1
|
Zhou S, Long N, Swanstrom R. Evolution Driven By A Varying Host Environment Selects For Distinct HIV-1 Entry Phenotypes and Other Informative Variants. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1291996. [PMID: 38239974 PMCID: PMC10795538 DOI: 10.3389/fviro.2023.1291996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
HIV-1 generates remarkable intra- and inter-host viral diversity during infection. In response to dynamic selective pressures of the host environment, HIV-1 will evolve distinct phenotypes - biological features that provide fitness advantages. The transmitted form of HIV-1 has been shown to require a high density of CD4 on the target cell surface (as found on CD4+ T cells) and typically uses CCR5 as a co-receptor during entry. This phenotype is referred to as R5 T cell-tropic (or R5 T-tropic); however, HIV-1 can switch to a secondary co-receptor, CXCR4, resulting in a X4 T cell-tropic phenotype. Macrophage-tropic (or M-tropic) HIV-1 can evolve to efficiently enter cells expressing low densities of CD4 on their surface (such as macrophages/microglia). So far only CCR5-using M-tropic viruses have been found. M-tropic HIV-1 is most frequently found within the central nervous system, and infection of the CNS has been associated with neurological impairment. It has been shown that interferon resistance phenotypes have a selective advantage during transmission, but the underlying mechanism of this is still unclear. During untreated infection, HIV-1 evolves under selective pressure from both the humoral/antibody response and CD8+ T cell killing. Sufficiently potent antiviral therapy will suppress viral replication, but if the antiviral drugs are not sufficiently potent to stop replication then the replicating virus will evolve drug resistance. HIV-1 phenotypes are highly relevant to treatment efforts, clinical outcomes, vaccine studies, and cure strategies. Therefore, it is critical to understand the dynamics of the host environment that drive these phenotypes and how they affect HIV-1 pathogenesis. This review will provide a comprehensive discussion of HIV-1 entry, transmission, and drug resistance phenotypes. Finally, we will assess the methods used in previous and current research to characterize these phenotypes.
Collapse
Affiliation(s)
- Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathan Long
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Dohadwala S, Politch JA, Barmine JH, Anderson DJ. A Brief History and Advancement of Contraceptive Multipurpose Prevention Technology (cMPT) Products. Open Access J Contracept 2023; 14:83-94. [PMID: 37332341 PMCID: PMC10276588 DOI: 10.2147/oajc.s375634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023] Open
Abstract
The high incidence of HIV and other sexually transmitted infections (STIs), and an unmet need for modern contraception resulting in a high unintended pregnancy rate, are major problems in reproductive health. The concept of multipurpose prevention technology (MPT) was introduced following the failure of several leading microbicide candidates to prevent human immunodeficiency virus type 1 (HIV-1) transmission in large clinical trials in the early 2000s. MPTs are defined as products designed to simultaneously prevent at least two of the following conditions: unintended pregnancy, HIV-1, or other major STIs. The goal of contraceptive MPT products (cMPTs) is to provide contraception and protection against one or more major STI pathogen (eg, HIV-1, herpes simplex virus (HSV) type 2, Neisseria gonorrhoeae (gonorrhea), Treponema pallidum (syphilis), Trichomonas vaginalis, Chlamydia trachomatis (Chlamydia). This new field has great potential and will benefit from lessons learned from the early microbicide trials. The cMPT field includes candidates representing various categories with different mechanisms of action including pH modifiers, polyions, microbicidal peptides, monoclonal antibodies, and other peptides that target specific reproductive and infectious processes. More preclinical research is being conducted to ensure minimal side effects and maximum efficacy in vivo. Effective proven and novel candidates are being combined to maximize efficacy, minimize side effects, and avoid drug resistance. More attention is being paid to acceptability and new delivery systems. cMPTs have a very promising future if adequate resources can be mobilized to sustain the effort from preclinical research to clinical trials to bring effective, acceptable, and affordable products to market.
