1
|
Wang Z, Li K, Chen H, Li Z, Li W, Lin H, Zheng L, Zhang X, Wu S. Quantitative Characterization of Zebrafish Caudal Fin Regeneration Based on Mueller Matrix OCT In Vivo. JOURNAL OF BIOPHOTONICS 2024; 17:e202400376. [PMID: 39323178 DOI: 10.1002/jbio.202400376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Zebrafish serves as a valuable model for studying tissue regeneration due to their comprehensive regenerative abilities, particularly in bone tissue. In this study, a Mueller matrix optical coherence tomography (OCT) system was applied to monitor the regenerative processes of zebrafish caudal fins in vivo. The analysis focused on evaluating the thickness of the caudal fin tip and the distribution of internal bone tissue during the regenerative process. Subsequently, the effect of ectoine solution on the regeneration process was observed and discussed. Our findings revealed that the caudal fin blastema did not exhibit phase-induced polarization characteristics in the Mueller matrix OCT images. Statistical analyses indicated that the caudal fins did not fully regenerate to their original state within 21 days. Furthermore, the results suggested that ectoine solution could enhance tissue regeneration. This approach provides a method for quantifying zebrafish caudal fin regeneration and advances observation techniques for biomedical and clinical applications.
Collapse
Affiliation(s)
- Zaifan Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Ke Li
- School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hui Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Wangbiao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Liqin Zheng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaoman Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Shulian Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Häggmark I, Hoshino M, Uesugi K, Sasaki T. X-ray phase contrast reveals soft tissue and shell growth lines in mollusks. Commun Biol 2024; 7:17. [PMID: 38172227 PMCID: PMC10764734 DOI: 10.1038/s42003-023-05457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024] Open
Abstract
High-resolution 3D imaging of species with exoskeletons such as shell-bearing mollusks typically involves destructive steps. Nondestructive alternatives are desirable since samples can be rare and valuable, and destructive steps are time-consuming and may distort the tissue. Here, we show for the first time that propagation-based phase-contrast X-ray imaging can significantly increase contrast in mollusks with intact shells. By using the recently upgraded monochromator at the SPring-8 BL20B2 synchrotron beamline, we imaged six species of mollusks, showing that X-ray phase contrast enhances soft-tissue contrast. Features that are almost invisible in conventional attenuation-based micro-computed tomography (micro-CT) are clearly reproduced with phase-contrast imaging under the same scan conditions. Furthermore, this method can reveal features such as growth rings in the shell and differentiate between calcite and aragonite crystal forms. Phase-contrast imaging can thus serve as a compelling alternative when destructive methods are not an option.
Collapse
Affiliation(s)
- Ilian Häggmark
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Takenori Sasaki
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Schaeper JJ, Liberman MC, Salditt T. Imaging of excised cochleae by micro-CT: staining, liquid embedding, and image modalities. J Med Imaging (Bellingham) 2023; 10:053501. [PMID: 37753271 PMCID: PMC10519431 DOI: 10.1117/1.jmi.10.5.053501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Purpose Assessing the complex three-dimensional (3D) structure of the cochlea is crucial to understanding the fundamental aspects of signal transduction in the inner ear and is a prerequisite for the development of novel cochlear implants. X-ray phase-contrast computed tomography offers destruction-free 3D imaging with little sample preparation, thus preserving the delicate structure of the cochlea. The use of heavy metal stains enables higher contrast and resolution and facilitates segmentation of the cochlea. Approach For μ-CT of small animal and human cochlea, we explore the heavy metal osmium tetroxide (OTO) as a radiocontrast agent and delineate laboratory μ - CT from synchrotron CT. We investigate how phase retrieval can be used to improve the image quality of the reconstructions, both for stained and unstained specimens. Results Image contrast for soft tissue in an aqueous solution is insufficient under the in-house conditions, whereas the OTO stain increases contrast for lipid-rich tissue components, such as the myelin sheaths in nervous tissue, enabling contrast-based rendering of the different components of the auditory nervous system. The overall morphology of the cochlea with the three scalae and membranes is very well represented. Further, the image quality of the reconstructions improves significantly when a phase retrieval scheme is used, which is also suitable for non-ideal laboratory μ - CT settings. With highly brilliant synchrotron radiation (SR), we achieve high contrast for unstained whole cochleae at the cellular level. Conclusions The OTO stain is suitable for 3D imaging of small animal and human cochlea with laboratory μ - CT , and relevant pathologies, such as a loss of sensory cells and neurons, can be visualized. With SR and optimized phase retrieval, the cellular level can be reached even for unstained samples in aqueous solution, as demonstrated by the high visibility of single hair cells and spiral ganglion neurons.
Collapse
Affiliation(s)
- Jannis Justus Schaeper
- University of Göttingen, Institute for X-ray Physics, Göttingen, Germany
- University of Göttingen, Cluster of Excellence “Multiscale Bioimaging: Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| | - Michael Charles Liberman
- Massachusetts Eye and Ear Infirmary, Eaton-Peabody Laboratories, Boston, Massachusetts, United States
- Harvard Medical School, Department of Otolaryngology, Head and Neck Surgery, Boston, Massachusetts, United States
| | - Tim Salditt
- University of Göttingen, Institute for X-ray Physics, Göttingen, Germany
- University of Göttingen, Cluster of Excellence “Multiscale Bioimaging: Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| |
Collapse
|
4
|
Leyhr J, Sanchez S, Dollman KN, Tafforeau P, Haitina T. Enhanced contrast synchrotron X-ray microtomography for describing skeleton-associated soft tissue defects in zebrafish mutants. Front Endocrinol (Lausanne) 2023; 14:1108916. [PMID: 36950679 PMCID: PMC10025580 DOI: 10.3389/fendo.2023.1108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Detailed histological analyses are desirable for zebrafish mutants that are models for human skeletal diseases, but traditional histological techniques are limited to two-dimensional thin sections with orientations highly dependent on careful sample preparation. On the other hand, techniques that provide three-dimensional (3D) datasets including µCT scanning are typically limited to visualizing the bony skeleton and lack histological resolution. We combined diffusible iodine-based contrast enhancement (DICE) and propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRµCT) to image late larval and juvenile zebrafish, obtaining high-quality 3D virtual histology datasets of the mineralized skeleton and surrounding soft tissues. To demonstrate this technique, we used virtual histological thin sections and 3D segmentation to qualitatively and quantitatively compare wild-type zebrafish and nkx3.2 -/- mutants to characterize novel soft-tissue phenotypes in the muscles and tendons of the jaw and ligaments of the Weberian apparatus, as well as the sinus perilymphaticus associated with the inner ear. We could observe disrupted fiber organization and tendons of the adductor mandibulae and protractor hyoideus muscles associated with the jaws, and show that despite this, the overall muscle volumes appeared unaffected. Ligaments associated with the malformed Weberian ossicles were mostly absent in nkx3.2 -/- mutants, and the sinus perilymphaticus was severely constricted or absent as a result of the fused exoccipital and basioccipital elements. These soft-tissue phenotypes have implications for the physiology of nkx3.2 -/- zebrafish, and demonstrate the promise of DICE-PPC-SRµCT for histopathological investigations of bone-associated soft tissues in small-fish skeletal disease models and developmental studies more broadly.
