1
|
Babaahmadi M, Dibaji F, Vatanpour M, Aminsobhani M, Sarraf P, Khoshkhounejad M. Effects of SWEEPS-Activated Irrigation and Other Methods for Elimination of Intracanal Medicaments on Push-Out Bond Strength of NeoMTA2 to Root Dentin: An In Vitro Study. ScientificWorldJournal 2025; 2025:7246588. [PMID: 39963653 PMCID: PMC11832256 DOI: 10.1155/tswj/7246588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Objectives: This study evaluated the effects of laser-assisted irrigation, conventional syringe irrigation (CSI), and passive ultrasonic irrigation (PUI) for elimination of intracanal medicaments on push-out bond strength (PBS) of NeoMTA2 to root dentin. Materials and Methods: In this in vitro study, 150 extracted single-rooted mandibular premolars were decoronated and standardized with a certain root length. The canals were instrumented to simulate immature roots and randomly assigned to three experimental groups (n = 45) using either triple antibiotic paste (TAP), double antibiotic paste (DAP), or calcium hydroxide (CH) as intracanal medicament and one no-medicament control group (n = 15). After 28 days, the experimental groups were randomly divided into three subgroups (n = 15) according to the irrigation method using either erbium-doped yttrium aluminum garnet (Er:YAG) laser shockwave-enhanced emission photoacoustic streaming (SWEEPS), CSI, or PUI. A dentinal ring was then obtained from the coronal part of each root, and its lumen was densely filled with NeoMTA2. After 1 week, the PBS was measured using a universal testing machine. Data were analyzed by ANOVA and Tukey and Dunnett tests (alpha = 0.05). Results: The interaction effect of the irrigation technique and medicament type on PBS was significant (p < 0.05). The PBS in all groups was significantly lower than the control group (p < 0.01) except in CH-SWEEPS (p = 0.741). In the experimental groups, the PBS of the SWEEPS subgroup was significantly higher than other subgroups (p < 0.001). The PBS of PUI was higher than CSI in CH and TAP groups (p < 0.001). The PBS of CH was significantly higher than TAP in CSI, and DAP and TAP in PUI and SWEEPS groups (p < 0.05). Conclusion: In this in vitro study, regardless of the irrigation method, higher PBS of NeoMTA2 to root dentin was achieved in CH groups compared to TAP. A higher PBS was also achieved when SWEEPS and PUI methods were used to eliminate CH in comparison to TAP and DAP.
Collapse
Affiliation(s)
- Maryam Babaahmadi
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Dibaji
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Vatanpour
- Department of Endodontics, School of Dentistry, Islamic Azad University Tehran, Tehran, Iran
| | - Mohsen Aminsobhani
- Department of Endodontics, Dental Research Center, AJA and Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Sarraf
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehrfam Khoshkhounejad
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Bajoria S, Shetty SR, Bandela V, Sonune S, Mohamed RN, Nandalur KR, Nagarajappa AK, Aljohani AO, Alsattam AA, Alruwaili EM, Alnuman AA, Alahmed MA, Kanaparthi S, Helal DAA. Evaluation and Comparison of the Effect of Three Dental Luting Cements on Mineralized Bone Derived from Dental Pulp Stem Cells: An In Vitro Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1622. [PMID: 39459409 PMCID: PMC11509513 DOI: 10.3390/medicina60101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: This study aimed to investigate the effect of zinc phosphate (ZnP) cement, glass ionomer cement (GIC), and nano-integrated bio-ceramic (NIB) cement on mineralization when placed in contact with bone tissue-forming cells. Materials and Methods: ZnP cement, GIC, and NIB cement were divided into direct and indirect groups. A total of 72 cement pellets (24 pellets of each test sample) of 3 × 1 mm (width × height) were prepared using polytetrafluoroethylene molds. A total of 3 sample groups were demarcated using 96- cell well culture plates. In the control group, 24 wells were filled with mineralized osteoblasts and 1 µL of gingival crevicular fluid (GCF). In test group 1, to show a direct effect, 36 samples were plated with mineralized osteoblasts and 1 µL GCF for 24 h; the cells were directly exposed to cement pellets. A total of 36 samples were immersed in GCF for 24 h; later the supernatant was transferred to the mineralized osteoblasts to demonstrate an indirect effect in test group 2. To assess the mineralization, osteoblasts were stained with alizarin red and later observed under an inverted phase-contrast microscope. Data were analyzed using the statistical package for social sciences. An independent t-test compared the direct and indirect effects of the ZnP cement, GIC, NIB cement, and control groups on the mineralization of osteoblasts derived from hDPCs. Results: A statistically significant difference was observed between the ZnP cement, GIC, and NIB cement groups (p < 0.05). ZnP cement exhibited a moderate, NIB cement the least harmful effect, and GIC showed the most harmful effect on the mineralization of osteoblast cells. Conclusions: The biocompatibility of dental luting cements is an important aspect that clinicians should consider during their selection. Nano-integrated bio-ceramic cement showed the least negative effect on the mineralization of osteoblast cells which is beneficial for the cementation of cement-retained implant prostheses. However, further studies are needed to evaluate osteoblast and osteoclast activity in vivo.
