in endometrial pathologies. Further studies should be performed to understand the significance of NID1 and LGMN in the pathogenesis of endometrial tumors.
Collapse
Affiliation(s)
| | | | - Ethem Omeroglu
- Department of Pathology, Konya City Hospital, Konya, Turkey
| | - Fatih Yilmaz
- Department of Gynecological Oncology, Konya City Hospital, Konya, Turkey
| | | | - Yasar Unlu
- Department of Pathology, Konya City Hospital, Konya, Turkey
| | - Hulya A Aydin
- Department of Gynecological Oncology, Hatay Government Hospital, Antakya, Hatay, Turkey
| |
Collapse
|
20
|
Identification of the Cysteine Protease Legumain as a Potential Chronic Hypoxia-Specific Multiple Myeloma Target Gene. Cells 2022; 11:cells11020292. [PMID: 35053409 PMCID: PMC8773999 DOI: 10.3390/cells11020292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, which is characterized by clonal proliferation of neoplastic plasma cells in the bone marrow. This microenvironment is characterized by low oxygen levels (1–6% O2), known as hypoxia. For MM cells, hypoxia is a physiologic feature that has been described to promote an aggressive phenotype and to confer drug resistance. However, studies on hypoxia are scarce and show little conformity. Here, we analyzed the mRNA expression of previously determined hypoxia markers to define the temporal adaptation of MM cells to chronic hypoxia. Subsequent analyses of the global proteome in MM cells and the stromal cell line HS-5 revealed hypoxia-dependent regulation of proteins, which directly or indirectly upregulate glycolysis. In addition, chronic hypoxia led to MM-specific regulation of nine distinct proteins. One of these proteins is the cysteine protease legumain (LGMN), the depletion of which led to a significant growth disadvantage of MM cell lines that is enhanced under hypoxia. Thus, herein, we report a methodologic strategy to examine MM cells under physiologic hypoxic conditions in vitro and to decipher and study previously masked hypoxia-specific therapeutic targets such as the cysteine protease LGMN.
Collapse
|
21
|
Wang Q, Lu C, Li K, Xia YM, qiu L, Lin J. Legumain-mediated self-assembly of 131I-labelled agent for targeted radiotherapy of tumor. J Mater Chem B 2022; 10:2251-2259. [DOI: 10.1039/d1tb02862f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted radionuclide therapy (TRT) has been a promising strategy for cancer therapy, which can inhibit or kill cancer cells by selectively delivering radionuclide to target tissues. Herein, a legumain-targeted therapeutic...
Collapse
|
22
|
Jiang S, Xiong Y, Zhang W, Zhu J, Cheng D, Gong Y, Wu Y, Qiao H, Fu H. A Novel Legumain-Like Protease in Macrobrachium nipponense: Identification, Characterization, and Function Analysis in Ovary Maturation. Front Endocrinol (Lausanne) 2022; 13:858726. [PMID: 35399931 PMCID: PMC8987206 DOI: 10.3389/fendo.2022.858726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Legumain, also called aspartic endopeptidase (AEP), is a member of the cysteine protease family and is involved in various physiological processes. In this study, we analyzed the characteristics of a novel legumain-like (named Mn-Lel) in the female oriental river prawn, Macrobrachium nipponense, which is involved in ovary maturation. The Mn-Lel is 1,454 bp in length, including a 1,290-bp open reading frame that encodes 430 amino acids. qPCR analysis indicated that Mn-Lel is specifically highly expressed in the hepatopancreas and ovaries of female prawns. It is rarely expressed in embryogenesis, weakly expressed in early larval development stages, and then significantly increased after metamorphosis, which indicated that Mn-Lel is not a maternal gene and mainly plays a role in adults. During the different ovarian stages, Mn-Lel expression in the hepatopancreas had no obvious rules, while its expression in the ovaries had a significant peak in stage III. In situ hybridization studies revealed that Mn-Lel is localized in the oocyte of the ovary. Changes in the gonadosomatic index confirmed the inhibitory effects of Mn-Lel dsRNA on ovary maturation. These results suggest that Mn-Lel has a key role in promoting ovary maturation.
Collapse
Affiliation(s)
- Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Junpeng Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Dan Cheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Hongtuo Fu, ; Hui Qiao,
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Hongtuo Fu, ; Hui Qiao,
| |
Collapse
|
23
|
Yan Q, Ni C, Lin Y, Sun X, Shen Z, Zhang M, Han S, Shi J, Mao J, Yang Z, Wang W. ELK1 Enhances Pancreatic Cancer Progression Via LGMN and Correlates with Poor Prognosis. Front Mol Biosci 2021; 8:764900. [PMID: 34966781 PMCID: PMC8711721 DOI: 10.3389/fmolb.2021.764900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most lethal cancers and its prognosis is extremely poor. Clarification of molecular mechanisms and identification of prognostic biomarkers are urgently needed. Though we previously found that LGMN was involved in pancreatic carcinoma progression, the upstream regulation of LGMN remains unknown. We used reliable software to search for the potential transcription factors that may be related with LGMN transcription, we found that ELK1 could be a new regulator of LGMN transcription that binded directly to the LGMN promoter. Moreover, knocking down of ELK1 reduced pancreatic cancer cells proliferation, invasion and survival, while LGMN restored the malignancy of pancreatic cancer in vitro and in vivo. Overexpression of ELK1 further increased cancer cells proliferation, invasion and survival. Clinically, ELK1 and LGMN were positively correlated with clinical stage, degree of differentiation and Lymph node infiltration. ELK1 and LGMN were identified as independent prognostic factors for overall survival. The patients with low expression of ELK1/LGMN survived an average of 29.65 months, whereas those with high expression of ELK1/LGMN survived an average of 16.67 months. In conclusive, our results revealed a new mechanism by which ELK1 promoted the progression of pancreatic cancer via LGMN and conferred poor prognosis.