Collapse
Affiliation(s)
- Jake Leyhr
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Sophie Sanchez
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- European Synchrotron Radiation Facility, Grenoble, France
| | | | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Yang JS, Jeon SY, Choi JH. Acquisition of a single grid-based phase-contrast X-ray image using instantaneous frequency and noise filtering. Biomed Eng Online 2022; 21:92. [PMID: 36575491 PMCID: PMC9793636 DOI: 10.1186/s12938-022-01061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND To obtain phase-contrast X-ray images, single-grid imaging systems are effective, but Moire artifacts remain a significant issue. The solution for removing Moire artifacts from an image is grid rotation, which can distinguish between these artifacts and sample information within the Fourier space. However, the mechanical movement of grid rotation is slower than the real-time change in Moire artifacts. Thus, Moire artifacts generated during real-time imaging cannot be removed using grid rotation. To overcome this problem, we propose an effective method to obtain phase-contrast X-ray images using instantaneous frequency and noise filtering. RESULT The proposed phase-contrast X-ray image using instantaneous frequency and noise filtering effectively suppressed noise with Moire patterns. The proposed method also preserved the clear edge of the inner and outer boundaries and internal anatomical information from the biological sample, outperforming conventional Fourier analysis-based methods, including absorption, scattering, and phase-contrast X-ray images. In particular, when comparing the phase information for the proposed method with the x-axis gradient image from the absorption image, the proposed method correctly distinguished two different types of soft tissue and the detailed information, while the latter method did not. CONCLUSION This study successfully achieved a significant improvement in image quality for phase-contrast X-ray images using instantaneous frequency and noise filtering. This study can provide a foundation for real-time bio-imaging research using three-dimensional computed tomography.
Collapse
Affiliation(s)
- Jae-Suk Yang
- grid.255649.90000 0001 2171 7754Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Sun-Young Jeon
- grid.255649.90000 0001 2171 7754Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jang-Hwan Choi
- grid.255649.90000 0001 2171 7754Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
6
|
Busse M, Ferstl S, Kimm MA, Hehn L, Steiger K, Allner S, Muller M, Drecoll E, Burkner T, Dierolf M, Gleich B, Weichert W, Pfeiffer F. Multi-Scale Investigation of Human Renal Tissue in Three Dimensions. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3489-3497. [PMID: 36251918 DOI: 10.1109/tmi.2022.3214344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Histopathology as a diagnostic mainstay for tissue evaluation is strictly a 2D technology. Combining and supplementing this technology with 3D imaging has been proposed as one future avenue towards refining comprehensive tissue analysis. To this end, we have developed a laboratory-based X-ray method allowing for the investigation of tissue samples in three dimensions with isotropic volume information. To assess the potential of our method for micro-morphology evaluation, we selected several kidney regions from three patients with cystic kidney disease, obstructive nephropathy and diabetic glomerulopathy. Tissue specimens were processed using our in-house-developed X-ray eosin stain and investigated with a commercial microCT and our in-house-built NanoCT. The microCT system provided overview scans with voxel sizes of [Formula: see text] and the NanoCT was employed for higher resolutions including voxel sizes from [Formula: see text] to 210 nm. We present a methodology allowing for a precise micro-morphologic investigation in three dimensions which is compatible with conventional histology. Advantages of our methodology are its versatility with respect to multi-scale investigations, being laboratory-based, allowing for non-destructive imaging and providing isotropic volume information. We believe, that after future developmental work this method might contribute to advanced multi-modal tissue diagnostics.
Collapse
|
7
|
Migga A, Schulz G, Rodgers G, Osterwalder M, Tanner C, Blank H, Jerjen I, Salmon P, Twengström W, Scheel M, Weitkamp T, Schlepütz CM, Bolten JS, Huwyler J, Hotz G, Madduri S, Müller B. Comparative hard x-ray tomography for virtual histology of zebrafish larva, human tooth cementum, and porcine nerve. J Med Imaging (Bellingham) 2022; 9:031507. [PMID: 35372637 PMCID: PMC8968075 DOI: 10.1117/1.jmi.9.3.031507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/08/2022] [Indexed: 07/26/2023] Open
Abstract
Purpose: Synchrotron radiation-based tomography yields microanatomical features in human and animal tissues without physical slicing. Recent advances in instrumentation have made laboratory-based phase tomography feasible. We compared the performance of three cutting-edge laboratory systems benchmarked by synchrotron radiation-based tomography for three specimens. As an additional criterion, the user-friendliness of the three microtomography systems was considered. Approach: The three tomography systems-SkyScan 2214 (Bruker-microCT, Kontich, Belgium), Exciscope prototype (Stockholm, Sweden), and Xradia 620 Versa (Zeiss, Oberkochen, Germany)-were given 36 h to measure three medically relevant specimens, namely, zebrafish larva, archaeological human tooth, and porcine nerve. The obtained datasets were registered to the benchmark synchrotron radiation-based tomography from the same specimens and selected ones to the SkyScan 1275 and phoenix nanotom m® laboratory systems to characterize development over the last decade. Results: Next-generation laboratory-based microtomography almost reached the quality achieved by synchrotron-radiation facilities with respect to spatial and density resolution, as indicated by the visualization of the medically relevant microanatomical features. The SkyScan 2214 system and the Exciscope prototype demonstrated the complementarity of phase information by imaging the eyes of the zebrafish larva. The 3 - μ m thin annual layers in the tooth cementum were identified using Xradia 620 Versa. Conclusions: SkyScan 2214 was the simplest system and was well-suited to visualizing the wealth of anatomical features in the zebrafish larva. Data from the Exciscope prototype with the high photon flux from the liquid metal source showed the spiral nature of the myelin sheaths in the porcine nerve. Xradia 620 Versa, with detector optics as typically installed for synchrotron tomography beamlines, enabled the three-dimensional visualization of the zebrafish larva with comparable quality to the synchrotron data and the annual layers in the tooth cementum.
