1
|
Kalenik S, Zaczek A, Rodacka A. Air Pollution-Induced Neurotoxicity: The Relationship Between Air Pollution, Epigenetic Changes, and Neurological Disorders. Int J Mol Sci 2025; 26:3402. [PMID: 40244238 PMCID: PMC11989335 DOI: 10.3390/ijms26073402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Air pollution is a major global health threat, responsible for over 8 million deaths in 2021, including 700,000 fatalities among children under the age of five. It is currently the second leading risk factor for mortality worldwide. Key pollutants, such as particulate matter (PM2.5, PM10), ozone, sulfur dioxide, nitrogen oxides, and carbon monoxide, have significant adverse effects on human health, contributing to respiratory and cardiovascular diseases, as well as neurodevelopmental and neurodegenerative disorders. Among these, particulate matter poses the most significant threat due to its highly complex mixture of organic and inorganic compounds with diverse sizes, compositions, and origins. Additionally, it can penetrate deeply into tissues and cross the blood-brain barrier, causing neurotoxicity which contributes to the development of neurodegenerative diseases. Although the link between air pollution and neurological disorders is well documented, the precise mechanisms and their sequence remain unclear. Beyond causing oxidative stress, inflammation, and excitotoxicity, studies suggest that air pollution induces epigenetic changes. These epigenetic alterations may affect the expression of genes involved in stress responses, neuroprotection, and synaptic plasticity. Understanding the relationship between neurological disorders and epigenetic changes induced by specific air pollutants could aid in the early detection and monitoring of central nervous system diseases.
Collapse
Affiliation(s)
- Sebastian Kalenik
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237 Lodz, Poland
| | - Agnieszka Zaczek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
| | - Aleksandra Rodacka
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
| |
Collapse
|
2
|
Ripley S, Maher BA, Hatzopoulou M, Weichenthal S. Within-city spatial variations in PM 2.5 magnetite nanoparticles and brain cancer incidence in Toronto and Montreal, Canada. Sci Rep 2024; 14:12136. [PMID: 38802386 PMCID: PMC11130222 DOI: 10.1038/s41598-024-58119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024] Open
Abstract
Magnetite nanoparticles are small, strongly magnetic iron oxide particles which are produced during high-temperature combustion and friction processes and form part of the outdoor air pollution mixture. These particles can translocate to the brain and have been found in human brain tissue. In this study, we estimated associations between within-city spatial variations in concentrations of magnetite nanoparticles in outdoor fine particulate matter (PM2.5) and brain cancer incidence. We performed a cohort study of 1.29 million participants in four cycles of the Canadian Census Health and Environment Cohort in Montreal and Toronto, Canada who were followed for malignant brain tumour (glioma) incidence. As a proxy for magnetite nanoparticle content, we measured the susceptibility of anhysteretic remanent magnetization (χARM) in PM2.5 samples (N = 124 in Montreal, N = 110 in Toronto), and values were assigned to residential locations. Stratified Cox proportional hazards models were used to estimate hazard ratios (per IQR change in volume-normalized χARM). ARM was not associated with brain tumour incidence (HR = 0.998, 95% CI 0.988, 1.009) after adjusting for relevant potential confounders. Although we found no evidence of an important relationship between within-city spatial variations in airborne magnetite nanoparticles and brain tumour incidence, further research is needed to evaluate this understudied exposure, and other measures of exposure to magnetite nanoparticles should be considered.
Collapse
Affiliation(s)
- Susannah Ripley
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, H3A 1G1, Canada.
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Marianne Hatzopoulou
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, M5S 1A4, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, H3A 1G1, Canada
| |
Collapse
|
3
|
López-León CF, Soriano J, Planet R. Rheological Characterization of Three-Dimensional Neuronal Cultures Embedded in PEGylated Fibrin Hydrogels. Gels 2023; 9:642. [PMID: 37623097 PMCID: PMC10454106 DOI: 10.3390/gels9080642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Three-dimensional (3D) neuronal cultures are valuable models for studying brain complexity in vitro, and the choice of the bulk material in which the neurons grow is a crucial factor in establishing successful cultures. Indeed, neuronal development and network functionality are influenced by the mechanical properties of the selected material; in turn, these properties may change due to neuron-matrix interactions that alter the microstructure of the material. To advance our understanding of the interplay between neurons and their environment, here we utilized a PEGylated fibrin hydrogel as a scaffold for mouse primary neuronal cultures and carried out a rheological characterization of the scaffold over a three-week period, both with and without cells. We observed that the hydrogels exhibited an elastic response that could be described in terms of the Young's modulus E. The hydrogels without neurons procured a stable E≃420 Pa, while the neuron-laden hydrogels showed a higher E≃590 Pa during the early stages of development that decreased to E≃340 Pa at maturer stages. Our results suggest that neurons and their processes dynamically modify the hydrogel structure during development, potentially compromising both the stability of the material and the functional traits of the developing neuronal network.
Collapse
Affiliation(s)
- Clara F. López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Ramon Planet
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| |
Collapse
|
4
|
Huang C, Li J, Liu C, Zhang Y, Tang Q, Lv X, Ruan M, Deng K. Investigation of brain iron levels in Chinese patients with Alzheimer's disease. Front Aging Neurosci 2023; 15:1168845. [PMID: 37284016 PMCID: PMC10239950 DOI: 10.3389/fnagi.2023.1168845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction We aimed (i) to explore the diagnostic value of deep gray matter magnetic susceptibility in Alzheimer's disease (AD) in China and (ii) to analyze its correlation with neuropsychiatric scales. Moreover, we conducted subgroup analysis based on the presence of the APOE-ε4 gene to improve the diagnosis of AD. Methods From the prospective studies of the China Aging and Neurodegenerative Initiative (CANDI), a total of 93 subjects who could undergo complete quantitative magnetic susceptibility imaging and APOE-ε4 gene detection were selected. Differences in quantitative susceptibility mapping (QSM) values between and within groups, including AD patients, individuals with mild cognitive impairment (MCI), and healthy controls (HCs), both APOE-ε4 carriers and non-carriers, were analyzed. Results In primary analysis, the magnetic susceptibility values of the bilateral caudate nucleus and right putamen in the AD group and of the right caudate nucleus in the MCI group were significantly higher than those in the HCs group (P < 0.05). In APOE-ε4 non-carriers, there were significant differences in more regions between the AD, MCI, and HCs groups, such as the left putamen and the right globus pallidus (P < 0.05). In subgroup analysis, the correlation between QSM values in some brain regions and neuropsychiatric scales was even stronger. Discussion Exploration of the correlation between deep gray matter iron levels and AD may provide insight into the pathogenesis of AD and facilitate early diagnosis in elderly Chinese. Further subgroup analysis based on the presence of the APOE-ε4 gene may further improve the diagnostic efficiency and sensitivity.
Collapse
Affiliation(s)
- Chuanbin Huang
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
- Fuyang Hospital of TCM, Fuyang, Anhui, China
| | - Jing Li
- Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Chang Liu
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | | | - Qiqiang Tang
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Xinyi Lv
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Mengyue Ruan
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Kexue Deng
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
5
|
Neuronal Cultures: Exploring Biophysics, Complex Systems, and Medicine in a Dish. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Neuronal cultures are one of the most important experimental models in modern interdisciplinary neuroscience, allowing to investigate in a control environment the emergence of complex behavior from an ensemble of interconnected neurons. Here, I review the research that we have conducted at the neurophysics laboratory at the University of Barcelona over the last 15 years, describing first the neuronal cultures that we prepare and the associated tools to acquire and analyze data, to next delve into the different research projects in which we actively participated to progress in the understanding of open questions, extend neuroscience research on new paradigms, and advance the treatment of neurological disorders. I finish the review by discussing the drawbacks and limitations of neuronal cultures, particularly in the context of brain-like models and biomedicine.