Collapse
Affiliation(s)
- Qiang Yan
- Department of General Surgery, Huzhou Central Hospital, Huzhou, China
| | - Chenming Ni
- Department of Pancreatic Hepatobiliary Surgery, Changhai Hospital, Shanghai, China
| | - Yingying Lin
- Department of Neurosurgery, RenJi Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xu Sun
- Department of General Surgery, Huzhou Central Hospital, Huzhou, China
| | - Zhenhua Shen
- Department of General Surgery, Huzhou Central Hospital, Huzhou, China
| | - Minjie Zhang
- Department of General Surgery, Huzhou Central Hospital, Huzhou, China
| | - Shuwen Han
- Department of General Surgery, Huzhou Central Hospital, Huzhou, China
| | - Jiemin Shi
- Department of General Surgery, Huzhou Central Hospital, Huzhou, China
| | - Jing Mao
- Department of General Surgery, Huzhou Central Hospital, Huzhou, China
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Sun SG, Guo JJ, Qu XY, Tang XY, Lin YY, Hua KQ, Qiu JJ. The extracellular vesicular pseudogene LGMNP1 induces M2-like macrophage polarization by upregulating LGMN and serves as a novel promising predictive biomarker for ovarian endometriosis recurrence. Hum Reprod 2021; 37:447-465. [PMID: 34893848 DOI: 10.1093/humrep/deab266] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION How does ectopic endometrial stromal cell (Ecto-ESC)-derived extracellular vesicular Legumain pseudogene 1 (EV-LGMNP1), a newly identified pseudogene of Legumain (LGMN), contribute to M2-phenotype macrophage polarization, and does it predict recurrence in patients with ovarian endometriosis (EMs)? SUMMARY ANSWER EV-LGMNP1, which is abundant in Ecto-ESCs and serum from ovarian EMs, can direct macrophages towards an M2 phenotype by upregulating LGMN expression and is a promising biomarker for predicting ovarian EMs recurrence. WHAT IS KNOWN ALREADY Extracellular vesicles (EVs) can mediate cell-to-cell crosstalk to promote disease progression via cargo molecule transport. Recently, LGMNP1, a newly identified pseudogene of LGMN, has been reported to promote cancer progression by upregulating LGMN. LGMN is a well-studied protein that can induce M2-like polarization. STUDY DESIGN, SIZE, DURATION An in vitro study was conducted with Ecto-ESCs isolated from ectopic endometrial samples, collected from two patients with ovarian EMs (diagnosed by laparoscopy and histological analysis). A clinical retrospective cohort study of 52 ovarian EMs patients and 21 controls with available preoperative serum samples was carried out (2013-2017). The follow-up period ended either at the time of recurrence or on 31 December 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS Ecto-ESC-derived EVs (EV/Ecto-ESCs) were characterized by nanoparticle tracking analysis, transmission electron microscopy and western blotting. EV internalization by THP-1 cells, which are the most widely used primary human macrophages model, was detected by fluorescence labelling. After EV treatment, THP-1 cell polarization was detected by quantitative real-time PCR (qRT-PCR) and western blot analyses of CD86 (M1-related marker) and CD206 (M2-related marker). LGMNP1 mRNA expression level in EVs from both primary ectopic endometrioc stromal cells and serum was examined using qRT-PCR. Additionally, the expression of LGMN, the downstream target gene of LGMNP1, in THP-1 cells was evaluated using qRT-PCR and western blotting. Kaplan-Meier and multivariate Cox regression analyses were applied to evaluate the independent predictive factors of EMs recurrence-free survival. A novel nomogram model based on serum EV-LGMNP1 was then formulated to predict EMs recurrence. MAIN RESULTS AND THE ROLE OF CHANCE In vitro assays demonstrated that EV/Ecto-ESCs drove macrophages towards an M2-like phenotype. Moreover, LGMNP1 contributed to EV/Ecto-ESC-induced M2 macrophage polarization by upregulating LGMN mRNA expression levels. Clinically, serum EV-LGMNP1 was more highly expressed in recurrent EMs patients than in controls and EMs patients without recurrence. Survival analysis and our novel nomogram reconfirmed that serum EV-LGMNP1 was a novel promising and meaningful non-invasive biomarker for predicting EMs recurrence. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In vitro experiments were only performed on samples from two patients with ovarian endometriosis, and a larger sample size is needed. ESCs isolated from the eutopic endometrium of EMs and non-EMs patients should be studied in the future. Additionally, in vitro experiments should be performed using endometrial epithelium cells and further in vivo experiments, such as using mice endometriotic models to investigate whether EV/Ecto could induce M2 macrophage polarization, should be conducted. Moreover, multicentre, large-sample data are needed to validate our predictive nomogram model. WIDER IMPLICATIONS OF THE FINDINGS Our study provides novel insights into the mechanism of M2 polarization involved in ovarian EMs progression mediated by an 'EV-shuttled pseudogene LGMNP1' mode. In addition, serum EV-LGMNP1 may serve as a novel non-invasive biomarker for predicting recurrence, providing a new therapeutic target for ovarian EMs. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by funding from the National Natural Science Foundation of China (81971361), the Natural Science Foundation of Shanghai Science and Technology (19ZR1406900), the Shanghai 'Rising Stars of Medical Talent' Youth Development Program (AB83030002019004), the Clinical Research Plan of SHDC (SHDC2020CR4087), the Shanghai Municipal Health Commission (202040498), the Research and Innovation Project of the Shanghai Municipal Education Commission (2019-01-07-00-07-E00050) and the Clinical Research Plan of SHDC (SHDC2020CR1045B). There are no competing interests to declare.