Collapse
Affiliation(s)
- Alexandra Migga
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Allschwil, Switzerland
- University of Basel, Biomaterials Science Center, Department of Clinical Research, Basel, Switzerland
| | - Georg Schulz
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Allschwil, Switzerland
- University of Basel, Core Facility Micro- and Nanotomography, Department of Biomedical Engineering, Allschwil, Switzerland
| | - Griffin Rodgers
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Allschwil, Switzerland
- University of Basel, Biomaterials Science Center, Department of Clinical Research, Basel, Switzerland
| | - Melissa Osterwalder
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Allschwil, Switzerland
- University of Basel, Biomaterials Science Center, Department of Clinical Research, Basel, Switzerland
| | - Christine Tanner
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Allschwil, Switzerland
- University of Basel, Biomaterials Science Center, Department of Clinical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | - Jan S. Bolten
- University of Basel, Pharmaceutical Technology, Department of Pharmaceutical Sciences, Basel, Switzerland
| | - Jörg Huwyler
- University of Basel, Pharmaceutical Technology, Department of Pharmaceutical Sciences, Basel, Switzerland
| | - Gerhard Hotz
- Natural History Museum of Basel, Anthropological Collection, Basel, Switzerland
- University of Basel, Integrative Prehistory and Archaeological Science, Basel, Switzerland
| | - Srinivas Madduri
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Allschwil, Switzerland
- University of Geneva, Department of Surgery, Geneva, Switzerland
- University Hospital Basel, Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel, Switzerland
| | - Bert Müller
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Allschwil, Switzerland
- University of Basel, Biomaterials Science Center, Department of Clinical Research, Basel, Switzerland
| |
Collapse
|
8
|
Twengström W, Moro CF, Romell J, Larsson JC, Sparrelid E, Björnstedt M, Hertz HM. Can laboratory x-ray virtual histology provide intraoperative 3D tumor resection margin assessment? J Med Imaging (Bellingham) 2022; 9:031503. [PMID: 35155718 PMCID: PMC8820384 DOI: 10.1117/1.jmi.9.3.031503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Surgery is an essential part of the curative plan for most patients affected with solid tumors. The outcome of such surgery, e.g., recurrence rates and ultimately patient survival, depends on several factors where the resection margin is of key importance. Presently, the resection margin is assessed by classical histology, which is time-consuming (several days), destructive, and basically only gives two-dimensional information. Clearly, it would be advantageous if immediate feedback on tumor extension in all three dimensions were available to the surgeon intraoperatively. Approach: We investigate a laboratory propagation-based phase-contrast x-ray computed tomography system that provides the resolution, the contrast, and, potentially, the speed for this purpose. The system relies on a liquid-metal jet microfocus source and a scintillator-coated CMOS detector. Our study is performed on paraffin-embedded non-stained samples of human pancreatic neuroendocrine tumors, liver intrahepatic cholangiocarcinoma, and pancreatic serous cystic neoplasm (benign). Results: We observe tumors with distinct and sharp edges having cellular resolution ( ∼ 10 μ m ) as well as many assisting histological landmarks, allowing for resection margin assessment. All x-ray data are compared with classical histology. The agreement is excellent. Conclusion: We conclude that the method has potential for intraoperative three-dimensional virtual histology.
Collapse
Affiliation(s)
- William Twengström
- KTH/Albanova, Department of Applied Physics, Stockholm, Sweden,Address all correspondence to William Twengström, ; Carlos Fernández Moro, ; Hans M. Hertz,
| | - Carlos F. Moro
- Karolinska University Hospital, Department of Clinical Pathology and Cancer Diagnostics, Stockholm, Sweden,Karolinska University Hospital Huddinge, Karolinska Institutet, Division of Pathology F46, Department of Laboratory Medicine, Stockholm, Sweden,Address all correspondence to William Twengström, ; Carlos Fernández Moro, ; Hans M. Hertz,
| | - Jenny Romell
- KTH/Albanova, Department of Applied Physics, Stockholm, Sweden
| | | | - Ernesto Sparrelid
- Karolinska Institutet, Division of Surgery, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
| | - Mikael Björnstedt
- Karolinska University Hospital, Department of Clinical Pathology and Cancer Diagnostics, Stockholm, Sweden,Karolinska University Hospital Huddinge, Karolinska Institutet, Division of Pathology F46, Department of Laboratory Medicine, Stockholm, Sweden
| | - Hans M. Hertz
- KTH/Albanova, Department of Applied Physics, Stockholm, Sweden,Address all correspondence to William Twengström, ; Carlos Fernández Moro, ; Hans M. Hertz,
| |
Collapse
|
9
|
A Laser Frequency Transverse Modulation Might Compensate for the Spectral Broadening Due to Large Electron Energy Spread in Thomson Sources. PHOTONICS 2022. [DOI: 10.3390/photonics9020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Compact laser plasma accelerators generate high-energy electron beams with increasing quality. When used in inverse Compton backscattering, however, the relatively large electron energy spread jeopardizes potential applications requiring small bandwidths. We present here a novel interaction scheme that allows us to compensate for the negative effects of the electron energy spread on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and numerical simulations for hard X-ray Thomson sources based on laser plasma accelerators.
Collapse
|
10
|
Bensimon-Brito A, Boezio GLM, Cardeira-da-Silva J, Wietelmann A, Ramkumar S, Lundegaard PR, Helker CSM, Ramadass R, Piesker J, Nauerth A, Mueller C, Stainier DYR. Integration of multiple imaging platforms to uncover cardiovascular defects in adult zebrafish. Cardiovasc Res 2021; 118:2665-2687. [PMID: 34609500 PMCID: PMC9491864 DOI: 10.1093/cvr/cvab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Mammalian models have been instrumental in investigating adult heart function and human disease. However, electrophysiological differences with human hearts and high costs motivate the need for non-mammalian models. The zebrafish is a well-established genetic model to study cardiovascular development and function; however, analysis of cardiovascular phenotypes in adult specimens is particularly challenging as they are opaque. Methods and results Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging, and micro-computed tomography to identify and analyse cardiovascular phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiovascular defects that were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between haemodynamic defects and structural alterations of the heart, as observed clinically. Conclusion We report a new, comprehensive, and sensitive platform to identify otherwise indiscernible cardiovascular phenotypes in adult zebrafish.
Collapse
Affiliation(s)
- Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Giulia L M Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Scientific Service Group MRI and µ-CT, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Srinath Ramkumar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Pia R Lundegaard
- Laboratory for Molecular Cardiology, Department of Cardiology, Vascular, Pulmonary and Infectious Diseases, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| |
Collapse
|
11
|
Pierantoni M, Silva Barreto I, Hammerman M, Verhoeven L, Törnquist E, Novak V, Mokso R, Eliasson P, Isaksson H. A quality optimization approach to image Achilles tendon microstructure by phase-contrast enhanced synchrotron micro-tomography. Sci Rep 2021; 11:17313. [PMID: 34453067 PMCID: PMC8397765 DOI: 10.1038/s41598-021-96589-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Achilles tendons are mechanosensitive, and their complex hierarchical structure is in part the result of the mechanical stimulation conveyed by the muscles. To fully understand how their microstructure responds to mechanical loading a non-invasive approach for 3D high resolution imaging suitable for soft tissue is required. Here we propose a protocol that can capture the complex 3D organization of the Achilles tendon microstructure, using phase-contrast enhanced synchrotron micro-tomography (SR-PhC-μCT). We investigate the effects that sample preparation and imaging conditions have on the resulting image quality, by considering four types of sample preparations and two imaging setups (sub-micrometric and micrometric final pixel sizes). The image quality is assessed using four quantitative parameters. The results show that for studying tendon collagen fibers, conventional invasive sample preparations such as fixation and embedding are not necessary or advantageous. Instead, fresh frozen samples result in high-quality images that capture the complex 3D organization of tendon fibers in conditions as close as possible to natural. The comprehensive nature of this innovative study by SR-PhC-μCT breaks ground for future studies of soft complex biological tissue in 3D with high resolution in close to natural conditions, which could be further used for in situ characterization of how soft tissue responds to mechanical stimuli on a microscopic level.
