1
|
Binmahfouz LS, Al Otaibi A, Binmahfouz NS, Abdel-Naim AB, Eid BG, Shaik RA, Bagher AM. Luteolin modulates the TGFB1/PI3K/PTEN axis in hormone-induced uterine leiomyomas: Insights from a rat model. Eur J Pharmacol 2025; 996:177439. [PMID: 40043870 DOI: 10.1016/j.ejphar.2025.177439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/28/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
Uterine leiomyomas (UL), or fibroids, are non-cancerous tumors of the uterine smooth muscle, affecting approximately 70% of women of reproductive age. They are the most prevalent solid tumors in the gynecological tract and a major indication for hysterectomy. The pathogenesis of UL involves uterine inflammation, uncontrolled cell division, and suppressed apoptosis. This study evaluated the protective effects of luteolin, a flavonoid known for its anti-inflammatory and antioxidant properties, against diethylstilbestrol and progesterone-induced UL in female rats. Twenty-four female Wistar rats were divided into four groups: (1) control, (2) luteolin (10 mg/kg, PO), (3) UL (diethylstilbestrol 1.35 mg/kg + progesterone 1 mg/kg, SC), and (4) UL + luteolin (10 mg/kg). The treatment duration was five weeks. Histological analyses were performed using hematoxylin and eosin (H&E) staining and Masson's Trichrome staining to evaluate uterine architecture and fibrosis. Histological results demonstrated normal uterine architecture in the control and luteolin groups, with marked neoplastic cell proliferation and fibrosis in the UL group, significantly mitigated by luteolin treatment. Luteolin reduced uterine weights and exhibited antioxidant, anti-inflammatory, pro-apoptotic, and anti-proliferative effects. Immunohistochemical analysis revealed that luteolin significantly reduced α-SMA protein expression, suggesting its role in modulating fibrotic pathways by inhibiting TGF-β1 and PI3K and enhancing PTEN production. These findings highlight luteolin's potential as a non-invasive therapeutic option for UL and suggest the need for further clinical studies to establish its efficacy, optimize dosage, and evaluate its safety profile in humans.
Collapse
Affiliation(s)
- Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdullah Al Otaibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Care, Maternal and Children Specialist Hospital, Jeddah, 23816, Saudi Arabia
| | - Najlaa S Binmahfouz
- Department of Anatomical Histopathology, East Jeddah General Hospital, Jeddah, 22253, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
2
|
Toppila M, Ranta-aho S, Kaarniranta K, Hytti M, Kauppinen A. Metformin Alleviates Inflammation and Induces Mitophagy in Human Retinal Pigment Epithelium Cells Suffering from Mitochondrial Damage. Cells 2024; 13:1433. [PMID: 39273005 PMCID: PMC11394619 DOI: 10.3390/cells13171433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondrial malfunction, excessive production of reactive oxygen species (ROS), deficient autophagy/mitophagy, and chronic inflammation are hallmarks of age-related macular degeneration (AMD). Metformin has been shown to activate mitophagy, alleviate inflammation, and lower the odds of developing AMD. Here, we explored the ability of metformin to activate mitophagy and alleviate inflammation in retinal pigment epithelium (RPE) cells. Human ARPE-19 cells were pre-treated with metformin for 1 h prior to exposure to antimycin A (10 µM), which induced mitochondrial damage. Cell viability, ROS production, and inflammatory cytokine production were measured, while autophagy/mitophagy proteins were studied using Western blotting and immunocytochemistry. Metformin pre-treatment reduced the levels of proinflammatory cytokines IL-6 and IL-8 to 42% and 65% compared to ARPE-19 cells exposed to antimycin A alone. Metformin reduced the accumulation of the autophagy substrate SQSTM1/p62 (43.9%) and the levels of LC3 I and II (51.6% and 48.6%, respectively) after antimycin A exposure. Metformin also increased the colocalization of LC3 with TOM20 1.5-fold, suggesting active mitophagy. Antimycin A exposure increased the production of mitochondrial ROS (226%), which was reduced by the metformin pre-treatment (84.5%). Collectively, metformin showed anti-inflammatory and antioxidative potential with mitophagy induction in human RPE cells suffering from mitochondrial damage.
Collapse
Affiliation(s)
- Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.R.-a.); (M.H.)
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland;
| | - Sofia Ranta-aho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.R.-a.); (M.H.)
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland;
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.R.-a.); (M.H.)
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland;
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.R.-a.); (M.H.)
| |
Collapse
|
3
|
Wang D, Chen Y, Li J, Wu E, Tang T, Singla RK, Shen B, Zhang M. Natural products for the treatment of age-related macular degeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155522. [PMID: 38820665 DOI: 10.1016/j.phymed.2024.155522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a chronic retinal disease that significantly influences the vision of the elderly. PURPOSE There is no effective treatment and prevention method. The pathogenic process behind AMD is complex, including oxidative stress, inflammation, and neovascularization. It has been demonstrated that several natural products can be used to manage AMD, but systematic summaries are lacking. STUDY DESIGN AND METHODS PubMed, Web of Science, and ClinicalTrials.gov were searched using the keywords "Biological Products" AND "Macular Degeneration" for studies published within the last decade until May 2023 to summarize the latest findings on the prevention and treatment of age-related macular degeneration through the herbal medicines and functional foods. RESULTS The eligible studies were screened, and the relevant information about the therapeutic action and mechanism of natural products used to treat AMD was extracted. Our findings demonstrate that natural substances, including retinol, phenols, and other natural products, prevent the development of new blood vessels and protect the retina from oxidative stress in cells and animal models. However, they have barely been examined in clinical studies. CONCLUSION Natural products could be highly prospective candidate drugs used to treat AMD, and further preclinical and clinical research is required to validate it to control the disease.
Collapse
Affiliation(s)
- Dongyue Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiakun Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Erman Wu
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tong Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Ioannou P, Baliou S. The Molecular Mechanisms and Therapeutic Potential of Cranberry, D-Mannose, and Flavonoids against Infectious Diseases: The Example of Urinary Tract Infections. Antibiotics (Basel) 2024; 13:593. [PMID: 39061275 PMCID: PMC11273536 DOI: 10.3390/antibiotics13070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The treatment of infectious diseases typically includes the administration of anti-infectives; however, the increasing rates of antimicrobial resistance (AMR) have led to attempts to develop other modalities, such as antimicrobial peptides, nanotechnology, bacteriophages, and natural products. Natural products offer a viable alternative due to their potential affordability, ease of access, and diverse biological activities. Flavonoids, a class of natural polyphenols, demonstrate broad anti-infective properties against viruses, bacteria, fungi, and parasites. Their mechanisms of action include disruption of microbial membranes, inhibition of nucleic acid synthesis, and interference with bacterial enzymes. This review explores the potential of natural compounds, such as flavonoids, as an alternative therapeutic approach to combat infectious diseases. Moreover, it discusses some commonly used natural products, such as cranberry and D-mannose, to manage urinary tract infections (UTIs). Cranberry products and D-mannose both, yet differently, inhibit the adhesion of uropathogenic bacteria to the urothelium, thus reducing the likelihood of UTI occurrence. Some studies, with methodological limitations and small patient samples, provide some encouraging results suggesting the use of these substances in the prevention of recurrent UTIs. While further research is needed to determine optimal dosages, bioavailability, and potential side effects, natural compounds hold promise as a complementary or alternative therapeutic strategy in the fight against infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
5
|
Deshmukh H, Santos JM, Bender M, Dufour JM, Lovett J, Shen CL. Peanut Shell Extract Improves Mitochondrial Function in db/db Mice via Suppression of Oxidative Stress and Inflammation. Nutrients 2024; 16:1977. [PMID: 38999726 PMCID: PMC11243022 DOI: 10.3390/nu16131977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Accumulating evidence shows a strong correlation between type 2 diabetes mellitus, mitochondrial dysfunction, and oxidative stress. We evaluated the effects of dietary peanut shell extract (PSE) supplementation on mitochondrial function and antioxidative stress/inflammation markers in diabetic mice. Fourteen db/db mice were randomly assigned to a diabetic group (DM in AIN-93G diet) and a PSE group (1% wt/wt PSE in AIN-93G diet) for 5 weeks. Six C57BL/6J mice were fed with an AIN-93G diet for 5 weeks (control group). Gene and protein expression in the liver, brain, and white adipose tissue (WAT) were determined using qRT-PCR and Immunoblot, respectively. Compared to the control group, the DM group had (i) increased gene and protein expression levels of DRP1 (fission), PINK1 (mitophagy), and TNFα (inflammation) and (ii) decreased gene and protein expression levels of MFN1, MFN2, OPA1 (fusion), TFAM, PGC-1α (biogenesis), NRF2 (antioxidative stress) and IBA1 (microglial activation) in the liver, brain, and WAT of db/db mice. Supplementation of PSE into the diet restored the DM-induced changes in the gene and protein expression of DRP1, PINK1, TNFα, MFN1, MFN2, OPA1, TFAM, PGC-1α, NRF2, and IBA1 in the liver, brain, and WAT of db/db mice. This study demonstrates that PSE supplementation improved mitochondrial function in the brain, liver, and WAT of db/db mice, in part due to suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hemalata Deshmukh
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (H.D.); (J.M.S.); (J.L.)
| | - Julianna M. Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (H.D.); (J.M.S.); (J.L.)
| | - Matthew Bender
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.B.); (J.M.D.)
| | - Jannette M. Dufour
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.B.); (J.M.D.)
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
| | - Jacob Lovett
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (H.D.); (J.M.S.); (J.L.)
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (H.D.); (J.M.S.); (J.L.)
