1
|
Zhang L, Zhao C, Dai W, Tong H, Yang W, Huang Z, Tang C, Gao J. Disruption of cholangiocyte-B cell crosstalk by blocking the CXCL12-CXCR4 axis alleviates liver fibrosis. Cell Mol Life Sci 2023; 80:379. [PMID: 38010435 PMCID: PMC11072584 DOI: 10.1007/s00018-023-05032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
B cells can promote liver fibrosis, but the mechanism of B cell infiltration and therapy against culprit B cells are lacking. We postulated that the disruption of cholangiocyte-B-cell crosstalk could attenuate liver fibrosis by blocking the CXCL12-CXCR4 axis via a cyclooxygenase-2-independent effect of celecoxib. In wild-type mice subjected to thioacetamide, celecoxib ameliorated lymphocytic infiltration and liver fibrosis. By single-cell RNA sequencing and flow cytometry, CXCR4 was established as a marker for profibrotic and liver-homing phenotype of B cells. Celecoxib reduced liver-homing B cells without suppressing CXCR4. Cholangiocytes expressed CXCL12, attracting B cells to fibrotic areas in human and mouse. The proliferation and CXCL12 expression of cholangiocytes were suppressed by celecoxib. In CXCL12-deficient mice, liver fibrosis was also attenuated with less B-cell infiltration. In the intrahepatic biliary epithelial cell line HIBEpiC, bulk RNA sequencing indicated that both celecoxib and 2,5-dimethyl-celecoxib (an analog of celecoxib that does not show a COX-2-dependent effect) regulated the TGF-β signaling pathway and cell cycle. Moreover, celecoxib and 2,5-dimethyl-celecoxib decreased the proliferation, and expression of collagen I and CXCL12 in HIBEpiC cells stimulated by TGF-β or EGF. Taken together, liver fibrosis can be ameliorated by disrupting cholangiocyte-B cell crosstalk by blocking the CXCL12-CXCR4 axis with a COX-2-independent effect of celecoxib.
Collapse
Affiliation(s)
- Linhao Zhang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, 4th Keyuan Road, Chengdu, 610041, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, 4th Keyuan Road, Chengdu, 610041, China
| | - Wenting Dai
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, 4th Keyuan Road, Chengdu, 610041, China
| | - Huan Tong
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjuan Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyin Huang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengwei Tang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, 4th Keyuan Road, Chengdu, 610041, China.
| | - Jinhang Gao
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, 4th Keyuan Road, Chengdu, 610041, China.
| |
Collapse
|
2
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
3
|
Yang X, Zong C, Feng C, Zhang C, Smirnov A, Sun G, Shao C, Zhang L, Hou X, Liu W, Meng Y, Zhang L, Shao C, Wei L, Melino G, Shi Y. Hippo Pathway Activation in Aged Mesenchymal Stem Cells Contributes to the Dysregulation of Hepatic Inflammation in Aged Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300424. [PMID: 37544916 PMCID: PMC10520691 DOI: 10.1002/advs.202300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Aging is always accompanied by chronic diseases which probably attribute to long-term chronic inflammation in the aging body. Whereas, the mechanism of chronic inflammation in aging body is still obscure. Mesenchymal stem cells (MSCs) are capable of local chemotaxis to sites of inflammation and play a powerful role in immune regulation. Whether degeneration of MSCs in the aging body is associated with unbalanced inflammation is still not clear. In this study, immunosuppressive properties of aged MSCs are found to be repressed. The impaired immunosuppressive function of aged MSCs is associated with lower expression of the Hippo effector Yes-associated protein 1 (YAP1) and its target gene signal transducer and activator of transcription 1 (STAT1). YAP1 regulates the transcription of STAT1 through binding with its promoter. In conclusion, a novel YAP1/STAT1 axis maintaining immunosuppressive function of MSCs is revealed and impairment of this signal pathway in aged MSCs probably resulted in higher inflammation in aged mice liver.
Collapse
Affiliation(s)
- Xue Yang
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Artem Smirnov
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Gangqi Sun
- Department of Clinical PharmacologyThe Second Hospital of Anhui Medical UniversityHefei230601China
| | - Changchun Shao
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Luyao Zhang
- Department of Clinical PharmacologyThe Second Hospital of Anhui Medical UniversityHefei230601China
| | - Xiaojuan Hou
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Yan Meng
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Liying Zhang
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Gerry Melino
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| |
Collapse
|
4
|
Zong C, Meng Y, Ye F, Yang X, Li R, Jiang J, Zhao Q, Gao L, Han Z, Wei L. AIF1 + CSF1R + MSCs, induced by TNF-α, act to generate an inflammatory microenvironment and promote hepatocarcinogenesis. Hepatology 2023; 78:434-451. [PMID: 35989499 PMCID: PMC10344441 DOI: 10.1002/hep.32738] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Increasing evidence suggests that mesenchymal stem cells (MSCs) home to injured local tissues and the tumor microenvironment in the liver. Chronic inflammation is regarded as the major trait of primary liver cancer. However, the characteristics of endogenous MSCs in the inflammatory environment and their role in the occurrence of liver cancer remain obscure. APPROACH AND RESULTS Using single-cell RNA sequencing, we identified a distinct inflammation-associated subset of MSCs, namely AIF1 + CSF1R + MSCs, which existed in the microenvironment before the occurrence of liver cancer. Furthermore, we found that this MSC subgroup is likely to be induced by TNF-α stimulation through the TNFR1/SIRT1 (sirtuin 1) pathway. In a rat primary liver cancer model, we showed that MSCs with high SIRT1 expression (Ad-Sirt1-MSCs) promoted macrophage recruitment and synergistically facilitated liver cancer occurrence by secreting C-C motif chemokine ligand (CCL) 5. Interestingly, depletion of macrophages or knockdown of CCL5 expression in Ad-Sirt1-MSCs attenuated the promotive effect of Ad-Sirt1-MSCs on liver inflammation and hepatocarcinogenesis (HCG). Finally, we demonstrated that SIRT1 up-regulated CCL5 expression through activation of the AKT/HIF1α signaling axis in MSCs. CONCLUSIONS Together, our results show that MSCs, which are mobilized to the injured site, can be educated by macrophages. In turn, the educated MSCs are involved in generating a chronic inflammatory microenvironment and promoting HCG.
Collapse
Affiliation(s)
- Chen Zong
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
5
|
Waggie KS, Corulli LR, Cecil D, Rodmaker ER, Walsh C, Disis ML. Unexpected Liver and Kidney Pathology in C57BL/6J Mice Fed a High-fat Diet and Given Azoxymethane to Induce Colon Cancer. Comp Med 2022; 72:330-335. [PMID: 36123012 PMCID: PMC9827600 DOI: 10.30802/aalas-cm-22-000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Multiple animal models have been developed to investigate the pathogenesis of colorectal cancer and to evaluate potential treatments. One model system uses azoxymethane, a metabolite of cycasin, alone and in conjunction with dextran sodium sulfate to induce colon cancer in rodents. Azoxymethane is metabolized by hepatic P450 enzymes and can also be eliminated through the kidneys. In this study, C57BL/6J mice were fed either standard or high-fat diet and then all mice received azoxymethane at 10 mg/kg body weight twice a week for 6 wk. Shortly after the end of treatment, high mortality occurred in mice in the high-fat diet group. Postmortem examination revealed hepatic and renal pathology in mice on both diets. Histologic changes in liver included hepatocytomegaly with nuclear pleomorphism and bile duct hyperplasia accompanied by mixed inflammatory-cell infiltrates. Changes in the kidneys ranged from basophilia of tubular epithelium to tubular atrophy. The results indicate that further optimization of this model is needed when feeding a high-fat diet and giving multiple azoxymethane doses to induce colon cancer in C57BL/6J mice.
