1
|
Han Y, Kong W, Shang Q, Liu Y, Ni X, Yang L, Lei J. Discovery of targeting USP10-mediated proline metabolism arrangement to inhibit hepatocellular carcinoma progression. Biochem Pharmacol 2025; 236:116904. [PMID: 40158816 DOI: 10.1016/j.bcp.2025.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/08/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Metabolic dysregulation is closely related to hepatocellular carcinoma (HCC) progression. Aberrant proline metabolism plays crucial roles in HCC onset and development. However, the detailed molecular mechanisms of proline metabolism in HCC remain unclear. In this study, we reported that hydroxyproline, a metabolite of proline, is a key causal factor of HCC progression using Mendelian randomization analysis. An elevated level of hydroxyproline promotes HCC cell growth, migration, and invasion. Using a non-targeted metabolomics approach, we found that USP10 increases the amount of proline and hydroxyproline in HCC cells. We subsequently proved that USP10 stabilizes Yes-associated protein 1 (YAP1), enhancing YAP1/TEA domain transcription factor 4 (TEAD4)-mediated transcription of prolyl 4-hydroxylase subunit alpha 1 (P4HA1). This leads to increased expression of P4HA1, which alters the proline catabolic profile. In contrast, knocking down USP10 or suppressing its activity reduced the expression of P4HA1. Given the crucial roles of USP10 in HCC progression, we further validated ginkgolic acid, a hit compound that targets USP10, leading to potential anti-HCC efficacy in xenograft mouse models. Overall, our study provides novel insights into the role and potential molecular mechanisms of USP10 on proline metabolism in HCC for the first time, as well as offers a promising therapeutic strategy of targeting USP10 for HCC treatment.
Collapse
Affiliation(s)
- Yinze Han
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weili Kong
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qixin Shang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanzhi Liu
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xincheng Ni
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Lei
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Wang C, Liu Y, Tan Y, Xu F, Wang M, Tang Y, Nie G, Chi X, Xu Z, Xu Y, An B, Tian G, Qi D, Yao C. HOGA1 Suppresses Renal Cell Carcinoma Growth via Inhibiting the Wnt/β-Catenin Signalling Pathway. J Cell Mol Med 2025; 29:e70490. [PMID: 40100076 PMCID: PMC11917137 DOI: 10.1111/jcmm.70490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Changes in hydroxyproline metabolism are reported to promote tumorigenesis. HOGA1 is a useful marker for diagnosing primary hyperoxaluria 3, catalysing the final step of mitochondrial hydroxyproline metabolism from 4-hydroxy-2-oxoglutarate (HOG) to glyoxylate and pyruvate; however, its specific mechanism in RCC remains unclear. This study investigated the role of HOGA1 in the pathogenesis of ccRCC. The results showed that HOGA1 was decreased significantly in tumour tissues, with this low expression associated with a poor prognosis in patients with ccRCC. QTL mapping showed that Hoga1 was cis-regulated. Gene enrichment analyses showed that Hoga1 co-expressed genes were enriched in the Wnt/β-catenin signalling pathway. Furthermore, in vitro and in vivo assays demonstrated that HOGA1 significantly inhibited the proliferation, invasion and migration of renal carcinoma cells via the Wnt/β-catenin-c-Myc/CyclinD1 axis, probably via regulating the level of HOG. In conclusion, this study demonstrates that HOGA1 has a tumour suppressor role by inhibiting the Wnt/β-catenin signalling pathway. This finding provides new insights into the function of HOGA1 in ccRCC.
Collapse
Affiliation(s)
- Congmin Wang
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yu Liu
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Ying Tan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Fuyi Xu
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Mingyao Wang
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yiming Tang
- The Second School of Clinical MedicineBinzhou Medical UniversityYantaiChina
| | - Guofeng Nie
- The First School of Clinical MedicineBinzhou Medical UniversityYantaiChina
| | - Xiaodong Chi
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Zhaowei Xu
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Yuxue Xu
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Baijiao An
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Geng Tian
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Donglai Qi
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Cuifang Yao
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| |
Collapse
|
3
|
Wood J, Smith SJ, Castellanos-Uribe M, Lourdusamy A, May ST, Barrett DA, Grundy RG, Kim DH, Rahman R. Metabolomic characterisation of the glioblastoma invasive margin reveals a region-specific signature. Heliyon 2025; 11:e41309. [PMID: 39816516 PMCID: PMC11732679 DOI: 10.1016/j.heliyon.2024.e41309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Isocitrate dehydrogenase wild-type glioblastoma (GBM) is characterised by a heterogeneous genetic landscape resulting from dynamic competition between tumour subclones to survive selective pressures. Improvements in metabolite identification and metabolome coverage have led to increased interest in clinically relevant applications of metabolomics. Here, we use liquid chromatography-mass spectrometry and gene expression microarray to profile integrated intratumour metabolic heterogeneity, as a direct functional readout of adaptive responses of subclones to the tumour microenvironment. Multi-region surgical sampling was performed on five adult GBM patients based on pre-operative brain imaging and fluorescence-guided surgery. Polar and hydrophobic metabolites extracted from tumour fragments were assessed, followed by putative assignment of metabolite identifications based on retention times and molecular mass. Class discrimination between tumour regions through showed clear separation of tumour regions based on polar metabolite profiles. Metabolic pathway assignments revealed several significantly altered metabolites between the tumour core and invasive region to be associated with purine and pyrimidine metabolism. This proof-of-principle study assesses intratumour heterogeneity through mass spectrometry-based metabolite profiling of multi-region biopsies. Bioinformatic interpretation of the GBM metabolome has highlighted the invasive region to be biologically distinct compared to tumour core and revealed putative drug-targetable metabolic pathways associated with purine and pyrimidine metabolism.
Collapse
Affiliation(s)
- James Wood
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Stuart J. Smith
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | | | - Anbarasu Lourdusamy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Sean T. May
- Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, UK
| | - David A. Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, UK
| | - Richard G. Grundy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| |
Collapse
|
4
|
Serrano JJ, Medina MÁ. Metabolic Reprogramming at the Edge of Redox: Connections Between Metabolic Reprogramming and Cancer Redox State. Int J Mol Sci 2025; 26:498. [PMID: 39859211 PMCID: PMC11765076 DOI: 10.3390/ijms26020498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The importance of redox systems as fundamental elements in biology is now widely recognized across diverse fields, from ecology to cellular biology. Their connection to metabolism is particularly significant, as it plays a critical role in energy regulation and distribution within organisms. Over recent decades, metabolism has emerged as a relevant focus in studies of biological regulation, especially following its recognition as a hallmark of cancer. This shift has broadened cancer research beyond strictly genetic perspectives. The interaction between metabolism and redox systems in carcinogenesis involves the regulation of essential metabolic pathways, such as glycolysis and the Krebs cycle, as well as the involvement of redox-active components like specific amino acids and cofactors. The feedback mechanisms linking redox systems and metabolism in cancer highlight the development of redox patterns that enhance the flexibility and adaptability of tumor processes, influencing larger-scale biological phenomena such as circadian rhythms and epigenetics.
Collapse
Affiliation(s)
- José J. Serrano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER, Spanish Network of Research Center in Rare Diseases), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
5
|
Wang D, Duan JJ, Guo YF, Chen JJ, Chen TQ, Wang J, Yu SC. Targeting the glutamine-arginine-proline metabolism axis in cancer. J Enzyme Inhib Med Chem 2024; 39:2367129. [PMID: 39051546 PMCID: PMC11275534 DOI: 10.1080/14756366.2024.2367129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic abnormalities are an important feature of tumours. The glutamine-arginine-proline axis is an important node of cancer metabolism and plays a major role in amino acid metabolism. This axis also acts as a scaffold for the synthesis of other nonessential amino acids and essential metabolites. In this paper, we briefly review (1) the glutamine addiction exhibited by tumour cells with accelerated glutamine transport and metabolism; (2) the methods regulating extracellular glutamine entry, intracellular glutamine synthesis and the fate of intracellular glutamine; (3) the glutamine, proline and arginine metabolic pathways and their interaction; and (4) the research progress in tumour therapy targeting the glutamine-arginine-proline metabolic system, with a focus on summarising the therapeutic research progress of strategies targeting of one of the key enzymes of this metabolic system, P5CS (ALDH18A1). This review provides a new basis for treatments targeting the metabolic characteristics of tumours.
Collapse
Affiliation(s)
- Di Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
| | - Jiang-jie Duan
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
- Jin-feng Laboratory, Chongqing, China
| | - Yu-feng Guo
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun-jie Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
| | - Tian-qing Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
- Jin-feng Laboratory, Chongqing, China
| | - Shi-cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
- Jin-feng Laboratory, Chongqing, China
| |
Collapse
|
6
|
Jiang Z, Lu H, Gao B, Huang J, Ding Y. Transcriptomic Analysis of Cardiac Tissues in a Rodent Model of Coronary Microembolization. J Inflamm Res 2024; 17:6645-6659. [PMID: 39345897 PMCID: PMC11437660 DOI: 10.2147/jir.s469297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Coronary microembolization (CME) can result in cardiac dysfunction, severe arrhythmias, and a reduced coronary flow reserve. Impairment of mitochondrial energy metabolism has been implicated in the progression and pathogenesis of CME; however, its role remains largely undetermined. This study aimed to explore alterations in mitochondria-related genes in CME. Methods A rat model of CME was successfully established by injecting plastic microspheres into the left ventricle. The cardiac tissues of the two groups were sequenced and mitochondrial functions were assessed. Results Using RNA-Seq, together with GO and KEGG enrichment analyses, we identified 3822 differentially expressed genes (DEGs) in CME rats compared to control rats, and 101 DEGs were mitochondria-related genes. Notably, 36 DEGs were up-regulated and 65 DEGs were down-regulated (CME vs control). In particular, the oxidative phosphorylation (OXPHOS) and mitochondrial electron transport were obviously down-regulated in the CME group. Functional analysis revealed that CME mice exhibited marked reductions in ATP and mitochondrial membrane potential (MMP), by contrast, the production of reactive oxygen species (ROS) was much higher in CME mice than in controls. Protein-protein interaction (PPI) and quantitative PCR (qPCR) validation suggested that eight hub genes including Cmpk2, Isg15, Acsl1, Etfb, Ndufa8, Adhfe1, Gabarapl1 and Acot13 were down-regulated in CME, whereas Aldh18a1 and Hspa5 were up-regulated. Conclusion Our findings suggest that dysfunctions in mitochondrial activity and metabolism are important mechanisms for CME, and mitochondria-related DEGs may be potential therapeutic targets for CME.