Collapse
|
6
|
Montalà-Flaquer M, López-León CF, Tornero D, Houben AM, Fardet T, Monceau P, Bottani S, Soriano J. Rich dynamics and functional organization on topographically designed neuronal networks in vitro. iScience 2022; 25:105680. [PMID: 36567712 PMCID: PMC9768383 DOI: 10.1016/j.isci.2022.105680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/05/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Neuronal cultures are a prominent experimental tool to understand complex functional organization in neuronal assemblies. However, neurons grown on flat surfaces exhibit a strongly coherent bursting behavior with limited functionality. To approach the functional richness of naturally formed neuronal circuits, here we studied neuronal networks grown on polydimethylsiloxane (PDMS) topographical patterns shaped as either parallel tracks or square valleys. We followed the evolution of spontaneous activity in these cultures along 20 days in vitro using fluorescence calcium imaging. The networks were characterized by rich spatiotemporal activity patterns that comprised from small regions of the culture to its whole extent. Effective connectivity analysis revealed the emergence of spatially compact functional modules that were associated with both the underpinned topographical features and predominant spatiotemporal activity fronts. Our results show the capacity of spatial constraints to mold activity and functional organization, bringing new opportunities to comprehend the structure-function relationship in living neuronal circuits.
Collapse
Affiliation(s)
- Marc Montalà-Flaquer
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain,Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Clara F. López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain,Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Daniel Tornero
- Laboratory of Neural Stem Cells and Brain Damage, Institute of Neurosciences, University of Barcelona, E-08036 Barcelona, Spain
| | - Akke Mats Houben
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain,Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Tanguy Fardet
- Laboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France,University of Tübingen, Tübingen, Germany,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Pascal Monceau
- Laboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France
| | - Samuel Bottani
- Laboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain,Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain,Corresponding author
| |
Collapse
|
7
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
8
|
Matamoros-Angles A, Hervera A, Soriano J, Martí E, Carulla P, Llorens F, Nuvolone M, Aguzzi A, Ferrer I, Gruart A, Delgado-García JM, Del Río JA. Analysis of co-isogenic prion protein deficient mice reveals behavioral deficits, learning impairment, and enhanced hippocampal excitability. BMC Biol 2022; 20:17. [PMID: 35027047 PMCID: PMC8759182 DOI: 10.1186/s12915-021-01203-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Background Cellular prion protein (PrPC) is a cell surface GPI-anchored protein, usually known for its role in the pathogenesis of human and animal prionopathies. However, increasing knowledge about the participation of PrPC in prion pathogenesis contrasts with puzzling data regarding its natural physiological role. PrPC is expressed in a number of tissues, including at high levels in the nervous system, especially in neurons and glial cells, and while previous studies have established a neuroprotective role, conflicting evidence for a synaptic function has revealed both reduced and enhanced long-term potentiation, and variable observations on memory, learning, and behavior. Such evidence has been confounded by the absence of an appropriate knock-out mouse model to dissect the biological relevance of PrPC, with some functions recently shown to be misattributed to PrPC due to the presence of genetic artifacts in mouse models. Here we elucidate the role of PrPC in the hippocampal circuitry and its related functions, such as learning and memory, using a recently available strictly co-isogenic Prnp0/0 mouse model (PrnpZH3/ZH3). Results We performed behavioral and operant conditioning tests to evaluate memory and learning capabilities, with results showing decreased motility, impaired operant conditioning learning, and anxiety-related behavior in PrnpZH3/ZH3 animals. We also carried in vivo electrophysiological recordings on CA3-CA1 synapses in living behaving mice and monitored spontaneous neuronal firing and network formation in primary neuronal cultures of PrnpZH3/ZH3 vs wildtype mice. PrPC absence enhanced susceptibility to high-intensity stimulations and kainate-induced seizures. However, long-term potentiation (LTP) was not enhanced in the PrnpZH3/ZH3 hippocampus. In addition, we observed a delay in neuronal maturation and network formation in PrnpZH3/ZH3 cultures. Conclusion Our results demonstrate that PrPC promotes neuronal network formation and connectivity. PrPC mediates synaptic function and protects the synapse from excitotoxic insults. Its deletion may underlie an epileptogenic-susceptible brain that fails to perform highly cognitive-demanding tasks such as associative learning and anxiety-like behaviors. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01203-0.
Collapse
Affiliation(s)
- A Matamoros-Angles
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Hervera
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - J Soriano
- Departament de Física de la Materia Condensada, University of Barcelona, Barcelona, Spain.,Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - E Martí
- Department of Biomedicine, University of Barcelona, Barcelona, Spain.,Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Spain
| | - P Carulla
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain
| | - F Llorens
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Department of Neurology, University Medical School, Göttingen, Germany.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - M Nuvolone
- Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland.,Amyloidosis Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - A Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland
| | - I Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), L'Hospitalet de Llobregat, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - A Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | - J M Delgado-García
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain.
| | - J A Del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain. .,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain. .,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain. .,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Bardestani A, Ebrahimpour S, Esmaeili A, Esmaeili A. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J Nanobiotechnology 2021; 19:327. [PMID: 34663344 PMCID: PMC8522232 DOI: 10.1186/s12951-021-01059-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/24/2021] [Indexed: 01/19/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) have been proposed as targeted carriers to deliver therapeutic molecules in the central nervous system (CNS). However, IONPs may damage neural tissue via free iron accumulation, protein aggregation, and oxidative stress. Neuroprotective effects of quercetin (QC) have been proven due to its antioxidant and anti-inflammatory properties. However, poor solubility and low bioavailability of QC have also led researchers to make various QC-involved nanoparticles to overcome these limitations. We wondered how high doses or prolonged treatment with quercetin conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) could improve cognitive dysfunction and promote neurogenesis without any toxicity. It can be explained that the QC inhibits protein aggregation and acts against iron overload via iron-chelating activity, iron homeostasis genes regulation, radical scavenging, and attenuation of Fenton/Haber-Weiss reaction. In this review, first, we present brain iron homeostasis, molecular mechanisms of iron overload that induced neurotoxicity, and the role of iron in dementia-associated diseases. Then by providing evidence of IONPs neurotoxicity, we discuss how QC neutralizes IONPs neurotoxicity, and finally, we make a brief comparison between QC and conventional iron chelators. In this review, we highlight that QC as supplementation and especially in conjugated form reduces iron oxide nanoparticles neurotoxicity in clinical application.