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Moezzi MS. Comprehensive in silico screening of flavonoids against SARS-CoV-2 main protease. J Biomol Struct Dyn 2023; 41:9448-9461. [PMID: 36342071 DOI: 10.1080/07391102.2022.2142297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
In the current pandemic caused by the new coronavirus (SARS-CoV-2), computational drug discovery can play an essential role in finding potential therapeutic agents. Thanks to its anti-viral, antibacterial, and anti-inflammatory properties, sage (Salvia officinalis) is used in traditional medicine. In this study, drugs proposed against COVID-19, including Lopinavir, Remdesivir, Favipiravir, and main flavonoids of sage, were docked favorably against novel coronavirus main protease. Molecular docking findings indicate that Rutin, Luteolin-7-glucoside, Apigenin, and Hispidulin make strong interactions with better binding affinity than selected commercial drugs in the study. But Rutin is the only flavonoid that makes strong hydrogen bond interactions with catalytic dyad and crucial Mpro residues and has more binding affinity than protease inhibitor PF-07321332 as an oral antiviral (PAXLOVID™). Further analysis of Molecular Dynamics and MM-PBSA predicted that chosen ligands could form stable complexes with the main protease. Also, ADMET analysis shows that main flavonoids are expected to have appropriate pharmacokinetic and no toxic properties. The results of the in silico study suggest that Salvia officinalis as a rich source of potent anti-coronavirus flavonoids may play a significant role in counteracting the replication of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Sadat Moezzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
7
|
Yu YP, Lin KH, Shih MC, Chen CL, Lu CP. Optimization of aqueous extraction of antioxidants from Chrysanthemum (C. morifolium Ramat and C. indicum L.) flowers and evaluation of their protection from glycoxidation damage on human αA-crystallin. Exp Eye Res 2023; 235:109629. [PMID: 37625574 DOI: 10.1016/j.exer.2023.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Chrysanthemum tea is commonly consumed by Chinese consumers mainly due to the Chrysanthemum flower being a potential source of antioxidants. The current study investigates the effects of extraction time and temperature on Chrysanthemum flower aqueous extract (CFAE) antioxidant capacity, including Trolox equivalent antioxidant capacity (TEAC), ferrous iron-chelating activity, and superoxide radical scavenging capacity (SRSC) using a two-factor, three-level factorial design of the response surface method (RSM). The TEAC and SRSC of CFAE are higher at higher temperatures and longer times up to a certain point, and the highest TEAC and SRSC are achieved at a 100 °C extraction temperature for 45 min. The fructose induced-αA-crystallin (Cry) glycation model system was used to evaluate the effects of the CFAE on anti-glycoxidation activities. The antioxidant ingredients obtained from CFAE significantly impede the production of advanced glycation end products from protein glycoxidation products (dityrosine, kynurenine, and N'-methylkynurenine) in the glycation process of αA-Cry and exhibit strong anti-glycating activity. The glycation inhibitory effects of CFAE are concentration-dependent. C. indicum L. exhibits greater potential for preventing cataracts compared to C. morifolium Ramat CFAE's antioxidant and anti-glycation properties suggest its potential application as a natural ingredient in the development of agents to combat glycation.
Collapse
Affiliation(s)
- Yi-Ping Yu
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei, 11114, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Ming-Chih Shih
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei, 11114, Taiwan
| | - Chen-Lin Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Chun-Ping Lu
- Department of Food Science, Fu Jen Catholic University, New Taipei City, 24205, Taiwan.
| |
Collapse
|
8
|
Wang W, Yang C, Xia J, Li N, Xiong W. Luteolin is a potential inhibitor of COVID-19: An in silico analysis. Medicine (Baltimore) 2023; 102:e35029. [PMID: 37746970 PMCID: PMC10519465 DOI: 10.1097/md.0000000000035029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023] Open
Abstract
The severe respiratory syndrome 2019 novel coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread explosively, raising global health concerns. Luteolin shows antiviral properties, but its effect on SARS-CoV-2 and the associated mechanisms are not elucidated. We used network pharmacology, molecular docking and molecular dynamics to provide potential molecular support of luteolin (3,4,5,7-tetrahydroxyflavone) (LUT) against COVID-19. We employed network pharmacology, molecular docking, and molecular dynamics techniques to investigate how LUT affected COVID-19. Several databases were queried to determine potential target proteins related to LUT and COVID-19. Protein-protein interaction network was constructed, and core targets were filtered by degree value. Following that, functional enrichment was conducted. Molecular docking was utilized to ensure LUT was compatible with core target proteins. Finally, molecular dynamics was used to analyze the effects of the LUT on the optimal hub target. A total of 64 potential target genes for treating COVID-19 were identified, of which albumin, RAC-alpha serine/threonine-protein kinase, caspase-3, epidermal growth factor receptor, heat shock protein HSP 90-alpha, and mitogen-activated protein kinase 1 might be the most promising. In addition, molecular docking results showed that LUT could interact with SARS-CoV-2 major protease 3CL. LUT can bind to the active sites of 3CL protease and mitogen-activated protein kinase 1, showing an anti-SARS-CoV-2 potential.
Collapse
Affiliation(s)
- Wenxiang Wang
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, PR China
| | - Ce Yang
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, PR China
| | - Jing Xia
- Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Chongqing, PR China
| | - Ning Li
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, PR China
| | - Wei Xiong
- Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Chongqing, PR China
| |
Collapse
|
9
|
Dąbkowska M, Kosiorowska A, Machaliński B. The Impact of Serum Protein Adsorption on PEGylated NT3-BDNF Nanoparticles-Distribution, Protein Release, and Cytotoxicity in a Human Retinal Pigmented Epithelial Cell Model. Pharmaceutics 2023; 15:2236. [PMID: 37765206 PMCID: PMC10537189 DOI: 10.3390/pharmaceutics15092236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The adsorption of biomolecules on nanoparticles' surface ultimately depends on the intermolecular forces, which dictate the mutual interaction transforming their physical, chemical, and biological characteristics. Therefore, a better understanding of the adsorption of serum proteins and their impact on nanoparticle physicochemical properties is of utmost importance for developing nanoparticle-based therapies. We investigated the interactions between potentially therapeutic proteins, neurotrophin 3 (NT3), brain-derived neurotrophic factor (BDNF), and polyethylene glycol (PEG), in a cell-free system and a retinal pigmented epithelium cell line (ARPE-19). The variance in the physicochemical properties of PEGylated NT3-BDNF nanoparticles (NPs) in serum-abundant and serum-free systems was studied using transmission electron microscopy, atomic force microscopy, multi-angle dynamic, and electrophoretic light scattering. Next, we compared the cellular response of ARPE-19 cells after exposure to PEGylated NT3-BDNF NPs in either a serum-free or complex serum environment by investigating protein release and cell cytotoxicity using ultracentrifuge, fluorescence spectroscopy, and confocal microscopy. After serum exposure, the decrease in the aggregation of PEGylated NT3-BDNF NPs was accompanied by increased cell viability and BDNF/NT3 in vitro release. In contrast, in a serum-free environment, the appearance of positively charged NPs with hydrodynamic diameters up to 900 nm correlated with higher cytotoxicity and limited BDNF/NT3 release into the cell culture media. This work provides new insights into the role of protein corona when considering the PEGylated nano-bio interface with implications for cytotoxicity, NPs' distribution, and BDNF and NT3 release profiles in the in vitro setting.
Collapse
Affiliation(s)
- Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 70-204 Szczecin, Poland;
| | - Alicja Kosiorowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 70-204 Szczecin, Poland;
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland;
| |
Collapse
|
10
|
Toppila M, Hytti M, Korhonen E, Ranta-Aho S, Harju N, Forsberg MM, Kaarniranta K, Jalkanen A, Kauppinen A. The Prolyl Oligopeptidase Inhibitor KYP-2047 Is Cytoprotective and Anti-Inflammatory in Human Retinal Pigment Epithelial Cells with Defective Proteasomal Clearance. Antioxidants (Basel) 2023; 12:1279. [PMID: 37372009 DOI: 10.3390/antiox12061279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Increased oxidative stress, dysfunctional cellular clearance, and chronic inflammation are associated with age-related macular degeneration (AMD). Prolyl oligopeptidase (PREP) is a serine protease that has numerous cellular functions, including the regulation of oxidative stress, protein aggregation, and inflammation. PREP inhibition by KYP-2047 (4-phenylbutanoyl-L-prolyl1(S)-cyanopyrrolidine) has been associated with clearance of cellular protein aggregates and reduced oxidative stress and inflammation. Here, we studied the effects of KYP-2047 on inflammation, oxidative stress, cell viability, and autophagy in human retinal pigment epithelium (RPE) cells with reduced proteasomal clearance. MG-132-mediated proteasomal inhibition in ARPE-19 cells was used to model declined proteasomal clearance in the RPEs of AMD patients. Cell viability was assessed using LDH and MTT assays. The amounts of reactive oxygen species (ROS) were measured using 2',7'-dichlorofluorescin diacetate (H2DCFDA). ELISA was used to determine the levels of cytokines and activated mitogen-activated protein kinases. The autophagy markers p62/SQSTM1 and LC3 were measured with the western blot method. MG-132 induced LDH leakage and increased ROS production in the ARPE-19 cells, and KYP-2047 reduced MG-132-induced LDH leakage. Production of the proinflammatory cytokine IL-6 was concurrently alleviated by KYP-2047 when compared with cells treated only with MG-132. KYP-2047 had no effect on autophagy in the RPE cells, but the phosphorylation levels of p38 and ERK1/2 were elevated upon KYP-2047 exposure, and the inhibition of p38 prevented the anti-inflammatory actions of KYP-2047. KYP-2047 showed cytoprotective and anti-inflammatory effects on RPE cells suffering from MG-132-induced proteasomal inhibition.
Collapse
Affiliation(s)
- Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Eveliina Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Sofia Ranta-Aho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
11
|
Musa M, Zeppieri M, Atuanya GN, Enaholo ES, Topah EK, Ojo OM, Salati C. Nutritional Factors: Benefits in Glaucoma and Ophthalmologic Pathologies. Life (Basel) 2023; 13:1120. [PMID: 37240765 PMCID: PMC10222847 DOI: 10.3390/life13051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Glaucoma is a chronic optic neuropathy that can lead to irreversible functional and morphological damage if left untreated. The gold standard therapeutic approaches in managing patients with glaucoma and limiting progression include local drops, laser, and/or surgery, which are all geared at reducing intraocular pressure (IOP). Nutrients, antioxidants, vitamins, organic compounds, and micronutrients have been gaining increasing interest in the past decade as integrative IOP-independent strategies to delay or halt glaucomatous retinal ganglion cell degeneration. In our minireview, we examine the various nutrients and compounds proposed in the current literature for the management of ophthalmology diseases, especially for glaucoma. With respect to each substance considered, this minireview reports the molecular and biological characteristics, neuroprotective activities, antioxidant properties, beneficial mechanisms, and clinical studies published in the past decade in the field of general medicine. This study highlights the potential benefits of these substances in glaucoma and other ophthalmologic pathologies. Nutritional supplementation can thus be useful as integrative IOP-independent strategies in the management of glaucoma and in other ophthalmologic pathologies. Large multicenter clinical trials based on functional and morphologic data collected over long follow-up periods in patients with IOP-independent treatments can pave the way for alternative and/or coadjutant therapeutic options in the management of glaucoma and other ocular pathologies.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | | | | | - Efioshiomoshi Kings Topah
- Department of Optometry, Faculty of Allied Health Sciences, College of Health Sciences Bayero University, Kano 700006, Kano State, Nigeria
| | - Oluwasola Michael Ojo
- School of Optometry and Vision Sciences, College of Health Sciences, University of Ilorin, Ilorin 240003, Kwara State, Nigeria
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
12
|
Sun M, Yu T, Zhao J, Zhu X, Xin W, Zhang F, Zhang L. Role of flavonoids in age-related macular degeneration. Biomed Pharmacother 2023; 159:114259. [PMID: 36652737 DOI: 10.1016/j.biopha.2023.114259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
A common eye disorder known as age-related macular degeneration (AMD) eventually results in blindness and vision loss. AMD has a complicated and poorly understood aetiology. The main pathological processes associated with AMD include oxidative damage, inflammation, and neovascularization. Flavonoids are naturally occurring bioactive substances with extensive distribution and antioxidant, anti-inflammatory, and neovascularization inhibitory properties. Several in vitro and in vivo AMD-related models pertinent to vision and this ocular ailment have been used to assess the mechanisms of action of various flavonoids. This article will discuss the research progress of flavonoids in AMD, especially the characteristics and mechanism of flavonoids in treating AMD.