Collapse
Affiliation(s)
- Zhaochang Jiang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Haohao Lu
- Zhejiang Center of Laboratory Animals, Hangzhou Medical College, Hangzhou, Zhejiang, 310063, People's Republic of China
| | - Beibei Gao
- Department of Cardiology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Jinyu Huang
- Department of Cardiology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yu Ding
- Department of Clinical Laboratory, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, People's Republic of China
| |
Collapse
|
7
|
Li X, Xu M, Chen Y, Zhai Y, Li J, Zhang N, Yin J, Wang L. Metabolomics for hematologic malignancies: Advances and perspective. Medicine (Baltimore) 2024; 103:e39782. [PMID: 39312378 PMCID: PMC11419435 DOI: 10.1097/md.0000000000039782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
With the use of advanced technology, metabolomics allows for a thorough examination of metabolites and other small molecules found in biological specimens, blood, and tissues. In recent years, metabolomics has been recognized that is closely related to the development of malignancies in the hematological system. Alterations in metabolomic pathways and networks are important in the pathogenesis of hematologic malignancies and can also provide a theoretical basis for early diagnosis, efficacy evaluation, accurate staging, and individualized targeted therapy. In this review, we summarize the progress of metabolomics, including glucose metabolism, amino acid metabolism, and lipid metabolism in lymphoma, myeloma, and leukemia through specific mechanisms and pathways. The research of metabolomics gives a new insight and provides therapeutic targets for the treatment of patients with hematologic malignancies.
Collapse
Affiliation(s)
- Xinglan Li
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, PR China
| | - Mengyu Xu
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, PR China
| | - Yanying Chen
- Hematology Laboratory, Linyi People’s Hospital, Linyi, PR China
| | - Yongqing Zhai
- Department of Orthopedics, Linyi People’s Hospital, Linyi, PR China
| | - Junhong Li
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, PR China
| | - Ning Zhang
- Department of Anesthesiology, Linyi People’s Hospital, Linyi, PR China
| | - Jiawei Yin
- Central Laboratory, Linyi People’s Hospital, Linyi, PR China
- Key Laboratory of Tumor Biology, Linyi, PR China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, PR China
| | - Lijuan Wang
- Central Laboratory, Linyi People’s Hospital, Linyi, PR China
- Key Laboratory of Tumor Biology, Linyi, PR China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, PR China
- Department of Hematology, Linyi People’s Hospital, Linyi, PR China
| |
Collapse
|
8
|
Becirovic T, Zhang B, Lindskog C, Norberg E, Vakifahmetoglu-Norberg H, Kaminskyy VO, Kochetkova E. Deubiquitinase USP9x regulates the proline biosynthesis pathway in non-small cell lung cancer. Cell Death Discov 2024; 10:342. [PMID: 39075050 PMCID: PMC11286954 DOI: 10.1038/s41420-024-02111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Metabolic rewiring has been recognized as a hallmark of malignant transformation, supplying the biosynthetic and energetic demands for rapid cancer cell proliferation and tumor progression. A comprehensive understanding of the regulatory mechanisms governing these metabolic processes is still limited. Here, we identify the deubiquitinase ubiquitin-specific peptidase 9 X-linked (USP9x) as a positive regulator of the proline biosynthesis pathway in non-small cell lung cancer (NSCLC). Our findings demonstrate USP9x directly stabilizes pyrroline-5-carboxylate reductase 3 (PYCR3), a key enzyme in the proline cycle. Disruption of proline biosynthesis by either USP9x or PYCR3 knockdown influences the proline cycle leading to a decreased activity of the connected pentose phosphate pathway and mitochondrial respiration. We show that USP9x is elevated in human cancer tissues and its suppression impairs NSCLC growth in vitro and in vivo. Overall, our study uncovers a novel function of USP9x as a regulator of the proline biosynthesis pathway, which impacts lung cancer growth and progression, and implicates a new potential therapeutic avenue.
Collapse
Affiliation(s)
- Tina Becirovic
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Erik Norberg
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Helin Vakifahmetoglu-Norberg
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Vitaliy O Kaminskyy
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden.
| | - Elena Kochetkova
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden.
| |
Collapse
|
9
|
Liu Y, Wu H, Shu Y, Hua Y, Fu P. Symbiodiniaceae and Ruegeria sp. Co-Cultivation to Enhance Nutrient Exchanges in Coral Holobiont. Microorganisms 2024; 12:1217. [PMID: 38930599 PMCID: PMC11205819 DOI: 10.3390/microorganisms12061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The symbiotic relationship between corals and their associated microorganisms is crucial for the health of coral reef eco-environmental systems. Recently, there has been a growing interest in unraveling how the manipulation of symbiont nutrient cycling affects the stress tolerance in the holobiont of coral reefs. However, most studies have primarily focused on coral-Symbiodiniaceae-bacterial interactions as a whole, neglecting the interactions between Symbiodiniaceae and bacteria, which remain largely unexplored. In this study, we proposed a hypothesis that there exists an inner symbiotic loop of Symbiodiniaceae and bacteria within the coral symbiotic loop. We conducted experiments to demonstrate how metabolic exchanges between Symbiodiniaceae and bacteria facilitate the nutritional supply necessary for cellular growth. It was seen that the beneficial bacterium, Ruegeria sp., supplied a nitrogen source to the Symbiodiniaceae strain Durusdinium sp., allowing this dinoflagellate to thrive in a nitrogen-free medium. The Ruegeria sp.-Durusdinium sp. interaction was confirmed through 15N-stable isotope probing-single cell Raman spectroscopy, in which 15N infiltrated into the bacterial cells for intracellular metabolism, and eventually the labeled nitrogen source was traced within the macromolecules of Symbiodiniaceae cells. The investigation into Symbiodiniaceae loop interactions validates our hypothesis and contributes to a comprehensive understanding of the intricate coral holobiont. These findings have the potential to enhance the health of coral reefs in the face of global climate change.
Collapse
Affiliation(s)
| | | | | | | | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (Y.L.); (H.W.); (Y.S.); (Y.H.)
| |
Collapse
|
10
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
11
|
Yin Z, Hua X, Lu M. Integrated Network Pharmacology and Metabolomics to Dissect the Mechanisms of Naringin for Treating Cervical Cancer. Comb Chem High Throughput Screen 2024; 27:754-764. [PMID: 37143280 DOI: 10.2174/1386207326666230504124030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Cervical cancer is one of the malignant cancers with high mortality among women worldwide. Although vaccines and early detection have reduced cervical cancer mortality, it remains a malignancy with a high mortality rate in women. OBJECTIVES We aimed to develop a novel integrated strategy that combines metabolomics with network pharmacology to explore the therapeutic mechanisms of naringin in cervical cancer. The mechanism of naringin intervention in cervical cancer was initially clarified by metabolomics and network pharmacology. METHODS The method of LC-MS and network pharmacology for the detection and identification of potential biomarkers and the mechanisms of action of naringin was used. The metabolites were detected and identified based on ultra-high-performance liquid chromatography coupled with Quadrupole- Exactive Orbitrap MS (UHPLC-Q-Exactive Orbitrap MS) and followed by the network pharmacology analysis. RESULTS In network pharmacology, naringin played a synergetic role through regulatory shared pathways, such as steroid hormone biosynthesis, sphingolipid signaling pathway and arachidonic acid metabolism, etc. Besides, the metabolomics analysis showed that 20 differential metabolites and 10 metabolic pathways were mainly involved in the therapeutic effect of naringin on cervical cancer. The result showed that naringin treatment for cervical cancer mainly occurs through the following metabolic pathways: amino acid metabolism and arachidonic acid metabolism. CONCLUSION This work provided valuable information and a scientific basis for further studies of naringin in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ziwei Yin
- Department of HBP Surgery II, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xuefeng Hua
- Department of HBP Surgery II, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Minqiang Lu
- Department of HBP Surgery II, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Hasan A, Khan NA, Uddin S, Khan AQ, Steinhoff M. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol 2024; 98:31-50. [PMID: 38123029 DOI: 10.1016/j.semcancer.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
| | - Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow 226026, India; Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Animal Research Center, Qatar University, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
13
|
Linder SJ, Bernasocchi T, Martínez-Pastor B, Sullivan KD, Galbraith MD, Lewis CA, Ferrer CM, Boon R, Silveira GG, Cho HM, Vidoudez C, Shroff S, Oliveira-Costa JP, Ross KN, Massri R, Matoba Y, Kim E, Rueda BR, Stott SL, Gottlieb E, Espinosa JM, Mostoslavsky R. Inhibition of the proline metabolism rate-limiting enzyme P5CS allows proliferation of glutamine-restricted cancer cells. Nat Metab 2023; 5:2131-2147. [PMID: 37957387 PMCID: PMC11639397 DOI: 10.1038/s42255-023-00919-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
Glutamine is a critical metabolite for rapidly proliferating cells as it is used for the synthesis of key metabolites necessary for cell growth and proliferation. Glutamine metabolism has been proposed as a therapeutic target in cancer and several chemical inhibitors are in development or in clinical trials. How cells subsist when glutamine is limiting is poorly understood. Here, using an unbiased screen, we identify ALDH18A1, which encodes P5CS, the rate-limiting enzyme in the proline biosynthetic pathway, as a gene that cells can downregulate in response to glutamine starvation. Notably, P5CS downregulation promotes de novo glutamine synthesis, highlighting a previously unrecognized metabolic plasticity of cancer cells. The glutamate conserved from reducing proline synthesis allows cells to produce the key metabolites necessary for cell survival and proliferation under glutamine-restricted conditions. Our findings reveal an adaptive pathway that cancer cells acquire under nutrient stress, identifying proline biosynthesis as a previously unrecognized major consumer of glutamate, a pathway that could be exploited for developing effective metabolism-driven anticancer therapies.