Collapse
Affiliation(s)
- Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden.
| | | | - Malin Hammerman
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Lissa Verhoeven
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| | - Vladimir Novak
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Rajmund Mokso
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Division of Solid Mechanics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| |
Collapse
|
12
|
Romell J, Jie VW, Miettinen A, Baird E, Hertz HM. Laboratory phase-contrast nanotomography of unstained Bombus terrestris compound eyes. J Microsc 2021; 283:29-40. [PMID: 33822371 DOI: 10.1111/jmi.13005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022]
Abstract
Imaging the visual systems of bumblebees and other pollinating insects may increase understanding of their dependence on specific habitats and how they will be affected by climate change. Current high-resolution imaging methods are either limited to two dimensions (light- and electron microscopy) or have limited access (synchrotron radiation x-ray tomography). For x-ray imaging, heavy metal stains are often used to increase contrast. Here, we present micron-resolution imaging of compound eyes of buff-tailed bumblebees (Bombus terrestris) using a table-top x-ray nanotomography (nano-CT) system. By propagation-based phase-contrast imaging, the use of stains was avoided and the microanatomy could more accurately be reconstructed than in samples stained with phosphotungstic acid or osmium tetroxide. The findings in the nano-CT images of the compound eye were confirmed by comparisons with light- and transmission electron microscopy of the same sample and finally, comparisons to synchrotron radiation tomography as well as to a commercial micro-CT system were done.
Collapse
Affiliation(s)
- Jenny Romell
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vun Wen Jie
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Arttu Miettinen
- Institute for Biomedical Engineering, Zurich University and ETH Zurich, Zurich, Switzerland.,Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.,Arttu Miettinen, Department of Physics, University of Jyvaskyla, Jyvaskyla, Finland
| | - Emily Baird
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Hans M Hertz
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
13
|
Dietrich K, Fiedler IA, Kurzyukova A, López-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F. Skeletal Biology and Disease Modeling in Zebrafish. J Bone Miner Res 2021; 36:436-458. [PMID: 33484578 DOI: 10.1002/jbmr.4256] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Zebrafish are teleosts (bony fish) that share with mammals a common ancestor belonging to the phylum Osteichthyes, from which their endoskeletal systems have been inherited. Indeed, teleosts and mammals have numerous genetically conserved features in terms of skeletal elements, ossification mechanisms, and bone matrix components in common. Yet differences related to bone morphology and function need to be considered when investigating zebrafish in skeletal research. In this review, we focus on zebrafish skeletal architecture with emphasis on the morphology of the vertebral column and associated anatomical structures. We provide an overview of the different ossification types and osseous cells in zebrafish and describe bone matrix composition at the microscopic tissue level with a focus on assessing mineralization. Processes of bone formation also strongly depend on loading in zebrafish, as we elaborate here. Furthermore, we illustrate the high regenerative capacity of zebrafish bones and present some of the technological advantages of using zebrafish as a model. We highlight zebrafish axial and fin skeleton patterning mechanisms, metabolic bone disease such as after immunosuppressive glucocorticoid treatment, as well as osteogenesis imperfecta (OI) and osteopetrosis research in zebrafish. We conclude with a view of why larval zebrafish xenografts are a powerful tool to study bone metastasis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin Dietrich
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Imke Ak Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Alejandra C López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
14
|
X-ray Micro-Computed Tomography: An Emerging Technology to Analyze Vascular Calcification in Animal Models. Int J Mol Sci 2020; 21:ijms21124538. [PMID: 32630604 PMCID: PMC7352990 DOI: 10.3390/ijms21124538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification describes the formation of mineralized tissue within the blood vessel wall, and it is highly associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, diabetes, and atherosclerosis. In this article, we briefly review different rodent models used to study vascular calcification in vivo, and critically assess the strengths and weaknesses of the current techniques used to analyze and quantify calcification in these models, namely 2-D histology and the o-cresolphthalein assay. In light of this, we examine X-ray micro-computed tomography (µCT) as an emerging complementary tool for the analysis of vascular calcification in animal models. We demonstrate that this non-destructive technique allows us to simultaneously quantify and localize calcification in an intact vessel in 3-D, and we consider recent advances in µCT sample preparation techniques. This review also discusses the potential to combine 3-D µCT analyses with subsequent 2-D histological, immunohistochemical, and proteomic approaches in correlative microscopy workflows to obtain rich, multifaceted information on calcification volume, calcification load, and signaling mechanisms from within the same arterial segment. In conclusion we briefly discuss the potential use of µCT to visualize and measure vascular calcification in vivo in real-time.
Collapse
|
15
|
Lohse LM, Robisch AL, Töpperwien M, Maretzke S, Krenkel M, Hagemann J, Salditt T. A phase-retrieval toolbox for X-ray holography and tomography. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:852-859. [PMID: 32381790 PMCID: PMC7206550 DOI: 10.1107/s1600577520002398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/19/2020] [Indexed: 05/10/2023]
Abstract
Propagation-based phase-contrast X-ray imaging is by now a well established imaging technique, which - as a full-field technique - is particularly useful for tomography applications. Since it can be implemented with synchrotron radiation and at laboratory micro-focus sources, it covers a wide range of applications. A limiting factor in its development has been the phase-retrieval step, which was often performed using methods with a limited regime of applicability, typically based on linearization. In this work, a much larger set of algorithms, which covers a wide range of cases (experimental parameters, objects and constraints), is compiled into a single toolbox - the HoloTomoToolbox - which is made publicly available. Importantly, the unified structure of the implemented phase-retrieval functions facilitates their use and performance test on different experimental data.