Collapse
Affiliation(s)
- Akram Bardestani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Shiva Ebrahimpour
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Ali Esmaeili
- School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran.
| |
Collapse
|
10
|
Seo SJ, Chang WS, Jeon JG, Choi Y, Kim E, Kim JK. Proton Stimulation Targeting Plaque Magnetite Reduces Amyloid-β Plaque and Iron Redox Toxicity and Improves Memory in an Alzheimer's Disease Mouse Model. J Alzheimers Dis 2021; 84:377-392. [PMID: 34569962 DOI: 10.3233/jad-210739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The coexistence of magnetite within protein aggregates in the brain is a typical pathologic feature of Alzheimer's disease (AD), and the formation of amyloid-β (Aβ) plaques induces critical impairment of cognitive function. OBJECTIVE This study aimed to investigate the therapeutic effect of proton stimulation (PS) targeting plaque magnetite in the transgenic AD mouse brain. METHODS A proton transmission beam was applied to the whole mouse brain at a single entrance dose of 2 or 4 Gy to test the effect of disruption of magnetite-containing Aβ plaques by electron emission from magnetite. The reduction in Aβ plaque burden and the cognitive function of the PS-treated mouse group were assayed by histochemical analysis and memory tests, respectively. Aβ-magnetite and Aβ fibrils were treated with PS to investigate the breakdown of the amyloid protein matrix. RESULTS Single PS induced a 48-87%reduction in both the amyloid plaque burden and ferrous-containing magnetite level in the early-onset AD mouse brain while saving normal tissue. The overall Aβ plaque burden (68-82%) and (94-97%) hippocampal magnetite levels were reduced in late onset AD mice that showed improvements in cognitive function after PS compared with untreated AD mice (p < 0.001). Analysis of amyloid fibrils after exposure to a single 2 or 4 Gy proton transmission beam demonstrated that the protein matrix was broken down only in magnetite-associated Aβ fibrils. CONCLUSION Single PS targeting plaque magnetite effectively decreases the amyloid plaque burden and the ferrous-containing magnetite level, and this effect is useful for memory recovery.
Collapse
Affiliation(s)
- Seung-Jun Seo
- Department of Biomedical Engineering & Radiology, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Won-Seok Chang
- Department of Biomedical Engineering & Radiology, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Jae-Geun Jeon
- Department of Biomedical Engineering & Radiology, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Younshick Choi
- Department of Biomedical Engineering & Radiology, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - EunHo Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Jong-Ki Kim
- Department of Biomedical Engineering & Radiology, School of Medicine, Daegu Catholic University, Daegu, Korea
| |
Collapse
|
11
|
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer's disease, from the UK. Sci Rep 2021; 11:9363. [PMID: 33931662 PMCID: PMC8087805 DOI: 10.1038/s41598-021-88725-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
The presence of magnetic nanoparticles (MNPs) in the human brain was attributed until recently to endogenous formation; associated with a putative navigational sense, or with pathological mishandling of brain iron within senile plaques. Conversely, an exogenous, high-temperature source of brain MNPs has been newly identified, based on their variable sizes/concentrations, rounded shapes/surface crystallites, and co-association with non-physiological metals (e.g., platinum, cobalt). Here, we examined the concentration and regional distribution of brain magnetite/maghemite, by magnetic remanence measurements of 147 samples of fresh/frozen tissues, from Alzheimer's disease (AD) and pathologically-unremarkable brains (80-98 years at death) from the Manchester Brain Bank (MBB), UK. The magnetite/maghemite concentrations varied between individual cases, and different brain regions, with no significant difference between the AD and non-AD cases. Similarly, all the elderly MBB brains contain varying concentrations of non-physiological metals (e.g. lead, cerium), suggesting universal incursion of environmentally-sourced particles, likely across the geriatric blood-brain barrier (BBB). Cerebellar Manchester samples contained significantly lower (~ 9×) ferrimagnetic content compared with those from a young (29 years ave.), neurologically-damaged Mexico City cohort. Investigation of younger, variably-exposed cohorts, prior to loss of BBB integrity, seems essential to understand early brain impacts of exposure to exogenous magnetite/maghemite and other metal-rich pollution particles.
Collapse
|
12
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Hammond J, Kulesza R, Lachmann I, Torres-Jardón R, Mukherjee PS, Maher BA. Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles (and engineered Ti-rich nanorods). The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract a key brainstem portal. ENVIRONMENTAL RESEARCH 2020; 191:110139. [PMID: 32888951 DOI: 10.1016/j.envres.2020.110139] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate air pollution (PM2.5) exposures are linked with Alzheimer's and Parkinson's diseases (AD,PD). AD and PD neuropathological hallmarks are documented in children and young adults exposed lifelong to Metropolitan Mexico City air pollution; together with high frontal metal concentrations (especially iron)-rich nanoparticles (NP), matching air pollution combustion- and friction-derived particles. Here, we identify aberrant hyperphosphorylated tau, ɑ synuclein and TDP-43 in the brainstem of 186 Mexico City 27.29 ± 11.8y old residents. Critically, substantia nigrae (SN) pathology seen in mitochondria, endoplasmic reticulum and neuromelanin (NM) is co-associated with the abundant presence of exogenous, Fe-, Al- and Ti-rich NPs.The SN exhibits early and progressive neurovascular unit damage and mitochondria and NM are associated with metal-rich NPs including exogenous engineered Ti-rich nanorods, also identified in neuroenteric neurons. Such reactive, cytotoxic and magnetic NPs may act as catalysts for reactive oxygen species formation, altered cell signaling, and protein misfolding, aggregation and fibril formation. Hence, pervasive, airborne and environmental, metal-rich and magnetic nanoparticles may be a common denominator for quadruple misfolded protein neurodegenerative pathologies affecting urbanites from earliest childhood. The substantia nigrae is a very early target and the gastrointestinal tract (and the neuroenteric system) key brainstem portals. The ultimate neural damage and neuropathology (Alzheimer's, Parkinson's and TDP-43 pathology included) could depend on NP characteristics and the differential access and targets achieved via their portals of entry. Thus where you live, what air pollutants you are exposed to, what you are inhaling and swallowing from the air you breathe,what you eat, how you travel, and your occupational longlife history are key. Control of NP sources becomes critical.
Collapse
Affiliation(s)
| | | | | | - Jessica Hammond
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City, 04510, Mexico
| | | | - Barbara A Maher
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| |
Collapse
|
13
|
Estévez-Priego E, Teller S, Granell C, Arenas A, Soriano J. Functional strengthening through synaptic scaling upon connectivity disruption in neuronal cultures. Netw Neurosci 2020; 4:1160-1180. [PMID: 33409434 PMCID: PMC7781611 DOI: 10.1162/netn_a_00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
An elusive phenomenon in network neuroscience is the extent of neuronal activity remodeling upon damage. Here, we investigate the action of gradual synaptic blockade on the effective connectivity in cortical networks in vitro. We use two neuronal cultures configurations-one formed by about 130 neuronal aggregates and another one formed by about 600 individual neurons-and monitor their spontaneous activity upon progressive weakening of excitatory connectivity. We report that the effective connectivity in all cultures exhibits a first phase of transient strengthening followed by a second phase of steady deterioration. We quantify these phases by measuring GEFF, the global efficiency in processing network information. We term hyperefficiency the sudden strengthening of GEFF upon network deterioration, which increases by 20-50% depending on culture type. Relying on numerical simulations we reveal the role of synaptic scaling, an activity-dependent mechanism for synaptic plasticity, in counteracting the perturbative action, neatly reproducing the observed hyperefficiency. Our results demonstrate the importance of synaptic scaling as resilience mechanism.
Collapse
Affiliation(s)
- Estefanía Estévez-Priego
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Sara Teller
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Clara Granell
- GOTHAM Lab – Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Department of Condensed Matter Physics, University of Zaragoza, Zaragoza, Spain
| | - Alex Arenas
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| |
Collapse
|
14
|
van der Weerd L, Lefering A, Webb A, Egli R, Bossoni L. Effects of Alzheimer's disease and formalin fixation on the different mineralised-iron forms in the human brain. Sci Rep 2020; 10:16440. [PMID: 33020534 PMCID: PMC7536241 DOI: 10.1038/s41598-020-73324-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Iron accumulation in the brain is a phenomenon common to many neurodegenerative diseases, perhaps most notably Alzheimer’s disease (AD). We present here magnetic analyses of post-mortem brain tissue of patients who had severe Alzheimer’s disease, and compare the results with those from healthy controls. Isothermal remanent magnetization experiments were performed to assess the extent to which different magnetic carriers are affected by AD pathology and formalin fixation. While Alzheimer’s brain material did not show higher levels of magnetite/maghemite nanoparticles than corresponding controls, the ferrihydrite mineral, known to be found within the core of ferritin proteins and hemosiderin aggregates, almost doubled in concentration in patients with Alzheimer’s pathology, strengthening the conclusions of our previous studies. As part of this study, we also investigated the effects of sample preparation, by performing experiments on frozen tissue as well as tissue which had been fixed in formalin for a period of 5 months. Our results showed that the two different preparations did not critically affect the concentration of magnetic carriers in brain tissue, as observable by SQUID magnetometry.