Collapse
Affiliation(s)
- S G Sun
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - J J Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - X Y Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - X Y Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Y Y Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - K Q Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - J J Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
25
|
Reinsalu L, Puurand M, Chekulayev V, Miller S, Shevchuk I, Tepp K, Rebane-Klemm E, Timohhina N, Terasmaa A, Kaambre T. Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Front Oncol 2021; 11:698951. [PMID: 34381722 PMCID: PMC8351413 DOI: 10.3389/fonc.2021.698951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
Metabolic plasticity is the ability of the cell to adjust its metabolism to changes in environmental conditions. Increased metabolic plasticity is a defining characteristic of cancer cells, which gives them the advantage of survival and a higher proliferative capacity. Here we review some functional features of metabolic plasticity of colorectal cancer cells (CRC). Metabolic plasticity is characterized by changes in adenine nucleotide transport across the outer mitochondrial membrane. Voltage-dependent anion channel (VDAC) is the main protein involved in the transport of adenine nucleotides, and its regulation is impaired in CRC cells. Apparent affinity for ADP is a functional parameter that characterizes VDAC permeability and provides an integrated assessment of cell metabolic state. VDAC permeability can be adjusted via its interactions with other proteins, such as hexokinase and tubulin. Also, the redox conditions inside a cancer cell may alter VDAC function, resulting in enhanced metabolic plasticity. In addition, a cancer cell shows reprogrammed energy transfer circuits such as adenylate kinase (AK) and creatine kinase (CK) pathway. Knowledge of the mechanism of metabolic plasticity will improve our understanding of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Sten Miller
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Anton Terasmaa
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
26
|
Chen L, Zhang Y, Shu X, Chen Q, Wei T, Wang H, Wang X, Wu Q, Zhang X, Liu X, Zheng S, Huang L, Xiao J, Jiang C, Yang B, Wang Z, Guo X. Proteasome regulation by reversible tyrosine phosphorylation at the membrane. Oncogene 2021; 40:1942-1956. [PMID: 33603165 PMCID: PMC7990385 DOI: 10.1038/s41388-021-01674-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/21/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023]
Abstract
Reversible phosphorylation has emerged as an important mechanism for regulating 26S proteasome function in health and disease. Over 100 phospho-tyrosine sites of the human proteasome have been detected, and yet their function and regulation remain poorly understood. Here we show that the 19S subunit Rpt2 is phosphorylated at Tyr439, a strictly conserved residue within the C-terminal HbYX motif of Rpt2 that is essential for 26S proteasome assembly. Unexpectedly, we found that Y439 phosphorylation depends on Rpt2 membrane localization mediated by its N-myristoylation. Multiple receptors tyrosine kinases can trigger Rpt2-Y439 phosphorylation by activating Src, a N-myristoylated tyrosine kinase. Src directly phosphorylates Rpt2-Y439 in vitro and negatively regulates 26S proteasome activity at cellular membranes, which can be reversed by the membrane-associated isoform of protein tyrosine phosphatase nonreceptor type 2 (PTPN2). In H1975 lung cancer cells with activated Src, blocking Rpt2-Y439 phosphorylation by the Y439F mutation conferred partial resistance to the Src inhibitor saracatinib both in vitro and in a mouse xenograft tumor model, and caused significant changes of cellular responses to saracatinib at the proteome level. Our study has defined a novel mechanism involved in the spatial regulation of proteasome function and provided new insights into tyrosine kinase inhibitor-based anticancer therapies.
Collapse
Affiliation(s)
- Lu Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yanan Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qiong Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tiantian Wei
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Heman Wang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaorong Wang
- Departments of Physiology and Biophysics and of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Qirou Wu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaoyan Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suya Zheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lan Huang
- Departments of Physiology and Biophysics and of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Junyu Xiao
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiping Wang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
27
|
Qiu L, Li X, Lv G, Seimbille Y, Li K, Peng Y, Liu Q, Xie M, Lin J. Radiofluorinated Smart Probes for Noninvasive PET Imaging of Legumain Activity in Living Subjects. Anal Chem 2020; 92:11627-11634. [PMID: 32867490 DOI: 10.1021/acs.analchem.0c01253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Overexpression of legumain is closely associated with tumor proliferation, invasion, and metastasis. Because of its intrinsic properties, such as high sensitivity and resolution, positron emission tomography (PET) has become an effective imaging technique for early diagnosis, treatment response prediction, and monitoring. Herein, two legumain-targeting radiofluorinated smart probes (18F-2 and 18F-3) as well as a control probe (18F-1) were specifically designed for PET imaging of legumain activity in tumors. 18F-1, 18F-2, and 18F-3 were obtained with high radiochemical yield (RCY > 60%) and radiochemical purity (RCP > 99%) using a convenient "one-step" 18F-labeling method. The probes 18F-2 and 18F-3 exhibited high response to legumain activity and reductive environment and revealed comparable uptake in HCT116 cells (4.22% ± 0.14% and 4.64% ± 0.32% for 18F-2 and 18F-3, respectively; 8.46% ± 0.33% and 9.05% ± 0.24% for co-treatment of 18F-2 + 2 and 18F-3 + 3 at 1 h), while the control probe 18F-1 showed no response. PET imaging of tumor-bearing mice showed that the co-injection strategy (18F-2 + 2 and 18F-3 + 3) resulted in higher tumor uptake (3.57% ± 0.37% and 3.72% ± 0.19% ID/g at 10 min, respectively) than the single injection strategy (2.59% ± 0.19% and 2.60% ± 0.46% ID/g for 18F-2 and 18F-3, respectively). In addition, introduction of the trimeric histidine-glutamate (HEHEHE) tag to 18F-3 reduced the liver uptake by almost two-fold without any noticeable effect on the tumor uptake. All the results indicate that 18F-3 holds great potential applications in clinics for sensitive and specific PET imaging of legumain activity in tumors.