Collapse
Affiliation(s)
- Sneha Bajoria
- Specialist in Prosthetic Dentistry, DenStop Dental Clinic, Mahendra Road, Kolkata 700025, West Bengal, India;
| | - Shwetha Rajesh Shetty
- Specialist in Prosthetic Dentistry, Rajesh Shetty’s Dental Speciality Centre, Morwada, Pimpri, Pune 410014, Maharashtra, India;
| | - Vinod Bandela
- Department of Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka 72388, Saudi Arabia; (S.S.); (A.O.A.); (D.A.A.H.)
| | - Shital Sonune
- Department of Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka 72388, Saudi Arabia; (S.S.); (A.O.A.); (D.A.A.H.)
| | - Roshan Noor Mohamed
- Department of Preventive Dentistry, Pediatric Dentistry Division, Faculty of Dentistry, Taif University, Taif 11099, Saudi Arabia;
| | - Kulashekar Reddy Nandalur
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Anil Kumar Nagarajappa
- Department of Oral Surgery and Maxillofacial Diagnostics, College of Dentistry, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Amjad Obaid Aljohani
- Department of Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka 72388, Saudi Arabia; (S.S.); (A.O.A.); (D.A.A.H.)
| | - Aljowharah Ali Alsattam
- College of Dentistry, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.A.); (E.M.A.); (A.A.A.); (M.A.A.)
| | - Eatedal Mukhlef Alruwaili
- College of Dentistry, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.A.); (E.M.A.); (A.A.A.); (M.A.A.)
| | - Alreem Abdulaziz Alnuman
- College of Dentistry, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.A.); (E.M.A.); (A.A.A.); (M.A.A.)
| | - Miad Abdulnasser Alahmed
- College of Dentistry, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.A.); (E.M.A.); (A.A.A.); (M.A.A.)
| | - Saraswathi Kanaparthi
- LikeKare Dental Clinic & Implant Center, Saidabad, Hyderabad 500070, Telangana, India;
| | - Doaa Abdelaziz A. Helal
- Department of Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka 72388, Saudi Arabia; (S.S.); (A.O.A.); (D.A.A.H.)
| |
Collapse
|
3
|
Al–Saudi KW. A paradigm shift from calcium hydroxide to bioceramics in direct pulp capping: A narrative review. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:2-10. [PMID: 38389743 PMCID: PMC10880475 DOI: 10.4103/jcd.jcd_241_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Accepted: 07/13/2023] [Indexed: 02/24/2024]
Abstract
For many years, calcium hydroxide (CH) was the preferred material for direct pulp capping (DPC), occupying an elevated position. The collapse of this paradigm is due to the emergence of bioceramics with less pulpal inflammation and superior mineralization abilities than CH. The goal of the current article was directed to: (1) review the history of DPC "the idea of an exposed pulp as a hopeless organ has given way to one of healing and optimism," (2) classify the bioceramics in dentistry, and (3) explain and compare the mechanism by which dentin barriers for CH and bioceramics are formed. A comprehensive literature search of the database was conducted using PubMed, Google Scholar, and Scopus utilizing the following terms: Biodentine, calcium hydroxide, calcium aluminate, calcium phosphate, calcium silicate, direct pulp capping, NeoMTA Plus, Quick-Set2, and TotalFill. Reference mining of the selected publications was utilized to discover other studies and strengthen the results. Only works written in English were taken into consideration, and there were no restrictions on the year of publication. Bioceramic materials might be used as an intriguing substitute for CH. Compared to CH, they induced more positive pulpal reactions.