Collapse
Affiliation(s)
- Mengmeng Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Tao Yu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Xuan Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China.
| | - Fenglan Zhang
- Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, PR China.
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
13
|
Antiviral Activity of Luteolin against Pseudorabies Virus In Vitro and In Vivo. Animals (Basel) 2023; 13:ani13040761. [PMID: 36830548 PMCID: PMC9952634 DOI: 10.3390/ani13040761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023] Open
Abstract
Pseudorabies virus (PRV) can cause acute swine disease leading to economic losses worldwide and is a potential causative agent of viral encephalitis in humans. Although effective vaccines are available, an increasing number of variants have emerged in China, and identifying effective antiviral agents against PRV to prevent latent infection is essential. In this study, we assessed the antiviral activity of luteolin against PRV in vitro and in vivo. Luteolin was found to significantly inhibit PRV at a noncytotoxic concentration (70 μM), with an IC50 of 26.24 μM and a selectivity index of 5.64. Luteolin inhibited the virus at the replication stage and decreased the expression of viral mRNA and gB protein. Luteolin reduced the apoptosis of PRV-infected cells, improved the survival rate of mice after lethal challenge, reduced the viral loads in the liver, kidney, heart, lung, and brain, reduced brain lesions, and slowed inflammation and oxidation reactions. Our results showed that luteolin has promise as a new alternative antiviral drug for PRV infection.
Collapse
|
14
|
Subash-Babu P, Abdulaziz AlSedairy S, Abdulaziz Binobead M, Alshatwi AA. Luteolin-7-O-rutinoside Protects RIN-5F Cells from High-Glucose-Induced Toxicity, Improves Glucose Homeostasis in L6 Myotubes, and Prevents Onset of Type 2 Diabetes. Metabolites 2023; 13:metabo13020269. [PMID: 36837888 PMCID: PMC9965038 DOI: 10.3390/metabo13020269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Luteolin-7-O-rutinoside (lut-7-O-rutin), a flavonoid commonly present in Mentha longifolia L. and Olea europaea L. leaves has been used as a flavoring agent with some biological activity. The present study is the first attempt to analyze the protective effect of lut-7-O-rutin on high-glucose-induced toxicity to RIN-5F cells in vitro. We found that lut-7-O-rutin improved insulin secretion in both normal and high-glucose conditions in a dose-dependent manner, without toxicity observed. In addition, 20 µmol of lut-7-O-rutin improves insulin sensitization and glucose uptake significantly (p ≤ 0.01) in L6 myotubes cultured in a high-glucose medium. Lut-7-O-rutin has shown a significant (p ≤ 0.05) effect on glucose uptake in L6 myotubes compared to the reference drug, rosiglitazone (20 µmol). Gene expression analysis confirmed significantly lowered CYP1A, TNF-α, and NF-κb expressions in RIN-5F cells, and increased mitochondrial thermogenesis-related LPL, Ucp-1 and PPARγC1A mRNA expressions in L6 myotubes after 24 h of lut-7-O-rutin treatment. The levels of signaling proteins associated with intracellular glucose uptakes, such as cAMP, ChREBP-1, and AMPK, were significantly increased in L6 myotubes. In addition, the levels of the conversion rate of glucose to lactate and fatty acids were raised in insulin-stimulated conditions; the rate of glycerol conversion was found to be higher at the basal level in L6 myotubes. In conclusion, lut-7-O-rutin protects RIN-5F cells from high-glucose-induced toxicity, stimulates insulin secretion, and promotes glucose absorption and homeostasis via molecular mechanisms.
Collapse
|
15
|
Krajčíková K, Balicka A, Lapšanská M, Trbolová A, Guľašová Z, Kondrakhova D, Komanický V, Rašiová A, Tomečková V. The Effects of Fisetin on Cyclosporine-Treated Dry Eye Disease in Dogs. Int J Mol Sci 2023; 24:1488. [PMID: 36675005 PMCID: PMC9862591 DOI: 10.3390/ijms24021488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Dry eye disease (DED) is a chronic debilitating ophthalmological disease with the current therapeutic options focused on the suppression of the symptoms. Among the possibilities of how to improve DED therapy, polyphenols have shown an enormous capacity to counteract DED functional changes. The study aimed to specifically target pathophysiological mechanisms by the addition of fisetin to the cyclosporine treatment protocol. We examined dog patients with DED on cyclosporine treatment that were administered 0.1% fisetin or fisetin-free eye drops. For the assessment of fisetin effects, tear film production and matrix metalloproteinase 9 (MMP-9) were studied in the tear film. Tear production was not recovered after 7 or 14 days (9.40 mm ± 6.02 mm, p = 0.47; 9.80 mm ± 6.83 mm, p = 0.53, respectively). MMP-9 levels significantly increased after 7 days and then dropped after 14 days (775.44 ng/mL ± 527.52 ng/mL, p = 0.05; 328.49 ng/mL ± 376.29 ng/mL, p = 1.00, respectively). Fisetin addition to cyclosporine DED treatment was not able to restore tear fluid production but influenced molecular pathological events through MMP-9.
Collapse
Affiliation(s)
- Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Agnieszka Balicka
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Mária Lapšanská
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Alexandra Trbolová
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Zuzana Guľašová
- Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Daria Kondrakhova
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Vladimír Komanický
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Adriana Rašiová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| |
Collapse
|
16
|
Rauf A, Abu-Izneid T, Imran M, Hemeg HA, Bashir K, Aljohani ASM, Aljohani MSM, Alhumaydhi FA, Khan IN, Bin Emran T, Gondal TA, Nath N, Ahmad I, Thiruvengadam M. Therapeutic Potential and Molecular Mechanisms of the Multitargeted Flavonoid Fisetin. Curr Top Med Chem 2023; 23:2075-2096. [PMID: 37431899 DOI: 10.2174/1568026623666230710162217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Flavonoids effectively treat cancer, inflammatory disorders (cardiovascular and nervous systems), and oxidative stress. Fisetin, derived from fruits and vegetables, suppresses cancer growth by altering cell cycle parameters that lead to cell death and angiogenesis without affecting healthy cells. Clinical trials are needed in humans to prove the effectiveness of this treatment for a wide range of cancers. According to the results of this study, fisetin can be used to prevent and treat a variety of cancers. Despite early detection and treatment advances, cancer is the leading cause of death worldwide. We must take proactive steps to reduce the risk of cancer. The natural flavonoid fisetin has pharmacological properties that suppress cancer growth. This review focuses on the potential drug use of fisetin, which has been extensively explored for its cancer-fighting ability and other pharmacological activities such as diabetes, COVID-19, obesity, allergy, neurological, and bone disorders. Researchers have focused on the molecular function of fisetin. In this review, we have highlighted the biological activities against chronic disorders, including cancer, metabolic illnesses, and degenerative illnesses, of the dietary components of fisetin.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, KPK, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain Campus, Abu Dhabi, United Arab Emirates
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Punjab, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra, 41411, Saudi Arabia
| | - Kashif Bashir
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Mona S M Aljohani
- Pharmaceutical Care Department, King Saud Hospital, Ministry of Health, Unaizah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Victoria, 3125, Australia
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Ishtiaque Ahmad
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
17
|
Tian H, Wang L, Fu T. Ephedrine alleviates bleomycin-induced pulmonary fibrosis by inhibiting epithelial-mesenchymal transition and restraining NF-κB signaling. J Toxicol Sci 2023; 48:547-556. [PMID: 37778983 DOI: 10.2131/jts.48.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pulmonary fibrosis is a lethal and progressive pulmonary disorder in human beings. Ephedrine is a compound isolated from Ephedra and plays a regulatory role in inflammatory response. This study focused on the anti-pulmonary fibrosis effect of ephedrine and its potential molecular mechanism. After a mouse model of pulmonary fibrosis was established through bleomycin (BLM) induction, the survival percentage, body weight, and pulmonary index were measured. Hematoxylin-eosin staining and Masson's trichrome staining for lung tissues were performed to observe the pathological alterations. The viability of lung epithelial BEAS-2B cells, intracellular production of reactive oxygen species, and the levels of pro-inflammatory cytokines were examined by cell counting kit-8 assays, 2',7'-dichlorofluorescein diacetate (DCF-DA) staining, and enzyme-linked immunosorbent assay, respectively. Immunofluorescence staining was performed to determine E-cadherin and vimentin expression after BLM or ephedrine treatment. The mRNA and protein levels of cytokeratin-8, E-cadherin, α-SMA, and vimentin were subjected to quantitative polymerase chain reaction and immunoblotting. Experimental results revealed that ephedrine treatment rescued the repressive impact of BLM on BEAS-2B cell viability, and ephedrine inhibited BLM-induced overproduction of reactive oxygen species and inflammatory response in BEAS-2B cells. Additionally, ephedrine suppressed epithelial-mesenchymal transition (EMT) process stimulated by BLM treatment, as demonstrated by the reduced α-SMA and vimentin levels together with the increased cytokeratin-8 and E-cadherin levels in BLM + Ephedrine group. In addition, ephedrine inhibited NF-κB and activated Nrf-2 signaling in BLM-treated BEAS-2B cells. Moreover, ephedrine ameliorated pulmonary fibrosis in BLM-induced mice and improved the survival of model mice. In conclusion, ephedrine attenuates BLM-evoked pulmonary fibrosis by repressing EMT process via blocking NF-κB signaling and activating Nrf-2 signaling, suggesting that ephedrine might become a potential anti-pulmonary fibrosis agent in the future.