Collapse
Affiliation(s)
- Samantha J Linder
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA.
| | - Bárbara Martínez-Pastor
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caroline A Lewis
- The Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina M Ferrer
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ruben Boon
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Galapagos de Wittelaan, Mechelen, Belgium
| | - Giorgia G Silveira
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hyo Min Cho
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Stuti Shroff
- Department of Pathology, The Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao P Oliveira-Costa
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Kenneth N Ross
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rami Massri
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yusuke Matoba
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Eugene Kim
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Shannon L Stott
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Engineering in Medicine and Surgery, The Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- MD Anderson Cancer Center, Houston, TX, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA.
| |
Collapse
|
14
|
Zhou Y, Chang W, Lu X, Wang J, Zhang C, Xu Y. Acid-base Homeostasis and Implications to the Phenotypic Behaviors of Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1133-1148. [PMID: 35787947 PMCID: PMC11082410 DOI: 10.1016/j.gpb.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 05/27/2022] [Accepted: 06/26/2022] [Indexed: 12/23/2022]
Abstract
Acid-base homeostasis is a fundamental property of living cells, and its persistent disruption in human cells can lead to a wide range of diseases. In this study, we conducted a computational modeling analysis of transcriptomic data of 4750 human tissue samples of 9 cancer types in The Cancer Genome Atlas (TCGA) database. Built on our previous study, we quantitatively estimated the average production rate of OH- by cytosolic Fenton reactions, which continuously disrupt the intracellular pH (pHi) homeostasis. Our predictions indicate that all or at least a subset of 43 reprogrammed metabolisms (RMs) are induced to produce net protons (H+) at comparable rates of Fenton reactions to keep the pHi stable. We then discovered that a number of well-known phenotypes of cancers, including increased growth rate, metastasis rate, and local immune cell composition, can be naturally explained in terms of the Fenton reaction level and the induced RMs. This study strongly suggests the possibility to have a unified framework for studies of cancer-inducing stressors, adaptive metabolic reprogramming, and cancerous behaviors. In addition, strong evidence is provided to demonstrate that a popular view that Na+/H+ exchangers along with lactic acid exporters and carbonic anhydrases are responsible for the intracellular alkalization and extracellular acidification in cancer may not be justified.
Collapse
Affiliation(s)
- Yi Zhou
- Cancer Systems Biology Center, China-Japan Union Hospital, Jilin University, Changchun 130033, China; Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Wennan Chang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoyu Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biohealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jin Wang
- Departments of Chemistry and of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Ying Xu
- Cancer Systems Biology Center, China-Japan Union Hospital, Jilin University, Changchun 130033, China; Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
15
|
Manchanda P, Chaudhary P, Deswal R. Photosynthesis regulation, cell membrane stabilization and methylglyoxal detoxification seems major altered pathways under cold stress as revealed by integrated multi-omics meta-analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1395-1407. [PMID: 38076772 PMCID: PMC10709295 DOI: 10.1007/s12298-023-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 10/01/2023] [Indexed: 12/17/2023]
Abstract
Climate change has altered cold weather patterns, resulting in irregular cold weather conditions, and changing the global plant distribution pattern affecting plant development processes resulting in severe yield losses. Although molecular mechanisms and interconnections are quite well studied, a cumulative understanding of plant responses to cold stress (CS) is still lacking. Through meta-analysis, integration of data at the multi-omics level and its correlation with known physiological changes to map and understand the global changes in response to CS was made. Meta-analysis was conducted using the metafor R package program based on physiological parameters like relative electrolytic leakage, malondialdehyde, soluble sugar, proline and antioxidant enzymes activity. Proline and soluble sugars showed the highest (> 1.5 mean fold) change over control thus qualifying as global markers for studying CS. Surprisingly most up-regulated (> 15-fold) DEGs corresponded with the dehydrin family and glyoxalase superfamily proteins. Functional annotations of DEGs corresponded with photosynthesis and glycolysis pathway. Proteins responsible for cell signalling and increased soluble sugars were common in all the datasets studied thus correlating with the transcriptome and proteomic data. Proline and soluble sugars were positively regulated in all the metabolomics datasets. This study supported the earlier known players like proline and soluble sugars. Surprisingly, a new player glyoxalase seems to be contributing in CS. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01367-9.
Collapse
Affiliation(s)
- Preet Manchanda
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007 India
| | - Parneeta Chaudhary
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007 India
| |
Collapse
|
16
|
Murray A, Kilbride P, Gibson MI. Proline pre-conditioning of Jurkat cells improves recovery after cryopreservation. RSC Med Chem 2023; 14:1704-1711. [PMID: 37731697 PMCID: PMC10507795 DOI: 10.1039/d3md00274h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cell therapies such as allogenic CAR T-cell therapy, natural killer cell therapy and stem cell transplants must be cryopreserved for transport and storage. This is typically achieved by addition of dimethyl sulfoxide (DMSO) but the cryoprotectant does not result in 100% cell recovery. New additives or technologies to improve their cryopreservation could have major impact for these emerging therapies. l-Proline is an amino acid osmolyte produced as a cryoprotectant by several organisms such as the codling moth Cydia pomonella and the larvae of the fly Chymomyza costata, and has been found to modulate post-thaw outcomes for several cell lines but has not been studied with Jurkat cells, a T lymphocyte cell line. Here we investigate the effectiveness of l-proline compared to d-proline and l-alanine for the cryopreservation of Jurkat cells. It is shown that 24-hour pre-freezing incubation of Jurkat cells with 200 mM l-proline resulted in a modest increase in cell recovery post-thaw at high cell density, but a larger increase in recovery was observed at the lower cell densities. l-Alanine was as effective as l-proline at lower cell densities, and addition of l-proline to the cryopreservation media (without incubation) had no benefit. The pre-freeze incubation with l-proline led to significant reductions in cell proliferation supporting an intracellular, biochemical, mechanism of action which was shown to be cell-density dependent. Controls with d-proline were found to reduce post-thaw recovery attributed to osmotic stress as d-proline cannot enter the cells. Preliminary analysis of apoptosis/necrosis profiles by flow cytometry indicated that inhibition of apoptosis is not the primary mode of action. Overall, this supports the use of l-proline pre-conditioning to improve T-cell post-thaw recovery without needing any changes to cryopreservation solutions nor methods and hence is simple to implement.
Collapse
Affiliation(s)
- Alex Murray
- Department of Chemistry, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| |
Collapse
|
17
|
Packer M. Fetal Reprogramming of Nutrient Surplus Signaling, O-GlcNAcylation, and the Evolution of CKD. J Am Soc Nephrol 2023; 34:1480-1491. [PMID: 37340541 PMCID: PMC10482065 DOI: 10.1681/asn.0000000000000177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
ABSTRACT Fetal kidney development is characterized by increased uptake of glucose, ATP production by glycolysis, and upregulation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 alpha (HIF-1 α ), which (acting in concert) promote nephrogenesis in a hypoxic low-tubular-workload environment. By contrast, the healthy adult kidney is characterized by upregulation of sirtuin-1 and adenosine monophosphate-activated protein kinase, which enhances ATP production through fatty acid oxidation to fulfill the needs of a normoxic high-tubular-workload environment. During stress or injury, the kidney reverts to a fetal signaling program, which is adaptive in the short term, but is deleterious if sustained for prolonged periods when both oxygen tension and tubular workload are heightened. Prolonged increases in glucose uptake in glomerular and proximal tubular cells lead to enhanced flux through the hexosamine biosynthesis pathway; its end product-uridine diphosphate N -acetylglucosamine-drives the rapid and reversible O-GlcNAcylation of thousands of intracellular proteins, typically those that are not membrane-bound or secreted. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated only by O-GlcNAc transferase and O-GlcNAcase, which adds or removes N-acetylglucosamine, respectively, from target proteins. Diabetic and nondiabetic CKD is characterized by fetal reprogramming (with upregulation of mTOR and HIF-1 α ) and increased O-GlcNAcylation, both experimentally and clinically. Augmentation of O-GlcNAcylation in the adult kidney enhances oxidative stress, cell cycle entry, apoptosis, and activation of proinflammatory and profibrotic pathways, and it inhibits megalin-mediated albumin endocytosis in glomerular mesangial and proximal tubular cells-effects that can be aggravated and attenuated by augmentation and muting of O-GlcNAcylation, respectively. In addition, drugs with known nephroprotective effects-angiotensin receptor blockers, mineralocorticoid receptor antagonists, and sodium-glucose cotransporter 2 inhibitors-are accompanied by diminished O-GlcNAcylation in the kidney, although the role of such suppression in mediating their benefits has not been explored. The available evidence supports further work on the role of uridine diphosphate N -acetylglucosamine as a critical nutrient surplus sensor (acting in concert with upregulated mTOR and HIF-1 α signaling) in the development of diabetic and nondiabetic CKD.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute , Dallas , Texas and Imperial College , London , United Kingdom
| |
Collapse
|
18
|
Estevez H, Garcia-Calvo E, Mena ML, Alvarez-Fernandez Garcia R, Luque-Garcia JL. Unraveling the Mechanisms of Ch-SeNP Cytotoxicity against Cancer Cells: Insights from Targeted and Untargeted Metabolomics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2204. [PMID: 37570523 PMCID: PMC10420838 DOI: 10.3390/nano13152204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Although chitosan-stabilized selenium nanoparticles (Ch-SeNPs) have emerged as a promising chemical form of selenium for anticancer purposes, gathering more profound knowledge related to molecular dysfunctions contributes significantly to the promotion of their evolution as a chemotherapeutic drug. In this sense, metabolites are the end products in the flow of gene expression and, thus, the most sensitive to changes in the physiological state of a biological system. Therefore, metabolomics provides a functional readout of the biochemical activity and cell state. In the present study, we evaluated alterations in the metabolomes of HepG2 cells after the exposure to Ch-SeNPs to elucidate the biomolecular mechanisms involved in their therapeutic effect. A targeted metabolomic approach was conducted to evaluate the levels of four of the main energy-related metabolites (adenosine triphosphate (ATP); adenosine diphosphate (ADP); nicotinamide adenine dinucleotide (NAD+); and 1,4-dihydronicotinamide adenine dinucleotide (NADH)), revealing alterations as a result of exposure to Ch-SeNPs related to a shortage in the energy supply system in the cell. In addition, an untargeted metabolomic experiment was performed, which allowed for the study of alterations in the global metabolic profile as a consequence of Ch-SeNP exposure. The results indicate that the TCA cycle and glycolytic pathways were impaired, while alternative pathways such as glutaminolysis and cysteine metabolism were upregulated. Additionally, increased fructose levels suggested the induction of hypoxia-like conditions. These findings highlight the potential of Ch-SeNPs to disrupt cancer cell metabolism and provide insights into the mechanisms underlying their antitumor effects.