Collapse
Affiliation(s)
- Khaled Wagih Al–Saudi
- Department of Conservative Dentistry, Faculty of Oral and Dental Medicine, Nahda University, Beni Suef, Egypt
| |
Collapse
|
4
|
Yousefi-Koma AA, Assadian H, Mohaghegh S, Nokhbatolfoghahaei H. Comparative Biocompatibility and Odonto-/Osteogenesis Effects of Hydraulic Calcium Silicate-Based Cements in Simulated Direct and Indirect Approaches for Regenerative Endodontic Treatments: A Systematic Review. J Funct Biomater 2023; 14:446. [PMID: 37754860 PMCID: PMC10532331 DOI: 10.3390/jfb14090446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Regenerative dentistry is the operation of restoring dental, oral and maxillofacial tissues. Currently, there are no guidelines for the ideal cement/material in regenerative endodontic treatments (RET). Hydraulic calcium silicate-based cements (hCSCs) are currently the material of choice for RET. OBJECTIVES This systematic review was conducted to gather all of the different direct and indirect approaches of using hCSCs in RET in vitro and in vivo, and to ascertain if there are any superiorities to indirect approaches. METHODS AND MATERIALS This systematic review was conducted according to the 2020 PRISMA guidelines. The study question according to the PICO format was as follows: Comparison of the biological behavior (O) of stem cells (P) exposed to hCSCs through direct and indirect methods (I) with untreated stem cells (C). An electronic search was executed in Scopus, Google Scholar, and PubMed. RESULTS A total of 78 studies were included. Studies were published between 2010 and 2022. Twenty-eight commercially available and eighteen modified hCSCs were used. Seven exposure methods (four direct and three indirect contacts) were assessed. ProRoot MTA and Biodentine were the most used hCSCs and had the most desirable results. hCSCs were either freshly mixed or set before application. Most studies allowed hCSCs to set in incubation for 24 h before application, which resulted in the most desirable biological outcomes. Freshly mixed hCSCs had the worst outcomes. Indirect methods had significantly better viability/proliferation and odonto-/osteogenesis outcomes. CONCLUSION Biodentine and ProRoot MTA used in indirect exposure methods result in desirable biological outcomes.
Collapse
Affiliation(s)
- Amir-Ali Yousefi-Koma
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Hadi Assadian
- Department of Endodontics, Tehran University of Medical Sciences, Tehran 1417614418, Iran
| | - Sadra Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| |
Collapse
|
5
|
Song W, Li S, Tang Q, Chen L, Yuan Z. In vitro biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review). Int J Mol Med 2021; 48:128. [PMID: 34013376 PMCID: PMC8136140 DOI: 10.3892/ijmm.2021.4961] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years. In addition to excellent physical and chemical properties, the biocompatibility and bioactivity of calcium silicate-based bioceramics also serve an important role in endodontics according to previous research reports. Firstly, bioceramics affect cellular behavior of cells such as stem cells, osteoblasts, osteoclasts, fibroblasts and immune cells. On the other hand, cell reaction to bioceramics determines the effect of wound healing and tissue repair following bioceramics implantation. The aim of the present review was to provide an overview of calcium silicate-based bioceramics currently applied in endodontics, including mineral trioxide aggregate, Bioaggregate, Biodentine and iRoot, focusing on their in vitro biocompatibility and bioactivity. Understanding their underlying mechanism may help to ensure these materials are applied appropriately in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
6
|
Babaki D, Yaghoubi S, Matin MM. The effects of mineral trioxide aggregate on osteo/odontogenic potential of mesenchymal stem cells: a comprehensive and systematic literature review. Biomater Investig Dent 2020; 7:175-185. [PMID: 33313519 PMCID: PMC7717865 DOI: 10.1080/26415275.2020.1848432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
The significance of dental materials in dentin-pulp complex tissue engineering is undeniable. The mechanical properties and bioactivity of mineral trioxide aggregate (MTA) make it a promising biomaterial for future stem cell-based endodontic therapies. There are numerous in vitro studies suggesting the low cytotoxicity of MTA towards various types of cells. Moreover, it has been shown that MTA can enhance mesenchymal stem cells' (MSCs) osteo/odontogenic ability. According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA), a literature review was conducted in the Medline, PubMed, and Scopus databases. Among the identified records, the cytotoxicity and osteo/odontoblastic potential of MTA or its extract on stem cells were investigated. Previous studies have discovered the differentiation-inducing potential of MTA on MSCs, providing a background for dentin-pulp complex cell therapies using the MTA, however, animal trials are needed before moving into clinical trials. In conclusion, MTA can be a promising candidate dental biomaterial for futuristic stem cell-based endodontic therapies.