Collapse
Affiliation(s)
| | - Lauren R Corulli
- Cancer Vaccine Institute, School of Medicine, University of Washington, Seattle, Washington
| | - Denise Cecil
- Cancer Vaccine Institute, School of Medicine, University of Washington, Seattle, Washington
| | - Erin R Rodmaker
- Cancer Vaccine Institute, School of Medicine, University of Washington, Seattle, Washington
| | - Carissa Walsh
- Cancer Vaccine Institute, School of Medicine, University of Washington, Seattle, Washington
| | - Mary L Disis
- Cancer Vaccine Institute, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Najar-Asl M, Bahadoran H, Asadi MH, Saheli M, Asghari MH, Sodeifi N, Ashtiani MK, Vosough M, Baharvand H, Piryaei A. Transplantation of SDF-1α-loaded liver extracellular matrix repopulated with autologous cells attenuated liver fibrosis in a rat model. EXCLI JOURNAL 2022; 21:704-721. [PMID: 35721572 PMCID: PMC9203988 DOI: 10.17179/excli2022-4761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Abstract
Cell-based therapy and tissue engineering are promising substitutes for liver transplantation to cure end-stage liver disorders. However, the limited sources for healthy and functional cells and poor engraftment rate are main challenges to the cell-based therapy approach. On the other hand, feasibility of production and size of bioengineered tissues are primary bottlenecks in tissue engineering. Here, we induce regeneration in a rat fibrotic liver model by transplanting a natural bioengineered scaffold with a native microenvironment repopulated with autologous stem/progenitor cells. In the main experimental group, a 1 mm3 stromal derived factor-1α (SDF-1α; S) loaded scaffold from decellularized liver extracellular matrix (LEM) was transplanted (Tx) into a fibrotic liver and the endogenous stem/progenitor cells were mobilized via granulocyte colony stimulating factor (G-CSF; G) therapy. Four weeks after transplantation, changes in liver fibrosis and necrosis, efficacy of cell engraftment and differentiation, vasculogenesis, and liver function recovery were assessed in this (LEM-TxSG) group and compared to the other groups. We found significant reduction in liver fibrosis stage in the LEM-TxSG, LEM-TxS and LEM-TxG groups compared to the control (fibrotic) group. Liver necrosis grade, and alanine transaminase (ALT) and aspartate transaminase (AST) levels dramatically reduced in all experimental groups compared to the control group. However, the number of engrafted cells into the transplanted scaffold and ratio of albumin (Alb) positive cells per total incorporated cells were considerably higher in the LEM-TxSG group compared to the LEM-Tx, LEM-TxS and LEM-TxG groups. Serum Alb levels increased in the LEM-Tx, LEM-TxS, and LEM-TxG groups, and was highest in the LEM-TxSG group, which was significantly more than the fibrotic group. Small vessel formation in the LEM-TxSG group was significantly higher than the LEM-Tx and LEM-TxS groups. Totally, these findings support application of the in vivo tissue engineering approach as a possible novel therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Mostafa Najar-Asl
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran,Department of Anatomical Sciences, School of Medical Sciences, Baqiyatallah University, Tehran, Iran
| | - Hossein Bahadoran
- Department of Anatomical Sciences, School of Medical Sciences, Baqiyatallah University, Tehran, Iran,*To whom correspondence should be addressed: Hossein Bahadoran, Department of Anatomical Sciences, School of Medical Sciences, Baqiyatallah University, Tehran, Iran; Tel: +98 9124276200, E-mail:
| | - Mohammad-Hossein Asadi
- Department of Anatomical Sciences, School of Medical Sciences, Baqiyatallah University, Tehran, Iran
| | - Mona Saheli
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Hassan Asghari
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Tehran, Iran
| | - Niloofar Sodeifi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Abbas Piryaei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Deng Y, Xia B, Chen Z, Wang F, Lv Y, Chen G. Stem Cell-based Therapy Strategy for Hepatic Fibrosis by Targeting Intrahepatic Cells. Stem Cell Rev Rep 2021; 18:77-93. [PMID: 34668120 DOI: 10.1007/s12015-021-10286-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
The whole liver transplantation is the most effective treatment for end-stage fibrosis. However, the lack of available donors, immune rejection and total cost of surgery remain as the key challenges in advancing liver fibrosis therapeutics. Due to the multi-differentiation and low immunogenicity of stem cells, treatment of liver fibrosis with stem cells has been considered as a valuable new therapeutic modality. The pathological progression of liver fibrosis is closely related to the changes in the activities of intrahepatic cells. Damaged hepatocytes, activated Kupffer cells and other inflammatory cells lead to hepatic stellate cells (HSCs) activation, further promoting apoptosis of damaged hepatocytes, while stem cells can work on fibrosis-related intrahepatic cells through relevant transduction pathways. Herein, this article elucidates the phenomena and the mechanisms of the crosstalk between various types of stem cells and intrahepatic cells including HSCs and hepatocytes in the treatment of liver fibrosis. Then, the important influences of chemical compositions, mechanical properties and blood flow on liver fibrosis models with stem cell treatment are emphasized. Clinical trials on stem cell-based therapy for liver fibrosis are also briefly summarized. Finally, continuing challenges and future directions of stem cell-based therapy for hepatic fibrosis are discussed. In short, stem cells play an important advantage and have a great potential in treating liver fibrosis by interacting with intrahepatic cells. Clarifying how stem cells interact with intrahepatic cells to change the progression of liver fibrosis is of great significance for a deeper understanding of liver fibrosis mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Yaxin Deng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, People's Republic of China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.,State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China. .,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| |
Collapse
|
8
|
Wang S, Gao S, Li Y, Qian X, Luan J, Lv X. Emerging Importance of Chemokine Receptor CXCR4 and Its Ligand in Liver Disease. Front Cell Dev Biol 2021; 9:716842. [PMID: 34386499 PMCID: PMC8353181 DOI: 10.3389/fcell.2021.716842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily, which together with chemokine ligands form chemokine networks to regulate various cellular functions, immune and physiological processes. These receptors are closely related to cell movement and thus play a vital role in several physiological and pathological processes that require regulation of cell migration. CXCR4, one of the most intensively studied chemokine receptors, is involved in many functions in addition to immune cells recruitment and plays a pivotal role in the pathogenesis of liver disease. Aberrant CXCR4 expression pattern is related to the migration and movement of liver specific cells in liver disease through its cross-talk with a variety of significant cell signaling pathways. An in-depth understanding of CXCR4-mediated signaling pathway and its role in liver disease is critical to identifying potential therapeutic strategies. Current therapeutic strategies for liver disease mainly focus on regulating the key functions of specific cells in the liver, in which the CXCR4 pathway plays a crucial role. Multiple challenges remain to be overcome in order to more effectively target CXCR4 pathway and identify novel combination therapies with existing strategies. This review emphasizes the role of CXCR4 and its important cell signaling pathways in the pathogenesis of liver disease and summarizes the targeted therapeutic studies conducted to date.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Reichert D, Adolph L, Köhler JP, Buschmann T, Luedde T, Häussinger D, Kordes C. Improved Recovery from Liver Fibrosis by Crenolanib. Cells 2021; 10:804. [PMID: 33916518 PMCID: PMC8067177 DOI: 10.3390/cells10040804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic liver diseases are associated with excessive deposition of extracellular matrix proteins. This so-called fibrosis can progress to cirrhosis and impair vital functions of the liver. We examined whether the receptor tyrosine kinase (RTK) class III inhibitor Crenolanib affects the behavior of hepatic stellate cells (HSC) involved in fibrogenesis. Rats were treated with thioacetamide (TAA) for 18 weeks to trigger fibrosis. After TAA treatment, the animals received Crenolanib for two weeks, which significantly improved recovery from liver fibrosis. Because Crenolanib predominantly inhibits the RTK platelet-derived growth factor receptor-β, impaired HSC proliferation might be responsible for this beneficial effect. Interestingly, blocking of RTK signaling by Crenolanib not only hindered HSC proliferation but also triggered their specification into hepatic endoderm. Endodermal specification was mediated by p38 mitogen-activated kinase (p38 MAPK) and c-Jun-activated kinase (JNK) signaling; however, this process remained incomplete, and the HSC accumulated lipids. JNK activation was induced by stress response-associated inositol-requiring enzyme-1α (IRE1α) in response to Crenolanib treatment, whereas β-catenin-dependent WNT signaling was able to counteract this process. In conclusion, the Crenolanib-mediated inhibition of RTK impeded HSC proliferation and triggered stress responses, initiating developmental processes in HSC that might have contributed to improved recovery from liver fibrosis in TAA-treated rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (D.R.); (L.A.); (J.P.K.); (T.B.); (T.L.); (D.H.)