Collapse
Affiliation(s)
| | | | | | | | - Jose L. Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (H.E.); (E.G.-C.); (M.L.M.); (R.A.-F.G.)
| |
Collapse
|
19
|
Li Z, Jiang Y, Liu J, Fu H, Yang Q, Song W, Li Y. Exosomes from PYCR1 knockdown bone marrow mesenchymal stem inhibits aerobic glycolysis and the growth of bladder cancer cells via regulation of the EGFR/PI3K/AKT pathway. Int J Oncol 2023; 63:84. [PMID: 37293856 PMCID: PMC10552724 DOI: 10.3892/ijo.2023.5532] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/20/2023] [Indexed: 06/10/2023] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease, and pyrroline‑5‑carboxylate reductase 1 (PYCR1) can promote the proliferation and invasion of BC cells and accelerate BC progression. In the present study, si‑PYCR1 was loaded into bone marrow mesenchymal stem cell (BMSC)‑derived exosomes (Exos) in BC. First, PYCR1 levels in BC tissues/cells were assessed, and cell proliferation, invasion, and migration were evaluated. Aerobic glycolysis levels (glucose uptake, lactate production, ATP production, and the expression of relevant enzymes) and the EGFR/PI3K/AKT pathway phosphorylation levels were determined. PYCR1‑EGFR interactions were examined by co‑immunoprecipitation experiments. RT4 cells transfected with oe‑PYCR1 were treated with EGFR inhibitor CL‑387785. Exos were loaded with si‑PYCR1 and identified, followed by an assessment of their effects on aerobic glycolysis and malignant cell behaviors. Nude mouse models of xenograft tumors were established by injecting mice with Exo‑si‑PYCR1 and Exo‑si‑PYCR1. PYCR1 was upregulated in BC cells, with the highest expression observed in T24 cells and the lowest expression in RT4 cells. Following PYCR1 knockdown, the malignant behaviors of T24 cells and aerobic glycolysis were decreased, while PYCR1 overexpression in RT4 cells averted these trends. PYCR1 interacted with EGFR, and CL‑387785 inhibited the EGFR/PI3K/AKT pathway and attenuated the effects of PYCR1 overexpression on RT4 cells but had no effect on PYCR1 expression. Exo‑si‑PYCR1 showed stronger inhibitory effects on aerobic glycolysis and on the malignant behaviors of T24 cells than si‑PYCR1. Exo‑si‑PYCR1 blocked xenograft tumor growth and had good biocompatibility. Briefly, PYCR1 knocking loaded by BMSC‑derived Exos suppressed aerobic glycolysis and BC growth via the PI3K/AKT pathway by binding to EGFR.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410002, P.R. China
| | - Ying Jiang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410002, P.R. China
| | - Jian Liu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410002, P.R. China
| | - Huifeng Fu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410002, P.R. China
| | - Quan Yang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410002, P.R. China
| | - Wei Song
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410002, P.R. China
| | - Yuanwei Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410002, P.R. China
| |
Collapse
|
20
|
High levels of Myc expression are required for the robust proliferation of hepatocytes, but not for the sustained weak proliferation. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166644. [PMID: 36681356 DOI: 10.1016/j.bbadis.2023.166644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
In contrast to the robust proliferation exhibited following acute liver injury, hepatocytes exhibit long-lasting proliferative activity in chronic liver injury. The mechanistic differences between these distinct modes of proliferation are unclear. Hepatocytes exhibited robust proliferation that peaked at 2 days following partial hepatectomy in mice, but this proliferation was completely inhibited by hepatocyte-specific expression of MadMyc, a Myc-suppressing chimeric protein. However, Myc suppression induced weak but continuous hepatocyte proliferation, thereby resulting in full restoration of liver mass despite an initial delay. Late-occurring proliferation was accompanied by prolonged suppression of proline dehydrogenase (PRODH) expression, and forced PRODH overexpression inhibited hepatocyte proliferation. In hepatocytes in chronic liver injury, Myc was not activated but PRODH expression was suppressed in regenerating hepatocytes. In liver tumors, PRODH expression was often suppressed, especially in the highly proliferative tumors with distinct Myc expression. Our results indicate that the robust proliferation of hepatocytes following acute liver injury requires high levels Myc expression and that there is a compensatory Myc-independent mode of hepatocyte proliferation with the regulation of proline metabolism, which might be relevant to liver regeneration in chronic injury.
Collapse
|
21
|
Bianchi L, Damiani I, Castiglioni S, Carleo A, De Salvo R, Rossi C, Corsini A, Bellosta S. Smooth Muscle Cell Phenotypic Switch Induced by Traditional Cigarette Smoke Condensate: A Holistic Overview. Int J Mol Sci 2023; 24:ijms24076431. [PMID: 37047404 PMCID: PMC10094728 DOI: 10.3390/ijms24076431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1β, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors.
Collapse
|
22
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Wang Z, Wu X, Chen HN, Wang K. Amino acid metabolic reprogramming in tumor metastatic colonization. Front Oncol 2023; 13:1123192. [PMID: 36998464 PMCID: PMC10043324 DOI: 10.3389/fonc.2023.1123192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Metastasis is considered as the major cause of cancer death. Cancer cells can be released from primary tumors into the circulation and then colonize in distant organs. How cancer cells acquire the ability to colonize in distant organs has always been the focus of tumor biology. To enable survival and growth in the new environment, metastases commonly reprogram their metabolic states and therefore display different metabolic properties and preferences compared with the primary lesions. For different microenvironments in various colonization sites, cancer cells must transfer to specific metabolic states to colonize in different distant organs, which provides the possibility of evaluating metastasis tendency by tumor metabolic states. Amino acids provide crucial precursors for many biosynthesis and play an essential role in cancer metastasis. Evidence has proved the hyperactivation of several amino acid biosynthetic pathways in metastatic cancer cells, including glutamine, serine, glycine, branched chain amino acids (BCAAs), proline, and asparagine metabolism. The reprogramming of amino acid metabolism can orchestrate energy supply, redox homeostasis, and other metabolism-associated pathways during cancer metastasis. Here, we review the role and function of amino acid metabolic reprogramming in cancer cells colonizing in common metastatic organs, including lung, liver, brain, peritoneum, and bone. In addition, we summarize the current biomarker identification and drug development of cancer metastasis under the amino acid metabolism reprogramming, and discuss the possibility and prospect of targeting organ-specific metastasis for cancer treatment.
Collapse
Affiliation(s)
- Zihao Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyun Wu
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Lee IH, Kong SW. ADGR: Admixture-Informed Differential Gene Regulation. Genes (Basel) 2023; 14:147. [PMID: 36672888 PMCID: PMC9859415 DOI: 10.3390/genes14010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The regulatory elements in proximal and distal regions of genes are involved in the regulation of gene expression. Risk alleles in intronic and intergenic regions may alter gene expression by modifying the binding affinity and stability of diverse DNA-binding proteins implicated in gene expression regulation. By focusing on the local ancestral structure of coding and regulatory regions using the paired whole-genome sequence and tissue-wide transcriptome datasets from the Genotype-Tissue Expression project, we investigated the impact of genetic variants, in aggregate, on tissue-specific gene expression regulation. Local ancestral origins of the coding region, immediate and distant upstream regions, and distal regulatory region were determined using RFMix with the reference panel from the 1000 Genomes Project. For each tissue, inter-individual variation of gene expression levels explained by concordant or discordant local ancestry between coding and regulatory regions was estimated. Compared to European, African descent showed more frequent change in local ancestral structure, with shorter haplotype blocks. The expression level of the Adenosine Deaminase Like (ADAL) gene was significantly associated with admixed ancestral structure in the regulatory region across multiple tissue types. Further validations are required to understand the impact of the local ancestral structure of regulatory regions on gene expression regulation in humans and other species.
Collapse
Affiliation(s)
- In-Hee Lee
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02215, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
26
|
Hsieh WC, Budiarto BR, Wang YF, Lin CY, Gwo MC, So DK, Tzeng YS, Chen SY. Spatial multi-omics analyses of the tumor immune microenvironment. J Biomed Sci 2022; 29:96. [PMID: 36376874 PMCID: PMC9661775 DOI: 10.1186/s12929-022-00879-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
In the past decade, single-cell technologies have revealed the heterogeneity of the tumor-immune microenvironment at the genomic, transcriptomic, and proteomic levels and have furthered our understanding of the mechanisms of tumor development. Single-cell technologies have also been used to identify potential biomarkers. However, spatial information about the tumor-immune microenvironment such as cell locations and cell-cell interactomes is lost in these approaches. Recently, spatial multi-omics technologies have been used to study transcriptomes, proteomes, and metabolomes of tumor-immune microenvironments in several types of cancer, and the data obtained from these methods has been combined with immunohistochemistry and multiparameter analysis to yield markers of cancer progression. Here, we review numerous cutting-edge spatial 'omics techniques, their application to study of the tumor-immune microenvironment, and remaining technical challenges.