Collapse
Affiliation(s)
- Danial Babaki
- Department of Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, USA
| | - Sanam Yaghoubi
- Visiting Scholar at Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Sun Q, Meng M, Steed JN, Sidow SJ, Bergeron BE, Niu LN, Ma JZ, Tay FR. Manoeuvrability and biocompatibility of endodontic tricalcium silicate-based putties. J Dent 2020; 104:103530. [PMID: 33220332 DOI: 10.1016/j.jdent.2020.103530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The present study evaluated the indentation depth, storage modulus and biocompatibility of an experimental endodontic putty designed for endodontic perforation repair and direct pulp-capping (NeoPutty). The results were compared with the properties associated with the commercially available EndoSequence BC RRM Putty (ES Putty). METHODS Indentation depth was measured by a profilometer following indentation with the 1/4 lb Gilmore needle. Elastic modulus was evaluated using a strain-controlled rheometer. The effects of eluents derived from these two putties were examined on the viability and proliferation of human dental pulp stem cells (hDPSCs) and human periodontal ligament fibroblasts (hPDLFs), before (1 st testing cycle) and after complete setting (2nd testing cycle). RESULTS The ES Putty became more difficult to ident and acquired a larger storage modulus after exposure to atmospheric moisture. Biocompatibility results indicated that both putties were relatively more cytotoxic than the bioinert Teflon negative control, but much less cytotoxic than the zinc oxide-eugenol cement negative control. NeoPutty was less cytotoxic than ES putty in the 1st testing cycle, particularly with hDPSCs. Both putties exhibited more favourable cytotoxicity profiles after complete setting. CONCLUSIONS NeoPutty has a better window of maneuverability after exposure to atmospheric moisture. From an in vitro cytotoxicity perspective, the NeoPutty may be considered more biocompatible than ES putty. CLINICAL SIGNIFICANCE The experimental NeoPutty is biocompatible and is capable of reducing the frustration of shortened shelf life when jar-stored endodontic putties are exposed to atmospheric moisture during repeated opening of the lid for clinical retrieval.
Collapse
Affiliation(s)
- Qin Sun
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jeffrey N Steed
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Stephanie J Sidow
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Brian E Bergeron
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jing-Zhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
8
|
Song W, Sun W, Chen L, Yuan Z. In vivo Biocompatibility and Bioactivity of Calcium Silicate-Based Bioceramics in Endodontics. Front Bioeng Biotechnol 2020; 8:580954. [PMID: 33195142 PMCID: PMC7658386 DOI: 10.3389/fbioe.2020.580954] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Endodontic therapy aims to preserve or repair the activity and function of pulp and periapical tissues. Due to their excellent biological features, a substantial number of calcium silicate-based bioceramics have been introduced into endodontics and simultaneously increased the success rate of endodontic treatment. The present manuscript describes the in vivo biocompatibility and bioactivity of four types of calcium silicate-based bioceramics in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
9
|
Pedano MS, Li X, Yoshihara K, Landuyt KV, Van Meerbeek B. Cytotoxicity and Bioactivity of Dental Pulp-Capping Agents towards Human Tooth-Pulp Cells: A Systematic Review of In-Vitro Studies and Meta-Analysis of Randomized and Controlled Clinical Trials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2670. [PMID: 32545425 PMCID: PMC7345102 DOI: 10.3390/ma13122670] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Background. In the era of biology-driven endodontics, vital pulp therapies are regaining popularity as a valid clinical option to postpone root-canal treatment. In this sense, many different materials are available in the market for pulp-capping purposes. Objectives. The main aim of this systematic review and meta-analysis was to examine literature regarding cytotoxicity and bioactivity of pulp-capping agents by exposure of human dental pulp cells of primary origin to these materials. A secondary objective was to evaluate the inflammatory reaction and reparative dentin-bridge formation induced by the different pulp-capping agents on human pulp tissue. Data sources. A literature search strategy was carried out on PubMed, EMBASE and the Web of Science databases. The last search was done on 1 May 2020. No filters or language restrictions were initially applied. Two researchers independently selected the studies and extracted the data. Study selection included eligibility criteria, participants and interventions, study appraisal and synthesis methods. In vitro studies were included when human dental pulp cells of primary origin were (in)directly exposed to pulp-capping agents. Parallel or split-mouth randomized or controlled clinical trials (RCT or CCT) were selected to investigate the effects of different pulp-capping agents on the inflammation and reparative bridge-formation capacity of human pulp tissue. Data were synthesized via odds ratios (95% confidence interval) with fixed or random effects models, depending on the homogeneity of the studies. The relative risks (95% confidence interval) were presented for the sake of interpretation. Results. In total, 26 in vitro and 30 in vivo studies were included in the systematic review and meta-analysis, respectively. The qualitative analysis of in vitro data suggested that resin-free hydraulic calcium-silicate cements promote cell viability and bioactivity towards human dental pulp cells better than resin-based calcium-silicate cements, glass ionomers and calcium-hydroxide cements. The meta-analysis of the in vivo studies indicated that calcium-hydroxide powder/saline promotes reparative bridge