| |
Collapse
|
10
|
Ma H, Liu X, Zhang M, Niu J. Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms. Mol Biol Rep 2021; 48:2803-2815. [PMID: 33730288 DOI: 10.1007/s11033-021-06269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases are attributed to liver injury. Development of fibrosis from chronic liver diseases is a dynamic process that involves multiple molecular and cellular processes. As the first to be impacted by injury, liver sinusoidal endothelial cells (LSECs) are involved in the pathogenesis of liver diseases caused by a variety of etiologies. Moreover, capillarization of LSECs has been recognized as an important event in the development of chronic liver diseases and fibrosis. Studies have reported that various cytokines (such as vascular endothelial growth factor, transforming growth factor-β), and pathways (such as hedgehog, and Notch), as well as epigenetic and metabolic factors are involved in the development of LSEC-mediated liver fibrosis. This review describes the complexity and plasticity of LSECs in fibrotic liver diseases from several perspectives, including the cross-talk between LSECs and other intra-hepatic cells. Moreover, it summarizes the mechanisms of several kinds of LSECs-targeting anti-fibrosis chemicals, and provides a theoretical basis for future studies.
Collapse
Affiliation(s)
- Heming Ma
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Xu Liu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Mingyuan Zhang
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
11
|
Aithal AP, Bairy LK, Seetharam RN, Kumar N. Hepatoprotective effect of bone marrow-derived mesenchymal stromal cells in CCl 4-induced liver cirrhosis. 3 Biotech 2021; 11:107. [PMID: 33564610 PMCID: PMC7847925 DOI: 10.1007/s13205-021-02640-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent stem cells which are ideal candidates for use in regenerative medicine. The objectives of this study were to evaluate the hepatoprotective effect of BM-MSC and its combination treatment with silymarin in carbon tetrachloride (CCl4)-induced liver cirrhosis animal model and to investigate whether tail vein or portal vein infusion was the ideal route for BM-MSC transplantation. 36 female Wistar rats were randomly divided into six groups (n = 6): Group 1 (normal control), Group 2 (received only CCl4, disease model), Group 3 (CCl4 + BM-MSCs through tail vein), Group 4 (CCl4 + BM-MSCs through portal vein), Group 5 (CCl4 + silymarin), Group 6 (CCl4 + BM-MSCs + silymarin). On the 21st day after treatment, blood samples were collected for biochemical estimations. After the experiment, the rats were sacrificed. Liver was dissected out and processed for histopathology and scanning electron microscopy studies. Liver enzyme and marker analysis, histopathological studies indicated that the combination of BM-MSCs and silymarin was effective in treating liver cirrhosis. Transplanted BM-MSCs in combination with silymarin ameliorated the liver tissue damage through their immunoregulatory activities. Among the two routes, the intravenous administration of cells through the tail vein was found to be more effective and safe.
Collapse
Affiliation(s)
- Ashwini P. Aithal
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, India
| | - Laxminarayana K. Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | | | - Naveen Kumar
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
12
|
Girousse A, Mathieu M, Sastourné-Arrey Q, Monferran S, Casteilla L, Sengenès C. Endogenous Mobilization of Mesenchymal Stromal Cells: A Pathway for Interorgan Communication? Front Cell Dev Biol 2021; 8:598520. [PMID: 33490065 PMCID: PMC7820193 DOI: 10.3389/fcell.2020.598520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
To coordinate specialized organs, inter-tissue communication appeared during evolution. Consequently, individual organs communicate their states via a vast interorgan communication network (ICN) made up of peptides, proteins, and metabolites that act between organs to coordinate cellular processes under homeostasis and stress. However, the nature of the interorgan signaling could be even more complex and involve mobilization mechanisms of unconventional cells that are still poorly described. Mesenchymal stem/stromal cells (MSCs) virtually reside in all tissues, though the biggest reservoir discovered so far is adipose tissue where they are named adipose stromal cells (ASCs). MSCs are thought to participate in tissue maintenance and repair since the administration of exogenous MSCs is well known to exert beneficial effects under several pathological conditions. However, the role of endogenous MSCs is barely understood. Though largely debated, the presence of circulating endogenous MSCs has been reported in multiple pathophysiological conditions, but the significance of such cell circulation is not known and therapeutically untapped. In this review, we discuss current knowledge on the circulation of native MSCs, and we highlight recent findings describing MSCs as putative key components of the ICN.
Collapse
Affiliation(s)
- Amandine Girousse
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Maxime Mathieu
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Quentin Sastourné-Arrey
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sylvie Monferran
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Coralie Sengenès
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
13
|
Rostami T, Monzavi SM, Poustchi H, Khoshdel AR, Behfar M, Hamidieh AA. Analysis of determinant factors of liver fibrosis progression in ex-thalassemic patients. Int J Hematol 2021; 113:145-157. [PMID: 33033952 DOI: 10.1007/s12185-020-02998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) potentially renders thalassemia patients disease-free with presumably cessation of associated complications. This study analyzes the liver fibrosis status and the determinants of its progression in ex-thalassemic patients. The liver fibrosis status of 108 pediatric transfusion-dependent β-thalassemia major patients was evaluated before and one year after allo-HSCT using transient elastography (TE). All patients achieved normal hematopoiesis. In univariate analyses, not in all, but in patients developing significant post-HSCT iron overload or hepatic graft-versus-host disease (GvHD), as well as recipients of bone marrow stem cells (BMSC), significant TE increment occurred. In multivariable analyses, through a model with large effect size (Adj.R2 = 26%, F(3,104) = 13.53, P < 0.001), post-HSCT serum ferritin and hepatic GvHD were ascertained as independent determinants of significant TE increase, and the effect of stem cell graft source approached the level of significance. Excluding the patients with intermediate/high Lucarelli risk classes, the TE increase was significantly greater only in BMSC recipients (P = 0.033). Although the risk impact of allograft source on liver fibrosis progression requires further evaluation; hepatic status of ex-thalassemic patients can be preserved after HSCT, if hepatic GvHD is controlled and adequate post-transplantation iron depletion is ensured.