Collapse
Affiliation(s)
- Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xi Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Gaochao Lv
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T2A3, Canada
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
28
|
Lerchen HG, Stelte-Ludwig B, Sommer A, Berndt S, Rebstock AS, Johannes S, Mahlert C, Greven S, Dietz L, Jörißen H. Tailored Linker Chemistries for the Efficient and Selective Activation of ADCs with KSPi Payloads. Bioconjug Chem 2020; 31:1893-1898. [DOI: 10.1021/acs.bioconjchem.0c00357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hans-Georg Lerchen
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| | | | - Anette Sommer
- Bayer AG, Pharmaceuticals, Research & Development, 13353 Berlin, Germany
| | - Sandra Berndt
- Bayer AG, Pharmaceuticals, Research & Development, 13353 Berlin, Germany
| | | | - Sarah Johannes
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| | - Christoph Mahlert
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| | - Simone Greven
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| | - Lisa Dietz
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| | - Hannah Jörißen
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| |
Collapse
|
29
|
Chen HC, Rui W, You SY, Liu XW, Huang J, Chen HY. Evaluation of the anti-cervical cancer effect of a prodrug :CBZ-AAN-DOX with hypoxic cell culture and tumor-bearing zebrafish models. Exp Cell Res 2020; 391:111980. [PMID: 32229193 DOI: 10.1016/j.yexcr.2020.111980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Prodrugs are medications or compounds that, after administration, can be converted into pharmacologically active drugs through metabolism. Unlike conventional drugs, prodrugs have reduced adverse or unintended effects, which could become critical limitations in treatments such as chemotherapy. Previously through computer-aided drug design and chemical synthesis, we have obtained and examined a prodrug N-benzyloxycarbonyl-Ala-Asn-Doxorubicin (CBZ-AAN-DOX). CBZ-AAN-DOX is essentially Doxorubicin that is chemically-modified with tripeptides to target Legumain, a highly expressed protein in cancer cells and is involved in tumor metastasis and tumor microvessel formation. The difficulty to test the safety and efficacy of the prodrug (including the pharmacodynamic parameters of CBZ-AAN-DOX on metastasis and invasion of tumors, as well as cardiac and vascular toxicity) primarily comes from the lack of appropriate experimental models. METHODS Human cervical cancer cell lines CaSki under hypoxic conditions were used to evaluate the cell viability by CCK-8 assay after the prodrug treatment. Western blotting method was performed for Legumain protein determination in the cell culture. Wound healing and transwell invasion assays were performed to determine the effects of the prodrug on tumor metastasis and invasion, respectively. Zebrafish models were constructed for toxicity and angiogenesis visual analysis after in vivo treatment with the prodrug. RESULTS The CCK-8 results showed that CBZ-AAN-DOX exhibits an IC50 of 28.7 μM in 48 h on CaSki cells that had a lower cell inhibition rate than DOX 80.3 μM for 24 h. Legumain expression was significantly increased in a time-dependent manner in 48 h under hypoxia conditions. The results also showed that 13.9 μM of the prodrug significantly inhibited the migration and invasion of cells and the effects were significantly stronger than that of 41.8 μM of DOX under hypoxia conditions after 48 h. The effects of 160 μM of the prodrug on the survival rate of zebrafish after 72 h and heart-toxicity showed no obvious abnormalities. Cell metastasis and angiogenesis were also inhibited in tumor-bearing zebrafish model. CONCLUSION The findings in this study demonstrated that CBZ-AAN-DOX is a promising chemotherapy candidate with low toxicity and high efficiency for cervical cancer. Remarkably, the hypoxic culture model together with the zebrafish model serve as a good system for the evaluation of the toxicity, targeting and impact of the prodrug on tumor invasion and metastasis.
Collapse
Affiliation(s)
- Hong-Ce Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510632, Guangdong Province, PR China
| | - Wen Rui
- Centre for Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China; Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, 510006, Guangdong Province, PR China
| | - Si-Yuan You
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510632, Guangdong Province, PR China
| | - Xia-Wan Liu
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510632, Guangdong Province, PR China
| | - Jun Huang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, PR China
| | - Hong-Yuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510632, Guangdong Province, PR China; Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, 510006, Guangdong Province, PR China.
| |
Collapse
|
30
|
Poreba M. Recent advances in the development of legumain-selective chemical probes and peptide prodrugs. Biol Chem 2020; 400:1529-1550. [PMID: 31021817 DOI: 10.1515/hsz-2019-0135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Legumain, which is also known as vacuolar processing enzyme (VPE) or asparaginyl endopeptidase (AEP), is a cysteine protease that was first discovered and characterized in the leguminous seeds of the moth bean in the early 1990s. Later, this enzyme was also detected in higher organisms, including eukaryotes. This pH-dependent protease displays the highest activity in acidic endolysosomal compartments; however, legumain also displays nuclear, cytosolic and extracellular activity when stabilized by other proteins or intramolecular complexes. Based on the results from over 25 years of research, this protease is involved in multiple cellular events, including protein degradation and antigen presentation. Moreover, when dysregulated, this protease contributes to the progression of several diseases, with cancer being the well-studied example. Research on legumain biology was undoubtedly facilitated by the use of small molecule chemical tools. Therefore, in this review, I present the historical perspectives and most current strategies for the development of small molecule substrates, inhibitors and activity-based probes for legumain. These tools are of paramount importance in elucidating the roles of legumain in multiple biological processes. Finally, as this enzyme appears to be a promising molecular target for anticancer therapies, the development of legumain-activated prodrugs is also described.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
31
|
Manfredi JJ. Inactivation of Wild-Type p53 by Asparagine Endopeptidase in Glioblastoma: An Opportunity to Target the "Undruggable". J Natl Cancer Inst 2020; 112:327-329. [PMID: 31400198 DOI: 10.1093/jnci/djz156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- James J Manfredi
- Department of Oncological Sciences and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
32
|
Jiang JN, Wu YY, Fang XD, Ji FJ. EIF4E regulates STEAP1 expression in peritoneal metastasis. J Cancer 2020; 11:990-996. [PMID: 31949502 PMCID: PMC6959031 DOI: 10.7150/jca.29105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the most prominent form of malignancy in China, and the high mortality associated with it is mostly due to peritoneal metastasis. We have previously elucidated that the RNA-binding protein poly r(C) binding protein 1 (PCBP1) and miR-3978 function as repressors of peritoneal metastasis, partially by downregulation of six-transmembrane epithelial antigen of the prostate 1 (STEAP1). We now show that STEAP1 is regulated at the level of cap-dependent translation initiation by phosphorylated eIF4E. Chemically inhibiting phosphorylation of eIF4E or genetic ablation of phosphorylated eIF4E inhibit translational upregulation of STEAP1 in the peritoneal metastasis mimicking cell line MKN45 in comparison to the normal mesothelial cell line HMrSV5. Thus phosphorylation of eIF4E is required for peritoneal metastasis of gastric cancer via translational control of STEAP1. Chemical inhibitors targeting phosphorylation of eIF4E or its interaction with the translation initiation complex thus might prove effective in treating patients with peritoneal metastasis.