Collapse
Affiliation(s)
- Wan-Chen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Bugi Ratno Budiarto
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yi-Fu Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mao-Chun Gwo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dorothy Kazuno So
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Shiuan Tzeng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Kant R, Manne RK, Anas M, Penugurti V, Chen T, Pan BS, Hsu CC, Lin HK. Deregulated transcription factors in cancer cell metabolisms and reprogramming. Semin Cancer Biol 2022; 86:1158-1174. [PMID: 36244530 PMCID: PMC11220368 DOI: 10.1016/j.semcancer.2022.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Metabolic reprogramming is an important cancer hallmark that plays a key role in cancer malignancies and therapy resistance. Cancer cells reprogram the metabolic pathways to generate not only energy and building blocks but also produce numerous key signaling metabolites to impact signaling and epigenetic/transcriptional regulation for cancer cell proliferation and survival. A deeper understanding of the mechanisms by which metabolic reprogramming is regulated in cancer may provide potential new strategies for cancer targeting. Recent studies suggest that deregulated transcription factors have been observed in various human cancers and significantly impact metabolism and signaling in cancer. In this review, we highlight the key transcription factors that are involved in metabolic control, dissect the crosstalk between signaling and transcription factors in metabolic reprogramming, and offer therapeutic strategies targeting deregulated transcription factors for cancer treatment.
Collapse
Affiliation(s)
- Rajni Kant
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Mohammad Anas
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Vasudevarao Penugurti
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA.
| |
Collapse
|
28
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
29
|
Greer YE, Hernandez L, Fennell EMJ, Kundu M, Voeller D, Chari R, Gilbert SF, Gilbert TSK, Ratnayake S, Tang B, Hafner M, Chen Q, Meerzaman D, Iwanowicz E, Annunziata CM, Graves LM, Lipkowitz S. Mitochondrial Matrix Protease ClpP Agonists Inhibit Cancer Stem Cell Function in Breast Cancer Cells by Disrupting Mitochondrial Homeostasis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1144-1161. [PMID: 36388465 PMCID: PMC9645232 DOI: 10.1158/2767-9764.crc-22-0142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are multifaceted organelles which are important for bioenergetics, biosynthesis and signaling in metazoans. Mitochondrial functions are frequently altered in cancer to promote both the energy and the necessary metabolic intermediates for biosynthesis required for tumor growth. Cancer stem cells (CSCs) contribute to chemotherapy resistance, relapse, and metastasis. Recent studies have shown that while non-stem, bulk cancer cells utilize glycolysis, breast CSCs are more dependent on oxidative phosphorylation (OxPhos) and therefore targeting mitochondria may inhibit CSC function. We previously reported that small molecule ONC201, which is an agonist for the mitochondrial caseinolytic protease (ClpP), induces mitochondrial dysfunction in breast cancer cells. In this study, we report that ClpP agonists inhibit breast cancer cell proliferation and CSC function in vitro and in vivo. Mechanistically, we found that OxPhos inhibition downregulates multiple pathways required for CSC function, such as the mevalonate pathway, YAP, Myc, and the HIF pathway. ClpP agonists showed significantly greater inhibitory effect on CSC functions compared with other mitochondria-targeting drugs. Further studies showed that ClpP agonists deplete NAD(P)+ and NAD(P)H, induce redox imbalance, dysregulate one-carbon metabolism and proline biosynthesis. Downregulation of these pathways by ClpP agonists further contribute to the inhibition of CSC function. In conclusion, ClpP agonists inhibit breast CSC functions by disrupting mitochondrial homeostasis in breast cancer cells and inhibiting multiple pathways critical to CSC function. Significance ClpP agonists disrupt mitochondrial homeostasis by activating mitochondrial matrix protease ClpP. We report that ClpP agonists inhibit cell growth and cancer stem cell functions in breast cancer models by modulating multiple metabolic pathways essential to cancer stem cell function.
Collapse
Affiliation(s)
| | | | - Emily M. J. Fennell
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, MD
| | | | - Thomas S. K. Gilbert
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Shashikala Ratnayake
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, NCI, NIH
| | - Markus Hafner
- RNA Molecular Biology Group, Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, MD
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD
| | | | | | - Lee M. Graves
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | |
Collapse
|
30
|
Serum Metabolomics Profiling Reveals Metabolic Alterations Prior to a Diagnosis with Non-Small Cell Lung Cancer among Chinese Community Residents: A Prospective Nested Case-Control Study. Metabolites 2022; 12:metabo12100906. [PMID: 36295809 PMCID: PMC9610639 DOI: 10.3390/metabo12100906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The present high mortality of lung cancer in China stems mainly from the lack of feasible, non-invasive and early disease detection biomarkers. Serum metabolomics profiling to reveal metabolic alterations could expedite the disease detection process and suggest those patients who are harboring disease. Using a nested case-control design, we applied ultra-high-performance liquid chromatography/mass spectrometry (LC-MS)-based serum metabolomics to reveal the metabolomic alterations and to indicate the presence of non-small cell lung cancer (NSCLC) using serum samples collected prior to disease diagnoses. The studied serum samples were collected from 41 patients before a NSCLC diagnosis (within 3.0 y) and 38 matched the cancer-free controls from the prospective Shanghai Suburban Adult Cohort. The NSCLC patients markedly presented cellular metabolism alterations in serum samples collected prior to their disease diagnoses compared with the cancer-free controls. In total, we identified 18 significantly expressed metabolites whose relative abundance showed either an upward or a downward trend, with most of them being lipid and lipid-like molecules, organic acids, and nitrogen compounds. Choline metabolism in cancer, sphingolipid, and glycerophospholipid metabolism emerged as the significant metabolic disturbance of NSCLC. The metabolites involved in these biological processes may be the distinctive features associated with NSCLC prior to a diagnosis.
Collapse
|
31
|
Zhuang F, Bai X, Shi Y, Chang L, Ai W, Du J, Liu W, Liu H, Zhou X, Wang Z, Hong T. Metabolomic profiling identifies biomarkers and metabolic impacts of surgery for colorectal cancer. Front Surg 2022; 9:913967. [PMID: 36090329 PMCID: PMC9453208 DOI: 10.3389/fsurg.2022.913967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors with recurrence and metastasis after surgical resection. This study aimed to identify the physiological changes after surgery and explore metabolites and metabolic pathways with potential prognostic value for CRC. Methods An ultra-high-performance liquid chromatography Q-exactive mass spectrometry was used to profile serum metabolites from 67 CRC patients and 50 healthy volunteers. Principal component analysis (PCA) and orthogonal projections to latent structures-discriminant analysis were used to distinguish the internal characteristics of data in different groups. Multivariate statistics were compiled to screen the significant metabolites and metabolic pathways. Result A total of 180 metabolites were detected. Under the conditions of variable importance in projection >1 and p-value <0.05, 46 differentially expressed metabolites were screened for further pathway enrichment analysis. Based on the Kyoto Encyclopedia of Genes and Genomes database and Small Molecule Pathway Database, three metabolic pathways—arginine and proline metabolism, ascorbate and aldarate metabolism, and phenylalanine metabolism—were significantly altered after surgical resection and identified as associated with the removal of CRC. Notably, gamma-linolenic acid was upregulated in the CRC preoperative patients compared with those in healthy volunteers but returned to healthy levels after surgery. Conclusion Through serum-based metabolomics, our study demonstrated the differential metabolic characteristics in CRC patients after surgery compared with those before surgery. Our results suggested that metabonomic analysis may be a powerful method for exploring physiological alterations in CRC patients after surgery as well as a useful tool for identifying candidate biomarkers and monitoring disease recurrence.
Collapse
Affiliation(s)
- Feng Zhuang
- General Surgery Department, Hospital of Xinjiang Production and Construction Corps, Urumchi, China
| | - Xuesong Bai
- General Surgery Department, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yang Shi
- General Surgery Department, Hospital of Xinjiang Production and Construction Corps, Urumchi, China
| | - Le Chang
- General Surgery Department, Hospital of Xinjiang Production and Construction Corps, Urumchi, China
| | - Wanchao Ai
- General Surgery Department, Hospital of Xinjiang Production and Construction Corps, Urumchi, China
| | - Juan Du
- General Surgery Department, Hospital of Xinjiang Production and Construction Corps, Urumchi, China
| | - Wei Liu
- General Surgery Department, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Humin Liu
- General Surgery Department, Hospital of Xinjiang Production and Construction Corps, Urumchi, China
| | - Xukun Zhou
- General Surgery Department, Hospital of Xinjiang Production and Construction Corps, Urumchi, China
| | - Zhong Wang
- General Surgery Department, Hospital of Xinjiang Production and Construction Corps, Urumchi, China
| | - Tao Hong
- General Surgery Department, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
- Correspondence: Tao Hong
| |
Collapse
|
32
|
Xiao S, Yao X, Ye J, Tian X, Yin Z, Zhou L. Epigenetic modification facilitates proline synthase PYCR1 aberrant expression in gastric cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194829. [PMID: 35654390 DOI: 10.1016/j.bbagrm.2022.194829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND & AIMS Pyrroline-5-carboxylate reductase 1 (PYCR1) upregulation contributes to the progression of gastric cancer (GC) and indicates poor survival. However, PYCR1 expression profile in GC subtypes and the mechanism behind its upregulation are not well-studied. METHODS PYCR1 expression profiles in GC subtypes and different stages of gastric carcinogenesis were assessed in different GC cohorts. Genetic alterations and epigenetic modulation in PYCR1 regulation were further investigated using bioinformatics analysis and in vitro experiments. RESULTS PYCR1 expression was significantly higher in intestinal-type GC and associated molecular subtypes in TCGA and ACRG GC cohorts. During the cascade of intestinal-type GC, PYCR1 was continuously increased from normal gastric tissues through to atrophic gastritis, to intraepithelial neoplasia, and to GC. Copy number alterations in PYCR1 were associated with PYCR1 transcript expression. One CpG island was observed in PYCR1 promoter region, and the hypomethylation occurred at this region could contribute to PYCR1 transcriptional activation in GC. Besides, H3K27ac combination was found in PYCR1 promoter, and acetyltransferase p300 induced H3K27ac could promote PYCR1 expression in GC. CONCLUSIONS PYCR1 expression varies across GC subtypes, with intestinal-type GC and associated molecular subtypes having the highest expression. Hypomethylation at CpG sites and p300-induced H3K27ac modification within PYCR1 promoter could contribute to maintaining PYCR1 overexpression in GC. These results provide us with a new insight into epigenetic modulation in mitochondrial proline metabolism.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Beijing, China; Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, 49 North Garden Road, Beijing, China
| | - Xingyu Yao
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Beijing, China; Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, 49 North Garden Road, Beijing, China
| | - Juxiang Ye
- Department of Pathology, School of Basic Medical Science, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, China
| | - Xueli Tian
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Beijing, China; Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, 49 North Garden Road, Beijing, China
| | - Zhihao Yin
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Beijing, China; Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, 49 North Garden Road, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Beijing, China; Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, 49 North Garden Road, Beijing, China.