Collapse
Affiliation(s)
- Tahereh Rostami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mostafa Monzavi
- Department of Pediatric Stem Cell Transplantation, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Khoshdel
- Modern Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Department of Pediatric Stem Cell Transplantation, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Department of Pediatric Stem Cell Transplantation, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Al-Dhamin Z, Liu LD, Li DD, Zhang SY, Dong SM, Nan YM. Therapeutic efficiency of bone marrow-derived mesenchymal stem cells for liver fibrosis: A systematic review of in vivo studies. World J Gastroenterol 2020; 26:7444-7469. [PMID: 33384547 PMCID: PMC7754546 DOI: 10.3748/wjg.v26.i47.7444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Although multiple drugs are accessible for recovering liver function in patients, none are considered efficient. Liver transplantation is the mainstay therapy for end-stage liver fibrosis. However, the worldwide shortage of healthy liver donors, organ rejection, complex surgery, and high costs are prompting researchers to develop novel approaches to deal with the overwhelming liver fibrosis cases. Mesenchymal stem cell (MSC) therapy is an emerging alternative method for treating patients with liver fibrosis. However, many aspects of this therapy remain unclear, such as the efficiency compared to conventional treatment, the ideal MSC sources, and the most effective way to use it. Because bone marrow (BM) is the largest source for MSCs, this paper used a systematic review approach to study the therapeutic efficiency of MSCs against liver fibrosis and related factors. We systematically searched multiple published articles to identify studies involving liver fibrosis and BM-MSC-based therapy. Analyzing the selected studies showed that compared with conventional treatment BM-MSC therapy may be more efficient for liver fibrosis in some cases. In contrast, the cotreatment presented a more efficient way. Nevertheless, BM-MSCs are lacking as a therapy for liver fibrosis; thus, this paper also reviews factors that affect BM-MSC efficiency, such as the implementation routes and strategies employed to enhance the potential in alleviating liver fibrosis. Ultimately, our review summarizes the recent advances in the BM-MSC therapy for liver fibrosis. It is grounded in recent developments underlying the efficiency of BM-MSCs as therapy, focusing on the preclinical in vivo experiments, and comparing to other treatments or sources and the strategies used to enhance its potential while mentioning the research gaps.
Collapse
Affiliation(s)
- Zaid Al-Dhamin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Ling-Di Liu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Dong-Dong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Si-Yu Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Shi-Ming Dong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
15
|
Shen S, Wang K, Zhi Y, Shen W, Huang L. Gypenosides improves nonalcoholic fatty liver disease induced by high-fat diet induced through regulating LPS/TLR4 signaling pathway. Cell Cycle 2020; 19:3042-3053. [PMID: 33121337 DOI: 10.1080/15384101.2020.1829800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background The contents of lipopolysaccharide (LPS) and Toll-like receptor 4 (TLR4) are significantly increased during the progression of nonalcoholic fatty liver disease (NAFLD). The study investigated the role of the LPS/TLR4 signaling pathway in improving gypenosides (Gyp) on NAFLD. Methods NAFLD model were established in rats and treated by Gyp. Pathological changes of liver tissues were observed by Hematoxylin and Eosin (HE) staining. Lipid metabolism and insulin resistance were measured. Expressions of inflammatory factors and protein of LPS/TLR4 downstream pathway were detected by qRT-PCR and Western blotting. THLE-2 cells were treated by free-fatty acid (FFA), Gyp, and LPS, and then transfected with TLR4. Next, cell viability was detected by MTT. Lipid droplet deposition and Triglyceride (TG) content were determined by Oil Red O staining and ELISA. Results Gyp protected fatty liver tissues in NAFLD model, and significantly reversed cholesterol increased by high-fat diet. Moreover, Gyp increased SOD content and decreased the contents of AST, ALT, MDA, HSI, FBG, FINS, HOMA-IR, IL-1β, and TNF-α, and promoted the expressions of TLR4, LPS, MyD88, p-IκBα, and reduced the expressions of p-p65 and IκBα in the NAFLD model. Gyp treatment significantly reduced lipid droplet deposition, increased TG content and MyD88, p-IκBα, p-p65 in FFA-induced liver cells, but LPS and TLR4 greatly reversed improvement of FFA by Gyp. Conclusion Gypenosides could improve liver function, lipid metabolism, insulin resistance, and levels of inflammatory factors in NAFLD model by regulating LPS/TLR4 signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Shuhua Shen
- Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine , Hangzhou, Zhejiang Province, China
| | - Kungen Wang
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine , Hangzhou, Zhejiang Province, China
| | - Yihui Zhi
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine , Hangzhou, Zhejiang Province, China
| | - Wei Shen
- Center of Hospital-made Preparations, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine , Hangzhou, Zhejiang Province, China
| | - Liquan Huang
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine , Hangzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Differences in MicroRNA Expression in Chronic Hepatitis B Patients with Early Liver Fibrosis Based on Traditional Chinese Medicine Syndromes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5956940. [PMID: 33178319 PMCID: PMC7648684 DOI: 10.1155/2020/5956940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/15/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
The aim of this study was to determine if microRNA (miRNA) expression is different among chronic hepatitis B (CHB) patients with early liver fibrosis classified according to traditional Chinese medicine (TCM) syndromes. Eighteen CHB-fibrosis patients and 12 CHB patients without fibrosis were enrolled. The CHB-fibrosis group included 9 patients with the TCM syndrome of Ganyu Pixu Xueyu (GYPXXY), characterized by liver stagnation, spleen deficiency, and blood stasis, and 9 patients with the TCM syndrome of Qixu Xueyu (QXXY), characterized by deficiency of qi, blood, and blood stasis. Agilent miRNA microarray was performed first in liver specimens to determine whether miRNA expression is different in patients with these two TCM syndromes of CHB-fibrosis. Gene Ontology (GO) analysis and KEGG analysis were applied to determine the roles of the differentially expressed miRNAs. QRT-PCR was performed to validate the Agilent miRNA microarray results. Compared with GYPXXY patients, 6 differentially expressed miRNAs were upregulated (miR-144-5p, miR-18a-5p, miR-148b-3p, miR-654-3p, miR-139-3p, and miR-24-1-5p) and 1 was downregulated (miR-6834-3p) in QXXY patients. According to qRT-PCR data, miR-144-5p and miR-654-3p were confirmed as upregulated in CHB-liver fibrosis patients compared to CHB patients without fibrosis, whereas the other 4 miRNAs were not significantly different. More importantly, miR-654-3p was confirmed to be significantly upregulated in QXXY patients compared with values in GYPXXY patients, whereas no significant difference was found in miR-144-5p. Moreover, the pathways of central carbon metabolism in cancer and cell cycle related to miR-654-3p and the target genes of PTEN and ATM were found to be different between QXXY patients and GYPXXY patients. These results indicate that there are different miRNAs, pathways, and target genes between QXXY patients and GYPXXY patients. However, due to the limited sample, whether miR-654-3p and the target genes PTEN and ATM could be molecular markers to differentiate TCM syndromes could not be established.