Collapse
Affiliation(s)
- Jun-Nan Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuan-Yu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xue-Dong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fu-Jian Ji
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
33
|
Wang H, Chen B, Lin Y, Zhou Y, Li X. Legumain Promotes Gastric Cancer Progression Through Tumor-associated Macrophages In vitro and In vivo. Int J Biol Sci 2020; 16:172-180. [PMID: 31892854 PMCID: PMC6930372 DOI: 10.7150/ijbs.36467] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment. Legumain (LGMN) has been shown to be a tumor-promoting protein, but the effect of LGMN on TAMs in the progression of gastric cancer (GC) is under exploration. Our studies included the construction of LGMN-knockdown and LGMN-overexpressing TAMs induced from the human cell line THP-1 (PMA/IL-4/IL-13) and murine cell line Raw264.7 (IL-4/IL-13). A CCK-8 assay and transwell migration assay indicated that upregulation of LGMN expression in TAMs stimulated cell proliferation, migration and invasion in vitro, while downregulation of LGMN expression reduced cell proliferation, migration and invasion. In vivo experiments revealed slower growth, less angiogenesis, and less Ki67 expression in LGMN-knockdown TAMs injected with gastric cancer cells compared to control TAMs injected with GC cells. Together, these study results suggested that LGMN+ TAMs, which may serve as a potential target for GC treatment, promoted gastric cancer cell proliferation and angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Hongbin Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Gastroenterology, Punan Hospital, Pudong New Area, Shanghai, China
| | - Binghong Chen
- Department of Neurosurgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Lunde NN, Bosnjak T, Solberg R, Johansen HT. Mammalian legumain – A lysosomal cysteine protease with extracellular functions? Biochimie 2019; 166:77-83. [DOI: 10.1016/j.biochi.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022]
|
35
|
Dunn ZS, Mac J, Wang P. T cell immunotherapy enhanced by designer biomaterials. Biomaterials 2019; 217:119265. [PMID: 31271861 PMCID: PMC6689323 DOI: 10.1016/j.biomaterials.2019.119265] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022]
Abstract
Cancer immunotherapy has recently burst onto the center stage of cancer treatment and research. T lymphocyte adoptive cellular transfer (ACT), a form of cancer immunotherapy, has spawned unprecedented complete remissions for terminal patients with certain leukemias and lymphomas. Unfortunately, the successes have been overshadowed by the disappointing clinical results of ACT administered to treat solid tumors, in addition to the toxicities associated with the treatment, a lack of efficacy in a significant proportion of the patient population, and cancer relapse following the treatment. Biomaterials hold the promise of addressing these shortcomings. ACT consists of two main stages - T lymphocyte ex vivo expansion followed by reinfusion into the patient - and biomaterials can improve the efficacy of ACT at both stages. In this review, we highlight recent advances in the use of biomaterials for T lymphocyte adoptive cellular cancer immunotherapy and discuss the challenges at each stage.
Collapse
Affiliation(s)
- Zachary S Dunn
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
| | - John Mac
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
| | - Pin Wang
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
36
|
Toss MS, Miligy IM, Gorringe KL, McCaffrey L, AlKawaz A, Abidi A, Ellis IO, Green AR, Rakha EA. Legumain is an independent predictor for invasive recurrence in breast ductal carcinoma in situ. Mod Pathol 2019; 32:639-649. [PMID: 30429518 DOI: 10.1038/s41379-018-0180-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Legumain is a proteolytic enzyme that plays a role in the regulation of cell proliferation in invasive breast cancer. Studies evaluating its role in ductal carcinoma in situ (DCIS) are lacking. Here, we aimed to characterize legumain protein expression in DCIS and evaluate its prognostic significance. Legumain was assessed immunohistochemically in a tissue microarray of a well-characterized cohort of DCIS (n = 776 pure DCIS and n = 239 DCIS associated with invasive breast cancer (DCIS-mixed)). Legumain immunoreactivity was scored in tumor cells and surrounding stroma and related to clinicopathological parameters and patient outcome. High legumain expression was observed in 23% of pure DCIS and was associated with features of high-risk DCIS including higher nuclear grade, comedo necrosis, hormone receptor negativity, HER2 positivity, and higher proliferation index. Legumain expression was higher in DCIS associated with invasive breast cancer than in pure DCIS (p < 0.0001). In the DCIS-mixed cohort, the invasive component showed higher legumain expression than the DCIS component (p < 0.0001). Legumain was an independent predictor of shorter local recurrencefree interval for all recurrences (p = 0.0003) and for invasive recurrences (p = 0.002). When incorporated with other risk factors, legumain provided better patient risk stratification. High legumain expression is associated with poor prognosis in DCIS and could be a potential marker to predict DCIS progression to invasive disease.
Collapse
Affiliation(s)
- Michael S Toss
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK.,Histopathology department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Islam M Miligy
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK.,Histopathology department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Kylie L Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - L McCaffrey
- Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Abdulbaqi AlKawaz
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK.,College of dentistry, Al Mustansiriya University, Baghdad, Iraq
| | - Asima Abidi
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Ian O Ellis
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Emad A Rakha
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK. .,Histopathology department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt.