Collapse
Affiliation(s)
- Sarah Dohadwala
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Joseph A Politch
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jessica H Barmine
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Deborah J Anderson
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Obstetrics and Gynecology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Baxter J, Langhorne S, Shi T, Tully DC, Villabona-Arenas CJ, Hué S, Albert J, Leigh Brown A, Atkins KE. Inferring the multiplicity of founder variants initiating HIV-1 infection: a systematic review and individual patient data meta-analysis. THE LANCET. MICROBE 2023; 4:e102-e112. [PMID: 36642083 DOI: 10.1016/s2666-5247(22)00327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND HIV-1 infections initiated by multiple founder variants are characterised by a higher viral load and a worse clinical prognosis than those initiated with single founder variants, yet little is known about the routes of exposure through which transmission of multiple founder variants is most probable. Here we used individual patient data to calculate the probability of multiple founders stratified by route of HIV exposure and study methodology. METHODS We conducted a systematic review and meta-analysis of studies that estimated founder variant multiplicity in HIV-1 infection, searching MEDLINE, Embase, and Global Health databases for papers published between Jan 1, 1990, and Sept 14, 2020. Eligible studies must have reported original estimates of founder variant multiplicity in people with acute or early HIV-1 infections, have clearly detailed the methods used, and reported the route of exposure. Studies were excluded if they reported data concerning people living with HIV-1 who had known or suspected superinfection, who were documented as having received pre-exposure prophylaxis, or if the transmitting partner was known to be receiving antiretroviral treatment. Individual patient data were collated from all studies, with authors contacted if these data were not publicly available. We applied logistic meta-regression to these data to estimate the probability that an HIV infection is initiated by multiple founder variants. We calculated a pooled estimate using a random effects model, subsequently stratifying this estimate across exposure routes in a univariable analysis. We then extended our model to adjust for different study methods in a multivariable analysis, recalculating estimates across the exposure routes. This study is registered with PROSPERO, CRD42020202672. FINDINGS We included 70 publications in our analysis, comprising 1657 individual patients. Our pooled estimate of the probability that an infection is initiated by multiple founder variants was 0·25 (95% CI 0·21-0·29), with moderate heterogeneity (Q=132·3, p<0·0001, I2=64·2%). Our multivariable analysis uncovered differences in the probability of multiple variant infection by exposure route. Relative to a baseline of male-to-female transmission, the predicted probability for female-to-male multiple variant transmission was significantly lower at 0·13 (95% CI 0·08-0·20), and the probabilities were significantly higher for transmissions in people who inject drugs (0·37 [0·24-0·53]) and men who have sex with men (0·30 [0·33-0·40]). There was no significant difference in the probability of multiple variant transmission between male-to-female transmission (0·21 [0·14-0·31]), post-partum transmission (0·18 [0·03-0·57]), pre-partum transmission (0·17 [0·08-0·33]), and intra-partum transmission (0·27 [0·14-0·45]). INTERPRETATION We identified that transmissions in people who inject drugs and men who have sex with men are significantly more likely to result in an infection initiated by multiple founder variants, and female-to-male infections are significantly less probable. Quantifying how the routes of HIV infection affect the transmission of multiple variants allows us to better understand how the evolution and epidemiology of HIV-1 determine clinical outcomes. FUNDING Medical Research Council Precision Medicine Doctoral Training Programme and a European Research Council Starting Grant.
Collapse
Affiliation(s)
- James Baxter
- Usher Institute, The University of Edinburgh, Edinburgh, UK.
| | - Sarah Langhorne
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Ting Shi
- Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Damien C Tully
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ch Julián Villabona-Arenas
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Stéphane Hué
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew Leigh Brown
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Katherine E Atkins
- Usher Institute, The University of Edinburgh, Edinburgh, UK; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
4
|
Santana DS, Silva MJA, de Marin ABR, Costa VLDS, Sousa GSM, de Sousa JG, Silva DC, da Cruz EC, Lima LNGC. The Influence Between C-C Chemokine Receptor 5 Genetic Polymorphisms and the Type-1 Human Immunodeficiency Virus: A 20-Year Review. AIDS Res Hum Retroviruses 2023; 39:13-32. [PMID: 36226448 PMCID: PMC9889015 DOI: 10.1089/aid.2022.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acquired immune deficiency syndrome (AIDS) is an infectious disease caused by the types 1 and 2 human immunodeficiency virus (HIV-1 and HIV-2). Clinical outcomes in patients are highly varied and delineated by complex interactions between virus, host, and environment, such as with help of co-receptors, for example, the C-C chemokine receptor 5 (CCR5). This work aimed to describe the scientific evidence relating the influence of CCR5 polymorphisms in association studies for HIV-1 disease susceptibility, severity, and transmissibility. This is a systematic review of the literature on single nucleotide polymorphisms (SNPs) and the deletion [Insertion and Deletion (Indel)] Δ32 of CCR5. The search for articles was based on the ScienceDirect, PubMed, and Coordination for the Improvement of Higher Education Personnel (CAPES) databases for the period between 2001 and 2021. The final sample consisted of 32 articles. †SNP rs1799987 is one of the genetic polymorphisms most associated with the criteria of susceptibility and severity of HIV-1, having distinct consequences in genotypic, allelic, and clinical analysis in the variability of investigated populations. As for the transmission character of the disease, the G mutant allele of rs1799987 corresponds to the highest positive association. ‡Furthermore, the results on Indel Δ32 corroborate the absence and rarity of this variant in some populations. Finally, mitigating the severity of cases, SNPs rs1799988 and rs1800023 obtained significant attribution in individuals in the studied populations. It is shown that the reported polymorphisms express significant influences for the evaluation of diagnostic, therapeutic, and prophylactic measures for HIV-1 having fundamental particularities in the molecular, genetic, and transcriptional aspects of CCR5.