Collapse
|
17
|
Häussinger D, Kordes C. Space of Disse: a stem cell niche in the liver. Biol Chem 2020; 401:81-95. [PMID: 31318687 DOI: 10.1515/hsz-2019-0283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Recent evidence indicates that the plasticity of preexisting hepatocytes and bile duct cells is responsible for the appearance of intermediate progenitor cells capable of restoring liver mass after injury without the need of a stem cell compartment. However, mesenchymal stem cells (MSCs) exist in all organs and are associated with blood vessels which represent their perivascular stem cell niche. MSCs are multipotent and can differentiate into several cell types and are known to support regenerative processes by the release of immunomodulatory and trophic factors. In the liver, the space of Disse constitutes a stem cell niche that harbors stellate cells as liver resident MSCs. This perivascular niche is created by extracellular matrix proteins, sinusoidal endothelial cells, liver parenchymal cells and sympathetic nerve endings and establishes a microenvironment that is suitable to maintain stellate cells and to control their fate. The stem cell niche integrity is important for the behavior of stellate cells in the normal, regenerative, aged and diseased liver. The niche character of the space of Disse may further explain why the liver can become an organ of extra-medullar hematopoiesis and why this organ is frequently prone to tumor metastasis.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Ye F, Jiang J, Zong C, Yang X, Gao L, Meng Y, Li R, Zhao Q, Han Z, Wei L. Sirt1-Overexpressing Mesenchymal Stem Cells Drive the Anti-tumor Effect through Their Pro-inflammatory Capacity. Mol Ther 2020; 28:874-888. [PMID: 32027844 DOI: 10.1016/j.ymthe.2020.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
The major obstacles for the efficacy of tumor immunotherapies are their immune-related systemic adverse events. Therefore, tumor tropism property and pro-inflammatory ability of mesenchymal stem cells (MSCs) could be utilized in combination to potentiate local immunity for cancer eradication. We previously observed that MSCs with the type III histone deacetylase silent information regulator 2 homologue 1 (Sirt1) overexpression displayed a pro-inflammatory capacity. However, the anti-tumor effect of Sirt1-overexpressing MSCs and the role of Sirt1 in regulating the pro-inflammatory capacity of MSCs still need to be clarified. In this study, utilizing the hepatic metastasis model of colorectal carcinoma, we demonstrated that Sirt1-overexpressing MSCs significantly exerted anti-tumor activity through increasing the number of CD8+ T cells. Furthermore, Sirt1 did not affect chemokine secretion in MSCs induced by inflammatory cytokines, but impaired the immunosuppressive ability of MSCs through suppressing inflammatory cytokine-stimulated inducible nitric oxide synthase (iNOS) production via deacetylating p65. iNOS overexpression negated the anti-tumor effect of Sirt1-overexpressing MSCs. Collectively, our data defined Sirt1 as the critical regulator for modulating the pro-inflammatory ability of MSCs, and they suggested that Sirt1-overexpressing MSCs secreting chemokines but little iNOS under the inflammatory milieu were capable of attracting immune cells to close proximity without suppressing their proliferation, thereby achieving a potent anti-tumor effect.
Collapse
Affiliation(s)
- Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Chen Zong
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China.
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China.
| |
Collapse
|
19
|
Mesenchymal Stem Cells in the Adult Human Liver: Hype or Hope? Cells 2019; 8:cells8101127. [PMID: 31546729 PMCID: PMC6830330 DOI: 10.3390/cells8101127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases constitute a significant economic, social, and biomedical burden. Among commonly adopted approaches, only organ transplantation can radically help patients with end-stage liver pathologies. Cell therapy with hepatocytes as a treatment for chronic liver disease has demonstrated promising results. However, quality human hepatocytes are in short supply. Stem/progenitor cells capable of differentiating into functionally active hepatocytes provide an attractive alternative approach to cell therapy for liver diseases, as well as to liver-tissue engineering, drug screening, and basic research. The application of methods generally used to isolate mesenchymal stem cells (MSCs) and maintain them in culture to human liver tissue provides cells, designated here as liver MSCs. They have much in common with MSCs from other tissues, but differ in two aspects-expression of a range of hepatocyte-specific genes and, possibly, inherent commitment to hepatogenic differentiation. The aim of this review is to analyze data regarding liver MSCs, probably another type of liver stem/progenitor cells different from hepatic stellate cells or so-called hepatic progenitor cells. The review presents an analysis of the phenotypic characteristics of liver MSCs, their differentiation and therapeutic potential, methods for isolating these cells from human liver, and discusses issues of their origin and heterogeneity. Human liver MSCs are a fascinating object of fundamental research with a potential for important practical applications.
Collapse
|
20
|
Yin Z, Jiang K, Li R, Dong C, Wang L. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Mol Cancer 2018; 17:178. [PMID: 30593276 PMCID: PMC6309092 DOI: 10.1186/s12943-018-0926-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with high morbidity, relapse and mortality rates. Multipotent mesenchymal stromal cells (MSCs) can be recruited to and become integral components of the HCC microenvironment and can influence tumor progression. This review discusses MSC migration to liver fibrosis and the HCC microenvironment, MSC involvement in HCC initiation and progression and the widespread application of MSCs in HCC-targeted therapy, thus clarifying the critical roles of MSCs in HCC.
Collapse
Affiliation(s)
- Zeli Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Keqiu Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Rui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China.
| |
Collapse
|
21
|
Keshavarz S, Nassiri SM, Siavashi V, Alimi NS. Regulation of plasticity and biological features of endothelial progenitor cells by MSC-derived SDF-1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:296-304. [PMID: 30502369 DOI: 10.1016/j.bbamcr.2018.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Bone marrow (BM) is a source of mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs). MSCs provide a specific niche in the BM and biological features of EPCs may be changed with this niche. Stromal cell-derived factor 1 (SDF-1) secreted from primary BM-MSCs and biological features of this niche on EPC development are still yet to be understood. The aim of this study was to evaluate the role of SDF-1 produced by MSCs on EPC development. We applied the CRISPR/Cas9 system for the knock-out of the SDF-1 gene in BM-derived MSCs. BM-derived EPCs were then cocultured with MSCsSDF-1-/- or MSCsSDF-1+/+ to identify the role of MSC-derived SDF-1α on proliferation, migration and angiogenic activity of EPCs. Next, pre-expanded EPCs were harvested and co-transplanted with MSCsSDF-1-/- or MSCsSDF-1+/+ into sublethally irradiated mice to analyze the potency of these cells for marrow reconstitution. Our results revealed that proliferation, colony formation, migration and angiogenic activity of EPCs was significantly increased after coculture with MSCsSDF-1+/+. We also found that co-transplantation of EPCs with MSCsSDF-1+/+, in contrast to MSCsSDF-1-/-, into irradiated mice resulted in marrow repopulation and hematologic recovery, leading to improved survival of transplanted mice. In conclusions, MSC-derived SDF-1 niche plays an important role in the development of EPCs and this niche is essential for bone marrow repopulation by these cells and can enhance the efficiency of EPC therapy for ischemic diseases.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Vahid Siavashi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nika Sadat Alimi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Song H, Zhang S, Sun X, Liu J, Wu Y, Guo W, Wang F, Ou X, Cong M, Jin E, Li W, Liu S. Distinct Iron Deposition Profiles of Liver Zones in Various Models with Iron Homeostasis Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800866. [PMID: 30479929 PMCID: PMC6247051 DOI: 10.1002/advs.201800866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/19/2018] [Indexed: 06/09/2023]
Abstract
Determination of iron accumulation is crucial in diagnosing the occurrence and progression of many liver- and iron-related diseases. Thus far, little is known about the profiles of iron deposition in different liver zones, particularly under conditions with disordered iron homeostasis. Here, uneven iron distribution in livers of patients with hereditary hemochromatosis (HH) is uncovered, showing the region with the highest iron concentration near the entrance site of the portal vein and hepatic artery in contrast to the sites with the lowest iron concentration close to the distal edge. Distinct iron distribution profiles are also found throughout liver zones in wild-type mice and various mouse models with iron metabolism disorders, including hemochromatosis (Hfe-/- ), iron deficiency, and inflammation. Of note, similar findings observed in HH patients are further demonstrated in Hfe-/- mice. Moreover, the zones with greater iron accumulation appear to be more sensitive to iron changes, e.g., there is iron increase upon iron overload and iron loss in response to iron deficiency. Mechanistic investigation manifests that these differential iron changes in liver zones are subjected to the regulation by the hepcidin-ferroportin axis. Additionally, the data corroborate the reliability of magnetic resonance imaging (MRI) in recognizing the differential iron deposition profiles among liver zones.