Collapse
Affiliation(s)
- Hui Tian
- Department of Pulmonary Diseases, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Limei Wang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Taoli Fu
- Department of Geratology, Wuhan Hospital of Traditional Chinese Medicine, China
| |
Collapse
|
18
|
Cao Y, Li XY, Tchivelekete GM, Li X, Zhou X, He Z, Reilly J, Tan Z, Shu X. Bioinformatical and Biochemical Analyses on the Protective Role of Traditional Chinese Medicine against Age-Related Macular Degeneration. Curr Eye Res 2022; 47:1450-1462. [PMID: 35947018 DOI: 10.1080/02713683.2022.2108456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD) is the commonest cause of permanent vision loss in the elderly. Traditional Chinese medicine (TCM) has long been used to treat AMD, although the underlying functional mechanisms are not understood. This study aims to predict the active ingredients through screening the chemical ingredients of anti-AMD decoction and to elucidate the underlying mechanisms. METHODS We collected the prescriptions for effective AMD treatment with traditional Chinese medicine and screened several Chinese medicines that were used most frequently in order to compose "anti-AMD decoction." The pharmacologically active ingredients and corresponding targets in this anti-AMD decoction were mined using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Subsequently, the AMD-related targets were identified through the GeneCards database. Network pharmacology was performed to construct the visual network of anti-AMD decoction-AMD protein-protein interaction (PPI). Further, the Autodock software was adopted for molecular docking on the core active ingredients and core targets. The function of core ingredients against oxidative stress and inflammation in retinal pigment epithelial cells was assessed using biochemical assays. RESULTS We screened out 268 active ingredients in anti-AMD decoction corresponding to 258 ingredient targets, combined with 2160 disease targets in AMD, and obtained 129 drug-disease common targets. The key core proteins were predominantly involved in inflammation. Furthermore, molecular docking showed that four potential active ingredients (Quercetin, luteolin, naringenin and hederagenin) had good affinity with the core proteins, IL-6, TNF, VEGFA and MAPK3. Quercetin, luteolin and naringenin demonstrated capacities against oxidative stress and inflammation in human retinal pigment epithelial cells. CONCLUSIONS The data suggests that anti-AMD decoction has multiple functional components and targets in treating AMD, possibly mediated by suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, P.R. China
| | - Xiao-Ya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Gabriel Mbuta Tchivelekete
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
- Department of Marine Biology, Faculty of Natural Science, University of Namibe, Angola
| | - Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, P.R. China
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, P.R. China
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
19
|
Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9966750. [PMID: 36111166 PMCID: PMC9470311 DOI: 10.1155/2022/9966750] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Plant preparations have been used to treat various diseases and discussed for centuries. Research has advanced to discover and identify the plant components with beneficial effects and reveal their underlying mechanisms. Flavonoids are phytoconstituents with anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial properties. Herein, we listed and contextualized various aspects of the protective effects of the flavonols quercetin, isoquercetin, kaempferol, and myricetin and the flavones luteolin, apigenin, 3
,4
-dihydroxyflavone, baicalein, scutellarein, lucenin-2, vicenin-2, diosmetin, nobiletin, tangeretin, and 5-O-methyl-scutellarein. We presented their structural characteristics and subclasses, importance, occurrence, and food sources. The bioactive compounds present in our diet, such as fruits and vegetables, may affect the health and disease state. Therefore, we discussed the role of these compounds in inflammation, oxidative mechanisms, and bacterial metabolism; moreover, we discussed their synergism with antibiotics for better disease outcomes. Indiscriminate use of antibiotics allows the emergence of multidrug-resistant bacterial strains; thus, bioactive compounds may be used for adjuvant treatment of infectious diseases caused by resistant and opportunistic bacteria via direct and indirect mechanisms. We also focused on the reported mechanisms and intracellular targets of flavonols and flavones, which support their therapeutic role in inflammatory and infectious diseases.
Collapse
|
20
|
Sur B, Lee B. Luteolin reduces fear, anxiety, and depression in rats with post-traumatic stress disorder. Anim Cells Syst (Seoul) 2022; 26:174-182. [PMID: 36046028 PMCID: PMC9423864 DOI: 10.1080/19768354.2022.2104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to severe stress can lead to the development of neuropsychiatric disorders, including post-traumatic stress disorder (PTSD). The cause of PTSD is dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis and an imbalance of monoamines. Fruits and vegetables contain large amounts of luteolin (LU; 3′,4′,5,7-tetrahydroxylflavone), which has various pharmacological activities such as anti-inflammatory, antioxidant, and anti-allergic effects. We investigated the effects of LU on fear, depression, and anxiety following monoamine imbalance and hyperactivation of the HPA axis in rats exposed to single prolonged stress (SPS). Male rats were dosed with LU (10 and 20 mg/kg) once daily for 14 days after exposure to SPS. Administration of LU reduced fear freezing responses to extinction recall and depression- and anxiety-like behaviors, and suppressed increases in plasma corticosterone and adrenocorticotropic hormone levels. Also, administration of LU restored the increased norepinephrine and decreased serotonin levels in the structures within the fear circuit, medial prefrontal cortex, and hippocampus. Our results showed that administration of LU improved freezing behavior according in a situation-dependent manner, and showed anti-depressant and anxiolytic effects. Thus, LU may be a useful therapeutic agent to prevent traumatic stress such as PTSD.
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Chu KO, Chan KP, Yip YWY, Chu WK, Wang C, Pang CP. Systemic and Ocular Anti-Inflammatory Mechanisms of Green Tea Extract on Endotoxin-Induced Ocular Inflammation. Front Endocrinol (Lausanne) 2022; 13:899271. [PMID: 35909558 PMCID: PMC9335207 DOI: 10.3389/fendo.2022.899271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Green tea extract (GTE) alleviated ocular inflammations in endotoxin-induced uveitis (EIU) rat model induced by lipopolysaccharide (LPS) but the underlying mechanism is unclear. Objectives To investigate the systematic and local mechanisms of the alleviation by untargeted metabolomics using liquid chromatography-tandem mass spectrometry. Methods Sprague-Dawley rats were divided into control group, LPS treatment group, and LPS treatment group treated with GTE two hours after LPS injection. The eyes were monitored by slip lamp and electroretinography examination after 24 hours. The plasma and retina were collected for metabolomics analysis. Results In LPS treated rats, the iris showed hyperemia. Plasma prostaglandins, arachidonic acids, corticosteroid metabolites, and bile acid metabolites increased. In the retina, histamine antagonists, corticosteroids, membrane phospholipids, free antioxidants, and sugars also increased but fatty acid metabolites, N-acetylglucosamine-6-sulphate, pyrocatechol, and adipic acid decreased. After GTE treatment, the a- and b- waves of electroretinography increased by 13%. Plasma phosphorylcholine lipids increased but plasma prostaglandin E1, cholanic metabolites, and glutarylglycine decreased. In the retina, tetranor-PGAM, pantothenic derivatives, 2-ethylacylcarinitine, and kynuramine levels decreased but anti-oxidative seleno-peptide level increased. Only phospholipids, fatty acids, and arachidonic acid metabolites in plasma and in the retina had significant correlation (p < 0.05, r > 0.4 or r < -0.4). Conclusions The results showed GTE indirectly induced systemic phosphorylcholine lipids to suppress inflammatory responses, hepatic damage, and respiratory mitochondrial stress in EIU rats induced by LPS. Phospholipids may be a therapeutic target of GTE for anterior chamber inflammation.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yolanda Wong Ying Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
Zhang Y, Chen C, Cheng B, Gao L, Qin C, Zhang L, Zhang X, Wang J, Wan Y. Discovery of Quercetin and Its Analogs as Potent OXA-48 Beta-Lactamase Inhibitors. Front Pharmacol 2022; 13:926104. [PMID: 35814247 PMCID: PMC9258905 DOI: 10.3389/fphar.2022.926104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Carbapenem resistance in Enterobacteriaceae caused by OXA-48 β-lactamase is a growing global health threat and has rapidly spread in many regions of the world. Developing inhibitors is a promising way to overcome antibiotic resistance. However, there are few options for problematic OXA-48. Here we identified quercetin, fisetin, luteolin, 3′,4′,7-trihydroxyflavone, apigenin, kaempferol, and taxifolin as potent inhibitors of OXA-48 with IC50 values ranging from 0.47 to 4.54 μM. Notably, the structure-activity relationship revealed that the substitute hydroxyl groups in the A and B rings of quercetin and its structural analogs improved the inhibitory effect against OXA-48. Mechanism studies including enzymatic kinetic assay, isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) analysis demonstrated that quercetin reversibly inhibited OXA-48 through a noncompetitive mode. Molecular docking suggested that hydroxyl groups at the 3′, 4′ and 7 positions in flavonoids formed hydrogen-bonding interactions with the side chains of Thr209, Ala194, and Gln193 in OXA-48. Quercetin, fisetin, luteolin, and 3′,4′,7-trihydroxyflavone effectively restored the antibacterial efficacy of piperacillin or imipenem against E. coli producing OXA-48, resulting in 2–8-fold reduction in MIC. Moreover, quercetin combined with piperacillin showed antimicrobial efficacy in mice infection model. These studies provide potential lead compounds for the development of β-lactamase inhibitors and in combination with β-lactams to combat OXA-48 producing pathogen.
Collapse
Affiliation(s)
- Yuejuan Zhang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Cheng Chen
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bin Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Gao
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Chuan Qin
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Lixia Zhang
- Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xu Zhang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Jun Wang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Yi Wan
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
- *Correspondence: Yi Wan,
| |
Collapse
|
23
|
Park C, Noh JS, Jung Y, Leem SH, Hyun JW, Chang YC, Kwon TK, Kim GY, Lee H, Choi YH. Fisetin Attenuated Oxidative Stress-Induced Cellular Damage in ARPE-19 Human Retinal Pigment Epithelial Cells Through Nrf2-Mediated Activation of Heme Oxygenase-1. Front Pharmacol 2022; 13:927898. [PMID: 35784747 PMCID: PMC9243462 DOI: 10.3389/fphar.2022.927898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Fisetin is a kind of bioactive flavonol, widely present in various fruits such as strawberries and apples, and is known to act as a potent free radical scavenger. However, the mechanism of action related to the antioxidant activity of this compound in human retinal pigment epithelial (RPE) cells is not precisely known. In this study, we aimed to investigate whether fisetin could attenuate oxidative stress-induced cytotoxicity on human RPE ARPE-19 cells. To mimic oxidative stress, ARPE-19 cells were treated with hydrogen peroxide (H2O2), and fisetin significantly inhibited H2O2-induced loss of cell viability and increase of intracellular reactive oxygen species (ROS) production. Fisetin also markedly attenuated DNA damage and apoptosis in H2O2-treated ARPE-19 cells. Moreover, mitochondrial dysfunction in H2O2-treated cells was alleviated in the presence of fisetin as indicated by preservation of mitochondrial membrane potential, increase of Bcl-2/Bax expression ratio, and suppression of cytochrome c release into the cytoplasm. In addition, fisetin enhanced phosphorylation and nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2), which was associated with increased expression and activity of heme oxygenase-1 (HO-1). However, the HO-1 inhibitor, zinc protoporphyrin, significantly reversed the protective effect of fisetin against H2O2-mediated ARPE-19 cell injury. Therefore, our results suggest that Nrf2-mediated activation of antioxidant enzyme HO-1 may play an important role in the ROS scavenging activity of fisetin in RPE cells, contributing to the amelioration of oxidative stress-induced ocular disorders.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan, South Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan, South Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan, South Korea
- Department of Health Sciences, Dong-A University, Busan, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
- *Correspondence: Hyesook Lee, ; Yung Hyun Choi,
| | - Yung Hyun Choi
- Anti-Aging Research Center and Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan, South Korea
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, South Korea
- *Correspondence: Hyesook Lee, ; Yung Hyun Choi,
| |
Collapse
|
24
|
Min L, Shu-Li Z, Feng Y, Han H, Shao-Jun L, Sheng-Xiong T, Jia-Yu T, Xiang-Zhi F, Dan F. NecroX-5 ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3-mediated epithelial-mesenchymal transition. Respir Res 2022; 23:128. [PMID: 35596212 PMCID: PMC9121617 DOI: 10.1186/s12931-022-02044-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Pulmonary fibrosis is a progressive and usually lethal pulmonary disease. Despite considerable research efforts, no effective therapeutic strategy for pulmonary fibrosis has been developed. NecroX-5 has been reported to possess anti-inflammatory, anti-oxidative and anti-tumor activities. In the present study, we aimed to determine whether NecroX-5 exhibits antifibrotic property in bleomycin (BLM)-induced pulmonary fibrosis. Results We found that pre-treatment with NecroX-5 alleviated inflammatory response, reduced oxidative stress, inhibited epithelial–mesenchymal transition (EMT), and ameliorated pulmonary fibrosis in vivo and in vitro. Our data further indicated that NecroX-5 substantially reduced activation of NLRP3 inflammasome and TGF-β1/Smad2/3 signaling in vivo and in vitro. Additionally, NLRP3 overexpression significantly reversed the protective effects of NecroX-5 in lung epithelial cells exposed to BLM. Conclusions Overall, our results demonstrate the potent antifibrotic properties of NecroX-5 and its therapeutic potential for pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02044-3.