| |
Collapse
|
37
|
Lerchen H, Stelte‐Ludwig B, Berndt S, Sommer A, Dietz L, Rebstock A, Johannes S, Marx L, Jörißen H, Mahlert C, Greven S. Antibody–Prodrug Conjugates with KSP Inhibitors and Legumain‐Mediated Metabolite Formation. Chemistry 2019; 25:8208-8213. [DOI: 10.1002/chem.201900441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Sandra Berndt
- Bayer AG R&D Pharmaceuticals Müllerstr. 178 13353 Berlin Germany
| | - Anette Sommer
- Bayer AG R&D Pharmaceuticals Müllerstr. 178 13353 Berlin Germany
| | - Lisa Dietz
- Bayer AG R&D Pharmaceuticals Aprather Weg 18a 42113 Wuppertal Germany
| | | | - Sarah Johannes
- Bayer AG R&D Pharmaceuticals Aprather Weg 18a 42113 Wuppertal Germany
| | - Leo Marx
- Debiopharm Rue de Levant 146 CP368 1920 Martigny Switzerland
| | - Hannah Jörißen
- Bayer AG R&D Pharmaceuticals Aprather Weg 18a 42113 Wuppertal Germany
| | - Christoph Mahlert
- Bayer AG R&D Pharmaceuticals Aprather Weg 18a 42113 Wuppertal Germany
| | - Simone Greven
- Bayer AG R&D Pharmaceuticals Aprather Weg 18a 42113 Wuppertal Germany
| |
Collapse
|
38
|
Potential Human Health Applications from Marine Biomedical Research with Elasmobranch Fishes. FISHES 2018. [DOI: 10.3390/fishes3040047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Members of the subclass of fishes collectively known as elasmobranchs (Class Chondrichthyes, Subclass Elasmobranchii) include sharks, skates, rays, guitarfish, and sawfish. Having diverged from the main line of vertebrate evolution some 400 million years ago, these fishes have continued to be successful in our ever-changing oceans. Much of their success must be attributed to their uncanny ability to remain healthy. Based on decades of basic research, some of their secrets may be very close to benefitting man. In this short review, some of the molecular and cellular biological areas that show promise for potential human applications are presented. With a brief background and current status of relevant research, these topics include development of new antibiotics and novel treatments for cancer, macular degeneration, viral pathogens, and Parkinson’s disease; potentially useful genomic information from shark transcriptomes; shark antibody-derived drug delivery systems; and immune cell-derived compounds as potential cancer therapeutic agents.
Collapse
|
39
|
Huang W, Wei X, Wei Y, Feng R. Biology of Tumor Associated Macrophages in Diffuse Large B Cell Lymphoma. DNA Cell Biol 2018; 37:947-952. [PMID: 30403536 DOI: 10.1089/dna.2018.4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tumor associated microenvironment is known to play a vital role during the development and progression of different malignant tumors. As a part of tumor microenvironment, tumor associated macrophages (TAMs) are crucial for the genesis, proliferation, metastasis, and survival of tumor cells. Recently, more and more studies showed that TAMs were related with poor clinical status and survival in patients with diffuse large B cell lymphoma (DLBCL). Considering the complex roles which TAMs play in the tumor microenvironment of DLBCL, the aim of this study was to review the biological mechanisms between TAMs and DLBCL cells, including extracellular matrix remodeling and angiogenesis promotion, tumor promotion, immune suppression, and phagocytosis inhibition. This review will help us to further understand the comprehensive impact of TAMs on DLBCL and explore possible prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Weimin Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Yongqiang Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
40
|
Wu YY, Jiang JN, Fang XD, Ji FJ. STEAP1 Regulates Tumorigenesis and Chemoresistance During Peritoneal Metastasis of Gastric Cancer. Front Physiol 2018; 9:1132. [PMID: 30246786 PMCID: PMC6110897 DOI: 10.3389/fphys.2018.01132] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
In China, majority of the mortality in gastric cancer are associated with peritoneal metastasis. Since most gastric tumors are metastatic at initial diagnosis, the treatment of gastric cancer is limited to radical resection. Therefore, it is imperative to identify diagnostic and prognostic biomarkers. From 2014 to 2015, 20 patients were enrolled in the study. To search translationally upregulated genes in the context of epithelial to mesenchymal transition (EMT), polysome profiling was performed. The MTT, migration, and invasion assay were conducted to determine cell proliferation, migration, and invasion ability respectively. Experiments of gain and loss of function were performed using the overexpression plasmid, siRNA, and shRNA. Xenograft assay was established using nude mice to explore the role of targets translationally upregulated gene in vivo. Polysome profiling defined the landscape of translationally regulated gene products with differential expression between non-metastatic and metastatic cohorts. Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) was found to be the most translationally upregulated gene product in either experimental groups. STEAP1 was found to be required for cell proliferation, in vitro migration and invasion, and in vivo tumorigenesis. RNAi-mediated silencing of STEAP1 potentiated chemosensitivity of the MKN45 cells to docetaxel treatment, highlighting the importance of STEAP1 as a novel biomarker in gastric cancer patients with peritoneal metastasis. STEAP1 is thus induced translationally and its expression promotes proliferation, migration, invasiveness, and tumorigenicity of gastric cancer. STEAP1 can be a potent candidate for designing of targeted therapy.
Collapse
Affiliation(s)
| | | | - Xue-Dong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fu-Jian Ji
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Yan Q, Yuan WB, Sun X, Zhang MJ, Cen F, Zhou SY, Wu WB, Xu YC, Tong LH, Ma ZH. Asparaginyl endopeptidase enhances pancreatic ductal adenocarcinoma cell invasion in an exosome-dependent manner and correlates with poor prognosis. Int J Oncol 2018; 52:1651-1660. [PMID: 29568945 DOI: 10.3892/ijo.2018.4318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/07/2018] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer; owing to low early detection rates and high metastasis rates, it is associated with an extremely poor prognosis. Therefore, a better understanding of the molecular mechanisms that underlie its metastasis and the identification of potential prognostic biomarkers are urgently required. Although high expression levels of asparaginyl endopeptidase (AEP) have been detected in various types of solid tumor, the expression and functions of AEP in pancreatic carcinomas have yet to be determined. The present study aimed to examine the putative functions of AEP in pancreatic carcinoma. Immunohistochemical analysis revealed that AEP was highly expressed in pancreatic cancer tissues compared with adjacent normal tissues. Patients with high AEP expression exhibited a significantly shorter overall survival time. Results from multivariate Cox regression analysis revealed that AEP was an independent prognostic factor for overall survival. Gain- and loss-of-function experiments demonstrated that knockdown of AEP expression significantly reduced the invasive ability of pancreatic cancer cells, whereas overexpression of AEP increased the invasive ability. In addition, AEP was detected in exosomes that were derived from cultured pancreatic ductal adenocarcinoma cells (PDACs) and in the serum from patients with PDAC. The Matrigel-Transwell invasion assay revealed that exosomes enriched with AEP were able to enhance the invasive ability of PDAC cells, whereas exosomes lacking AEP decreased the invasive ability. Furthermore, results from the present study suggested that AEP may be crucial for activation of the phosphoinositide 3-kinase/RAC‑α serine/threonine-protein kinase signaling pathway in PDAC cells. The present study data indicated that high AEP expression may be important for pancreatic carcinoma progression in an exosome-dependent manner, and that AEP may be an independent indicator of poor prognosis in patients with PDAC and may be a novel prognostic biomarker or therapeutic target in pancreatic carcinoma.