formation better than the popular commercial resin-free calcium-silicate cement Pro-Root MTA (Dentsply-Sirona), although the difference was borderline non-significant (p = 0.06), and better than calcium-hydroxide cements (p < 0.0001). Moreover, resin-free pulp-capping agents fostered the formation of a complete reparative bridge better than resin-based materials (p < 0.001). On the other hand, no difference was found among the different materials tested regarding the inflammatory effect provoked at human pulp tissue. Conclusions. Calcium-hydroxide (CH) powder and Pro-Root MTA (Dentsply-Sirona) have shown excellent biocompatibility in vitro and in vivo when tested on human cells and teeth. Their use after many years of research and clinical experience seems safe and proven for vital pulp therapy in healthy individuals, given that an aseptic environment (rubber dam isolation) is provided. Although in vitro evidence suggests that most modern hydraulic calcium-silicate cements promote bioactivity when exposed to human dental pulp cells, care should be taken when these new materials are clinically applied in patients, as small changes in their composition might have big consequences on their clinical efficacy. Key findings (clinical significance). Pure calcium-hydroxide powder/saline and the commercial resin-free hydraulic calcium-silicate cement Pro-Root MTA (Dentsply-Sirona) are the best options to provide a complete reparative bridge upon vital pulp therapy. Systematic review registration number. PROSPERO registration number: CRD42020164374.
Collapse
Affiliation(s)
- Mariano S. Pedano
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Xin Li
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, 2217-14 Hayashi-Cho, Takamaysu, Kagawa 761-0395, Japan;
- Department of Pathology & Experimental Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kirsten Van Landuyt
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| |
Collapse
|
10
|
Primus CM, Tay FR, Niu LN. Bioactive tri/dicalcium silicate cements for treatment of pulpal and periapical tissues. Acta Biomater 2019; 96:35-54. [PMID: 31146033 PMCID: PMC6717675 DOI: 10.1016/j.actbio.2019.05.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Over 2500 articles and 200 reviews have been published on the bioactive tri/dicalcium silicate dental materials. The indications have expanded since their introduction in the 1990s from endodontic restorative and pulpal treatments to endodontic sealing and obturation. Bioactive ceramics, based on tri/dicalcium silicate cements, are now an indispensable part of the contemporary dental armamentarium for specialists including endodontists, pediatric dentists, oral surgeons andfor general dentists. This review emphasizes research on how these materials have conformed to international standards for dental materials ranging from biocompatibility (ISO 7405) to conformance as root canal sealers (ISO 6876). Potential future developments of alternative hydraulic materials were included. This review provides accurate materials science information on these important materials. STATEMENT OF SIGNIFICANCE: The broadening indications and the proliferation of tri/dicalcium silicate-based products make this relatively new dental material important for all dentists and biomaterials scientists. Presenting the variations in compositions, properties, indications and clinical performance enable clinicians to choose the material most suitable for their cases. Researchers may expand their bioactive investigations to further validate and improve materials and outcomes.
Collapse
Affiliation(s)
- Carolyn M Primus
- Department of Endodontics, The Dental College of Georgia, Augusta University, USA.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, USA
| | - Li-Na Niu
- Department of Endodontics, The Dental College of Georgia, Augusta University, USA; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Hena, China
| |
Collapse
|
11
|
Wang S, Xia Y, Ma T, Weir MD, Ren K, Reynolds MA, Shu Y, Cheng L, Schneider A, Xu HHK. Novel metformin-containing resin promotes odontogenic differentiation and mineral synthesis of dental pulp stem cells. Drug Deliv Transl Res 2019; 9:85-96. [PMID: 30465181 DOI: 10.1007/s13346-018-00600-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This represents the first report on the development of metformin-containing dental resins. The objectives were to use the resin as a carrier to deliver metformin locally to stimulate dental cells for dental tissue regeneration and to investigate the effects on odontogenic differentiation of dental pulp stem cells (DPSCs) and mineral synthesis. Metformin was incorporated into a resin at 20% by mass as a model system. DPSC proliferation attaching on resins was evaluated. Dentin sialophosphoprotein (DSPP), dentin matrix phosphoprotein 1 (DMP-1), alkaline phosphatase (ALP), and runt-related transcription factor 2 (Runx2) genes expressions were measured. ALP activity and alizarin red staining (ARS) of mineral synthesis by the DPSCs on resins were determined. DPSCs on metformin-containing resin proliferated well (mean ± SD; n = 6), and the number of cells increased by 4-fold from 1 to 14 days (p > 0.1). DSPP, ALP, and DMP-1 gene expressions of DPSCs on metformin resin were much higher than DPSCs on control resin without metformin (p < 0.05). ALP activity of metformin group was 70% higher than that without metformin at 14 days (p < 0.05). Mineral synthesis by DPSCs on metformin-containing resin at 21 days was 9-fold that without metformin (p < 0.05). A novel metformin-containing resin was developed, achieving substantial enhancement of odontoblastic differentiation of DPSCs and greater mineral synthesis. The metformin resin is promising for deep cavities and perforated cavities to stimulate DPSCs for tertiary dentin formation, for tooth root coatings with metformin release for periodontal regeneration, and for root canal fillings with apical lesions to stimulate bone regeneration.