Collapse
Affiliation(s)
- Leon M. Lohse
- Institut für Röntgenphysik, Universität Göttingen, Germany
| | | | | | - Simon Maretzke
- Institut für Röntgenphysik, Universität Göttingen, Germany
| | - Martin Krenkel
- Institut für Röntgenphysik, Universität Göttingen, Germany
| | - Johannes Hagemann
- Institut für Röntgenphysik, Universität Göttingen, Germany
- Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Germany
| |
Collapse
|
16
|
Correlative x-ray phase-contrast tomography and histology of human brain tissue affected by Alzheimer’s disease. Neuroimage 2020; 210:116523. [DOI: 10.1016/j.neuroimage.2020.116523] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/01/2019] [Accepted: 01/05/2020] [Indexed: 12/19/2022] Open
|
17
|
Argunova TS, Kohn VG, Lim JH, Gudkina ZV, Nazarova ED. Computer simulations of X-ray phase-contrast images and microtomographic observation of tubules in dentin. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:462-467. [PMID: 32153285 DOI: 10.1107/s1600577519016503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
An investigation of the problems of X-ray imaging of dentinal tubules is presented. Two main points are addressed. In the first part of this paper, the problem of computer simulating tubule images recorded in a coherent synchrotron radiation (SR) beam has been discussed. A phantom material which involved a two-dimensional lattice of the tubules with parameters similar to those of dentin was considered. By a comparative examination of two approximations, it was found that the method of phase-contrast imaging is valid if the number of tubules along the beam is less than 100. Calculated images from a lattice of 50 × 50 tubules are periodic in free space but depend strongly on the distance between the specimen and the detector. In the second part, SR microtomographic experiments with millimetre-sized dentin samples in a partially coherent beam have been described. Tomograms were reconstructed from experimental projections using a technique for incoherent radiation. The main result of this part is the three-dimensional rendering of the directions of the tubules in a volume of the samples. Generation of the directions is possible because a tomogram shows the positions of the tubules. However, a detailed tubule cross-section structure cannot be restored.
Collapse
Affiliation(s)
- T S Argunova
- Ioffe Institute RAS, Polytekhnicheskaya St 26, 194021 St Petersburg, Russia
| | - V G Kohn
- National Research Centre `Kurchatov Institute', 1 Kurchatov Sq., Moscow, Russia
| | - J H Lim
- Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Namku, Pohang, Republic of Korea
| | - Z V Gudkina
- Ioffe Institute RAS, Polytekhnicheskaya St 26, 194021 St Petersburg, Russia
| | - E D Nazarova
- Ioffe Institute RAS, Polytekhnicheskaya St 26, 194021 St Petersburg, Russia
| |
Collapse
|
18
|
Eckermann M, Töpperwien M, Robisch AL, van der Meer F, Stadelmann C, Salditt T. Phase-contrast x-ray tomography of neuronal tissue at laboratory sources with submicron resolution. J Med Imaging (Bellingham) 2020; 7:013502. [PMID: 32118088 PMCID: PMC7032481 DOI: 10.1117/1.jmi.7.1.013502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/21/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Recently, progress has been achieved in implementing phase-contrast tomography of soft biological tissues at laboratory sources. This opens up opportunities for three-dimensional (3-D) histology based on x-ray computed tomography (μ- and nanoCT) in the direct vicinity of hospitals and biomedical research institutions. Combining advanced x-ray generation and detection techniques with phase reconstruction algorithms, 3-D histology can be obtained even of unstained tissue of the central nervous system, as shown, for example, for biopsies and autopsies of human cerebellum. Depending on the setup, i.e., source, detector, and geometric parameters, laboratory-based tomography can be implemented at very different sizes and length scales. We investigate the extent to which 3-D histology of neuronal tissue can exploit the cone-beam geometry at high magnification M using a nanofocus transmission x-ray tube (nanotube) with a 300 nm minimal spot size (Excillum), combined with a single-photon counting camera. Tightly approaching the source spot with the biopsy punch, we achieve high M≈101−102, high flux density, and exploit the superior efficiency of this detector technology. Approach: Different nanotube configurations such as spot size and flux, M, as well as exposure time, Fresnel number, and coherence are varied and selected in view of resolution, field of view, and/or phase-contrast requirements. Results: The data show that the information content for the cytoarchitecture is enhanced by the phase effect. Comparison of results to those obtained at a microfocus rotating-anode x-ray tomography setup with a high-resolution detector, i.e., in low-M geometry, reveals similar to slightly superior data quality for the nanotube setup. In addition to its compactness, reduced power consumption by a factor of 103, and shorter scan duration, the particular advantage of the nanotube setup also lies in its suitability for pixel detector technology, enabling an increased range of opportunities for applications in laboratory phase-contrast x-ray tomography. Conclusions: The phase retrieval scheme utilized mixes amplitude and phase contrast, with results being robust with respect to reconstruction parameters. Structural information content is comparable to slightly superior to previous results achieved with a microfocus rotating-anode setup but can be obtained in shorter scan time. Beyond advantages as compactness, lowered power consumption, and flexibility, the nanotube setup’s scalability in view of the progress in pixel detector technology is particularly beneficial. Further progress is thus likely to bring 3-D virtual histology to the performance in scan time and throughput required for clinical practice in neuropathology.
Collapse
Affiliation(s)
- Marina Eckermann
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany.,University of Göttingen, Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", Göttingen, Germany
| | - Mareike Töpperwien
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Anna-Lena Robisch
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | | | - Christine Stadelmann
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, Germany
| | - Tim Salditt
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany.,University of Göttingen, Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", Göttingen, Germany
| |
Collapse
|
19
|
Witte K, Späth A, Finizio S, Donnelly C, Watts B, Sarafimov B, Odstrcil M, Guizar-Sicairos M, Holler M, Fink RH, Raabe J. From 2D STXM to 3D Imaging: Soft X-ray Laminography of Thin Specimens. NANO LETTERS 2020; 20:1305-1314. [PMID: 31951418 DOI: 10.1021/acs.nanolett.9b04782] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
X-ray tomography has become an indispensable tool for studying complex 3D interior structures with high spatial resolution. Three-dimensional imaging using soft X-rays offers powerful contrast mechanisms but has seen limited success with tomography due to the restrictions imposed by the much lower energy of the probe beam. The generalized geometry of laminography, characterized by a tilted axis of rotation, provides nm-scale 3D resolution for the investigation of extended (mm range) but thin (μm to nm) samples that are well suited to soft X-ray studies. This work reports on the implementation of soft X-ray laminography (SoXL) at the scanning transmission X-ray spectromicroscope of the PolLux beamline at the Swiss Light Source, Paul Scherrer Institut, which enables 3D imaging of extended specimens from 270 to 1500 eV. Soft X-ray imaging provides contrast mechanisms for both chemical sensitivity to molecular bonds and oxidation states and magnetic dichroism due to the much stronger attenuation of X-rays in this energy range. The presented examples of applications range from functionalized nanomaterials to biological photonic crystals and sophisticated nanoscaled magnetic domain patterns, thus illustrating the wide fields of research that can benefit from SoXL.