| |
Collapse
|
33
|
Proline Metabolism in Malignant Gliomas: A Systematic Literature Review. Cancers (Basel) 2022; 14:cancers14082030. [PMID: 35454935 PMCID: PMC9027994 DOI: 10.3390/cancers14082030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Studies of various types of cancers have found proline metabolism to be a key player in tumor development, involved in basic metabolic pathways, regulating cell proliferation, survival, and signaling. Here, we systematically searched the literature to find data on proline metabolism in malignant glial tumors. Despite limited availability, existing studies have found several ways in which proline metabolism may affect the development of gliomas, involving the maintenance of redox balance, providing essential glutamate, and affecting major signaling pathways. Metabolomic profiling has revealed the importance of proline as a link to basic cell metabolic cycles and shown it to be correlated with overall survival. Emerging knowledge on the role of proline in general oncology encourages further studies on malignant gliomas. Abstract Background: Proline has attracted growing interest because of its diverse influence on tumor metabolism and the discovery of the regulatory mechanisms that appear to be involved. In contrast to general oncology, data on proline metabolism in central nervous system malignancies are limited. Materials and Methods: We performed a systematic literature review of the MEDLINE and EMBASE databases according to PRISMA guidelines, searching for articles concerning proline metabolism in malignant glial tumors. From 815 search results, we identified 14 studies pertaining to this topic. Results: The role of the proline cycle in maintaining redox balance in IDH-mutated gliomas has been convincingly demonstrated. Proline is involved in restoring levels of glutamate, the main glial excitatory neurotransmitter. Proline oxidase influences two major signaling pathways: p53 and NF- κB. In metabolomics studies, the metabolism of proline and its link to the urea cycle was found to be a prognostic factor for survival and a marker of malignancy. Data on the prolidase concentration in the serum of glioblastoma patients are contradictory. Conclusions: Despite a paucity of studies in the literature, the available data are interesting enough to encourage further research, especially in terms of extrapolating what we have learned of proline functions from other neoplasms to malignant gliomas.
Collapse
|
34
|
Chiral secondary amino acids, their importance, and methods of analysis. Amino Acids 2022; 54:687-719. [PMID: 35192062 DOI: 10.1007/s00726-022-03136-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 11/01/2022]
Abstract
Naturally occurring secondary amino acids, with proline as the main representative, contain an alpha-imino group in a cycle that is typically four-, five-, and six-membered. The unique ring structure exhibits exceptional properties-conformational rigidity, chemical stability, and specific roles in protein structure and folding. Many proline analogues have been used as valuable compounds for the study of metabolism of both prokaryotic and eukaryotic cells and for the synthesis of compounds with desired biological, pharmaceutical, or industrial properties. The D-forms of secondary amino acids play different roles in living organisms than the L-forms. They have different metabolic pathways, biological, physiological, and pharmacological effects, they can be indicators of changes and also serve as biomarkers of diseases. In the scientific literature, the number of articles examining D-amino acids in biological samples is increasing. The review summarises information on the occurrence and importance of D- and L-secondary amino acids-azetidic acid, proline, hydroxyprolines, pipecolic, nipecotic, hydroxypipecolic acids and related peptides containing these D-AAs, as well as the main analytical methods (mostly chromatographic) used for their enantiomeric determination in different matrices (biological samples, plants, food, water, and soil).
Collapse
|
35
|
Oudaert I, Satilmis H, Vlummens P, De Brouwer W, Maes A, Hose D, De Bruyne E, Ghesquière B, Vanderkerken K, De Veirman K, Menu E. Pyrroline-5-Carboxylate Reductase 1: a novel target for sensitizing multiple myeloma cells to bortezomib by inhibition of PRAS40-mediated protein synthesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:45. [PMID: 35105345 PMCID: PMC8805317 DOI: 10.1186/s13046-022-02250-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/07/2022] [Indexed: 12/21/2022]
Abstract
Background Multiple myeloma (MM) remains an incurable cancer despite advances in therapy. Therefore, the search for new targets is still essential to uncover potential treatment strategies. Metabolic changes, induced by the hypoxic bone marrow, contribute to both MM cell survival and drug resistance. Pyrroline-5-carboxylate reductase 1 and 2 (PYCR1 and PYCR2) are two mitochondrial enzymes that facilitate the last step in the glutamine-to-proline conversion. Overexpression of PYCR1 is involved in progression of several cancers, however, its’ role in hematological cancers is unknown. In this study, we investigated whether PYCR affects MM viability, proliferation and response to bortezomib. Methods Correlation of PYCR1/2 with overall survival was investigated in the MMRF CoMMpass trial (653 patients). OPM-2 and RPMI-8226 MM cell lines were used to perform in vitro experiments. RPMI-8226 cells were supplemented with 13C-glutamine for 48 h in both normoxia and hypoxia (< 1% O2, by chamber) to perform a tracer study. PYCR1 was inhibited by siRNA or the small molecule inhibitor pargyline. Apoptosis was measured using Annexin V and 7-AAD staining, viability by CellTiterGlo assay and proliferation by BrdU incorporation. Differential protein expression was evaluated using Western Blot. The SUnSET method was used to measure protein synthesis. All in vitro experiments were performed in hypoxic conditions. Results We found that PYCR1 and PYCR2 mRNA expression correlated with an inferior overall survival. MM cells from relapsed/refractory patients express significantly higher levels of PYCR1 mRNA. In line with the strong expression of PYCR1, we performed a tracer study in RPMI-8226 cells, which revealed an increased conversion of 13C-glutamine to proline in hypoxia. PYCR1 inhibition reduced MM viability and proliferation and increased apoptosis. Mechanistically, we found that PYCR1 silencing reduced protein levels of p-PRAS40, p-mTOR, p-p70, p-S6, p-4EBP1 and p-eIF4E levels, suggesting a decrease in protein synthesis, which we also confirmed in vitro. Pargyline and siPYCR1 increased bortezomib-mediated apoptosis. Finally, combination therapy of pargyline with bortezomib reduced viability in CD138+ MM cells and reduced tumor burden in the murine 5TGM1 model compared to single agents. Conclusions This study identifies PYCR1 as a novel target in bortezomib-based combination therapies for MM. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02250-3.
Collapse
|
36
|
Junior RP, Sonehara NM, Jardim-Perassi BV, Pal A, Asad Y, Almeida Chuffa LG, Chammas R, Raynaud FI, Zuccari DAPC. Presence of human breast cancer xenograft changes the diurnal profile of amino acids in mice. Sci Rep 2022; 12:1008. [PMID: 35046467 PMCID: PMC8770691 DOI: 10.1038/s41598-022-04994-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
Human xenografts are extremely useful models to study the biology of human cancers and the effects of novel potential therapies. Deregulation of metabolism, including changes in amino acids (AAs), is a common characteristic of many human neoplasms. Plasma AAs undergo daily variations, driven by circadian endogenous and exogenous factors. We compared AAs concentration in triple negative breast cancer MDA-MB-231 cells and MCF10A non-tumorigenic immortalized breast epithelial cells. We also measured plasma AAs in mice bearing xenograft MDA-MB-231 and compared their levels with non-tumor-bearing control animals over 24 h. In vitro studies revealed that most of AAs were significantly different in MDA-MB-231 cells when compared with MCF10A. Plasma concentrations of 15 AAs were higher in cancer cells, two were lower and four were observed to shift across 24 h. In the in vivo setting, analysis showed that 12 out of 20 AAs varied significantly between tumor-bearing and non-tumor bearing mice. Noticeably, these metabolites peaked in the dark phase in non-tumor bearing mice, which corresponds to the active time of these animals. Conversely, in tumor-bearing mice, the peak time occurred during the light phase. In the early period of the light phase, these AAs were significantly higher in tumor-bearing animals, yet significantly lower in the middle of the light phase when compared with controls. This pilot study highlights the importance of well controlled experiments in studies involving plasma AAs in human breast cancer xenografts, in addition to emphasizing the need for more precise examination of exometabolomic changes using multiple time points.
Collapse
Affiliation(s)
- Rubens Paula Junior
- Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, Brazil.
| | | | | | - Akos Pal
- The Institute of Cancer Research, London, UK
| | - Yasmin Asad
- The Institute of Cancer Research, London, UK
| | | | - Roger Chammas
- Instituto Do Câncer Do Estado de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
37
|
Gouda G, Gupta MK, Donde R, Behera L, Vadde R. Metabolic pathway-based target therapy to hepatocellular carcinoma: a computational approach. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA, VOLUME 2 2022:83-103. [DOI: 10.1016/b978-0-323-98807-0.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
38
|
Silverman RB. Inactivators of Ornithine Aminotransferase for the Treatment of Hepatocellular Carcinoma. ACS Med Chem Lett 2021; 13:38-49. [PMID: 35059122 PMCID: PMC8762738 DOI: 10.1021/acsmedchemlett.1c00526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second or third leading cause of cancer mortality worldwide (depending on which statistics are used), yet there is no effective treatment. Currently, there are nine FDA-approved drugs for HCC, five monoclonal antibodies and four tyrosine kinase inhibitors. Ornithine aminotransferase (OAT) has been validated as a target in preclinical studies, which demonstrates that it is a potential target to treat HCC. Currently, there are no OAT inactivators in clinical trials for HCC. This Innovation describes evidence to support inhibition of OAT as a novel approach for HCC tumor growth inhibition. After the mechanism of OAT is discussed, the origins of our involvement in OAT inactivation, based on our previous work on mechanism-based inactivation of GABA-AT, are described. Once it was demonstrated that OAT inactivation does lead to HCC tumor growth inhibition, new selective OAT inactivators were designed and their inactivation mechanisms were elucidated. A summary of these mechanistic studies is presented. Inactivators of OAT provide the potential for treatment of HCC, targeting the Wnt/β-catenin pathway.