Collapse
Affiliation(s)
- Suping Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral, Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Yang Xia
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Ke Ren
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral, Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Synergistic potential of 1α,25-dihydroxyvitamin D3 and calcium-aluminate-chitosan scaffolds with dental pulp cells. Clin Oral Investig 2019; 24:663-674. [PMID: 31119382 DOI: 10.1007/s00784-019-02906-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 04/04/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVES This study aimed to develop a porous chitosan-calcium-aluminate scaffold (CH-AlCa) in combination with a bioactive dosage of 1α,25-dihydroxyvitamin D3 (1α,25VD), to be used as a bioactive substrate capable to increase the odontogenic potential of human dental pulp cells (HDPCs). MATERIALS AND METHODS The porous CH-AlCa was developed by the incorporation of an AlCa suspension into a CH solution under vigorous agitation, followed by phase separation at low temperature. Scaffold architecture, porosity, and calcium release were evaluated. Thereafter, the synergistic potential of CH-AlCa and 1 nM 1α,25VD, selected by a dose-response assay, for HDPCs seeded onto the materials was assessed. RESULTS The CH-AlCa featured an organized and interconnected pore network, with increased porosity in comparison with that of plain chitosan scaffolds (CH). Increased odontoblastic phenotype expression on the human dental pulp cell (HDPC)/CH and HDPC/CH-AlCa constructs in the presence of 1 nM 1α,25VD was detected, since alkaline phosphatase activity, mineralized matrix deposition, dentin sialophosphoprotein/dentin matrix acidic phosphoprotein 1 mRNA expression, and cell migration were overstimulated. This drug featured a synergistic effect with CH-AlCa, since the highest values of cell migration and odontoblastic markers expression were observed in this experimental condition. CONCLUSIONS The experimental CH-AlCa scaffold increases the chemotaxis and regenerative potential of HDPCs, and the addition of low-dosage 1α,25VD to this scaffold enhances the potential of these cells to express an odontoblastic phenotype. CLINICAL RELEVANCE Chitosan scaffolds enriched with calcium-aluminate in association with low dosages of 1α,25-dihydroxyvitamin D3 provide a highly bioactive microenvironment for dental pulp cells prone to dentin regeneration, thus providing potential as a cell-free tissue engineering system for direct pulp capping.
Collapse
|
13
|
Walsh RM, Woodmansey KF, He J, Svoboda KK, Primus CM, Opperman LA. Histology of NeoMTA Plus and Quick-Set2 in Contact with Pulp and Periradicular Tissues in a Canine Model. J Endod 2019; 44:1389-1395. [PMID: 30144833 DOI: 10.1016/j.joen.2018.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION NeoMTA Plus (Avalon Biomed Inc, Bradenton, FL) is a tricalcium silicate material similar to the first mineral trioxide aggregate product, ProRoot MTA (Dentsply Sirona, York, PA), but with improvements such as decreased setting time, increased ion release, increased water sorption, and nonstaining radiopacifiers. Quick-Set2 (Avalon Biomed Inc) is a newly formulated calcium aluminosilicate material that has a faster setting time and increased acid resistance and is nonstaining. The purpose of this study was to compare the healing of pulpal and periapical tissues in dogs after exposure to NeoMTA Plus and Quick-Set2 after pulpotomy and root-end surgery procedures. METHODS Seventy-two teeth (36 for each procedure) in 6 beagle dogs received pulpotomy or root-end surgery using either NeoMTA Plus or Quick-Set2. The dogs were sacrificed at 90 days, and the teeth and surrounding tissues were prepared for histologic evaluation. Sixty teeth were evaluated and scored histologically (29 with pulpotomies and 31 with root-end resections). Specimens were scored for inflammation, quality and thickness of dentin bridging, pulp tissue response, cementum and periodontal ligament formation, and apical bone healing. RESULTS Both materials displayed favorable healing at 90 days. The only significant difference was the quality of dentin bridge formation in pulpotomies using NeoMTA Plus compared with Quick-Set2. CONCLUSIONS Quick-Set2 and NeoMTA Plus had similar effects on inflammation, pulp response, periodontal ligament and cementum formation, and apical tissue healing in dogs. NeoMTA Plus had superior dentin bridge quality compared with Quick-Set2.