Collapse
Affiliation(s)
- Haoyang Song
- Anhui Province Key Laboratory of Embryo Development and Reproductive RegulationAnhui Province Key Laboratory of Environmental Hormone and ReproductionFuyang Normal UniversityFuyang236037China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Shuping Zhang
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Xia Sun
- Radiology DepartmentBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Jing Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Yakun Wu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenli Guo
- College of FisheriesHenan Normal UniversityXinxiang453007China
- QIMR Berghofer Medical Research InstituteBrisbane4029Australia
| | - Fudi Wang
- Department of NutritionNutrition Discovery Innovation CenterInstitute of Nutrition and Food SafetySchool of Public HealthSchool of MedicineZhejiang UniversityHangzhou310085China
| | - Xiaojuan Ou
- Liver Research CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Min Cong
- Liver Research CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Erhu Jin
- Radiology DepartmentBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Wenyong Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive RegulationAnhui Province Key Laboratory of Environmental Hormone and ReproductionFuyang Normal UniversityFuyang236037China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
23
|
Chalin A, Lefevre B, Devisme C, Pronier C, Carrière V, Thibault V, Amiot L, Samson M. Serum CXCL10, CXCL11, CXCL12, and CXCL14 chemokine patterns in patients with acute liver injury. Cytokine 2018; 111:500-504. [DOI: 10.1016/j.cyto.2018.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023]
|
24
|
Liu F, Zhang J, Qian J, Wu G, Ma Z. Emodin alleviates CCl4‑induced liver fibrosis by suppressing epithelial‑mesenchymal transition and transforming growth factor‑β1 in rats. Mol Med Rep 2018; 18:3262-3270. [PMID: 30066878 PMCID: PMC6102702 DOI: 10.3892/mmr.2018.9324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/12/2018] [Indexed: 12/20/2022] Open
Abstract
Liver fibrosis is a chronic disease that exhibits a complicated pathophysiology. It is characterized by the deposition of the extracellular matrix. Emodin, an active constituent isolated from rhubarb, has antibacterial, immunosuppressive and anti-inflammatory effects. In the present study, the mechanism through which emodin alleviates liver fibrosis in rats was investigated. A rat model of liver fibrosis was generated by administering CCl4 via subcutaneous injection twice a week for 12 weeks. Emodin or sodium carboxymethylcellulose (CMC), as the vehicle, were intragastrically administered daily. After 12 weeks, the liver function index was examined by blood analysis, histopathological scores of fibrosis was determined by hematoxylin and eosin staining and level of collagen deposition was examined by Masson staining. In addition, protein and RNA samples were collected for further analysis. The results of the present study revealed that emodin significantly reduced the liver function index and level of collagen deposition in a dose-dependent manner. Furthermore, emodin reduced the expression of transforming growth factor-β1 (TGF-β1) and the phosphorylation levels of mothers against decapentaplegic homolog 2/3, and inhibited the CCl4-induced downregulation of E-cadherin and upregulation of the mesenchymal markers, fibronectin and vimentin. The expression levels of TGF-β1, Snail family transcriptional repressor (Snail) 2, Snail, twist-related protein 1 and zinc finger E-box-binding homeobox (ZEB)1 and 2 mRNA were significantly decreased in emodin-treated groups compared with the untreated control. Collectively, the results of the present study suggested that emodin may exert antifibrotic effects via the suppression of TGF-β1 signaling and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jing Zhang
- Department of Nursing Center, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianmin Qian
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Gang Wu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhenyu Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
25
|
Nguyen J, Jiao J, Smoot K, Watt GP, Zhao C, Song X, Stevenson HL, McCormick JB, Fisher-Hoch SP, Zhang J, Futreal PA, Beretta L. Toll-like receptor 4: a target for chemoprevention of hepatocellular carcinoma in obesity and steatohepatitis. Oncotarget 2018; 9:29495-29507. [PMID: 30034633 PMCID: PMC6047684 DOI: 10.18632/oncotarget.25685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) associated with non-alcoholic fatty liver disease (NAFLD) is rapidly increasing. We aimed to elucidate the genetic basis of NAFLD-associated HCC and identify candidate targets for chemoprevention. Twenty HCC tumors, distant liver and matched tails from mice with hepatocyte-deletion of Pten (HepPten-) were subjected to whole-exome sequencing. A total of 162 genes with somatic non-synonymous single nucleotide variants or exonic small insertions and deletions in tumors were identified. Ingenuity Pathway Analysis of these 162 genes, further identified Toll-like receptor (TLR) 4, a key mediator of proinflammatory responses, and resatorvid, a TLR4 inhibitor, as the main causal networks of this dataset. Resatorvid treatment strongly prevented HCC development in these mice (p < 0.001). Remarkably, HCC patients with high tumoral TLR4 mRNA expression were more likely to be diagnosed with NAFLD and obese. TLR4 mRNA expression positively correlated with IL-6 and IL-10 mRNA expression in HCC tumors and the correlation was stronger in obese HCC patients. We have identified tumor mutation signatures and associated causal networks in NAFLD-associated HCC in HepPten- mice and further demonstrated the important role of TLR4 in promoting HCC development. This study also identified IL-6 and IL-10 as markers of TLR4 activation in HCC and subjects with NAFLD and obesity as the target population who would benefit from TLR4 inhibition treatment for HCC chemoprevention.