Collapse
|
39
|
Hu CAA. Isozymes of P5C reductase (PYCR) in human diseases: focus on cancer. Amino Acids 2021; 53:1835-1840. [PMID: 34291342 DOI: 10.1007/s00726-021-03048-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022]
Abstract
Δ1-Pyrroline-5-carboxylate (P5C) reductase (PYCR or P5CR) catalyzes the conversion of P5C to L-proline (Pro) with concomitant oxidation of a cofactor, NADPH or NADH. Mammalian PYCR have been studied since 1950' and currently three isozymes of human PYCR, 1, 2, and L, have been identified and characterized and their roles in genetic diseases and cancer biology have been keenly investigated. These three isozymes are encoded by three different genes localized at three different chromosomes, and catalyze NAD(P)H-dependent reduction of P5C to Pro important for the transfer of oxidizing potential across the mitochondrion and cell. The review summarizes the current understanding of these three human PYCR isozymes and their roles in diseases with a focus on cancer.
Collapse
Affiliation(s)
- Chien-An A Hu
- MSC08 4670, Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
40
|
Forlani G, Sabbioni G, Ragno D, Petrollino D, Borgatti M. Phenyl-substituted aminomethylene-bisphosphonates inhibit human P5C reductase and show antiproliferative activity against proline-hyperproducing tumour cells. J Enzyme Inhib Med Chem 2021; 36:1248-1257. [PMID: 34107832 PMCID: PMC8205077 DOI: 10.1080/14756366.2021.1919890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In certain cancers, such as breast, prostate and some lung and skin cancers, the gene for the enzyme catalysing the second and last step in proline synthesis, δ1-pyrroline-5-carboxylate (P5C) reductase, has been found upregulated. This leads to a higher proline content that exacerbates the effects of the so-called proline-P5C cycle, with tumour cells effectively using this method to increase cell survival. If a method of reducing or inhibiting P5C reductase could be discovered, it would provide new means of treating cancer. To address this point, the effect of some phenyl-substituted derivatives of aminomethylene-bisphosphonic acid, previously found to interfere with the catalytic activity of plant and bacterial P5C reductases, was evaluated in vitro on the human isoform 1 (PYCR1), expressed in E. coli and affinity purified. The 3.5-dibromophenyl- and 3.5-dichlorophenyl-derivatives showed a remarkable effectiveness, with IC50 values lower than 1 µM and a mechanism of competitive type against both P5C and NADPH. The actual occurrence in vivo of enzyme inhibition was assessed on myelogenous erythroleukemic K562 and epithelial breast cancer MDA-MB-231 cell lines, whose growth was progressively impaired by concentrations of the dibromo derivative ranging from 10-6 to 10-4 M. Interestingly, growth inhibition was not relieved by the exogenous supply of proline, suggesting that the effect relies on the interference with the proline-P5C cycle, and not on proline starvation.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Sabbioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Petrollino
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
41
|
Vettore LA, Westbrook RL, Tennant DA. Proline metabolism and redox; maintaining a balance in health and disease. Amino Acids 2021; 53:1779-1788. [PMID: 34291343 PMCID: PMC8651533 DOI: 10.1007/s00726-021-03051-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Proline is a non-essential amino acid with key roles in protein structure/function and maintenance of cellular redox homeostasis. It is available from dietary sources, generated de novo within cells, and released from protein structures; a noteworthy source being collagen. Its catabolism within cells can generate ATP and reactive oxygen species (ROS). Recent findings suggest that proline biosynthesis and catabolism are essential processes in disease; not only due to the role in new protein synthesis as part of pathogenic processes but also due to the impact of proline metabolism on the wider metabolic network through its significant role in redox homeostasis. This is particularly clear in cancer proliferation and metastatic outgrowth. Nevertheless, the precise identity of the drivers of cellular proline catabolism and biosynthesis, and the overall cost of maintaining appropriate balance is not currently known. In this review, we explore the major drivers of proline availability and consumption at a local and systemic level with a focus on cancer. Unraveling the main factors influencing proline metabolism in normal physiology and disease will shed light on new effective treatment strategies.
Collapse
Affiliation(s)
- Lisa A Vettore
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Rebecca L Westbrook
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
42
|
Bogner AN, Stiers KM, Tanner JJ. Structure, biochemistry, and gene expression patterns of the proline biosynthetic enzyme pyrroline-5-carboxylate reductase (PYCR), an emerging cancer therapy target. Amino Acids 2021; 53:1817-1834. [PMID: 34003320 PMCID: PMC8599497 DOI: 10.1007/s00726-021-02999-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Proline metabolism features prominently in the unique metabolism of cancer cells. Proline biosynthetic genes are consistently upregulated in multiple cancers, while the proline catabolic enzyme proline dehydrogenase has dual, context-dependent pro-cancer and pro-apoptotic functions. Furthermore, the cycling of proline and Δ1-pyrroline-5-carboxylate through the proline cycle impacts cellular growth and death pathways by maintaining redox homeostasis between the cytosol and mitochondria. Here we focus on the last enzyme of proline biosynthesis, Δ1-pyrroline-5-carboxylate reductase, known as PYCR in humans. PYCR catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to proline and forms the reductive half of the proline metabolic cycle. We review the research on the three-dimensional structure, biochemistry, inhibition, and cancer biology of PYCR. To provide a global view of PYCR gene upregulation in cancer, we mined RNA transcript databases to analyze differential gene expression in 28 cancer types. This analysis revealed strong, widespread upregulation of PYCR genes, especially PYCR1. Altogether, the research over the past 20 years makes a compelling case for PYCR as a cancer therapy target. We conclude with a discussion of some of the major challenges for the field, including developing isoform-specific inhibitors, elucidating the function of the long C-terminus of PYCR1/2, and characterizing the interactome of PYCR.
Collapse
Affiliation(s)
- Alexandra N Bogner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Kyle M Stiers
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
43
|
Phang JM. Perspectives, past, present and future: the proline cycle/proline-collagen regulatory axis. Amino Acids 2021; 53:1967-1975. [PMID: 34825974 PMCID: PMC8651602 DOI: 10.1007/s00726-021-03103-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023]
Abstract
In the 35 years since the introduction of the "proline cycle", its relevance to human tumors has been widely established. These connections are based on a variety of mechanisms discovered by many laboratories and have stimulated the search for small molecule inhibitors to treat cancer or metastases. In addition, the multi-layered connections of the proline cycle and the role of proline and hydroxyproline in collagen provide an important regulatory link between the extracellular matrix and metabolism.
Collapse
Affiliation(s)
- James M Phang
- Scientist Emeritus, Mouse Cancer Genetics Program, CCR, NCI at Frederick, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
44
|
Farhana A, Koh AEH, Ling Mok P, Alsrhani A, Khan YS, Subbiah SK. Camptothecin Encapsulated in β-Cyclodextrin-EDTA-Fe 3O 4 Nanoparticles Induce Metabolic Reprogramming Repair in HT29 Cancer Cells through Epigenetic Modulation: A Bioinformatics Approach. NANOMATERIALS 2021; 11:nano11123163. [PMID: 34947512 PMCID: PMC8705212 DOI: 10.3390/nano11123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Cancer progresses through a distinctive reprogramming of metabolic pathways directed by genetic and epigenetic modifications. The hardwired changes induced by genetic mutations are resilient, while epigenetic modifications are softwired and more vulnerable to therapeutic intervention. Colon cancer is no different. This gives us the need to explore the mechanism as an attractive therapeutic target to combat colon cancer cells. We have previously established the enhanced therapeutic efficacy of a newly formulated camptothecin encapsulated in β-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF) in colon cancer cells. We furthered this study by carrying out RNA sequencing (RNA-seq) to underscore specific regulatory signatures in the CPT-CEF treated versus untreated HT29 cells. In the study, we identified 95 upregulated and 146 downregulated genes spanning cellular components and molecular and metabolic functions. We carried out extensive bioinformatics analysis to harness genes potentially involved in epigenetic modulation as either the cause or effect of metabolic rewiring exerted by CPT-CEF. Significant downregulation of 13 genes involved in the epigenetic modulation and 40 genes from core metabolism was identified. Three genes, namely, DNMT-1, POLE3, and PKM-2, were identified as the regulatory overlap between epigenetic drivers and metabolic reprogramming in HT29 cells. Based on our results, we propose a possible mechanism that intercepts the two functional axes, namely epigenetic control, and metabolic modulation via CPT-CEF in colon cancer cells, which could skew cancer-induced metabolic deregulation towards metabolic repair. Thus, the study provides avenues for further validation of transcriptomic changes affected by these deregulated genes at epigenetic level, and ultimately may be harnessed as targets for regenerating normal metabolism in colon cancer with better treatment potential, thereby providing new avenues for colon cancer therapy.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (P.L.M.); (A.A.)
- Correspondence: (A.F.); (S.K.S.)
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (P.L.M.); (A.A.)
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (P.L.M.); (A.A.)
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Bharath University, Selaiyur, Chennai 600073, India
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: (A.F.); (S.K.S.)
| |
Collapse
|
45
|
P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis. Int J Mol Sci 2021; 22:ijms222111763. [PMID: 34769188 PMCID: PMC8584052 DOI: 10.3390/ijms222111763] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Studies of cancer metabolism have focused on the production of energy and the interconversion of carbons between cell cycles. More recently, amino acid metabolism, especially non-essential amino acids (NEAAs), has been investigated, underlining their regulatory role. One of the important mediators in energy production and interconversion of carbons in the cell is Δ1-pyrroline-5-carboxylate (P5C)—the physiological intracellular intermediate of the interconversion of proline, ornithine, and glutamate. As a central component of these conversions, it links the tricarboxylic acid cycle (TCA), urea cycle (UC), and proline cycle (PC). P5C has a cyclic structure containing a tertiary nitrogen atom (N) and is in tautomeric equilibrium with the open-chain form of L-glutamate-γ-semialdehyde (GSAL). P5C is produced by P5C synthase (P5CS) from glutamate, and ornithine via ornithine δ-amino acid transferase (δOAT). It can also be converted to glutamate by P5C dehydrogenase (P5CDH). P5C is both a direct precursor of proline and a product of its degradation. The conversion of P5C to proline is catalyzed by P5C reductase (PYCR), while proline to P5C by proline dehydrogenase/oxidase (PRODH/POX). P5C-proline-P5C interconversion forms a functional redox couple. Their transformations are accompanied by the transfer of a reducing-oxidizing potential, that affect the NADP+/NADPH ratio and a wide variety of processes, e.g., the synthesis of phosphoribosyl pyrophosphate (PRPP), and purine ribonucleotides, which are crucial for DNA synthesis. This review focuses on the metabolism of P5C in the cell as an interconversion mediator of proline, glutamate, and ornithine and its role in the regulation of survival and death with particular emphasis on the metabolic context.