Collapse
Affiliation(s)
- Davi Silva Santana
- Institute of Health Sciences (ICS), Federal University of Pará (UFPA), Belém, Brazil
| | | | | | | | | | | | - Dihago Cardoso Silva
- Institute of Health Sciences (ICS), Federal University of Pará (UFPA), Belém, Brazil
| | - Eliete Costa da Cruz
- Institute of Health Sciences (ICS), Federal University of Pará (UFPA), Belém, Brazil
| | | |
Collapse
|
5
|
Bruxelle JF, Trattnig N, Mureithi MW, Landais E, Pantophlet R. HIV-1 Entry and Prospects for Protecting against Infection. Microorganisms 2021; 9:microorganisms9020228. [PMID: 33499233 PMCID: PMC7911371 DOI: 10.3390/microorganisms9020228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) establishes a latent viral reservoir soon after infection, which poses a major challenge for drug treatment and curative strategies. Many efforts are therefore focused on blocking infection. To this end, both viral and host factors relevant to the onset of infection need to be considered. Given that HIV-1 is most often transmitted mucosally, strategies designed to protect against infection need to be effective at mucosal portals of entry. These strategies need to contend also with cell-free and cell-associated transmitted/founder (T/F) virus forms; both can initiate and establish infection. This review will discuss how insight from the current model of HIV-1 mucosal transmission and cell entry has highlighted challenges in developing effective strategies to prevent infection. First, we examine key viral and host factors that play a role in transmission and infection. We then discuss preventive strategies based on antibody-mediated protection, with emphasis on targeting T/F viruses and mucosal immunity. Lastly, we review treatment strategies targeting viral entry, with focus on the most clinically advanced entry inhibitors.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence: (J.-F.B.); (R.P.)
| | - Nino Trattnig
- Chemical Biology and Drug Discovery, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Marianne W. Mureithi
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
| | - Elise Landais
- IAVI Neutralizing Antibody Center, La Jolla, CA 92037, USA;
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence: (J.-F.B.); (R.P.)
| |
Collapse
|
6
|
Existence of Replication-Competent Minor Variants with Different Coreceptor Usage in Plasma from HIV-1-Infected Individuals. J Virol 2020; 94:JVI.00193-20. [PMID: 32295903 DOI: 10.1128/jvi.00193-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022] Open
Abstract
Cell entry by HIV-1 is mediated by its principal receptor, CD4, and a coreceptor, either CCR5 or CXCR4, with viral envelope glycoprotein gp120. Generally, CCR5-using HIV-1 variants, called R5, predominate over most of the course of infection, while CXCR4-using HIV-1 variants (variants that utilize both CCR5 and CXCR4 [R5X4, or dual] or CXCR4 alone [X4]) emerge at late-stage infection in half of HIV-1-infected individuals and are associated with disease progression. Although X4 variants also appear during acute-phase infection in some cases, these variants apparently fall to undetectable levels thereafter. In this study, replication-competent X4 variants were isolated from plasma of drug treatment-naive individuals infected with HIV-1 strain CRF01_AE, which dominantly carries viral RNA (vRNA) of R5 variants. Next-generation sequencing (NGS) confirmed that sequences of X4 variants were indeed present in plasma vRNA from these individuals as a minor population. On the other hand, in one individual with a mixed infection in which X4 variants were dominant, only R5 replication-competent variants were isolated from plasma. These results indicate the existence of replication-competent variants with different coreceptor usage as minor populations.IMPORTANCE The coreceptor switch of HIV-1 from R5 to CXCR4-using variants (R5X4 or X4) has been observed in about half of HIV-1-infected individuals at late-stage infection with loss of CD4 cell count and disease progression. However, the mechanisms that underlie the emergence of CXCR4-using variants at this stage are unclear. In the present study, CXCR4-using X4 variants were isolated from plasma samples of HIV-1-infected individuals that dominantly carried vRNA of R5 variants. The sequences of the X4 variants were detected as a minor population using next-generation sequencing. Taken together, CXCR4-using variants at late-stage infection are likely to emerge when replication-competent CXCR4-using variants are maintained as a minor population during the course of infection. The present study may support the hypothesis that R5-to-X4 switching is mediated by the expansion of preexisting X4 variants in some cases.