Collapse
Affiliation(s)
- Jennifer Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Smoot
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon P Watt
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas Health Science Center at Houston, School of Public Health in Brownsville, Brownsville, TX, USA
| | - Chen Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather L Stevenson
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Joseph B McCormick
- University of Texas Health Science Center at Houston, School of Public Health in Brownsville, Brownsville, TX, USA
| | - Susan P Fisher-Hoch
- University of Texas Health Science Center at Houston, School of Public Health in Brownsville, Brownsville, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Zhai R, Wang Y, Qi L, Williams GM, Gao B, Song G, Burdick JF, Sun Z. Pharmacological Mobilization of Endogenous Bone Marrow Stem Cells Promotes Liver Regeneration after Extensive Liver Resection in Rats. Sci Rep 2018; 8:3587. [PMID: 29483616 PMCID: PMC5827664 DOI: 10.1038/s41598-018-21961-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
Rapid regeneration of the remnant liver is critical for preventing liver failure and promoting recovery after extensive liver resection. Numerous studies have demonstrated the involvement of bone marrow-derived stem cells in liver regeneration and the potential benefits of bone marrow stem cell therapy. To avoid the preparation of stem cells, we proposed in this study to mobilize endogenous bone marrow stem cells pharmacologically with a combination of AMD3100 (A), an antagonist of CXCR4 and low-dose FK506 (F). Here we show that AF combination therapy significantly increased lineage negative (Lin-) CD34+ and Lin-CD133+ stem cells in peripheral blood and enhanced recruitment of CD133+ cells into the remnant liver in a rat model of 85% partial hepatectomy. Recruiting CD133+ stem cells in the remnant liver was associated with increased proliferation of hepatic oval cells and paralleled the increased SDF-1, CXCR4 and HGF expression. Importantly, AF combination therapy increased the number of Ki67 positive hepatocytes and BrdU incorporation in the remnant liver and improved serum levels of albumin. Our results demonstrate that pharmacological mobilization of endogenous bone marrow stem cells with AF combination therapy can enhance endogenous stem cell mobilization to promote liver regeneration and improve liver function after extensive hepatectomy.
Collapse
Affiliation(s)
- Rujun Zhai
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute & Hospital and Tianjin Medical University Graduate School, Tianjin, P.R. China.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yongchun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Le Qi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Bin Gao
- Laboratory of Liver Disease, NIAAA/NIH, Rockville, MD, USA
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James F Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Fu X, Jiang B, Zheng B, Yan Y, Wang J, Duan Y, Li S, Yan L, Wang H, Chen B, Sang X, Ji W, Xu RH, Si W. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse. PeerJ 2018; 6:e4336. [PMID: 29456886 PMCID: PMC5813592 DOI: 10.7717/peerj.4336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022] Open
Abstract
Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma). Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs) have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP). The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells) were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the paracrine effects of MSCs may play an important role in the improvement of liver fibrosis.
Collapse
Affiliation(s)
- Xufeng Fu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.,School of Medicine, Yunnan University, Kunming, Yunnan, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bin Jiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Bingrong Zheng
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Yaping Yan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junfeng Wang
- Department of Hepatic and Bile Duct Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yanchao Duan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shanshan Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Li Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Hong Wang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Bingbing Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiongbo Sang
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.,Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.,Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
28
|
Wang J, Lu Z, Xu Z, Tian P, Miao H, Pan S, Song R, Sun X, Zhao B, Wang D, Ma Y, Song X, Zhang S, Liu L, Jiang H. Reduction of hepatic fibrosis by overexpression of von Hippel-Lindau protein in experimental models of chronic liver disease. Sci Rep 2017; 7:41038. [PMID: 28112200 PMCID: PMC5253623 DOI: 10.1038/srep41038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/15/2016] [Indexed: 02/08/2023] Open
Abstract
Hypoxia-inducible factor (HIF)-1α and HIF-2α play an important role in liver fibrosis. von Hippel-Lindau protein (VHL), a key mediator of HIF-α, regulates fibrosis in an organ- and cell-specific way. In this study, human liver samples were collected from hepatitis C-, alcoholic-, and cholestatic-associated fibrotic and healthy individuals. Two mouse models of liver fibrosis were established: bile duct ligation and carbon tetrachloride injection. We constructed adenovirus vectors to overexpress VHL, normoxia-active HIF-α, and lentiviral vectors to silence HIF-α. The results showed that liver sections from fibrosis patients had a lower level of VHL and higher levels of HIF-1α and HIF-2α compared with healthy sections, a finding which was confirmed in mice. Overexpression of VHL attenuated liver fibrosis, downregulated fibrogenic genes, and inhibited liver inflammation, apoptosis, and angiogenesis. Overexpression of VHL was more successful at inhibiting fibrosis compared with silencing HIF-1α plus HIF-2α. Normoxia-active HIF-1α or HIF-2α prevented the inhibitory effect of VHL on liver fibrosis, indicating that attenuating fibrosis via VHL is HIF-1α- and HIF-2α-dependent to some extent. In addition, overexpression of VHL inhibited mouse hepatic stellate cells activation and proliferation and promoted apoptosis. Taken together, VHL may be considered a new target to inhibit liver fibrosis.
Collapse
Affiliation(s)
- Jizhou Wang
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhaoyang Lu
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhilin Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Pei Tian
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hui Miao
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ruipeng Song
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xueying Sun
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Baolei Zhao
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Dawei Wang
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuan Song
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shugeng Zhang
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lianxin Liu
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
29
|
Yun JW, Ahn JH, Kwon E, Kim SH, Kim H, Jang JJ, Kim WH, Kim JH, Han SY, Kim JT, Kim JH, Kim W, Ku SY, Do BR, Kang BC. Human umbilical cord-derived mesenchymal stem cells in acute liver injury: Hepatoprotective efficacy, subchronic toxicity, tumorigenicity, and biodistribution. Regul Toxicol Pharmacol 2016; 81:437-447. [PMID: 27693706 DOI: 10.1016/j.yrtph.2016.09.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022]
Abstract
Umbilical cord-derived mesenchymal stem cells (UC-MSCs) therapy might be an alternative to liver transplantation for acute or chronic liver injury. The aim of this study was to evaluate the efficacy of human UC-MSCs on carbon tetrachloride (CCl4)-induced acute liver injury. In addition, its toxicity, tumorigenicity, and biodistribution were determined. Significant hepatoprotective effects of hUC-MSCs with decreased levels of hepatocellular necrosis and lobular neutrophilic infiltration were found. Regarding the safety of hUC-MSCs, no serious hUC-MSCs-related changes (body weight, food/water consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology) were observed in a 13-week subchronic toxicity study. In a 26-week tumorigenicity study, no mice developed tumor related to hUC-MSCs transplantation up to 1 × 108 cells/kg. In particular, human mitochondrial sequence detection revealed that most hUC-MSCs were cleared from the major organs of the mice at 13 weeks after transplantation. There was no systemic toxicity or neoplastic finding either. Taken together, these results suggested that hUC-MSCs have great potential for future clinical treatment of acute liver disease.
Collapse
Affiliation(s)
- Jun-Won Yun
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae Hun Ahn
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Hyun Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hanna Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ja-June Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyang Kim
- Biotechnology Research Institute, Hurim BioCell Co. Ltd., Seoul, Republic of Korea
| | - Su-Youne Han
- Biotechnology Research Institute, Hurim BioCell Co. Ltd., Seoul, Republic of Korea
| | - Jin Tac Kim
- Biotechnology Research Institute, Hurim BioCell Co. Ltd., Seoul, Republic of Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cell Biology, Division of Biotechnology, Department of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Wookhwan Kim
- Department of General Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seung-Yup Ku
- Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Rok Do
- Biotechnology Research Institute, Hurim BioCell Co. Ltd., Seoul, Republic of Korea.