Collapse
Affiliation(s)
- Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Anton Lefering
- Reactor Institute, Delft University of Technology, Delft, The Netherlands
| | - Andrew Webb
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Ramon Egli
- Central Institute for Meteorology and Geo-dynamics (ZAMG), Vienna, Austria
| | - Lucia Bossoni
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
15
|
Del Rio JA, Ferrer I. Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of " prion-like" Protein Assembly and Behavior. Front Bioeng Biotechnol 2020; 8:570692. [PMID: 33015021 PMCID: PMC7506036 DOI: 10.3389/fbioe.2020.570692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Human aging is accompanied by a relevant increase in age-associated chronic pathologies, including neurodegenerative and metabolic diseases. The appearance and evolution of numerous neurodegenerative diseases is paralleled by the appearance of intracellular and extracellular accumulation of misfolded proteins in affected brains. In addition, recent evidence suggests that most of these amyloid proteins can behave and propagate among neural cells similarly to infective prions. In order to improve understanding of the seeding and spreading processes of these "prion-like" amyloids, microfluidics and 3D lab-on-chip approaches have been developed as highly valuable tools. These techniques allow us to monitor changes in cellular and molecular processes responsible for amyloid seeding and cell spreading and their parallel effects in neural physiology. Their compatibility with new optical and biochemical techniques and their relative availability have increased interest in them and in their use in numerous laboratories. In addition, recent advances in stem cell research in combination with microfluidic platforms have opened new humanized in vitro models for myriad neurodegenerative diseases affecting different cellular targets of the vascular, muscular, and nervous systems, and glial cells. These new platforms help reduce the use of animal experimentation. They are more reproducible and represent a potential alternative to classical approaches to understanding neurodegeneration. In this review, we summarize recent progress in neurobiological research in "prion-like" protein using microfluidic and 3D lab-on-chip approaches. These approaches are driven by various fields, including chemistry, biochemistry, and cell biology, and they serve to facilitate the development of more precise human brain models for basic mechanistic studies of cell-to-cell interactions and drug discovery.
Collapse
Affiliation(s)
- Jose A Del Rio
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
16
|
Damulina A, Pirpamer L, Soellradl M, Sackl M, Tinauer C, Hofer E, Enzinger C, Gesierich B, Duering M, Ropele S, Schmidt R, Langkammer C. Cross-sectional and Longitudinal Assessment of Brain Iron Level in Alzheimer Disease Using 3-T MRI. Radiology 2020; 296:619-626. [PMID: 32602825 DOI: 10.1148/radiol.2020192541] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Deep gray matter structures in patients with Alzheimer disease (AD) contain higher brain iron concentrations. However, few studies have included neocortical areas, which are challenging to assess with MRI. Purpose To investigate baseline and change in brain iron levels using MRI at 3 T with R2* relaxation rate mapping in individuals with AD compared with healthy control (HC) participants. Materials and Methods In this prospective study, participants with AD recruited between 2010 and 2016 and age-matched HC participants selected from 2010 to 2014 were evaluated. Of 100 participants with AD, 56 underwent subsequent neuropsychological testing and brain MRI at a mean follow-up of 17 months. All participants underwent 3-T MRI, including R2* mapping corrected for macroscopic B0 field inhomogeneities. Anatomic structures were segmented, and median R2* values were calculated in the neocortex and cortical lobes, basal ganglia (BG), hippocampi, and thalami. Multivariable linear regression analysis was applied to study the difference in R2* levels between groups and the association between longitudinal changes in R2* values and cognition in the AD group. Results A total of 100 participants with AD (mean age, 73 years ± 9 [standard deviation]; 58 women) and 100 age-matched HC participants (mean age, 73 years ± 9; 60 women) were evaluated. Median R2* levels were higher in the AD group than in the HC group in the BG (HC, 29.0 sec-1; AD, 30.2 sec-1; P = .01) and total neocortex (HC, 17.0 sec-1; AD, 17.4 sec-1; P < .001) and regionally in the occipital (HC, 19.6 sec-1; AD, 20.2 sec-1; P = .007) and temporal (HC, 16.4 sec-1; AD, 18.1 sec-1; P < .001) lobes. R2* values in the temporal lobe were associated with longitudinal changes in Consortium to Establish a Registry for Alzheimer's Disease total score (β = -3.23 score/sec-1, P = .003) in participants with AD independent of longitudinal changes in brain volume. Conclusion Iron concentration in the deep gray matter and neocortical regions was higher in patients with Alzheimer disease than in healthy control participants. Change in iron levels over time in the temporal lobe was associated with cognitive decline in individuals with Alzheimer disease. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Anna Damulina
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Lukas Pirpamer
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Martin Soellradl
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Maximilian Sackl
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Christian Tinauer
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Edith Hofer
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Christian Enzinger
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Benno Gesierich
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Marco Duering
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Stefan Ropele
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Reinhold Schmidt
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| | - Christian Langkammer
- From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.)
| |
Collapse
|
17
|
Badman RP, Moore SL, Killian JL, Feng T, Cleland TA, Hu F, Wang MD. Dextran-coated iron oxide nanoparticle-induced nanotoxicity in neuron cultures. Sci Rep 2020; 10:11239. [PMID: 32641693 PMCID: PMC7343881 DOI: 10.1038/s41598-020-67724-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/27/2020] [Indexed: 11/09/2022] Open
Abstract
Recent technological advances have introduced diverse engineered nanoparticles (ENPs) into our air, water, medicine, cosmetics, clothing, and food. However, the health and environmental effects of these increasingly common ENPs are still not well understood. In particular, potential neurological effects are one of the most poorly understood areas of nanoparticle toxicology (nanotoxicology), in that low-to-moderate neurotoxicity can be subtle and difficult to measure. Culturing primary neuron explants on planar microelectrode arrays (MEAs) has emerged as one of the most promising in vitro techniques with which to study neuro-nanotoxicology, as MEAs enable the fluorescent tracking of nanoparticles together with neuronal electrical activity recording at the submillisecond time scale, enabling the resolution of individual action potentials. Here we examine the dose-dependent neurotoxicity of dextran-coated iron oxide nanoparticles (dIONPs), a common type of functionalized ENP used in biomedical applications, on cultured primary neurons harvested from postnatal day 0-1 mouse brains. A range of dIONP concentrations (5-40 µg/ml) were added to neuron cultures, and cells were plated either onto well plates for live cell, fluorescent reactive oxidative species (ROS) and viability observations, or onto planar microelectrode arrays (MEAs) for electrophysiological measurements. Below 10 µg/ml, there were no dose-dependent cellular ROS increases or effects in MEA bursting behavior at sub-lethal dosages. However, above 20 µg/ml, cell death was obvious and widespread. Our findings demonstrate a significant dIONP toxicity in cultured neurons at concentrations previously reported to be safe for stem cells and other non-neuronal cell types.