Collapse
Affiliation(s)
- Li Min
- Department of Pain Management, Wuhan First Hospital, Wuhan, China
| | - Zhang Shu-Li
- Department of Pain Management, Wuhan First Hospital, Wuhan, China
| | - Yuan Feng
- Department of Pain Management, Wuhan First Hospital, Wuhan, China
| | - Hu Han
- Department of Pain Management, Wuhan First Hospital, Wuhan, China
| | - Li Shao-Jun
- Department of Pain Management, Wuhan First Hospital, Wuhan, China
| | - Tong Sheng-Xiong
- Department of Pain Management, Wuhan First Hospital, Wuhan, China
| | - Tian Jia-Yu
- Department of Pain Management, Wuhan First Hospital, Wuhan, China
| | - Fang Xiang-Zhi
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Dan
- Department of Pain Management, Wuhan First Hospital, Wuhan, China.
| |
Collapse
|
25
|
Fingerhut L, Yücel L, Strutzberg-Minder K, von Köckritz-Blickwede M, Ohnesorge B, de Buhr N. Ex Vivo and In Vitro Analysis Identify a Detrimental Impact of Neutrophil Extracellular Traps on Eye Structures in Equine Recurrent Uveitis. Front Immunol 2022; 13:830871. [PMID: 35251020 PMCID: PMC8896353 DOI: 10.3389/fimmu.2022.830871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Equine recurrent uveitis (ERU) is a common ocular disease of horses and described as a model for human autoimmune uveitis. This immune-mediated, inflammatory condition progressively destroys the eye, ultimately leading to blindness. Genetic and autoimmune factors, next to infections with Leptospira, are discussed as key factors in the pathogenesis. Furthermore, a release of neutrophil extracellular traps (NETs) by activated neutrophils is involved. NETs are composed of decondensed chromatin and proteins that can immobilize invading pathogens. However, if NETs accumulate, they can contribute to detrimental autoimmune processes. Thus, we aimed to investigate the impact of NETs in ERU patients. Therefore, we quantified several NET-markers (cell-free DNA, nucleosomes, citrullinated histone H3, histone-myeloperoxidase complexes, interleukin-17, equine cathelicidin 1 and DNase I activity) and NET-autoantibodies in sera and vitreous body fluids (VBF) of ERU-diseased horses and correlated the data with the disease status (signalment, ERU scores and Leptospira infection status). NET markers were detected to varying degrees in VBF of diseased horses, and partially correlated to disease severity and the presence of Leptospira spp. Cell-free DNA and nucleosomes as NET markers correlate with ERU severity in total and VBF scores, despite the presence of active DNases. Additionally, a significant correlation between fundus affection in the eye and NET autoantibodies was detectable. Therefore, we further investigated the influence of VBF samples from equine patients and isolated NETs on the blood-retina barrier in a cell culture model. VBF of diseased horses significantly induced cytotoxicity in retinal pigment epithelial cells. Moreover, partially digested NETs also resulted in cytotoxic effects. In the presence of lipopolysaccharide (LPS), the main component of the leptospiral surface, both undigested and completely digested NETs were cytotoxic. Correlations between the ERU-scores and Leptospira were also calculated. Detection of leptospiral DNA, and antibody titers of the serovar Grippotyphosa correlated with disease severity. In addition, a correlation between Leptospira and several NET markers was observed in VBF. Altogether, our findings suggest a positive correlation between NET markers with disease severity and involvement of Leptospira in the VBF of ERU-diseased horses, as well as a cytotoxic effect of NETs in eyes.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leyla Yücel
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bernhard Ohnesorge
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
26
|
D’Angeli F, Guadagni F, Genovese C, Nicolosi D, Trovato Salinaro A, Spampinato M, Mannino G, Lo Furno D, Petronio Petronio G, Ronsisvalle S, Sipala F, Falzone L, Calabrese V. Anti-Candidal Activity of the Parasitic Plant Orobanche crenata Forssk. Antibiotics (Basel) 2021; 10:1373. [PMID: 34827311 PMCID: PMC8615231 DOI: 10.3390/antibiotics10111373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans (C. albicans) and Candida glabrata (C. glabrata) are part of the human microbiome. However, they possess numerous virulence factors, which confer them the ability to cause both local and systemic infections. Candidiasis can involve multiple organs, including the eye. In the present study, we investigated the anti-candidal activity and the re-epithelizing effect of Orobanche crenata leaf extract (OCLE). By the microdilution method, we demonstrated an inhibitory effect of OCLE on both C. albicans and C. glabrata growth. By crystal violet and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we showed the ability of OCLE to inhibit the biofilm formation and the viability of yeast cells, respectively. By germ tube and adhesion assays, we proved the capacity of OCLE to affect the morphological transition of C. albicans and the adhesion of both pathogens to human retinal pigment epithelial cells (ARPE-19), respectively. Besides, by MTT and wound healing assay, we evaluated the cytotoxic and re-epithelizing effects of OCLE on ARPE-19. Finally, the Folin-Ciocalteu and the ultra-performance liquid chromatography-tandem mass spectrometry revealed a high content of phenols and the presence of several bioactive molecules in the extract. Our results highlighted new properties of O. crenata, useful in the control of Candida infections.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.D.); (F.G.)
| | - Fiorella Guadagni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.D.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Daria Nicolosi
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.L.F.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.L.F.)
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy;
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, 95125 Catania, Italy; (S.R.); (F.S.)
| | - Federica Sipala
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, 95125 Catania, Italy; (S.R.); (F.S.)
| | - Luca Falzone
- Laboratory of Experimental Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| |
Collapse
|
27
|
Rosado-Ramos R, Godinho-Pereira J, Marques D, Figueira I, Fleming Outeiro T, Menezes R, Nunes dos Santos C. Small Molecule Fisetin Modulates Alpha-Synuclein Aggregation. Molecules 2021; 26:3353. [PMID: 34199487 PMCID: PMC8199635 DOI: 10.3390/molecules26113353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Phenolic compounds are thought to be important to prevent neurodegenerative diseases (ND). Parkinson's Disease (PD) is a neurodegenerative disorder known for its typical motor features, the deposition of α-synuclein (αsyn)-positive inclusions in the brain, and for concomitant cellular pathologies that include oxidative stress and neuroinflammation. Neuroprotective activity of fisetin, a dietary flavonoid, was evaluated against main hallmarks of PD in relevant cellular models. At physiologically relevant concentrations, fisetin protected SH-SY5Y cells against oxidative stress overtaken by tert-butyl hydroperoxide (t-BHP) and against methyl-4-phenylpyridinuim (MPP+)-induced toxicity in dopaminergic neurons, the differentiated Lund human Mesencephalic (LUHMES) cells. In this cellular model, fisetin promotes the increase of the levels of dopamine transporter. Remarkably, fisetin reduced the percentage of cells containing αsyn inclusions as well as their size and subcellular localization in a yeast model of αsyn aggregation. Overall, our data show that fisetin exerts modulatory activities toward common cellular pathologies present in PD; remarkably, it modulates αsyn aggregation, supporting the idea that diets rich in this compound may prove beneficial.
Collapse
Affiliation(s)
- Rita Rosado-Ramos
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; (R.R.-R.); (J.G.-P.); (I.F.); (R.M.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal;
| | - Joana Godinho-Pereira
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; (R.R.-R.); (J.G.-P.); (I.F.); (R.M.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Daniela Marques
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal;
| | - Inês Figueira
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; (R.R.-R.); (J.G.-P.); (I.F.); (R.M.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany;
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Regina Menezes
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; (R.R.-R.); (J.G.-P.); (I.F.); (R.M.)
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal;
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Cláudia Nunes dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; (R.R.-R.); (J.G.-P.); (I.F.); (R.M.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
28
|
Mladenovic Djordjevic A, Loncarevic-Vasiljkovic N, Gonos ES. Dietary Restriction and Oxidative Stress: Friends or Enemies? Antioxid Redox Signal 2021; 34:421-438. [PMID: 32242468 DOI: 10.1089/ars.2019.7959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: It is well established that lifestyle and dietary habits have a tremendous impact on life span, the rate of aging, and the onset/progression of age-related diseases. Specifically, dietary restriction (DR) and other healthy dietary patterns are usually accompanied by physical activity and differ from Western diet that is rich in fat and sugars. Moreover, as the generation of reactive oxidative species is the major causative factor of aging, while DR could modify the level of oxidative stress, it has been proposed that DR increases both survival and longevity. Recent Advances: Despite the documented links between DR, aging, and oxidative stress, many issues remain to be addressed. For instance, the free radical theory of aging is under "re-evaluation," while DR as a golden standard for prolonging life span and ameliorating the effects of aging is also under debate. Critical Issues: This review article pays special attention to highlight the link between DR and oxidative stress in both aging and age-related diseases. We discuss in particular DR's capability to counteract the consequences of oxidative stress and the molecular mechanisms involved in these processes. Future Directions: Although DR is undoubtedly beneficial, several considerations must be taken into account when designing the best dietary intervention. Use of intermittent fasting, daily food reduction, or DR mimetics? Future research should unravel the pros and cons of all these processes. Antioxid. Redox Signal. 34, 421-438.