Collapse
Affiliation(s)
- Ryan M Walsh
- Department of Biomedical Sciences, Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Texas.
| | - Karl F Woodmansey
- Center for Advanced Dental Education, St. Louis University, St. Louis, Missouri
| | - Jianing He
- Endodontics, Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Texas
| | - Kathy K Svoboda
- Department of Biomedical Sciences, Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Texas
| | - Carolyn M Primus
- Lake Erie College of Osteopathic Medicine, School of Dental Medicine, Bradenton, Florida
| | - Lynne A Opperman
- Department of Biomedical Sciences, Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Texas
| |
Collapse
|
14
|
Pei D, Sun J, Zhu C, Tian F, Jiao K, Anderson MR, Yiu C, Huang C, Jin C, Bergeron BE, Chen J, Tay FR, Niu L. Contribution of Mitophagy to Cell-Mediated Mineralization: Revisiting a 50-Year-Old Conundrum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800873. [PMID: 30356983 PMCID: PMC6193168 DOI: 10.1002/advs.201800873] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 05/24/2023]
Abstract
Biomineralization in vertebrates is initiated via amorphous calcium phosphate (ACP) precursors. These precursors infiltrate the extracellular collagen matrix where they undergo phase transformation into intrafibrillar carbonated apatite. Although it is well established that ACP precursors are released from intracellular vesicles through exocytosis, an unsolved enigma in this cell-mediated mineralization process is how ACP precursors, initially produced in the mitochondria, are translocated to the intracellular vesicles. The present study proposes that mitophagy provides the mechanism for transfer of ACP precursors from the dysfunctioned mitochondria to autophagosomes, which, upon fusion with lysosomes, become autolysosomes where the mitochondrial ACP precursors coalesce to form larger intravesicular granules, prior to their release into the extracellular matrix. Apart from endowing the mitochondria with the function of ACP delivery through mitophagy, the present results indicate that mitophagy, triggered upon intramitochondrial ACP accumulation in osteogenic lineage-committed mesenchymal stem cells, participates in the biomineralization process through the BMP/Smad signaling pathway.
Collapse
Affiliation(s)
- Dan‐dan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research Department of ProsthodonticsCollege of StomatologyXi'an Jiaotong UniversityXi'an710004P. R. China
| | - Jin‐long Sun
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Chun‐hui Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research Department of ProsthodonticsCollege of StomatologyXi'an Jiaotong UniversityXi'an710004P. R. China
| | - Fu‐cong Tian
- Department of EndodonticsThe Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Kai Jiao
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Matthew R. Anderson
- Paediatric Dentistry Unit of the Faculty of DentistryPrince Philip Dental HospitalUniversity of Hong KongHong KongSAR999077P. R. China
| | - Cynthia Yiu
- Department of EndodonticsThe Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Cui Huang
- Department of ProsthodonticsSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Chang‐xiong Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research Department of ProsthodonticsCollege of StomatologyXi'an Jiaotong UniversityXi'an710004P. R. China
| | - Brian E. Bergeron
- Department of EndodonticsThe Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Ji‐hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Li‐na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
15
|
Pedano MS, Li X, Li S, Sun Z, Cokic SM, Putzeys E, Yoshihara K, Yoshida Y, Chen Z, Van Landuyt K, Van Meerbeek B. Freshly-mixed and setting calcium-silicate cements stimulate human dental pulp cells. Dent Mater 2018. [PMID: 29525357 DOI: 10.1016/j.dental.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To evaluate the effect of the eluates from 3 freshly-mixed and setting hydraulic calcium-silicate cements (hCSCs) on human dental pulp cells (HDPCs) and to examine the effect of a newly developed hCSC containing phosphopullulan (PPL) on HDPCs. METHODS Human dental pulp cells, previously characterized as mesenchymal stem cells, were used. To collect the eluates, disks occupying the whole surface of a 12-well plate were prepared using an experimental hCSC containing phosphopullulan (GC), Nex-Cem MTA (GC), Biodentine (Septodont) or a zinc-oxide (ZnO) eugenol cement (material-related negative control). Immediately after preparing the disks (non-set), 3ml of Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) were added. The medium was left in contact with the disks for 24h before being collected. Four different dilutions were prepared (100%, 50%, 25% and 10%) and cell-cytotoxicity, cell-proliferation, cell-migration and odontogenic differentiation were tested. The cell-cytotoxicity and cell-proliferation assays were performed by XTT-colorimetric assay at different time points. The cell-migration ability was tested with the wound-healing assay and the odontogenic differentiation capacity of hCSCs on HDPCs was tested with RT-PCR. RESULTS Considering all experimental data together, the eluates from 3 freshly-mixed and setting hCSCs appeared not cytotoxic toward HDPCs. Moreover, all three cements stimulated proliferation, migration and odontogenic differentiation of HDPCs. SIGNIFICANCE The use of freshly-mixed and setting hCSCs is an appropriate approach to test the effect of the materials on human dental pulp cells. The experimental material containing PPL is non-cytotoxic and positively stimulates HDPCs.