Collapse
Affiliation(s)
- Ryan P Badman
- Department of Physics and LASSP, Cornell University, Ithaca, NY, 14853, USA.,Center for Brain Science, RIKEN, Saitama, 351-0198, Japan
| | - Shanna L Moore
- Department of Physics and LASSP, Cornell University, Ithaca, NY, 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Jessica L Killian
- Department of Physics and LASSP, Cornell University, Ithaca, NY, 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA.,Quantum Biosystems, Menlo Park, CA, 94025, USA
| | - Tuancheng Feng
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Michelle D Wang
- Department of Physics and LASSP, Cornell University, Ithaca, NY, 14853, USA. .,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Fernández-García S, Orlandi JG, García-Díaz Barriga GA, Rodríguez MJ, Masana M, Soriano J, Alberch J. Deficits in coordinated neuronal activity and network topology are striatal hallmarks in Huntington's disease. BMC Biol 2020; 18:58. [PMID: 32466798 PMCID: PMC7254676 DOI: 10.1186/s12915-020-00794-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Background Network alterations underlying neurodegenerative diseases often precede symptoms and functional deficits. Thus, their early identification is central for improved prognosis. In Huntington’s disease (HD), the cortico-striatal networks, involved in motor function processing, are the most compromised neural substrate. However, whether the network alterations are intrinsic of the striatum or the cortex is not fully understood. Results In order to identify early HD neural deficits, we characterized neuronal ensemble calcium activity and network topology of HD striatal and cortical cultures. We used large-scale calcium imaging combined with activity-based network inference analysis. We extracted collective activity events and inferred the topology of the neuronal network in cortical and striatal primary cultures from wild-type and R6/1 mouse model of HD. Striatal, but not cortical, HD networks displayed lower activity and a lessened ability to integrate information. GABAA receptor blockade in healthy and HD striatal cultures generated similar coordinated ensemble activity and network topology, highlighting that the excitatory component of striatal system is spared in HD. Conversely, NMDA receptor activation increased individual neuronal activity while coordinated activity became highly variable and undefined. Interestingly, by boosting NMDA activity, we rectified striatal HD network alterations. Conclusions Overall, our integrative approach highlights striatal defective network integration capacity as a major contributor of basal ganglia dysfunction in HD and suggests that increased excitatory drive may serve as a potential intervention. In addition, our work provides a valuable tool to evaluate in vitro network recovery after treatment intervention in basal ganglia disorders.
Collapse
Affiliation(s)
- S Fernández-García
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - J G Orlandi
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
| | - G A García-Díaz Barriga
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - M J Rodríguez
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - M Masana
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - J Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), 08028, Barcelona, Spain
| | - J Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
19
|
Abstract
Iron is critically important and highly regulated trace metal in the human body. However, in its free ion form, it is known to be cytotoxic; therefore, it is bound to iron storing protein, ferritin. Ferritin is a key regulator of body iron homeostasis able to form various types of minerals depending on the tissue environment. Each mineral, e.g. magnetite, maghemite, goethite, akaganeite or hematite, present in the ferritin core carry different characteristics possibly affecting cells in the tissue. In specific cases, it can lead to disease development. Widely studied connection with neurodegenerative conditions is widely studied, including Alzheimer disease. Although the exact ferritin structure and its distribution throughout a human body are still not fully known, many studies have attempted to elucidate the mechanisms involved in its regulation and pathogenesis. In this review, we try to summarize the iron uptake into the body. Next, we discuss the known occurrence of ferritin in human tissues. Lastly, we also examine the formation of iron oxides and their involvement in brain functions.
Collapse
|
20
|
Spontaneous Functional Recovery after Focal Damage in Neuronal Cultures. eNeuro 2019; 7:ENEURO.0254-19.2019. [PMID: 31818830 PMCID: PMC6984807 DOI: 10.1523/eneuro.0254-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 12/02/2022] Open
Abstract
Damage in biological neuronal networks triggers a complex functional reorganization whose mechanisms are still poorly understood. To delineate this reorganization process, here we investigate the functional alterations of in vitro rat cortical circuits following localized laser ablation. The analysis of the functional network configuration before and after ablation allowed us to quantify the extent of functional alterations and the characteristic spatial and temporal scales along recovery. We observed that damage precipitated a fast rerouting of information flow that restored network’s communicability in about 15 min. Functional restoration was led by the immediate neighbors around trauma but was orchestrated by the entire network. Our in vitro setup exposes the ability of neuronal circuits to articulate fast responses to acute damage, and may serve as a proxy to devise recovery strategies in actual brain circuits. Moreover, this biological setup can become a benchmark to empirically test network theories about the spontaneous recovery in dynamical networks.
Collapse
|
21
|
Maher BA. Airborne Magnetite- and Iron-Rich Pollution Nanoparticles: Potential Neurotoxicants and Environmental Risk Factors for Neurodegenerative Disease, Including Alzheimer’s Disease. J Alzheimers Dis 2019; 71:361-375. [DOI: 10.3233/jad-190204] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Gonet T, Maher BA. Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9970-9991. [PMID: 31381310 DOI: 10.1021/acs.est.9b01505] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Airborne particulate matter poses a serious threat to human health. Exposure to nanosized (<0.1 μm), vehicle-derived particulates may be hazardous due to their bioreactivity, their ability to penetrate every organ, including the brain, and their abundance in the urban atmosphere. Fe-bearing nanoparticles (<0.1 μm) in urban environments may be especially important because of their pathogenicity and possible association with neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This review examines current knowledge regarding the sources of vehicle-derived Fe-bearing nanoparticles, their chemical and mineralogical compositions, grain size distribution and potential hazard to human health. We focus on data reported for the following sources of Fe-bearing nanoparticles: exhaust emissions (both diesel and gasoline), brake wear, tire and road surface wear, resuspension of roadside dust, underground, train and tram emissions, and aircraft and shipping emissions. We identify limitations and gaps in existing knowledge as well as future challenges and perspectives for studies of airborne Fe-bearing nanoparticles.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| |
Collapse
|
23
|
Han Y, Zhu H, Zhao Y, Lang Y, Sun H, Han J, Wang L, Wang C, Zhou J. The effect of acute glutamate treatment on the functional connectivity and network topology of cortical cultures. Med Eng Phys 2019; 71:91-97. [PMID: 31311692 DOI: 10.1016/j.medengphy.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
Abstract
Microelectrode arrays (MEAs) allow the investigation of the pharmacological and toxicological effects of chemicals on cultured neuronal networks. Understanding the functional connections between neurons and the resulting neuronal networks is important for evaluating drugs that affect synaptic transmission. Therefore, we acutely treated a mature cultured neuronal network on MEAs with accumulating amounts of glutamate and recorded their altered electrophysiology. Subsequently, a cross-covariance analysis was applied to process the spiking activity in the network and to evaluate the connections between neurons. Finally, graph theory was used to assess the functional network properties under acute glutamate treatment. Our data demonstrated that glutamate increased the similarity, connectivity weight, density, and largest-component size of the functional network. In addition, the small-world network topology was altered after glutamate treatment. Our results indicate that the graph theory can advance our understanding of the pharmacological significance of neurotransmitters on neuronal networks.