Collapse
Affiliation(s)
- Qiang Yan
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Wen-Bin Yuan
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Xu Sun
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Ming-Jie Zhang
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Feng Cen
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Shi-Yu Zhou
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Wan-Bo Wu
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Yong-Can Xu
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Li-Hui Tong
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Zhi-Hong Ma
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| |
Collapse
|
42
|
Zhang Y, Wu YY, Jiang JN, Liu XS, Ji FJ, Fang XD. MiRNA-3978 regulates peritoneal gastric cancer metastasis by targeting legumain. Oncotarget 2018; 7:83223-83230. [PMID: 27793040 PMCID: PMC5347764 DOI: 10.18632/oncotarget.12917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/21/2016] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer incidence and mortality are among the highest in China, with majority of the mortality related to peritoneal metastasis of gastric cancer. Treatment is limited to radical resection, which is impeded by incidence of metastasis at time of initial diagnosis, thus making it imperative to identify diagnostic and prognostic biomarkers. Legumain, a lysosomal cysteine endopeptidase of the asparaginyl endopeptidase family, has been shown to be overexpressed in patients with metastatic gastric cancer disease and its expression was positively correlated to both disease progression and outcome. However, the mechanism of legumain expression is currently unknown. Legumain overexpression was found to occur at the level of post transcriptional gene regulation. In situ prediction algorithms identified legumain as a putative target of miR-3978. MiR-3978 was significantly decreased in peritoneal metastatic tissue specimens and in MKN45 cells that mimic peritoneal metastasis features. Reporter assays using LGMN (encoding legumain) 3′ untranslated region (UTR) showed that miR-3978 interacted with the wild-type but not miR-3978-seed mutant. Ectopic expression of miR-3978 mimic in the MKN45 cell line significantly decreased proliferation and suppressed in vitro migration and invasion. The miR-3978 mimic inhibited gastric carcinoma and metastatic progression in a mice model by regulating legumain protein expression. Inverse correlation of LGMN mRNA and miR-3978 levels in 20 gastric patients at different stages of metastatic disease confirmed the same. Cumulatively, our results indicate that loss of miR-3978 leads to increased expression of legumain, which indicates that miR-3978might be a biomarker for peritoneal metastasis in patients with gastric cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130012, China
| | - Yuan-Yu Wu
- Department of General Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130012, China
| | - Jun-Nan Jiang
- Department of General Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130012, China
| | - Xue-Song Liu
- Department of General Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130012, China
| | - Fu-Jian Ji
- Department of General Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130012, China
| | - Xue-Dong Fang
- Department of General Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
43
|
Ji FJ, Wu YY, An Z, Liu XS, Jiang JN, Chen FF, Fang XD. Expression of both poly r(C) binding protein 1 (PCBP1) and miRNA-3978 is suppressed in peritoneal gastric cancer metastasis. Sci Rep 2017; 7:15488. [PMID: 29138420 PMCID: PMC5686074 DOI: 10.1038/s41598-017-15448-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/23/2017] [Indexed: 01/23/2023] Open
Abstract
The expression of legumain which has been shown overexpressed in patients with metastatic gastric cancer is positively correlated to both disease progression and outcome, and negatively correlated to microRNA (miR)-3978 expression. The RNA-binding protein, poly r(C) binding protein 1 (PCBP1) was the most downregulated protein in the metastatic tissue specimens. Quantitative real-time PCR showed that PCBP1 expression is transcriptionally downregulated in peritoneal metastasis tissues. RNA immunoprecipitation experiments showed that PCBP1 and miR-3978 are sequestered in normal peritoneal tissue, but the complex is disrupted following metastatic progression. PCBP1 expression mimicked miR-3978 expression across gastric cancer patients. Finally, replenishment of PCBP1 or miR-3978 expression in the peritoneal metastasis cell line MKN45 decreased legumain protein expression and chemosensitized the cells to treatment with docetaxel. However, replenishment of one and concomitant depletion of the other failed to induce chemosensitivity to docetaxel. Replenishment of miR-3978 also resulted in induction of PCBP1 protein expression, potentially indicating that miR-3978 expression might downregulate a negative regulator targeting PCBP1. Our current study reveals PCBP1 as an additional biomarker in peritoneal metastasis. PCBP1 and miR-3978 expression were correlated and suggests a potential interplay of differential miRNA biogenesis and RNA binding protein during metastatic progression.
Collapse
Affiliation(s)
- Fu-Jian Ji
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuan-Yu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhe An
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xue-Song Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jun-Nan Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Fang-Fang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Xue-Dong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
44
|
Scomparin A, Florindo HF, Tiram G, Ferguson EL, Satchi-Fainaro R. Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Adv Drug Deliv Rev 2017; 118:52-64. [PMID: 28916497 DOI: 10.1016/j.addr.2017.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
Polymer-directed enzyme prodrug therapy (PDEPT) and polymer enzyme liposome therapy (PELT) are two-step therapies developed to provide anticancer drugs site-selective intratumoral accumulation and release. Nanomedicines, such as polymer-drug conjugates and liposomal drugs, accumulate in the tumor site due to extravasation-dependent mechanism (enhanced permeability and retention - EPR - effect), and further need to cross the cellular membrane and release their payload in the intracellular compartment. The subsequent administration of a polymer-enzyme conjugate able to accumulate in the tumor tissue and to trigger the extracellular release of the active drug showed promising preclinical results. The development of polymer-enzyme, polymer-drug conjugates and liposomal drugs had undergone a vast advancement over the past decades. Several examples of enzyme mimics for in vivo therapy can be found in the literature. Moreover, polymer therapeutics often present an enzyme-sensitive mechanism of drug release. These nanomedicines can thus be optimal substrates for PDEPT and this review aims to provide new insights and stimuli toward the future perspectives of this promising combination.