Collapse
Affiliation(s)
- Mariano S Pedano
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Xin Li
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Shuchen Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zeyi Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Stevan M Cokic
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Eveline Putzeys
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Kumiko Yoshihara
- Okayama University Hospital, Center for Innovative Clinical Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yashuhiro Yoshida
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Kirsten Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, Lozano A, Castelo-Baz P, Moraleda JM, Rodríguez-Lozano FJ. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J 2017; 50 Suppl 2:e63-e72. [DOI: 10.1111/iej.12859] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Affiliation(s)
- C. J. Tomás-Catalá
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
- Faculty of Medicine; School of Dentistry; University of Murcia; Murcia Spain
| | - M. Collado-González
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
| | - D. García-Bernal
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
| | - R. E. Oñate-Sánchez
- Faculty of Medicine; School of Dentistry; University of Murcia; Murcia Spain
| | - L. Forner
- Department of Stomatology; University de Valencia; Valencia Spain
| | - C. Llena
- Department of Stomatology; University de Valencia; Valencia Spain
| | - A. Lozano
- Department of Stomatology; University de Valencia; Valencia Spain
| | - P. Castelo-Baz
- University of Santiago de Compostela; Santiago de Compostela Spain
| | - J. M. Moraleda
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
| | - F. J. Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
- Faculty of Medicine; School of Dentistry; University of Murcia; Murcia Spain
| |
Collapse
|
17
|
Hu X, Ogawa K, Kiwada T, Odani A. Water-soluble metalloporphyrinates with excellent photo-induced anticancer activity resulting from high tumor accumulation. J Inorg Biochem 2017; 170:1-7. [PMID: 28189031 DOI: 10.1016/j.jinorgbio.2017.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022]
Abstract
To develop a water-soluble and tumor-targeted photosensitizer for photodynamic therapy (PDT), a porphyrin framework containing the metal ion gallium(III) was combined with platinum(II)-based groups to produce two new pentacationic metalloporphyrinates, Ga-4cisPtTPyP (5,10,15,20-tetrakis{cis-diammine-chloro-platinum(II)}(4-pyridyl)-porphyrinato gallium(III) hydroxide tetranitrate) and Ga-4transPtTPyP (5,10,15,20-tetrakis{trans-diammine-chloro-platinum(II)} (4-pyridyl)-porphyrinato gallium(III) hydroxide tetranitrate). Both complexes exhibited high singlet oxygen quantum yields (Φ∆) and remarkable photocytotoxicity with appreciable phototoxic indexes (PIs). In particular, Ga-4cisPtTPyP showed a low IC50 value (Colon 26: 0.12μM; Sarcoma 180: 0.08μM) under illumination and its PI up to 1000. With outstanding tumor accumulation (tumor/muscle ratio>9), Ga-4cisPtTPyP almost completely inhibited tumor growth over two weeks in an in vivo PDT assay. These results imply that Ga-4cisPtTPyP could be a promising anticancer agent for use in PDT.
Collapse
Affiliation(s)
- Xiaojun Hu
- Division of Pharmaceutical Sciences, Graduate School of Medical Science, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Tatsuto Kiwada
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Akira Odani
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
18
|
Niu LN, Pei DD, Morris M, Jiao K, Huang XQ, Primus CM, Susin LF, Bergeron BE, Pashley DH, Tay FR. Mineralogenic characteristics of osteogenic lineage-committed human dental pulp stem cells following their exposure to a discoloration-free calcium aluminosilicate cement. Dent Mater 2016; 32:1235-1247. [DOI: 10.1016/j.dental.2016.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|