Collapse
|
46
|
Püschel J, Dubrovska A, Gorodetska I. The Multifaceted Role of Aldehyde Dehydrogenases in Prostate Cancer Stem Cells. Cancers (Basel) 2021; 13:4703. [PMID: 34572930 PMCID: PMC8472046 DOI: 10.3390/cancers13184703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are the only tumor cells possessing self-renewal and differentiation properties, making them an engine of tumor progression and a source of tumor regrowth after treatment. Conventional therapies eliminate most non-CSCs, while CSCs often remain radiation and drug resistant, leading to tumor relapse and metastases. Thus, targeting CSCs might be a powerful tool to overcome tumor resistance and increase the efficiency of current cancer treatment strategies. The identification and isolation of the CSC population based on its high aldehyde dehydrogenase activity (ALDH) is widely accepted for prostate cancer (PCa) and many other solid tumors. In PCa, several ALDH genes contribute to the ALDH activity, which can be measured in the enzymatic assay by converting 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) aminoacetaldehyde (BAAA) into the fluorescent product BODIPY-aminoacetate (BAA). Although each ALDH isoform plays an individual role in PCa biology, their mutual functional interplay also contributes to PCa progression. Thus, ALDH proteins are markers and functional regulators of CSC properties, representing an attractive target for cancer treatment. In this review, we discuss the current state of research regarding the role of individual ALDH isoforms in PCa development and progression, their possible therapeutic targeting, and provide an outlook for the future advances in this field.
Collapse
Affiliation(s)
- Jakob Püschel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| |
Collapse
|
47
|
Madama D, Martins R, Pires AS, Botelho MF, Alves MG, Abrantes AM, Cordeiro CR. Metabolomic Profiling in Lung Cancer: A Systematic Review. Metabolites 2021; 11:630. [PMID: 34564447 PMCID: PMC8471464 DOI: 10.3390/metabo11090630] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer continues to be a significant burden worldwide and remains the leading cause of cancer-associated mortality. Two considerable challenges posed by this disease are the diagnosis of 61% of patients in advanced stages and the reduced five-year survival rate of around 4%. Noninvasively collected samples are gaining significant interest as new areas of knowledge are being sought and opened up. Metabolomics is one of these growing areas. In recent years, the use of metabolomics as a resource for the study of lung cancer has been growing. We conducted a systematic review of the literature from the past 10 years in order to identify some metabolites associated with lung cancer. More than 150 metabolites have been associated with lung cancer-altered metabolism. These were detected in different biological samples by different metabolomic analytical platforms. Some of the published results have been consistent, showing the presence/alteration of specific metabolites. However, there is a clear variability due to lack of a full clinical characterization of patients or standardized patients selection. In addition, few published studies have focused on the added value of the metabolomic profile as a means of predicting treatment response for lung cancer. This review reinforces the need for consistent and systematized studies, which will help make it possible to identify metabolic biomarkers and metabolic pathways responsible for the mechanisms that promote tumor progression, relapse and eventually resistance to therapy.
Collapse
Affiliation(s)
- Daniela Madama
- Clinical Academic Center of Coimbra (CACC), Department of Pulmonology, Faculty of Medicine, University Hospitals of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Rosana Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal;
| | - Ana S. Pires
- Clinical Academic Center of Coimbra (CACC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal; (A.S.P.); (M.F.B.); (A.M.A.)
| | - Maria F. Botelho
- Clinical Academic Center of Coimbra (CACC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal; (A.S.P.); (M.F.B.); (A.M.A.)
| | - Marco G. Alves
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4099-002 Porto, Portugal;
| | - Ana M. Abrantes
- Clinical Academic Center of Coimbra (CACC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal; (A.S.P.); (M.F.B.); (A.M.A.)
| | - Carlos R. Cordeiro
- Clinical Academic Center of Coimbra (CACC), Department of Pulmonology, Faculty of Medicine, University Hospitals of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal;
| |
Collapse
|
48
|
Pyrroline-5-Carboxylate Reductase-2 Promotes Colorectal Cancer Progression via Activating PI3K/AKT/mTOR Pathway. DISEASE MARKERS 2021; 2021:9950663. [PMID: 34512817 PMCID: PMC8429024 DOI: 10.1155/2021/9950663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Aim The aim of this study was to investigate the effect and underlying pathway of pyrroline-5-carboxylate reductase-2 (PYCR2) on colorectal cancer (CRC). Methods The Cancer Genome Atlas (TCGA) database was used to analyze PYCR2 expression levels and clinical information. Cell proliferation was evaluated using colony forming and EdU assay. Cell apoptosis rate was determined using flow cytometry. Cell migration and invasion were measured by performing a Transwell assay, and PYCR2, MMP-2, MMP-9, Bax, cleaved caspase-3, Bcl-2, cleaved PARP, p-PI3K, PI3K, p-AKT, AKT, p-mTOR, and mTOR protein levels were detected by Western blot. Results A review of the TCGA database revealed that PYCR2 was highly expressed in CRC patients and that high PYCR2 expression was associated with advanced stage, adenocarcinoma, nodal metastasis, and poor survival rate. Moreover, PYCR2 knockdown reduced cell viability, proliferation, migration, and invasion and increased apoptosis. Additionally, PYCR2 knockdown increased Bax, cleaved caspase-3, and cleaved PARP levels and decreased Bcl-2, MMP-2, MMP-9, p-PI3K, p-AKT, and p-mTOR levels in CRC cells. Effects of silencing PYCR2 on proliferation, migration, invasion, apoptosis, and the PI3K/AKT/mTOR pathway in CRC cells were all reversed using a PI3K activator (740Y-P). Conclusion PYCR2 was highly expressed in CRC, and its knockdown suppressed CRC tumorigenesis via inhibiting the activation of PI3K/AKT/mTOR pathway. This finding provides a new theoretical foundation for the treatment of CRC.
Collapse
|
49
|
Misiura M, Ościłowska I, Bielawska K, Pałka J, Miltyk W. PRODH/POX-Dependent Celecoxib-Induced Apoptosis in MCF-7 Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14090874. [PMID: 34577574 PMCID: PMC8471327 DOI: 10.3390/ph14090874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023] Open
Abstract
Celecoxib (Cx), an inhibitor of cyclooxygenase 2, induces apoptosis of cancer cells. However, the mechanism of the chemopreventive effect remains not fully understood. We aimed to investigate the role of PRODH/POX that is involved in the regulation of apoptosis induced by celecoxib. MCF-7 breast cancer cell line and the corresponding MCF-7 cell line with silenced PRODH/POX (MCF-7shPRODH/POX) were used. The effects of Cx on cell viability, proliferation, and cell cycle were evaluated. The expressions of protein markers for apoptosis (Bax, caspase 9, and PARP) and autophagy (Atg5, Beclin 1, and LC3A/B) were investigated by Western immunoblotting. To analyze the proline metabolism, collagen biosynthesis, prolidase activity, proline concentration, and the expression of proline-related proteins were evaluated. The generation of ATP, ROS, and the ratio of NAD+/NADH and NADP+/NADPH were determined to test the effect of Cx on energetic metabolism in breast cancer cells. It has been found that Cx attenuated MCF-7 cell proliferation via arresting the cell cycle. Cx induced apoptosis in MCF-7 breast cancer cells, while in MCF-7shPRODH/POX, autophagy occurred more predominantly. In MCF-7 breast cancer cells, Cx affected proline metabolism through upregulation of proline biosynthesis, PRODH/POX and PYCRs expressions, PEPD activity, and downregulation of collagen biosynthesis. In MCF-7shPRODH/POX clones, these processes, as well as energetic metabolism, were remarkably suppressed. The data for the first time suggest that celecoxib induces apoptosis through upregulation of PRODH/POX in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Magdalena Misiura
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilińskiego1, 15-089 Bialystok, Poland; (M.M.); (K.B.)
| | - Ilona Ościłowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (I.O.); (J.P.)
| | - Katarzyna Bielawska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilińskiego1, 15-089 Bialystok, Poland; (M.M.); (K.B.)
| | - Jerzy Pałka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (I.O.); (J.P.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilińskiego1, 15-089 Bialystok, Poland; (M.M.); (K.B.)
- Correspondence: ; Tel.: +48-85-748-5845
| |
Collapse
|
50
|
Kay EJ, Koulouras G, Zanivan S. Regulation of Extracellular Matrix Production in Activated Fibroblasts: Roles of Amino Acid Metabolism in Collagen Synthesis. Front Oncol 2021; 11:719922. [PMID: 34513697 PMCID: PMC8429785 DOI: 10.3389/fonc.2021.719922] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) are a major component of the tumour microenvironment in most tumours, and are key mediators of the response to tissue damage caused by tumour growth and invasion, contributing to the observation that tumours behave as 'wounds that do not heal'. CAFs have been shown to play a supporting role in all stages of tumour progression, and this is dependent on the highly secretory phenotype CAFs develop upon activation, of which extracellular matrix (ECM) production is a key element. A collagen rich, stromal ECM has been shown to influence tumour growth and metastasis, exclude immune cells and impede drug delivery, and is associated with poor prognosis in many cancers. CAFs also extensively remodel their metabolism to support cancer cells, however, it is becoming clear that metabolic rewiring also supports intrinsic functions of activated fibroblasts, such as increased ECM production. In this review, we summarise how fibroblasts metabolically regulate ECM production, focussing on collagen production, at the transcriptional, translational and post-translational level, and discuss how this can provide possible strategies for effectively targeting CAF activation and formation of a tumour-promoting stroma.
Collapse
Affiliation(s)
- Emily J. Kay
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Grigorios Koulouras
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|