Collapse
Affiliation(s)
- Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elaine L Ferguson
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
Wang F, Li H, Long J, Ye S. Clinicopathological significance of p14 ARF expression in lung cancer: a meta-analysis. Onco Targets Ther 2017; 10:2491-2499. [PMID: 28507441 PMCID: PMC5428763 DOI: 10.2147/ott.s131954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND p14ARF, a tumor suppressor protein, encoded by the p16 tumor suppressor gene, has been reported to be associated with the clinicopathological features of lung cancer. However, the evaluated outcomes were inconsistent and remained inconclusive. In this study, we conducted a meta-analysis to clarify the significance of p14ARF expression in lung cancer pathogenesis. MATERIALS AND METHODS Electronic databases, PubMed, Web of Knowledge, Embase, and CNKI, were retrieved to collect relevant articles with inclusion and exclusion criteria. Using Stata 12.0 software, 95% confidence intervals (CIs) and odds ratios (ORs) were calculated. RESULTS A total of 15 eligible case-control studies that evaluated the relationship between p14ARF expression and lung cancer were included in the meta-analysis. The results demonstrated that there were significant associations between p14ARF expression and the risk of non-small-cell lung cancer (NSCLC), lung adenocarcinoma, and lung squamous carcinoma (for NSCLC, OR =11.02, 95% CI =5.30-22.92; for lung adenocarcinoma, OR =7.28, 95% CI =3.92-13.50; and for lung squamous carcinoma, OR =14.40, 95% CI =2.83-73.24). In the stratified analysis based on race, significant associations between p14ARF expression and lung cancer risk were found in Chinese population and Caucasians (for Chinese population, OR = 7.02, 95% CI =4.48-11.00 and for Caucasians, OR =4.19, 95% CI =1.42-12.38). Furthermore, the expression of p14ARF was significantly associated with the TNM-stage of lung cancer in Chinese population (OR =2.07, 95% CI =1.38-3.10). CONCLUSION p14ARF expression was significantly associated with the risk of lung cancer. In addition, the data of the meta-analysis showed that there was a significant correlation between p14ARF expression and the TNM-stage of lung cancer in Chinese population.
Collapse
Affiliation(s)
- Fang Wang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Heping Li
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Jianting Long
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, People’s Republic of China
| |
Collapse
|
46
|
Clinical relevance of biomarkers for the identification of patients with carotid atherosclerotic plaque: Potential role and limitations of cysteine protease legumain. Atherosclerosis 2017; 257:248-249. [DOI: 10.1016/j.atherosclerosis.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/11/2017] [Indexed: 12/30/2022]
|
47
|
Hong JA, Choi NE, La YK, Nam HY, Seo J, Lee J. Development of a smart activity-based probe to detect subcellular activity of asparaginyl endopeptidase in living cells. Org Biomol Chem 2017; 15:8018-8022. [DOI: 10.1039/c7ob01467h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A smart activity-based probe that generates a turn-on fluorescence signal in response to enzyme activity was developed, allowing dynamic imaging of subcellular enzyme activity in living cells.
Collapse
Affiliation(s)
- Jong-Ah Hong
- Department of Global Medical Science
- Sungshin University
- Seoul 01133
- Republic of Korea
| | - Na-Eun Choi
- Department of Global Medical Science
- Sungshin University
- Seoul 01133
- Republic of Korea
| | - Yeo-Kyoung La
- Department of Global Medical Science
- Sungshin University
- Seoul 01133
- Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry
- Gwangju Institute of Science and Technology
- Gwangju 61005
- Republic of Korea
| | - Jiwon Seo
- Department of Chemistry
- Gwangju Institute of Science and Technology
- Gwangju 61005
- Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science
- Sungshin University
- Seoul 01133
- Republic of Korea
| |
Collapse
|
48
|
Zhang ZQ, Cao Z, Liu C, Li R, Wang WD, Wang XY. MiRNA-Embedded ShRNAs for Radiation-Inducible LGMN Knockdown and the Antitumor Effects on Breast Cancer. PLoS One 2016; 11:e0163446. [PMID: 27656894 PMCID: PMC5033420 DOI: 10.1371/journal.pone.0163446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/08/2016] [Indexed: 11/18/2022] Open
Abstract
Legumain (LGMN) is highly expressed in breast cancer (BC) and other solid tumors and is a potential anticancer target. Here we investigate the anti-tumor effects of short hairpin RNAs (shRNAs) targeting LGMN embedded in a microRNA-155 (miR-155) architecture, which is driven by a radiation-inducible chimeric RNA polymerase II (Pol II) promoter. Lentiviral vectors were generated with the chimeric promoter which controlled the expression of downstream shRNA-miR-155 cassette. Fluorescence was observed by using confocal microscopy. Real-time quantitative PCR and Western blotting were used to determine the expression level of LGMN, MMP2, and MMP9. Furthermore, the proliferation and invasive ability of BC cells was analyzed via plate colony formation and invasion assays. Here we demonstrated that the chimeric promoter could be effectively induced by radiation treatment. Furthermore, the shRNA-miR-155 cassette targeting LGMN could be effectively activated by the chimeric promoter. Radiation plus knockdown of LGMN impairs colony formation and dampens cell migration and invasion in BC cells. Inhibition of LGMN downregulates MMP2 and MMP9 expression in BC cells. Pol II-driven shRNA-miR-155 could effectively suppress the growth and invasiveness of BC cells, and that the interference effects could be regulated by radiation doses. Moreover, knockdown of LGMN alleviates the aggressive phenotype of BC cells through modulating MMPs expression.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhi Cao
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Cong Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei-Dong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, 610041, China
- * E-mail: (WW); (XW)
| | - Xing-Yong Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- * E-mail: (WW); (XW)
| |
Collapse
|