Collapse
Affiliation(s)
- Aleksandra Mladenovic Djordjevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Loncarevic-Vasiljkovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
29
|
Liu XB, Liu F, Liang YY, Yin G, Zhang HJ, Mi XS, Zhang ZJ, So KF, Li A, Xu Y. Luteolin delays photoreceptor degeneration in a mouse model of retinitis pigmentosa. Neural Regen Res 2021; 16:2109-2120. [PMID: 33642401 PMCID: PMC8343326 DOI: 10.4103/1673-5374.303537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Luteolin is neuroprotective for retinal ganglion cells and retinal pigment epithelial cells after oxidative injury, whereby it can inhibit microglial neurotoxicity. Therefore, luteolin holds the potential to be useful for treatment of retinal diseases. The purpose of this study was to investigate whether luteolin exhibits neuroprotective effects on rod cells in rd10 mice, a slow photoreceptor-degenerative model of retinitis pigmentosa. Luteolin (100 mg/kg) intraperitoneally injected daily from postnatal day 14 (P14) to P25 significantly enhanced the visual performance and retinal light responses of rd10 mice at P25. Moreover, it increased the survival of photoreceptors and improved retinal structure. Mechanistically, luteolin treatment attenuated increases in reactive oxygen species, photoreceptor apoptosis, and reactive gliosis; increased mRNA levels of anti-inflammatory cytokines while lowering that of pro-inflammatory and chemoattractant cytokines; and lowered the ratio of phospho-JNK/JNK. Application of the JNK inhibitor SP600125 exerted a similar protective effect to luteolin, suggesting that luteolin delays photoreceptor degeneration and functional deterioration in rd10 mice through regulation of retinal oxidation and inflammation by inhibiting the JNK pathway. Therefore, luteolin may be useful as a supplementary treatment for retinitis pigmentosa. This study was approved by the Qualified Ethics Committee of Jinan University, China (approval No. IACUC-20181217-02) on December 17, 2018.
Collapse
Affiliation(s)
- Xiao-Bin Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Feng Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Yao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Gang Yin
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Hui-Jun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xue-Song Mi
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zai-Jun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Ying Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
30
|
Cheng YS, Linetsky M, Li H, Ayyash N, Gardella A, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid lactone can induce mitochondrial dysfunction in retinal pigmented epithelial cells. Free Radic Biol Med 2020; 160:719-733. [PMID: 32920040 PMCID: PMC7704664 DOI: 10.1016/j.freeradbiomed.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022]
Abstract
Oxidation of docosahexaenoate (DHA)-containing phospholipids in the cell plasma membrane leads to release of the α,β-unsaturated aldehyde 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone which is capable of inducing retinal pigmented epithelial (RPE) cell dysfunction. Previously, HOHA lactone was shown to induce apoptosis and angiogenesis, and to activate the alternative complement pathway. RPE cells metabolize HOHA lactone through enzymatic conjugation with glutathione (GSH). Competing with this process is the adduction of HOHA lactone to protein lysyl residues generating 2-(ω-carboxyethyl)pyrrole (CEP) derivatives that have pathological relevance to age-related macular degeneration (AMD). We now find that HOHA lactone induces mitochondrial dysfunction. It decreases ATP levels, mitochondrial membrane potentials, enzymatic activities of mitochondrial complexes, depletes GSH and induces oxidative stress in RPE cells. The present study confirmed that pyridoxamine and other primary amines, which have been shown to scavenge γ-ketoaldehydes formed by carbohydrate or lipid peroxidation, are ineffective for scavenging the α,β-unsaturated aldehydes. Histidyl hydrazide (HH), that has both hydrazide and imidazole nucleophile functionalities, is an effective scavenger of HOHA lactone and it protects ARPE-19 cells against HOHA lactone-induced cytotoxicity. The HH α-amino group is not essential for this electrophile trapping activity. The Nα-acyl L-histidyl hydrazide derivatives with 2- to 7-carbon acyl groups with increasing lipophilicities are capable of maintaining the effectiveness of HH in protecting ARPE-19 cells against HOHA lactone toxicity, which potentially has therapeutic utility for treatment of age related eye diseases.
Collapse
Affiliation(s)
- Yu-Shiuan Cheng
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Haoting Li
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Naji Ayyash
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anthony Gardella
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
31
|
Parmar T, Ortega JT, Jastrzebska B. Retinoid analogs and polyphenols as potential therapeutics for age-related macular degeneration. Exp Biol Med (Maywood) 2020; 245:1615-1625. [PMID: 32438835 PMCID: PMC7787542 DOI: 10.1177/1535370220926938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT Age-related macular degeneration (AMD) is a devastating retinal degenerative disease. Epidemiological reports showed an expected increasing prevalence of AMD in the near future. The only one existing FDA-approved pharmacological treatment involves an anti-vascular endothelial growth factor (VEGF) therapy with serious disadvantages. This limitation emphasizes an alarming need to develop new therapeutic approaches to prevent and treat AMD. In this review, we summarize scientific data unraveling the therapeutic potential of the specific retinoid and natural compounds. The experimental results reported by us and other research groups demonstrated that retinoid analogs and compounds with natural product scaffolds could serve as lead compounds for the development of new therapeutic agents with potential to prevent or slow down the pathogenesis of AMD.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T Ortega
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
32
|
Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D, Ferrington D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res 2020; 79:100858. [PMID: 32298788 PMCID: PMC7650008 DOI: 10.1016/j.preteyeres.2020.100858] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland and Tays Eye Centre, Tampere University Hospital, P.O.Box 2000, 33521 Tampere, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Szabolcs Felszeghy
- Department of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA, 90033, USA
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, PA 15224, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA
| | - Deborah Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
33
|
Luteolin Attenuates IL-1 β-Induced THP-1 Adhesion to ARPE-19 Cells via Suppression of NF- κB and MAPK Pathways. Mediators Inflamm 2020; 2020:9421340. [PMID: 33122970 PMCID: PMC7585660 DOI: 10.1155/2020/9421340] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Cytokine-induced endothelial dysfunction leads to inflammation and vascular adhesion molecule production in retinal pigment epithelium (RPE) cells. Inflammation is a critical mediator in retinal degeneration (RD) diseases, including age-related macular degeneration (AMD), and RD progression may be prevented through anti-inflammatory activity in RPE cells. The flavonoid polyphenol luteolin (LU) has anti-inflammatory and antidiabetes activities, but its effects regarding retinal protection remain unknown. Here, we examined the ability of luteolin to alleviate markers of inflammation related to RD in cytokine-primed APPE-19 cells. We found that luteolin decreased the levels of interleukin- (IL-) 6, IL-8, soluble intercellular adhesion molecule-1 (sICAM-1), and monocyte chemoattractant protein-1 (MCP-1) and attenuated adherence of the human monocytic leukemia cell line THP-1 to IL-1β-stimulated ARPE-19 cells. Luteolin also increased anti-inflammatory protein heme oxygenase-1 (HO-1) levels. Interestingly, luteolin induced protein kinase B (AKT) phosphorylation, thus inhibiting nuclear factor- (NF-) κB transfer from cytoplasm into the nucleus and suppressing mitogen-activated protein kinase (MAPK) inflammatory pathways. Furthermore, cotreatment with MAPK inhibitors and luteolin decreased inflammatory cytokine and chemokine levels, and further suppressed THP-1 adhesion. Overall, these results provide evidence that luteolin protects ARPE-19 cells from IL-1β-stimulated increases of IL-6, IL-8, sICAM-1, and MCP-1 production by blocking the activation of MAPK and NF-κB signaling pathways, thus ameliorating the inflammatory response.
Collapse
|
34
|
Ali F, Siddique YH. Bioavailability and Pharmaco-therapeutic Potential of Luteolin in Overcoming Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:352-365. [PMID: 30892166 DOI: 10.2174/1871527318666190319141835] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/30/2018] [Accepted: 03/08/2019] [Indexed: 12/22/2022]
Abstract
Luteolin is a naturally occurring, yellow crystalline flavonoid found in numerous dietary supplements we frequently have in our meals. Studies in the last 2 decades have revealed its therapeutic potential to reduce the Alzheimer's disease (AD) symptoms in various in vitro and in vivo models. The anti-Alzheimer's potential of luteolin is attributed to its ability to suppress Aβ as well as tau aggregation or promote their disaggregation, down-regulate the expression of COX-2, NOS, MMP-9, TNF-α, interleukins and chemokines, reduce oxidative stress by scavenging ROS, modulate the activities of transcription factors CREB, cJun, Nrf-1, NF-κB, p38, p53, AP-1 and β-catenine and inhibiting the activities of various protein kinases. In several systems, luteolin has been described as a potent antioxidant and anti-inflammatory agent. In addition, we have also discussed about the bio-availability of the luteolin in the plasma. After being metabolized luteolin persists in plasma as glucuronides and sulphate-conjugates. Human clinical trials indicated no dose limiting toxicity when administered at a dose of 100 mg/day. Improvements in the formulations and drug delivery systems may further enhance the bioavailability and potency of luteolin. The current review describes in detail the data supporting these studies.
Collapse
Affiliation(s)
- Fahad Ali
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | | |
Collapse
|
35
|
Luteolin Protects Against CIRI, Potentially via Regulation of the SIRT3/AMPK/mTOR Signaling Pathway. Neurochem Res 2020; 45:2499-2515. [PMID: 32809175 DOI: 10.1007/s11064-020-03108-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/28/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022]
Abstract
Mitochondrial abnormalities accelerate the progression of ischemic brain damage. Sirtuin 3 (SIRT3) is mainly found in mitochondria and affects almost all major aspects of mitochondrial function. Luteolin, a flavonoid with diverse biological properties, including antioxidant activity, inhibition of cell apoptosis and regulation of autophagy. It also modulates the activity of AMP activated kinase and/or sirtuin 1 (SIRT 1) by regulating the expression of sirtuins. We investigated the protective effects of luteolin on cerebral ischemia-reperfusion. It was found through experiments that luteolin reduced the infarcted area of MCAO rat model, and based on the experimental results, it was inferred that luteolin affected the AMPK, mTOR and SIRT3 pathways, thereby protecting brain cells. As expected, we found that luteolin can reduce the neurological function score, the degree of cerebral edema, the cerebral infarction volume, alleviate morphological changes in the cortex and hippocampus, increase neuron survival and decrease the number of apoptotic neurons. At the same time, luteolin significantly reduced the number of GFAP and Iba-1 positive glial cells in the hippocampus while enhanced the scavenging of oxygen free radicals and the activity of SOD in mitochondria. Addtionally, it can also enhance antioxidant capacity via the reversal of mitochondrial swelling and the mitochondrial transmembrane potential. Moreover, luteolin can increase SIRT3-targeted expression in mitochondria, decrease the phosphorylation of AMPK, and increase phosphor-mTOR (p-mTOR) levels, which may have occurred specifically through activation of the SIRT3/AMPK/mTOR pathway. We speculate that luteolin reduces the pathological progression of CIRI by increasing SIRT3 expression and enhancing mitochondrial function. Therefore, the results indicate that luteolin can increase the transduction of SIRT3, providing a potential mechanism for neuroprotective effects in patients with cerebral ischemia.