Collapse
Affiliation(s)
- Yao Han
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, PR China; Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, PR China
| | - Huimin Zhu
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, PR China
| | - Yuwei Zhao
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, PR China
| | - Yiran Lang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, PR China
| | - Hongji Sun
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, PR China
| | - Jiuqi Han
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, PR China
| | - Lubin Wang
- Cognitive and Mental Health Research Center, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Changyong Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, PR China
| | - Jin Zhou
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, PR China.
| |
Collapse
|
24
|
Liu Y, Nguyen M, Robert A, Meunier B. Metal Ions in Alzheimer's Disease: A Key Role or Not? Acc Chem Res 2019; 52:2026-2035. [PMID: 31274278 DOI: 10.1021/acs.accounts.9b00248] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite tremendous research efforts in universities and pharmaceutical companies, effective drugs are still lacking for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease have not yet been clearly understood. Besides a small percentage of cases with early onset disease having a genetic origin (<5%, familial AD), most cases develop in the elderly as a sporadic form due to multiple and complex parameters of aging. Consequently, AD is spreading in all countries with a long life expectancy. AD is characterized by deposition of senile plaques made of β-amyloid proteins (Aβ) and by hyperphosphorylation of tau proteins, which have been considered as the main drug targets up to now. However, antibodies targeting amyloid aggregates, as well as enzyme inhibitors aiming to modify the amyloid precursor protein processing, have failed to improve cognition in clinical trials. Thus, to set up effective drugs, it is urgent to enlarge the panel of drug targets. Evidence of the link between AD and redox metal dysregulation has also been supported by post-mortem analyses of amyloid plaques, which revealed accumulation of copper, iron, and zinc by 5.7, 2.8, and 3.1 times, respectively, the levels observed in normal brains. Copper-amyloid complexes, in the presence of endogenous reductants, are able to catalyze the reduction of dioxygen and to produce reduced, reactive oxygen species (ROS), leading to neuron death. The possibility of using metal chelators to regenerate normal trafficking of metal ions has been considered as a promising strategy in order to reduce the redox stress lethal for neurons. However, most attempts to use metal chelators as therapeutic agents have been limited to existing molecules available from the shelves. Very few chelators have resulted from a rational design aiming to create drugs with a safety profile and able to cross the blood-brain barrier after an oral administration. In the human body, metals are handled by a sophisticated protein network to strictly control their transport and reactivity. Abnormal concentrations of certain metals may lead to pathological events due to misaccumulation and irregular reactivity. Consequently, therapeutic attempts to restore metal homeostasis should carefully take into account the coordination chemistry specificities of the concerned redox-active metal ions. This Account is focused on the role of the main biologically redox-active transition metals, iron and copper. For iron, the recent debate on the possible role of magnetite in AD pathogenesis is presented. The section devoted to copper is focused on the design of specific copper chelators as drug candidates able to regulate copper homeostasis and to reduce the oxidative damage responsible for the neuron death observed in AD brains. A short survey on non-redox-active metal ions is also included at the beginning, such as aluminum and its controversial role in AD and zinc which is a key metal ion in the brain.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| |
Collapse
|
25
|
Khan S, Cohen D. Using the magnetoencephalogram to noninvasively measure magnetite in the living human brain. Hum Brain Mapp 2018; 40:1654-1665. [PMID: 30457688 PMCID: PMC6587731 DOI: 10.1002/hbm.24477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/03/2022] Open
Abstract
During the past several decades there has been much interest in the existence of magnetite particles in the human brain and their accumulation with age. These particles also appear to play an important role in neurodegenerative diseases of the brain. However, up to now the amount and distribution of these particles has been measured only in post‐mortem brain tissue. Although in‐vivo MRI measurements do show iron compounds generally, MRI cannot separate them according to their magnetic phases, which are associated with their chemical interactions. In contrast, we here offer a new noninvasive, in‐vivo method which is selectively sensitive only to particles which can be strongly magnetized. We magnetize these particles with a strong magnetic field through the head, and then measure the resulting magnetic fields, using the dcMagnetoencephalogram (dcMEG). From these data, the mass and locations of the particles can be estimated, using a distributed inverse solution. To test the method, we measured 11 healthy male subjects (ages 19–89 year). Accumulation of magnetite, in the hippocampal formation or nearby structures, was observed in the older men. These in‐vivo findings agree with reports of post‐mortem measurements of their locations, and of their accumulation with age. Thus, our findings allow in‐vivo measurement of magnetite in the human brain, and possibly open the door for new studies of neurodegenerative diseases of the brain.
Collapse
Affiliation(s)
- Sheraz Khan
- Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts
| | - David Cohen
- Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts.,Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
26
|
Yamamoto H, Moriya S, Ide K, Hayakawa T, Akima H, Sato S, Kubota S, Tanii T, Niwano M, Teller S, Soriano J, Hirano-Iwata A. Impact of modular organization on dynamical richness in cortical networks. SCIENCE ADVANCES 2018; 4:eaau4914. [PMID: 30443598 PMCID: PMC6235526 DOI: 10.1126/sciadv.aau4914] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/16/2018] [Indexed: 05/02/2023]
Abstract
As in many naturally formed networks, the brain exhibits an inherent modular architecture that is the basis of its rich operability, robustness, and integration-segregation capacity. However, the mechanisms that allow spatially segregated neuronal assemblies to swiftly change from localized to global activity remain unclear. Here, we integrate microfabrication technology with in vitro cortical networks to investigate the dynamical repertoire and functional traits of four interconnected neuronal modules. We show that the coupling among modules is central. The highest dynamical richness of the network emerges at a critical connectivity at the verge of physical disconnection. Stronger coupling leads to a persistently coherent activity among the modules, while weaker coupling precipitates the activity to be localized solely within the modules. An in silico modeling of the experiments reveals that the advent of coherence is mediated by a trade-off between connectivity and subquorum firing, a mechanism flexible enough to allow for the coexistence of both segregated and integrated activities. Our results unveil a new functional advantage of modular organization in complex networks of nonlinear units.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- WPI–Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- Corresponding author. (H.Y.); (J.S.)
| | - Satoshi Moriya
- Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Katsuya Ide
- Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Takeshi Hayakawa
- Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Hisanao Akima
- Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Shigeo Sato
- Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Shigeru Kubota
- Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan
| | - Takashi Tanii
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Michio Niwano
- Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Sara Teller
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona 08028, Catalonia, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona 08028, Catalonia, Spain
- Corresponding author. (H.Y.); (J.S.)
| | - Ayumi Hirano-Iwata
- WPI–Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
27
|
Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer's disease. Drug Deliv 2018; 25:307-320. [PMID: 29350055 PMCID: PMC6058502 DOI: 10.1080/10717544.2018.1428243] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/11/2018] [Indexed: 01/21/2023] Open
Abstract
In recent years, the incidental rate of neurodegenerative disorders has increased proportionately with the aging population. Alzheimer's disease (AD) is one of the most commonly reported neurodegenerative disorders, and it is estimated to increase by roughly 30% among the aged population. In spite of screening numerous drug candidates against various molecular targets of AD, only a few candidates - such as acetylcholinesterase inhibitors are currently utilized as an effective clinical therapy. However, targeted drug delivery of these drugs to the central nervous system (CNS) exhibits several limitations including meager solubility, low bioavailability, and reduced efficiency due to the impediments of the blood-brain barrier (BBB). Current advances in nanotechnology present opportunities to overcome such limitations in delivering active drug candidates. Nanodrug delivery systems are promising in targeting several therapeutic moieties by easing the penetration of drug molecules across the CNS and improving their bioavailability. Recently, a wide range of nano-carriers, such as polymers, emulsions, lipo-carriers, solid lipid carriers, carbon nanotubes, metal based carriers etc., have been adapted to develop successful therapeutics with sustained release and improved efficacy. Here, we discuss few recently updated nano-drug delivery applications that have been adapted in the field of AD therapeutics, and future prospects on potential molecular targets for nano-drug delivery systems.