Collapse
|
7
|
Phylogenetic approach to recover integration dates of latent HIV sequences within-host. Proc Natl Acad Sci U S A 2018; 115:E8958-E8967. [PMID: 30185556 PMCID: PMC6156657 DOI: 10.1073/pnas.1802028115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Given that HIV evolution and latent reservoir establishment occur continually within-host, and that latently infected cells can persist long-term, the HIV reservoir should comprise a genetically heterogeneous archive recapitulating within-host HIV evolution. However, this has yet to be conclusively demonstrated, in part due to the challenges of reconstructing within-host reservoir establishment dynamics over long timescales. We developed a phylogenetic framework to reconstruct the integration dates of individual latent HIV lineages. The framework first involves inference and rooting of a maximum-likelihood phylogeny relating plasma HIV RNA sequences serially sampled before the initiation of suppressive antiretroviral therapy, along with putative latent sequences sampled thereafter. A linear model relating root-to-tip distances of plasma HIV RNA sequences to their sampling dates is used to convert root-to-tip distances of putative latent lineages to their establishment (integration) dates. Reconstruction of the ages of putative latent sequences sampled from chronically HIV-infected individuals up to 10 y following initiation of suppressive therapy revealed a genetically heterogeneous reservoir that recapitulated HIV's within-host evolutionary history. Reservoir sequences were interspersed throughout multiple within-host lineages, with the oldest dating to >20 y before sampling; historic genetic bottleneck events were also recorded therein. Notably, plasma HIV RNA sequences isolated from a viremia blip in an individual receiving otherwise suppressive therapy were highly genetically diverse and spanned a 20-y age range, suggestive of spontaneous in vivo HIV reactivation from a large latently infected cell pool. Our framework for reservoir dating provides a potentially powerful addition to the HIV persistence research toolkit.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Highly active antiretroviral treatment has dramatically improved the prognosis for people living with HIV by preventing AIDS-related morbidity and mortality through profound suppression of viral replication. However, a long-lived viral reservoir persists in latently infected cells that harbor replication-competent HIV genomes. If therapy is discontinued, latently infected memory cells inevitably reactivate and produce infectious virus, resulting in viral rebound. The reservoir is the biggest obstacle to a cure of HIV. RECENT FINDINGS This review summarizes significant advances of the past year in the development of cellular and gene therapies for HIV cure. In particular, we highlight work done on suppression or disruption of HIV coreceptors, vectored delivery of antibodies and antibody-like molecules, T-cell therapies and HIV genome disruption. SUMMARY Several recent advancements in cellular and gene therapies have emerged at the forefront of HIV cure research, potentially having broad implications for the future of HIV treatment.
Collapse
|
9
|
Yu W, Wu Y. A systematic analysis of intrinsic regulators for HIV-1 R5 to X4 phenotypic switch. QUANTITATIVE BIOLOGY 2017. [DOI: 10.1007/s40484-017-0107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Pharmacogenomic implications of the evolutionary history of infectious diseases in Africa. THE PHARMACOGENOMICS JOURNAL 2016; 17:112-120. [PMID: 27779243 PMCID: PMC5380847 DOI: 10.1038/tpj.2016.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
As the common birthplace of all human populations, modern humans have lived longer on the African continent than in any other geographical region of the world. This long history, along with the evolutionary need to adapt to environmental challenges such as exposure to infectious agents, has led to greater genetic variation in Africans. The vast genetic variation in Africans also extends to genes involved in the absorption, distribution, metabolism and excretion of pharmaceuticals. Ongoing cataloging of these clinically relevant variants reveals huge allele-frequency differences within and between African populations. Here, we examine Africa's large burden of infectious disease, discuss key examples of known genetic variation modulating disease risk, and provide examples of clinically relevant variants critical for establishing dosing guidelines. We propose that a more systematic characterization of the genetic diversity of African ancestry populations is required if the current benefits of precision medicine are to be extended to these populations.