Collapse
Affiliation(s)
- Katharina Witte
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Andreas Späth
- Department Chemie und Pharmazie, Physikalische Chemie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Simone Finizio
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Claire Donnelly
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , United Kingdom
| | - Benjamin Watts
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Blagoj Sarafimov
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Michal Odstrcil
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Manuel Guizar-Sicairos
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Mirko Holler
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Rainer H Fink
- Department Chemie und Pharmazie, Physikalische Chemie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Jörg Raabe
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| |
Collapse
|
20
|
Romell J, Vågberg W, Romell M, Häggman S, Ikram S, Hertz HM. Soft-Tissue Imaging in a Human Mummy: Propagation-based Phase-Contrast CT. Radiology 2018; 289:670-676. [DOI: 10.1148/radiol.2018180945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jenny Romell
- From the Department of Applied Physics, Biomedical & X-Ray Physics, KTH Royal Institute of Technology/Albanova University Center, SE-106 91 Stockholm, Sweden (J.R., W.V., H.M.H.); Department of Orthopaedics, Hospital of Varberg, Varberg, Sweden (M.R.); Museum of Mediterranean and Near Eastern Antiquities, Stockholm, Sweden (S.H.); and Department of Sociology, Egyptology and Anthropology, American University in Cairo, Cairo, Egypt (S.I.)
| | - William Vågberg
- From the Department of Applied Physics, Biomedical & X-Ray Physics, KTH Royal Institute of Technology/Albanova University Center, SE-106 91 Stockholm, Sweden (J.R., W.V., H.M.H.); Department of Orthopaedics, Hospital of Varberg, Varberg, Sweden (M.R.); Museum of Mediterranean and Near Eastern Antiquities, Stockholm, Sweden (S.H.); and Department of Sociology, Egyptology and Anthropology, American University in Cairo, Cairo, Egypt (S.I.)
| | - Mikael Romell
- From the Department of Applied Physics, Biomedical & X-Ray Physics, KTH Royal Institute of Technology/Albanova University Center, SE-106 91 Stockholm, Sweden (J.R., W.V., H.M.H.); Department of Orthopaedics, Hospital of Varberg, Varberg, Sweden (M.R.); Museum of Mediterranean and Near Eastern Antiquities, Stockholm, Sweden (S.H.); and Department of Sociology, Egyptology and Anthropology, American University in Cairo, Cairo, Egypt (S.I.)
| | - Sofia Häggman
- From the Department of Applied Physics, Biomedical & X-Ray Physics, KTH Royal Institute of Technology/Albanova University Center, SE-106 91 Stockholm, Sweden (J.R., W.V., H.M.H.); Department of Orthopaedics, Hospital of Varberg, Varberg, Sweden (M.R.); Museum of Mediterranean and Near Eastern Antiquities, Stockholm, Sweden (S.H.); and Department of Sociology, Egyptology and Anthropology, American University in Cairo, Cairo, Egypt (S.I.)
| | - Salima Ikram
- From the Department of Applied Physics, Biomedical & X-Ray Physics, KTH Royal Institute of Technology/Albanova University Center, SE-106 91 Stockholm, Sweden (J.R., W.V., H.M.H.); Department of Orthopaedics, Hospital of Varberg, Varberg, Sweden (M.R.); Museum of Mediterranean and Near Eastern Antiquities, Stockholm, Sweden (S.H.); and Department of Sociology, Egyptology and Anthropology, American University in Cairo, Cairo, Egypt (S.I.)
| | - Hans M. Hertz
- From the Department of Applied Physics, Biomedical & X-Ray Physics, KTH Royal Institute of Technology/Albanova University Center, SE-106 91 Stockholm, Sweden (J.R., W.V., H.M.H.); Department of Orthopaedics, Hospital of Varberg, Varberg, Sweden (M.R.); Museum of Mediterranean and Near Eastern Antiquities, Stockholm, Sweden (S.H.); and Department of Sociology, Egyptology and Anthropology, American University in Cairo, Cairo, Egypt (S.I.)
| |
Collapse
|
21
|
Quantitative morphometric analysis of adult teleost fish by X-ray computed tomography. Sci Rep 2018; 8:16531. [PMID: 30410001 PMCID: PMC6224569 DOI: 10.1038/s41598-018-34848-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Vertebrate models provide indispensable paradigms to study development and disease. Their analysis requires a quantitative morphometric study of the body, organs and tissues. This is often impeded by pigmentation and sample size. X-ray micro-computed tomography (micro-CT) allows high-resolution volumetric tissue analysis, largely independent of sample size and transparency to visual light. Importantly, micro-CT data are inherently quantitative. We report a complete pipeline of high-throughput 3D data acquisition and image analysis, including tissue preparation and contrast enhancement for micro-CT imaging down to cellular resolution, automated data processing and organ or tissue segmentation that is applicable to comparative 3D morphometrics of small vertebrates. Applied to medaka fish, we first create an annotated anatomical atlas of the entire body, including inner organs as a quantitative morphological description of an adult individual. This atlas serves as a reference model for comparative studies. Using isogenic medaka strains we show that comparative 3D morphometrics of individuals permits identification of quantitative strain-specific traits. Thus, our pipeline enables high resolution morphological analysis as a basis for genotype-phenotype association studies of complex genetic traits in vertebrates.
Collapse
|
22
|
High resolution laboratory grating-based X-ray phase-contrast CT. Sci Rep 2018; 8:15884. [PMID: 30367132 PMCID: PMC6203738 DOI: 10.1038/s41598-018-33997-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
The conventional form of computed tomography using X-ray attenuation without any contrast agents is of limited use for the characterization of soft tissue in many fields of medical and biological studies. Grating-based phase-contrast computed tomography (gbPC-CT) is a promising alternative imaging method solving the low soft tissue contrast without the need of any contrast agent. While highly sensitive measurements are possible using conventional X-ray sources the spatial resolution does often not fulfill the requirements for specific imaging tasks, such as visualization of pathologies. The focus of this study is the increase in spatial resolution without loss of sensitivity. To overcome this limitation a super-resolution reconstruction based on sub-pixel shifts involving a deconvolution of the image data during each iteration is applied. In our study we achieve an effective pixel size of 28 μm with a conventional rotating anode tube and a photon-counting detector. We also demonstrate that the method can upgrade existing setups to measure tomographies with higher resolution. The results show the increase in resolution at high sensitivity and with the ability to make quantitative measurements. The combination of sparse sampling and statistical iterative reconstruction may be used to reduce the total measurement time. In conclusion, we present high-quality and high-resolution tomographic images of biological samples to demonstrate the experimental feasibility of super-resolution reconstruction.