Collapse
Affiliation(s)
- Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases Konkuk University, Chungju, Republic of Korea
| | - Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases Konkuk University, Chungju, Republic of Korea
- Nanotechnology research center, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Shin-Young Park
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju, Republic of Korea
| | - Joon-Soo Kim
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases Konkuk University, Chungju, Republic of Korea
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
28
|
Fujita Y, Yamashita T. Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Front Neurosci 2018; 12:778. [PMID: 30416425 PMCID: PMC6213750 DOI: 10.3389/fnins.2018.00778] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Silent information regulator 1 (SIRT1) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Sirtuin was originally studied as the lifespan-extending gene, silent information regulator 2 (SIRT2) in budding yeast. There are seven mammalian homologs of sirtuin (SIRT1–7), and SIRT1 is the closest homolog to SIRT2. SIRT1 modulates various key targets via deacetylation. In addition to histones, these targets include transcription factors, such as forkhead box O (FOXO), Ku70, p53, NF-κB, PPAR-gamma co-activator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor γ (PPARγ). SIRT1 has many biological functions, including aging, cell survival, differentiation, and metabolism. Genetic and physiological analyses in animal models have shown beneficial roles for SIRT1 in the brain during both development and adulthood. Evidence from in vivo and in vitro studies have revealed that SIRT1 regulates the cellular fate of neural progenitors, axon elongation, dendritic branching, synaptic plasticity, and endocrine function. In addition to its importance in physiological processes, SIRT1 has also been implicated in protection of neurons from degeneration in models of neurological diseases, such as traumatic brain injury and Alzheimer’s disease. In this review, we focus on the role of SIRT1 in the neuroendocrine system and neurodegenerative diseases. We also discuss the potential therapeutic implications of targeting the sirtuin pathway.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
29
|
Gumpelmayer M, Nguyen M, Molnár G, Bousseksou A, Meunier B, Robert A. Magnetite Fe3
O4
Has no Intrinsic Peroxidase Activity, and Is Probably not Involved in Alzheimer's Oxidative Stress. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michelle Gumpelmayer
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
| | - Bernard Meunier
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); Higher Education Mega Center; 100 Waihuan Xi road, Panyu District Guangzhou 510006 P. R. China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
| |
Collapse
|
30
|
Gumpelmayer M, Nguyen M, Molnár G, Bousseksou A, Meunier B, Robert A. Magnetite Fe3
O4
Has no Intrinsic Peroxidase Activity, and Is Probably not Involved in Alzheimer's Oxidative Stress. Angew Chem Int Ed Engl 2018; 57:14758-14763. [DOI: 10.1002/anie.201807676] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Michelle Gumpelmayer
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
| | - Bernard Meunier
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); Higher Education Mega Center; 100 Waihuan Xi road, Panyu District Guangzhou 510006 P. R. China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS); 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- Université de Toulouse; 31077 Toulouse Cedex 4 France
| |
Collapse
|
31
|
Siddiqi KS, Husen A, Sohrab SS, Yassin MO. Recent Status of Nanomaterial Fabrication and Their Potential Applications in Neurological Disease Management. NANOSCALE RESEARCH LETTERS 2018; 13:231. [PMID: 30097809 PMCID: PMC6086777 DOI: 10.1186/s11671-018-2638-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/24/2018] [Indexed: 05/05/2023]
Abstract
Nanomaterials (NMs) are receiving remarkable attention due to their unique properties and structure. They vary from atoms and molecules along with those of bulk materials. They can be engineered to act as drug delivery vehicles to cross blood-brain barriers (BBBs) and utilized with better efficacy and safety to deliver specific molecules into targeted cells as compared to conventional system for neurological disorders. Depending on their properties, various metal chelators, gold nanoparticles (NPs), micelles, quantum dots, polymeric NPs, liposomes, solid lipid NPs, microparticles, carbon nanotubes, and fullerenes have been utilized for various purposes including the improvement of drug delivery system, treatment response assessment, diagnosis at early stage, and management of neurological disorder by using neuro-engineering. BBB regulates micro- and macromolecule penetration/movement, thus protecting it from many kinds of illness. This phenomenon also prevents drug delivery for the neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, and primary brain tumors. For some neurological disorders (AD and PD), the environmental pollution was considered as a major cause, as observed that metal and/or metal oxide from different sources are inhaled and get deposited in the lungs/brain. Old age, obesity, diabetes, and cardiovascular disease are other factors for rapid deterioration of human health and onset of AD. In addition, gene mutations have also been examined to cause the early onset familial forms of AD. AD leads to cognitive impairment and plaque deposits in the brain leading to neuronal cell death. Based on these facts and considerations, this review elucidates the importance of frequently used metal chelators, NMs and/or NPs. The present review also discusses the current status and future challenges in terms of their application in drug delivery for neurological disease management.
Collapse
Affiliation(s)
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, PO Box # 196, Gondar, Ethiopia
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, PO Box # 80216, Jeddah, 21589 Saudi Arabia
| | - Mensur Osman Yassin
- Department of Surgery, College of Medicine and Health Sciences, University of Gondar, PO Box # 196, Gondar, Ethiopia
| |
Collapse
|
32
|
van Duijn S, Bulk M, van Duinen SG, Nabuurs RJA, van Buchem MA, van der Weerd L, Natté R. Cortical Iron Reflects Severity of Alzheimer's Disease. J Alzheimers Dis 2018; 60:1533-1545. [PMID: 29081415 PMCID: PMC5676973 DOI: 10.3233/jad-161143] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abnormal iron distribution in the isocortex is increasingly recognized as an in vivo marker for Alzheimer’s disease (AD). However, the contribution of iron accumulation to the AD pathology is still poorly understood. In this study, we investigated: 1) frontal cortical iron distribution in AD and normal aging and 2) the relation between iron distribution and degree of AD pathology. We used formalin fixed paraffin embedded frontal cortex from 10 AD patients, 10 elder, 10 middle aged, and 10 young controls and visualized iron with a modified Perl’s histochemical procedure. AD and elderly subjects were not different with respect to age and sex distribution. Iron distribution in the frontal cortex was not affected by normal aging but was clearly different between AD and controls. AD showed accumulation of iron in plaques, activated microglia, and, in the most severe cases, in the mid-cortical layers along myelinated fibers. The degree of altered iron accumulations was correlated to the amount of amyloid-β plaques and tau pathology in the same block, as well as to Braak stage (p < 0.001). AD and normal aging show different iron and myelin distribution in frontal cortex. These changes appear to occur after the development of the AD pathological hallmarks. These findings may help the interpretation of high resolution in vivo MRI and suggest the potential of using changes in iron-based MRI contrast to indirectly determine the degree of AD pathology in the frontal cortex.
Collapse
Affiliation(s)
- Sara van Duijn
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marjolein Bulk
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Percuros BV, Leiden, The Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Rob J A Nabuurs
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Remco Natté
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
33
|
Hofman J, Maher BA, Muxworthy AR, Wuyts K, Castanheiro A, Samson R. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6648-6664. [PMID: 28541679 DOI: 10.1021/acs.est.7b00832] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NOx, trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.