Collapse
|
11
|
Montoya V, Olmstead A, Tang P, Cook D, Janjua N, Grebely J, Jacka B, Poon AFY, Krajden M. Deep sequencing increases hepatitis C virus phylogenetic cluster detection compared to Sanger sequencing. INFECTION GENETICS AND EVOLUTION 2016; 43:329-37. [PMID: 27282472 DOI: 10.1016/j.meegid.2016.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/17/2023]
Abstract
Effective surveillance and treatment strategies are required to control the hepatitis C virus (HCV) epidemic. Phylogenetic analyses are powerful tools for reconstructing the evolutionary history of viral outbreaks and identifying transmission clusters. These studies often rely on Sanger sequencing which typically generates a single consensus sequence for each infected individual. For rapidly mutating viruses such as HCV, consensus sequencing underestimates the complexity of the viral quasispecies population and could therefore generate different phylogenetic tree topologies. Although deep sequencing provides a more detailed quasispecies characterization, in-depth phylogenetic analyses are challenging due to dataset complexity and computational limitations. Here, we apply deep sequencing to a characterized population to assess its ability to identify phylogenetic clusters compared with consensus Sanger sequencing. For deep sequencing, a sample specific threshold determined by the 50th percentile of the patristic distance distribution for all variants within each individual was used to identify clusters. Among seven patristic distance thresholds tested for the Sanger sequence phylogeny ranging from 0.005-0.06, a threshold of 0.03 was found to provide the maximum balance between positive agreement (samples in a cluster) and negative agreement (samples not in a cluster) relative to the deep sequencing dataset. From 77 HCV seroconverters, 10 individuals were identified in phylogenetic clusters using both methods. Deep sequencing analysis identified an additional 4 individuals and excluded 8 other individuals relative to Sanger sequencing. The application of this deep sequencing approach could be a more effective tool to understand onward HCV transmission dynamics compared with Sanger sequencing, since the incorporation of minority sequence variants improves the discrimination of phylogenetically linked clusters.
Collapse
Affiliation(s)
- Vincent Montoya
- BC Centre for Disease Control, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrea Olmstead
- BC Centre for Disease Control, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Darrel Cook
- BC Centre for Disease Control, Vancouver, BC, Canada
| | - Naveed Janjua
- BC Centre for Disease Control, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason Grebely
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | - Brendan Jacka
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | - Art F Y Poon
- BC Centre for Excellence in HIV/AIDS, St Paul's Hospital, Vancouver, BC, Canada
| | - Mel Krajden
- BC Centre for Disease Control, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Silva-Carvalho WHV, de Moura RR, Coelho AVC, Crovella S, Guimarães RL. Frequency of the CCR5-delta32 allele in Brazilian populations: A systematic literature review and meta-analysis. INFECTION GENETICS AND EVOLUTION 2016; 43:101-7. [PMID: 27208805 DOI: 10.1016/j.meegid.2016.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 11/29/2022]
Abstract
The CCR5 is a chemokine receptor widely expressed by several immune cells that are engaged in inflammatory responses. Some populations have individuals exhibiting a 32bp deletion in the CCR5 gene (CCR5-delta32) that produces a truncated non-functional protein not expressed on the cell surface. This polymorphism, known to be associated with susceptibility to infectious and inflammatory diseases, such as osteomyelitis, pre-eclampsia, systemic lupus erythematous, juvenile idiopathic arthritis, rheumatoid arthritis and HIV/AIDS, is more commonly found in European populations with average frequency of 10%. However, it is also possible to observe a significant frequency in other world populations, such as the Brazilian one. We performed a systematic review and meta-analysis of CCR5-delta32 genetic association studies in Brazilian populations throughout the country to estimate the frequency of this polymorphism. We also compared CCR5-delta32 frequencies across Brazilian regions. The systematic literature reviewed studies involving delta32 allele in Brazilian populations published from 1995 to 2015. Among the reviewed literature, 25 studies including 30 Brazilian populations distributed between the North, Northeast, South and Southeast regions were included in our meta-analysis. We observed an overall allelic frequency of 4% (95%-CI, 0.03-0.05), that was considered moderate and, notably, higher than some European populations, such as Cyprus (2.8%), Italy (3%) and Greece (2.4%). Regarding the regional frequency comparisons between North-Northeast (N-NE) and South-Southeast (S-SE) regions, we observed an allelic frequency of 3% (95%-CI, 0.02-0.04) and 4% (95%-CI, 0.03-0.05), respectively. The populations from S-SE regions had a slightly higher CCR5-delta32 frequency than N-NE regions (OR=1.41, p=0.002). Although there are several studies about the CCR5-delta32 polymorphism and its effect on the immune response of some infectious diseases, this report is the first meta-analysis study that provides a descriptive study of the distribution of CCR5-delta32 allele in Brazilian population.
Collapse
Affiliation(s)
| | - Ronald Rodrigues de Moura
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil; Department of Genetics, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | - Antonio Victor Campos Coelho
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil; Department of Genetics, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | - Sergio Crovella
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil; Department of Genetics, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | - Rafael Lima Guimarães
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil; Department of Genetics, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| |
Collapse
|