Collapse
|
36
|
Liu Y, Dou Y, Yan L, Yang X, He B, Kong L, Smith W. The role of Rho GTPases' substrates Rac and Cdc42 in osteoclastogenesis and relevant natural medicinal products study. Biosci Rep 2020; 40:BSR20200407. [PMID: 32578854 PMCID: PMC7364480 DOI: 10.1042/bsr20200407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/07/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
Recently, Rho GTPases substrates include Rac (Rac1 and Rac2) and Cdc42 that have been reported to exert multiple cellular functions in osteoclasts, the most prominent of which includes regulating the dynamic actin cytoskeleton rearrangements. In addition, natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Although currently, there are reports about the natural product, which could play a therapeutic role in bone loss diseases (osteoporosis and osteolysis) through the regulation of Rac1/2 and Cdc42 during osteoclasts cytoskeletal structuring. There have been several excellent studies for exploring the therapeutic potentials of various natural products for their role in inhibiting cancer cells migration and function via regulating the Rac1/2 and Cdc42. Herein in this review, we try to focus on recent advancement studies for extensively understanding the role of Rho GTPases substrates Rac1, Rac2 and Cdc42 in osteoclastogenesis, as well as therapeutic potentials of natural medicinal products for their properties on the regulation of Rac1, and/or Rac2 and Cdc42, which is in order to inspire drug discovery in regulating osteoclastogenesis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, Xi'an, China
- Department of Orthopedics, Yan’an University Medical School, Yan’an, China
| | - Yusheng Dou
- Department of Shoulder and Elbow Joint, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, Xi'an, China
| | - Xiaobin Yang
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, Xi'an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, Xi'an, China
| | - Wanli Smith
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, U.S.A
| |
Collapse
|
37
|
Fisetin nanoparticles protect against PM2.5 exposure-induced neuroinflammation by down-regulation of astrocytes activation related NF-κB signaling pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
38
|
Cheng SC, Huang WC, S Pang JH, Wu YH, Cheng CY. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. Int J Mol Sci 2019; 20:ijms20122957. [PMID: 31212975 PMCID: PMC6628093 DOI: 10.3390/ijms20122957] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory effects in various diseases. Our previous study revealed that quercetin could suppress the expression of matrix metalloprotease-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) to achieve anti-inflammatory effects in tumor necrosis factor-α (TNF-α)-stimulated human retinal pigment epithelial (ARPE-19) cells. The present study explored whether quercetin can inhibit the interleukin-1β (IL-1β)-induced production of inflammatory cytokines and chemokines in ARPE-19 cells. Prior to stimulation by IL-1β, ARPE-19 cells were pretreated with quercetin at various concentrations (2.5–20 µM). The results showed that quercetin could dose-dependently decrease the mRNA and protein levels of ICAM-1, IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1). It also attenuated the adherence of the human monocytic leukemia cell line THP-1 to IL-1β-stimulated ARPE-19 cells. We also demonstrated that quercetin inhibited signaling pathways related to the inflammatory process, including phosphorylation of mitogen-activated protein kinases (MAPKs), inhibitor of nuclear factor κ-B kinase (IKK)α/β, c-Jun, cAMP response element-binding protein (CREB), activating transcription factor 2 (ATF2) and nuclear factor (NF)-κB p65, and blocked the translocation of NF-κB p65 into the nucleus. Furthermore, MAPK inhibitors including an extracellular signal-regulated kinase (ERK) 1/2 inhibitor (U0126), a p38 inhibitor (SB202190) and a c-Jun N-terminal kinase (JNK) inhibitor (SP600125) decreased the expression of soluble ICAM-1 (sICAM-1), but not ICAM-1. U0126 and SB202190 could inhibit the expression of IL-6, IL-8 and MCP-1, but SP600125 could not. An NF-κB inhibitor (Bay 11-7082) also reduced the expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1. Taken together, these results provide evidence that quercetin protects ARPE-19 cells from the IL-1β-stimulated increase in ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 production by blocking the activation of MAPK and NF-κB signaling pathways to ameliorate the inflammatory response.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Yi-Hong Wu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan.
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| |
Collapse
|
39
|
Li L, Luo W, Qian Y, Zhu W, Qian J, Li J, Jin Y, Xu X, Liang G. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152774. [PMID: 31009852 DOI: 10.1016/j.phymed.2018.11.034] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Diabetes mellitus is a well-known risk factor for the development of heart failure. Inflammation and oxidative stress play a key role in the development of diabetic cardiomyopathy (DCM), and this nexus represents an attractive target to combat this disease. Naturally occurring flavonoid luteolin exhibits both anti-inflammatory and antioxidant activities in various systems. HYPOTHESIS/PURPOSE In this study, we aimed to investigate potential cardioprotective effects of luteolin in cultured cardiomyocytes and in mice with type 1 diabetes. METHODS C57BL/6 mice were intraperitoneal injection of streptozotocin (STZ) to induce DCM. High glucose (HG) was used to induce H9C2 cells injury in vitro. Cardiac fibrosis, hypertrophy, inflammation and oxidative stress were studied both in vitro and in vivo. RESULTS Our studies show that luteolin significantly reduces HG-induced inflammatory phenotype and oxidative stress in H9C2 cardiomyocytes. We found that the mechanisms involved inhibition of nuclear factor-kappa B (NF-κB) pathway and the activation of antioxidant nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway. Modulation of these pathways resulted in reduced expression of matrix proteins and cellular hypertrophy. Luteolin also prevented cardiac fibrosis, hypertrophy, and dysfunction in STZ-induced diabetic mice. These readouts were also associated with reduced levels of inflammatory cytokines and oxidative stress biomarkers. CONCLUSION Our results indicate that luteolin protects heart tissues in STZ-induced diabetic mice through modulating Nrf2-mediated oxidative stress and NF-κB-mediated inflammatory responses. These findings suggest that luteolin may be a potential therapeutic agent for DCM.
Collapse
Affiliation(s)
- Li Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiyi Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuzhong Xu
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
40
|
Yan H, Ma L, Wang H, Wu S, Huang H, Gu Z, Jiang J, Li Y. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. J Nat Med 2019; 73:487-496. [PMID: 30758716 DOI: 10.1007/s11418-019-01287-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
Abstract
Influenza is an acute transmissible respiratory infectious disease in humans and animals with high morbidity and mortality. It was reported that luteolin, extracted from Chinese herbs, could potently inhibit influenza virus replication in vitro. To assess the effect and explore the fundamental mechanism of luteolin, we infected several cell lines with two subtypes of influenza A virus (IAV), including A/Jiangxi/312/2006 (H3N2) and A/Fort Monmouth/1/1947 (H1N1) and demonstrated that luteolin suppressed the replication of IAV by cytopathic effect reduction method, qRT-PCR, immunofluorescence and Western blot assays. A time-of-addition assay indicated that this compound interfered with viral replication at the early stage of infection. In addition, we found that luteolin suppressed coat protein I complex expression, which was related to influenza virus entry and endocytic pathway. Overall, our findings demonstrated the antiviral effect of luteolin against IAV and its novel antiviral mechanism.
Collapse
Affiliation(s)
- Haiyan Yan
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linlin Ma
- Key Laboratory of Molecular Imaging of Shanghai Education Commission, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hua Huang
- Xinjiang Institute of Materia Medica, Ürümqi, China
| | - Zhengyi Gu
- Xinjiang Institute of Materia Medica, Ürümqi, China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
41
|
Wang Y, Qi W, Huo Y, Song G, Sun H, Guo X, Wang C. Cyanidin-3-glucoside attenuates 4-hydroxynonenal- and visible light-induced retinal damage in vitro and in vivo. Food Funct 2019; 10:2871-2880. [PMID: 31070214 DOI: 10.1039/c9fo00273a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
4-Hydroxynonenal (HNE) is a highly reactive end-product of lipid peroxidation reaction that leads to retinal pigment epithelial (RPE) cell damage. Cyanidin-3-glucoside (C3G), the most abundant anthocyanin in the edible parts of plants, is a nutritional supplement used for preventing retinal damage. However, the protective effect of C3G against HNE-induced RPE cell damage remains to be elucidated. The protective mechanisms of C3G on ARPE-19 cells after HNE exposure were investigated in this study. Results showed that compared with HNE-treated cells, the viability of ARPE-19 cells was significantly (P < 0.05) increased after 1 and 5 μM C3G treatment. C3G exhibited a significant (P < 0.05) inhibitory effect on the expression of senescence-associated β-galactosidase in ARPE-19 cells. VEGF levels in the C3G groups were significantly (P < 0.05) decreased relative to those of the HNE-treated group. C3G also regulated the release of two inflammatory mediators, namely monocyte chemoattractant protein 1 and interleukine-8, in ARPE-19 cells after HNE treatment. Furthermore, C3G attenuated retinal cell apoptosis in pigmented rabbits induced by visible light. Therefore, our data showed that C3G has efficient protective effects on HNE-induced apoptosis, angiogenesis, and dysregulated cytokine production in ARPE-19 cells.
Collapse
Affiliation(s)
- Yong Wang
- Academy of State Administration of Grain, Beijing 100037, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhang H, Zheng W, Feng X, Yang F, Qin H, Wu S, Hou DX, Chen J. Nrf2⁻ARE Signaling Acts as Master Pathway for the Cellular Antioxidant Activity of Fisetin. Molecules 2019; 24:molecules24040708. [PMID: 30781396 PMCID: PMC6413105 DOI: 10.3390/molecules24040708] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Fisetin, a dietary flavonoid, is reported to have cellular antioxidant activity with an unclear mechanism. In this study, we investigated the effect of fisetin on the nuclear factor, erythroid 2-like 2 (Nrf2) signaling pathway in HepG2 cells to explore the cellular antioxidant mechanism. Fisetin upregulated the mRNA expression of heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase-1 (NQO1), and induced the protein of HO-1 but had no significant effect on the protein of GCLC, GCLM and NQO1. Moreover, nuclear accumulation of Nrf2 was clearly observed by immunofluorescence analysis and western blotting after fisetin treatment, and an enhanced luciferase activity of antioxidant response element (ARE)-regulated transactivation was obtained by dual-luciferase reporter gene assays. In addition, fisetin upregulated the protein level of Nrf2 and downregulated the protein level of Kelch-like ECH-associated protein 1 (Keap1). However, fisetin had no significant effect on Nrf2 mRNA expression. When protein synthesis was inhibited with cycloheximide (CHX), fisetin prolonged the half-life of Nrf2 from 15 min to 45 min. When blocking Nrf2 degradation with proteasome inhibitor MG132, ubiquitinated proteins were enhanced, and fisetin reduced ubiquitination of Nrf2. Taken together, fisetin translocated Nrf2 into the nucleus and upregulated the expression of downstream HO-1 gene by inhibiting the degradation of Nrf2 at the post-transcriptional level. These data provide the molecular mechanism to understand the cellular antioxidant activity of fisetin.