Collapse
Affiliation(s)
- Jelle Hofman
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Barbara A Maher
- Centre for Environmental Magnetism & Paleomagnetism, Lancaster Environment Centre, University of Lancaster , Lancaster LA1 4YW, United Kingdom
| | - Adrian R Muxworthy
- Natural Magnetism Group, Department of Earth Science and Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| | - Karen Wuyts
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ana Castanheiro
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Roeland Samson
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
34
|
Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. Int J Nanomedicine 2017; 12:4371-4395. [PMID: 28652739 PMCID: PMC5476634 DOI: 10.2147/ijn.s130565] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The discovery of biogenic magnetic nanoparticles (BMNPs) in the human brain gives a strong impulse to study and understand their origin. Although knowledge of the subject is increasing continuously, much remains to be done for further development to help our society fight a number of pathologies related to BMNPs. This review provides an insight into the puzzle of the physiological origin of BMNPs in organisms of all three domains of life: prokaryotes, archaea, and eukaryotes, including humans. Predictions based on comparative genomic studies are presented along with experimental data obtained by physical methods. State-of-the-art understanding of the genetic control of biomineralization of BMNPs and their properties are discussed in detail. We present data on the differences in BMNP levels in health and disease (cancer, neurodegenerative disorders, and atherosclerosis), and discuss the existing hypotheses on the biological functions of BMNPs, with special attention paid to the role of the ferritin core and apoferritin.
Collapse
Affiliation(s)
- Oksana Gorobets
- National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute)
- Institute of Magnetism, National Academy of Sciences, Kiev, Ukraine
| | - Svitlana Gorobets
- National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute)
| | | |
Collapse
|
35
|
Hernández-Navarro L, Orlandi JG, Cerruti B, Vives E, Soriano J. Dominance of Metric Correlations in Two-Dimensional Neuronal Cultures Described through a Random Field Ising Model. PHYSICAL REVIEW LETTERS 2017; 118:208101. [PMID: 28581813 DOI: 10.1103/physrevlett.118.208101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 06/07/2023]
Abstract
We introduce a novel random field Ising model, grounded on experimental observations, to assess the importance of metric correlations in cortical circuits in vitro. Metric correlations arise from both the finite axonal length and the heterogeneity in the spatial arrangement of neurons. The experiments consider the response of neuronal cultures to an external electric stimulation for a gradually weaker connectivity strength between neurons, and in cultures with different spatial configurations. The model can be analytically solved in the metric-free, mean-field scenario. The presence of metric correlations precipitates a strong deviation from the mean field. Null models of the same networks that preserve the distribution of connections recover the mean field. Our results show that metric-inherited correlations in spatial networks dominate the connectivity blueprint, mask the actual distribution of connections, and may emerge as the asset that shapes network dynamics.
Collapse
Affiliation(s)
- Lluís Hernández-Navarro
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Catalonia, Spain
| | - Javier G Orlandi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 1N4
| | - Benedetta Cerruti
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Eduard Vives
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Catalonia, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Catalonia, Spain
| |
Collapse
|
36
|
Han Y, Li H, Lang Y, Zhao Y, Sun H, Zhang P, Ma X, Han J, Wang Q, Zhou J, Wang C. The Effects of Acute GABA Treatment on the Functional Connectivity and Network Topology of Cortical Cultures. Neurochem Res 2017; 42:1394-1402. [PMID: 28290133 DOI: 10.1007/s11064-017-2190-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 02/05/2023]
Abstract
γ-Aminobutyric acid (GABA) is an inhibitory transmitter, acting on receptor channels to reduce neuronal excitability in matured neural systems. However, electrophysiological responses of whole neuronal ensembles to the exposure to GABA are still unclear. We used micro-electrode arrays (MEAs) to study the effects of the increasing amount of GABA on functional network of cortical neural cultures. Then the recorded data were analyzed by the cross-covariance analysis and graph theory. Results showed that after the GABA treatment, the activity parameters of firing rate, bursting rate, bursting duration and network burst frequency in neural cultures decreased as expected. In addition, the functional connectivity also decreased in similarity, network density, and the size of the largest component. However, small-worldness was not found to be influenced by the acute GABA treatment. Our results support the position that using graph theory to evaluate the functional connectivity of neural cultures may enhance understanding of the pharmacological impact of neurotransmitters on neuronal networks.
Collapse
Affiliation(s)
- Yao Han
- Department of advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Hong Li
- Department of advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Yiran Lang
- Department of advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Yuwei Zhao
- Department of advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Hongji Sun
- Department of advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Peng Zhang
- Neural Interface& Rehabilitation Technology Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuan Ma
- Neural Interface& Rehabilitation Technology Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiuqi Han
- Department of advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Qiyu Wang
- Department of advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Jin Zhou
- Department of advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China.
| | - Changyong Wang
- Department of advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
37
|
Kumar P, Bulk M, Webb A, van der Weerd L, Oosterkamp TH, Huber M, Bossoni L. A novel approach to quantify different iron forms in ex-vivo human brain tissue. Sci Rep 2016; 6:38916. [PMID: 27941952 PMCID: PMC5150947 DOI: 10.1038/srep38916] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/14/2016] [Indexed: 01/28/2023] Open
Abstract
We propose a novel combination of methods to study the physical properties of ferric ions and iron-oxide nanoparticles in post-mortem human brain, based on the combination of Electron Paramagnetic Resonance (EPR) and SQUID magnetometry. By means of EPR, we derive the concentration of the low molecular weight iron pool, as well as the product of its electron spin relaxation times. Additionally, by SQUID magnetometry we identify iron mineralization products ascribable to a magnetite/maghemite phase and a ferrihydrite (ferritin) phase. We further derive the concentration of magnetite/maghemite and of ferritin nanoparticles. To test out the new combined methodology, we studied brain tissue of an Alzheimer’s patient and a healthy control. Finally, we estimate that the size of the magnetite/maghemite nanoparticles, whose magnetic moments are blocked at room temperature, exceeds 40–50 nm, which is not compatible with the ferritin protein, the core of which is typically 6–8 nm. We believe that this methodology could be beneficial in the study of neurodegenerative diseases such as Alzheimer’s Disease which are characterized by abnormal iron accumulation in the brain.
Collapse
Affiliation(s)
- Pravin Kumar
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Marjolein Bulk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjerk H Oosterkamp
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Martina Huber
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Lucia Bossoni
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| |
Collapse
|
38
|
Tahirbegi IB, Pardo WA, Alvira M, Mir M, Samitier J. Amyloid Aβ 42, a promoter of magnetite nanoparticle formation in Alzheimer's disease. NANOTECHNOLOGY 2016; 27:465102. [PMID: 27734811 DOI: 10.1088/0957-4484/27/46/465102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The accumulation of iron oxides-mainly magnetite-with amyloid peptide is a key process in the development of Alzheimer's disease (AD). However, the mechanism for biogeneration of magnetite inside the brain of someone with AD is still unclear. The iron-storing protein ferritin has been identified as the main magnetite-storing molecule. However, accumulations of magnetite in AD are not correlated with an increase in ferritin, leaving this question unresolved. Here we demonstrate the key role of amyloid peptide Aβ 42, one of the main hallmarks of AD, in the generation of magnetite nanoparticles in the absence of ferritin. The capacity of amyloid peptide to bind and concentrate iron hydroxides, the basis for the formation of magnetite, benefits the spontaneous synthesis of these nanoparticles, even under unfavorable conditions for their formation. Using scanning and transmission electron microscopy, electron energy loss spectroscopy and magnetic force microscopy we characterized the capacity of amyloid peptide Aβ 42 to promote magnetite formation.
Collapse
Affiliation(s)
- Islam Bogachan Tahirbegi
- Nanobioengineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac, 10-12, Barcelona 08028, Spain. Department of Electronics, University of Barcelona (UB), Martí i Franquès, 1, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
39
|
Abstract
Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <∼200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.
Collapse
|
40
|
High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer's disease. Sci Rep 2016; 6:24873. [PMID: 27121137 PMCID: PMC4848473 DOI: 10.1038/srep24873] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022] Open
Abstract
Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles.
Collapse
|