Collapse
|
23
|
Lin AY, Ding Y, Vanselow DJ, Katz SR, Yakovlev MA, Clark DP, Mandrell D, Copper JE, van Rossum DB, Cheng KC. Rigid Embedding of Fixed and Stained, Whole, Millimeter-Scale Specimens for Section-free 3D Histology by Micro-Computed Tomography. J Vis Exp 2018. [PMID: 30394379 PMCID: PMC6235553 DOI: 10.3791/58293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
For over a hundred years, the histological study of tissues has been the gold standard for medical diagnosis because histology allows all cell types in every tissue to be identified and characterized. Our laboratory is actively working to make technological advances in X-ray micro-computed tomography (micro-CT) that will bring the diagnostic power of histology to the study of full tissue volumes at cellular resolution (i.e., an X-ray Histo-tomography modality). Toward this end, we have made targeted improvements to the sample preparation pipeline. One key optimization, and the focus of the present work, is a straightforward method for rigid embedding of fixed and stained millimeter-scale samples. Many of the published methods for sample immobilization and correlative micro-CT imaging rely on placing the samples in paraffin wax, agarose, or liquids such as alcohol. Our approach extends this work with custom procedures and the design of a 3-dimensional printable apparatus to embed the samples in an acrylic resin directly into polyimide tubing, which is relatively transparent to X-rays. Herein, sample preparation procedures are described for the samples from 0.5 to 10 mm in diameter, which would be suitable for whole zebrafish larvae and juveniles, or other animals and tissue samples of similar dimensions. As proof of concept, we have embedded the specimens from Danio, Drosophila, Daphnia, and a mouse embryo; representative images from 3-dimensional scans for three of these samples are shown. Importantly, our methodology leads to multiple benefits including rigid immobilization, long-term preservation of laboriously-created resources, and the ability to re-interrogate samples.
Collapse
Affiliation(s)
- Alex Y Lin
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine
| | - Yifu Ding
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine; Medical Scientist Training Program, Penn State College of Medicine
| | - Daniel J Vanselow
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine
| | - Spencer R Katz
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine; Medical Scientist Training Program, Penn State College of Medicine
| | - Maksim A Yakovlev
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine
| | - Darin P Clark
- Center for In Vivo Microscopy, Duke University Medical Center
| | | | - Jean E Copper
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine
| | - Damian B van Rossum
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine
| | - Keith C Cheng
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine;
| |
Collapse
|
24
|
Goyens J, Vasilopoulou-Kampitsi M, Claes R, Sijbers J, Mancini L. Enhanced contrast in X-ray microtomographic images of the membranous labyrinth using different X-ray sources and scanning modes. J Anat 2018; 233:770-782. [PMID: 30277260 DOI: 10.1111/joa.12885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
The vestibular system, located in the inner ear, plays a crucial role in balance and gaze stabilisation by sensing head movements. The interconnected tubes with membranous walls of the vestibular system are located in the skull bone (the 'membranous labyrinth'). Unfortunately, these membranes are very hard to visualise using three-dimensional (3D) X-ray imaging techniques. This difficulty arises due to the embedment of the membranes in the dense skull bone, the thinness of the membranes, and the small difference in X-ray absorption between the membranes and the surrounding fluid. In this study, we compared the visualisation of very small specimens (lizard heads with vestibular systems smaller than 3 mm) by X-ray computed micro-tomography (μCT) based on synchrotron radiation and conventional sources. A visualisation protocol using conventional X-ray μCT would be very useful thanks to the ease of access and lower cost. Careful optimisation of the acquisition parameters enables detection of the membranes by using μCT scanners based on conventional microfocus sources, but in some cases a low contrast-to-noise ratio (CNR) prevents fast and reliable segmentation of the membranes. Synchrotron radiation μCT proved to be preferable for the visualisation of the small samples with very thin membranes, because of their high demands for spatial and contrast resolution. The best contrast was obtained by using synchrotron radiation μCT working in phase-contrast mode, leading to up to twice as high CNRs than the best conventional μCT results. The CNR of the synchrotron radiation μCT scans was sufficiently high enough to enable the construction of a 3D model by the means of semi-automatic segmentation of the membranous labyrinth. Membrane thickness was found to range between 2.7 and 36.3 μm. Hence, the minimal membrane thickness was found to be much smaller than described previously in the literature (between 10 and 50 μm).
Collapse
Affiliation(s)
- Jana Goyens
- Laboratory of Functional Morphology, University of Antwerp, Antwerp, Belgium
| | | | - Raf Claes
- Laboratory of Functional Morphology, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- Imec-Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Lucia Mancini
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| |
Collapse
|
25
|
Bailly L, Cochereau T, Orgéas L, Henrich Bernardoni N, Rolland du Roscoat S, McLeer-Florin A, Robert Y, Laval X, Laurencin T, Chaffanjon P, Fayard B, Boller E. 3D multiscale imaging of human vocal folds using synchrotron X-ray microtomography in phase retrieval mode. Sci Rep 2018; 8:14003. [PMID: 30228304 PMCID: PMC6143640 DOI: 10.1038/s41598-018-31849-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Human vocal folds possess outstanding abilities to endure large, reversible deformations and to vibrate up to more than thousand cycles per second. This unique performance mainly results from their complex specific 3D and multiscale structure, which is very difficult to investigate experimentally and still presents challenges using either confocal microscopy, MRI or X-ray microtomography in absorption mode. To circumvent these difficulties, we used high-resolution synchrotron X-ray microtomography with phase retrieval and report the first ex vivo 3D images of human vocal-fold tissues at multiple scales. Various relevant descriptors of structure were extracted from the images: geometry of vocal folds at rest or in a stretched phonatory-like position, shape and size of their layered fibrous architectures, orientation, shape and size of the muscle fibres as well as the set of collagen and elastin fibre bundles constituting these layers. The developed methodology opens a promising insight into voice biomechanics, which will allow further assessment of the micromechanics of the vocal folds and their vibratory properties. This will then provide valuable guidelines for the design of new mimetic biomaterials for the next generation of artificial larynges.
Collapse
Affiliation(s)
- Lucie Bailly
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, F-38000, France.