Collapse
Affiliation(s)
- Huihui Zhang
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Wan Zheng
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Shusong Wu
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - De-Xing Hou
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| | - Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
43
|
Cui FQ, Wang YF, Gao YB, Meng Y, Cai Z, Shen C, Liu ZQ, Jiang XC, Zhao WJ. Effects of BSF on Podocyte Apoptosis via Regulating the ROS-Mediated PI3K/AKT Pathway in DN. J Diabetes Res 2019; 2019:9512406. [PMID: 31886291 PMCID: PMC6925942 DOI: 10.1155/2019/9512406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The ROS-mediated PI3K/AKT pathway plays a key role in podocyte apoptosis and DN progression. Our previous study demonstrated that Baoshenfang (BSF) can decrease proteinuria and attenuate podocyte injury. However, the effects of BSF on podocyte apoptosis induced by the ROS-mediated PI3K/AKT pathway remain unclear. Herein, in vivo and in vitro studies have been performed. In our in vivo study, BSF significantly decreased 24-h urinary protein, serum creatinine, and blood urea nitrogen levels in DN mice. Meanwhile, BSF significantly inhibited oxidative stress and podocyte apoptosis in our in vivo and in vitro studies. Moreover, BSF significantly decreased the inhibition of the PI3K/AKT pathway induced by HG in DN. More importantly, the effects of BSF on podocyte apoptosis were reversed by PI3K siRNA transfection. In conclusion, BSF can decrease proteinuria and podocyte apoptosis in DN, in part through regulating the ROS-mediated PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fang-qiang Cui
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yue-Fen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yan-bin Gao
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhen Cai
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhi-qiang Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Xin-can Jiang
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Wen-jing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| |
Collapse
|
44
|
Cui FQ, Tang L, Gao YB, Wang YF, Meng Y, Shen C, Shen ZL, Liu ZQ, Zhao WJ, Liu WJ. Effect of Baoshenfang Formula on Podocyte Injury via Inhibiting the NOX-4/ROS/p38 Pathway in Diabetic Nephropathy. J Diabetes Res 2019; 2019:2981705. [PMID: 31179339 PMCID: PMC6501129 DOI: 10.1155/2019/2981705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/29/2018] [Accepted: 01/15/2019] [Indexed: 01/04/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney-related complication of type 1 and type 2 diabetes. The Chinese herbal formula Baoshenfang (BSF) shows therapeutic potential in attenuating oxidative stress and apoptosis in podocytes in DN. This study evaluated the effects of BSF on podocyte injury in vivo and in vitro and explored the possible involvement of the nicotinamide adenine dinucleotide phosphate-oxidase-4/reactive oxygen species- (NOX-4/ROS-) activated p38 pathway. In the identified compounds by mass spectrometry, some active constituents of BSF were reported to show antioxidative activity. In addition, we found that BSF significantly decreased 24-hour urinary protein, serum creatinine, and blood urea nitrogen in DN patients. BSF treatment increased the nephrin expression, alleviated oxidative cellular damage, and inhibited Bcl-2 family-associated podocyte apoptosis in high-glucose cultured podocytes and/or in diabetic rats. More importantly, BSF also decreased phospho-p38, while high glucose-mediated apoptosis was blocked by p38 mitogen-activated protein kinase inhibitor in cultured podocytes, indicating that the antiapoptotic effect of BSF is p38 pathway-dependent. High glucose-induced upexpression of NOX-4 was normalized by BSF, and NOX-4 siRNAs inhibited the phosphorylation of p38, suggesting that the activated p38 pathway is at least partially mediated by NOX-4. In conclusion, BSF can decrease proteinuria and protect podocytes from injury in DN, in part through inhibiting the NOX-4/ROS/p38 pathway.
Collapse
Affiliation(s)
- Fang-qiang Cui
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Long Tang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yan-bin Gao
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yue-fen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zi-long Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhi-qiang Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Wen-jing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
45
|
Guo G, Zhang W, Dang M, Yan M, Chen Z. Fisetin induces apoptosis in breast cancer MDA‐MB‐453 cells through degradation of HER2/neu and via the PI3K/Akt pathway. J Biochem Mol Toxicol 2018; 33:e22268. [DOI: 10.1002/jbt.22268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Gang Guo
- Scientific Research Department, Innoscience Research Selangor Malaysia
| | - Wenjie Zhang
- Health Care Department for WomenNorthwest Women's and Children's HospitalXi'an China
| | - Minyan Dang
- Scientific Research Department, Innoscience Research Selangor Malaysia
| | - Mingzhu Yan
- Department of NeurologyXijing Hospital, Fourth Military Medical University (FMMU)Xi'an China
| | - Zheng Chen
- Department of GalactophoreShandong Provincial Western HospitalJinan China
| |
Collapse
|
46
|
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:342-358. [PMID: 29801717 DOI: 10.1016/j.jep.2018.05.019] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. AIM OF THE REVIEW This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. MATERIALS AND METHODS We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. RESULTS Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. CONCLUSION In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
47
|
Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct 2018. [PMID: 29541713 DOI: 10.1039/c7fo01898c] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A growing body of evidence indicates that inflammation is associated with tumorigenesis, metastasis and chemotherapeutic resistance in patients with colorectal cancer (CRC). Natural flavonoids are promising agents for inflammation-related tumor progression in patients with CRC. This study aimed to assess the efficacy of flavonoid fisetin supplementation on the inflammatory status and matrix metalloproteinase (MMP) levels in these patients. In this double-blind, randomized placebo-controlled clinical trial, 37 CRC patients undergoing chemotherapy were assigned to receive either 100 mg fisetin (n = 18) or placebo (n = 19) for seven consecutive weeks. The supplementation began one week before chemotherapy and continued until the end of the second chemotherapy cycle. Levels of interleukin (IL)-8, IL-10, high-sensitivity C-reactive protein (hs-CRP), MMP-7, and MMP-9 were measured in plasma using ELISA, before and after the intervention. The trial was registered at http://www.irct.ir (code: IRCT2015110511288N9). The participants were 55.59 ± 15.46 years old with 62.16% being male. After the intervention, the plasma levels of IL-8 and hs-CRP reduced significantly in the fisetin group (p < 0.04 and p < 0.01, respectively). Additionally, fisetin supplementation suppressed the values of MMP-7 levels (p < 0.02). However, significant changes were observed only in IL-8 concentrations in the fisetin group when compared with the placebo group (p < 0.03). The changes in the levels of other metabolic factors were not statistically significant. According to the results, fisetin could improve the inflammatory status in CRC patients, suggesting it as a novel complementary antitumor agent for these patients and warranting further studies.
Collapse
|
48
|
Mehta P, Pawar A, Mahadik K, Bothiraja C. Emerging novel drug delivery strategies for bioactive flavonol fisetin in biomedicine. Biomed Pharmacother 2018; 106:1282-1291. [DOI: 10.1016/j.biopha.2018.07.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 02/09/2023] Open
|
49
|
Hu X, Liang Y, Zhao B, Wang Y. Thymoquinone protects human retinal pigment epithelial cells against hydrogen peroxide induced oxidative stress and apoptosis. J Cell Biochem 2018; 120:4514-4522. [PMID: 30269355 DOI: 10.1002/jcb.27739] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/30/2018] [Indexed: 01/22/2023]
Abstract
Oxidative stress in retinal pigment epithelium (RPE) cells may contribute to the progression of age-related macular degeneration. Thymoquinone (TQ), an active component derived from Nigella sativa, possesses antioxidative effect. However, the role of TQ in RPE cells under oxidative stress condition remains unclear. The present study aimed to examine the protective effect of TQ against hydrogen peroxide (H2 O2 )-induced oxidative stress in human RPE cells. Our results showed that TQ improved the cell viability and apoptosis in H2 O2 -induced ARPE cells. We also found that the levels of reactive oxygen species and malondialdehyde induced by H2 O2 were reduced after the pretreatment of TQ. In addition, the inhibitory effect of H2 O2 on the glutathione (GSH) level and superoxide dismutase activity was markedly attenuated by TQ pretreatment. Moreover, TQ enhanced the activation of Nrf2/heme oxygenase 1 (HO-1) signaling pathway in H2 O2 -induced ARPE cells. Knockdown of Nrf2 abolished the protective effect of TQ on H2 O2 -induced oxidative damage. These results suggested that TQ protected ARPE cells from H2 O2 -induced oxidative stress and apoptosis via the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xin Hu
- Department of Ophthalmology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yuanyuan Liang
- Department of Ophthalmology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Bo Zhao
- Department of Ophthalmology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yongyi Wang
- Department of Ophthalmology, Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
50
|
Nunes C, Almeida L, Barbosa RM, Laranjinha J. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food Funct 2018; 8:387-396. [PMID: 28067377 DOI: 10.1039/c6fo01529h] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Current treatment strategies for inflammatory bowel diseases (IBDs) are associated with a lower efficacy and with several side effects that strongly affect the quality of life of IBD patients. Consequently, the development of new therapies, combining efficacy and safety is an important goal in the field of intestinal inflammation. In this context, evidence supports that polyphenols can be promising candidates due to their ability to modulate intracellular inflammatory signalling cascades. Luteolin, a naturally occurring flavonoid, exhibits anti-inflammatory properties in several models of inflammation. However, its action against intestinal inflammation has been poorly explored. Therefore, there is a lack of scientific knowledge about the potential impact of luteolin in the intestinal inflammation, particularly regarding the underlying molecular mechanisms by which luteolin can exert its anti-inflammatory action. We assessed the potential anti-inflammatory effect of luteolin in a cellular model of intestinal inflammation using cytokine-stimulated HT-29 colon epithelial cells, and the underlying key molecular mechanisms were identified. Luteolin significantly inhibited interleukine-8 (IL-8) production, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression and nitric oxide (˙NO) overproduction induced by cytokines, indicating that luteolin negatively modulates key inflammatory signalling cascades underlying intestinal inflammation. Mechanistically, the inhibition of the JAK/STAT pathway was identified as a critical mechanism by which luteolin exerts its intestinal anti-inflammatory action. This study uncovers novel molecular mechanisms by which luteolin may act against intestinal inflammation, which might support the use of luteolin as a future therapeutic strategy in IBD.
Collapse
Affiliation(s)
- Carla Nunes
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Leonor Almeida
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - João Laranjinha
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|