| | - Thibaud Cochereau
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, F-38000, France.,Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, F-38000, France
| | - Laurent Orgéas
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, F-38000, France
| | | | | | - Anne McLeer-Florin
- Univ. Grenoble Alpes, CHU Grenoble Alpes, CNRS, Grenoble INP, IAB, Grenoble, F-38000, France
| | - Yohann Robert
- Univ. Grenoble Alpes, CHU Grenoble Alpes, LADAF, Grenoble, F-38000, France
| | - Xavier Laval
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, F-38000, France
| | - Tanguy Laurencin
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, F-38000, France
| | - Philippe Chaffanjon
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, F-38000, France.,Univ. Grenoble Alpes, CHU Grenoble Alpes, LADAF, Grenoble, F-38000, France
| | | | - Elodie Boller
- ID19 beamline, ESRF - European Synchrotron Radiation Facility, CS40220, Grenoble, 38043, France
| |
Collapse
|
26
|
Vågberg W, Persson J, Szekely L, Hertz HM. Cellular-resolution 3D virtual histology of human coronary arteries using x-ray phase tomography. Sci Rep 2018; 8:11014. [PMID: 30030461 PMCID: PMC6054690 DOI: 10.1038/s41598-018-29344-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 07/11/2018] [Indexed: 11/27/2022] Open
Abstract
High-spatial-resolution histology of coronary artery autopsy samples play an important role for understanding heart disease such as myocardial infarction. Unfortunately, classical histology is often destructive, has thick slicing, requires extensive sample preparation, and is time-consuming. X-ray micro-CT provides fast nondestructive 3D imaging but absorption contrast is often insufficient, especially for observing soft-tissue features with high resolution. Here we show that propagation-based x-ray phase-contrast tomography has the resolution and contrast to image clinically relevant soft-tissue features in intact coronary artery autopsy samples with cellular resolution. We observe microscopic lipid-rich plaques, individual adipose cells, ensembles of few foam cells, and the thin fibrous cap. The method relies on a small-spot laboratory x-ray microfocus source, and provides high-spatial resolution in all three dimensions, fast data acquisition, minimum sample distortion and requires no sample preparation.
Collapse
Affiliation(s)
- William Vågberg
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm, Sweden.
| | - Jonas Persson
- Karolinska Institutet, Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Stockholm, Sweden
| | - Laszlo Szekely
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.,Department of Pathology, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hans M Hertz
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm, Sweden
| |
Collapse
|
27
|
Abstract
Unlike conventional x-ray attenuation one of the advantages of phase contrast x-ray imaging is its capability of extracting useful physical properties of the sample. In particular the possibility to obtain information from small angle scattering about unresolvable structures with sub-pixel resolution sensitivity has drawn attention for both medical and material science applications. We report on a novel algorithm for the analyzer based x-ray phase contrast imaging modality, which allows the robust separation of absorption, refraction and scattering effects from three measured x-ray images. This analytical approach is based on a simple Gaussian description of the analyzer transmission function and this method is capable of retrieving refraction and small angle scattering angles in the full angular range typical of biological samples. After a validation of the algorithm with a simulation code, which demonstrated the potential of this highly sensitive method, we have applied this theoretical framework to experimental data on a phantom and biological tissues obtained with synchrotron radiation. Owing to its extended angular acceptance range the algorithm allows precise assessment of local scattering distributions at biocompatible radiation doses, which in turn might yield a quantitative characterization tool with sufficient structural sensitivity on a submicron length scale.
Collapse
|
28
|
Vågberg W, Larsson JC, Hertz HM. Removal of ring artifacts in microtomography by characterization of scintillator variations. OPTICS EXPRESS 2017; 25:23191-23198. [PMID: 29041621 DOI: 10.1364/oe.25.023191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Ring artifacts reduce image quality in tomography, and arise from faulty detector calibration. In microtomography, we have identified that ring artifacts can arise due to high-spatial frequency variations in the scintillator thickness. Such variations are normally removed by a flat-field correction. However, as the spectrum changes, e.g. due to beam hardening, the detector response varies non-uniformly introducing ring artifacts that persist after flat-field correction. In this paper, we present a method to correct for ring artifacts from variations in scintillator thickness by using a simple method to characterize the local scintillator response. The method addresses the actual physical cause of the ring artifacts, in contrary to many other ring artifact removal methods which rely only on image post-processing. By applying the technique to an experimental phantom tomography, we show that ring artifacts are strongly reduced compared to only making a flat-field correction.
Collapse
|
29
|
Maskless X-Ray Writing of Electrical Devices on a Superconducting Oxide with Nanometer Resolution and Online Process Monitoring. Sci Rep 2017; 7:9066. [PMID: 28831111 PMCID: PMC5567384 DOI: 10.1038/s41598-017-09443-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
X-ray nanofabrication has so far been usually limited to mask methods involving photoresist impression and subsequent etching. Herein we show that an innovative maskless X-ray nanopatterning approach allows writing electrical devices with nanometer feature size. In particular we fabricated a Josephson device on a Bi2Sr2CaCu2O8+δ (Bi-2212) superconducting oxide micro-crystal by drawing two single lines of only 50 nm in width using a 17.4 keV synchrotron nano-beam. A precise control of the fabrication process was achieved by monitoring in situ the variations of the device electrical resistance during X-ray irradiation, thus finely tuning the irradiation time to drive the material into a non-superconducting state only in the irradiated regions, without significantly perturbing the crystal structure. Time-dependent finite element model simulations show that a possible microscopic origin of this effect can be related to the instantaneous temperature increase induced by the intense synchrotron picosecond X-ray pulses. These results prove that a conceptually new patterning method for oxide electrical devices, based on the local change of electrical properties, is actually possible with potential advantages in terms of heat dissipation, chemical contamination, miniaturization and high aspect ratio of the devices.
Collapse
|
30
|
Hu J, Li P, Yin X, Wu T, Cao Y, Yang Z, Jiang L, Hu S, Lu H. Nondestructive imaging of the internal microstructure of vessels and nerve fibers in rat spinal cord using phase-contrast synchrotron radiation microtomography. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:482-489. [PMID: 28244444 DOI: 10.1107/s1600577517000121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The spinal cord is the primary neurological link between the brain and other parts of the body, but unlike those of the brain, advances in spinal cord imaging have been challenged by the more complicated and inhomogeneous anatomy of the spine. Fortunately with the advancement of high technology, phase-contrast synchrotron radiation microtomography has become widespread in scientific research because of its ability to generate high-quality and high-resolution images. In this study, this method has been employed for nondestructive imaging of the internal microstructure of rat spinal cord. Furthermore, digital virtual slices based on phase-contrast synchrotron radiation were compared with conventional histological sections. The three-dimensional internal microstructure of the intramedullary arteries and nerve fibers was vividly detected within the same spinal cord specimen without the application of a stain or contrast agent or sectioning. With the aid of image post-processing, an optimization of vessel and nerve fiber images was obtained. The findings indicated that phase-contrast synchrotron radiation microtomography is unique in the field of three-dimensional imaging and sets novel standards for pathophysiological investigations in various neurovascular diseases.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Ping Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200135, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhiming Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shiping Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
31
|
Larsson DH, Vågberg W, Yaroshenko A, Yildirim AÖ, Hertz HM. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography. Sci Rep 2016; 6:39074. [PMID: 27958376 PMCID: PMC5153650 DOI: 10.1038/srep39074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/17/2016] [Indexed: 01/06/2023] Open
Abstract
X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.
Collapse
Affiliation(s)
- Daniel H. Larsson
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 106 91 Stockholm, Sweden
| | - William Vågberg
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 106 91 Stockholm, Sweden
| | - Andre Yaroshenko
- Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans M. Hertz
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 106 91 Stockholm, Sweden
| |
Collapse
|