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea; Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| |
Collapse
|
30
|
Kim A, Yu HY, Heo J, Song M, Shin JH, Lim J, Yoon SJ, Kim Y, Lee S, Kim SW, Oh W, Choi SJ, Shin DM, Choo MS. Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder. Sci Rep 2016; 6:30881. [PMID: 27481042 PMCID: PMC4969614 DOI: 10.1038/srep30881] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/11/2016] [Indexed: 12/18/2022] Open
Abstract
Abuse of the hallucinogenic drug ketamine promotes the development of lower urinary tract symptoms that resemble interstitial cystitis. The pathophysiology of ketamine-induced cystitis (KC) is largely unknown and effective therapies are lacking. Here, using a KC rat model, we show the therapeutic effects of human umbilical cord-blood (UCB)-derived mesenchymal stem cells (MSCs). Daily injection of ketamine to Sprague-Dawley rats for 2-weeks resulted in defective bladder function, indicated by irregular voiding frequency, increased maximum contraction pressure, and decreased intercontraction intervals and bladder capacity. KC bladders were characterized by severe mast-cell infiltration, tissue fibrosis, apoptosis, upregulation of transforming growth factor-β signaling related genes, and phosphorylation of Smad2 and Smad3 proteins. A single administration of MSCs (1 × 10(6)) into bladder tissue not only significantly ameliorated the aforementioned bladder voiding parameters, but also reversed the characteristic histological and gene-expression alterations of KC bladder. Treatment with the antifibrotic compound N-acetylcysteine also alleviated the symptoms and pathological characteristics of KC bladder, indicating that the antifibrotic capacity of MSC therapy underlies its benefits. Thus, this study for the first-time shows that MSC therapy might help to cure KC by protecting against tissue fibrosis in a KC animal model and provides a foundation for clinical trials of MSC therapy.
Collapse
Affiliation(s)
- Aram Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hwan Yeul Yu
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jinbeom Heo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Miho Song
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jung-Hyun Shin
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jisun Lim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo-Jung Yoon
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - YongHwan Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seungun Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, 13494, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, 13494, Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Myung-Soo Choo
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| |
Collapse
|
31
|
Liepelt A, Tacke F. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. Am J Physiol Gastrointest Liver Physiol 2016; 311:G203-9. [PMID: 27313175 DOI: 10.1152/ajpgi.00193.2016] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/09/2016] [Indexed: 01/31/2023]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is constitutively expressed in healthy liver. However, its expression increases following acute or chronic liver injury. Liver sinusoidal endothelial cells (LSEC), hepatic stellate cells (HSC), and malignant hepatocytes are important sources of SDF-1/CXCL12 in liver diseases. CXCL12 is able to activate two chemokine receptors with different downstream signaling pathways, CXCR4 and CXCR7. CXCR7 expression is relevant on LSEC, while HSC, mesenchymal stem cells, and tumor cells mainly respond via CXCR4. Here, we summarize recent developments in the field of liver diseases involving this chemokine and its receptors. SDF-1-dependent signaling contributes to modulating acute liver injury and subsequent tissue regeneration. By activating HSC and recruiting mesenchymal cells from bone marrow, CXCL12 can promote liver fibrosis progression, while CXCL12-CXCR7 interactions endorse proregenerative responses in chronic injury. Moreover, the SDF-1 pathway is linked to development of hepatocellular carcinoma (HCC) by promoting tumor growth, angiogenesis, and HCC metastasis. High hepatic CXCR4 expression has been suggested as a biomarker indicating poor prognosis of HCC patients. Tumor-infiltrating myeloid-derived suppressor cells (MDSC) also express CXCR4 and migrate toward CXCL12. Thus CXCL12 inhibition might not only directly block HCC growth but also modulate the tumor microenvironment (angiogenesis, MDSC), thereby sensitizing HCC patients to conventional or emerging novel cancer therapies (e.g., sorafenib, regorafenib, nivolumab, pembrolizumab). We herein summarize the current knowledge on the complex interplay between CXCL12 and CXCR4/CXCR7 in liver diseases and discuss approaches on the therapeutic targeting of these axes in hepatitis, fibrosis, and liver cancer.
Collapse
Affiliation(s)
- Anke Liepelt
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
32
|
MeCP2 silencing of LncRNA H19 controls hepatic stellate cell proliferation by targeting IGF1R. Toxicology 2016; 359-360:39-46. [PMID: 27350269 DOI: 10.1016/j.tox.2016.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Methyl-CpG-binding protein 2 (MeCP2) plays a key role in liver fibrosis. However, the potential mechanism of MeCP2 in liver fibrosis remains unclear. Early reports suggest that LncRNA H19 is important epigenetic regulator with critical roles in cell proliferation, but its role in hepatic fibrosis remains elusive. Sprague-Dawley rats liver fibrosis was generated by 12-weeks treatment with CCl4 intraperitoneal injection. HSC-T6 cells were used in vitro study. The expression levels of MeCP2, H19, IGF1R, α-SMA, and Col1A1 were estimated by Western blotting, qRT-PCR and Immunohistochemistry. HSC-T6 cells were transfected with MeCP2-siRNA, pEGF-C1-MeCP2, pEX-3-H19, and H19-siRNA. Finally, cell proliferation ability was assessed by the MTT assay. Here, we found that H19 was significantly down-regulated in HSCs and fibrosis tissues, and an opposite pattern is observed for MeCP2 and IGF1R. Silencing of MeCP2 blocked HSCs proliferation. Knockdown of MeCP2 elevated H19 expression in activated HSCs, and over-expression of MeCP2 inhibited H19 expression in activated HSCs. Moreover, we investigated the effect of H19 on IGF1R expression. Overexpression of H19 in HSCs repressed the expression of IGF1R, and an opposite pattern is observed for H19 silenced. In addition, we reported that overexpression of H19 inhibited the TGF-β1-induced proliferation of HSCs. Furthermore, MeCP2 negative regulation of H19 by targeting the protein IGF1R. Taken together, these results demonstrated that MeCP2 silencing of H19 can alter the IGF1R overexpression, thus contributing to HSCs proliferation. These data could suggest the development of combination therapies that target the MeCP2.
Collapse
|
33
|
Krishna CV, Singh J, Thangavel C, Rattan S. Role of microRNAs in gastrointestinal smooth muscle fibrosis and dysfunction: novel molecular perspectives on the pathophysiology and therapeutic targeting. Am J Physiol Gastrointest Liver Physiol 2016; 310:G449-59. [PMID: 26822916 PMCID: PMC4824177 DOI: 10.1152/ajpgi.00445.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/20/2016] [Indexed: 01/31/2023]
Abstract
MicroRNAs (miRNAs) belong to a group of short noncoding RNA molecules with important roles in cellular biology. miRNAs regulate gene expression by repressing translation or degrading the target mRNA. Recently, a growing body of evidence suggests that miRNAs are implicated in many diseases and could be potential biomarkers. Fibrosis and/smooth muscle (SM) dysfunction contributes to the morbidity and mortality associated with several diseases of the gastrointestinal tract (GIT). Currently available therapeutic modalities are unsuccessful in efficiently blocking or reversing fibrosis and/or SM dysfunction. Recent understanding of the role of miRNAs in signaling pathway of fibrogenesis and SM phenotype switch has provided a new insight into translational research. However, much is still unknown about the molecular targets and therapeutic potential of miRNAs in the GIT. This review discusses miRNA biology, pathophysiology of fibrosis, and aging- associated SM dysfunction in relation to the deregulation of miRNAs in the GIT. We also highlight the role of selected miRNAs associated with fibrosis and SM dysfunction-related diseases of the GIT.
Collapse
Affiliation(s)
| | - Jagmohan Singh
- 2Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Chellappagounder Thangavel
- 3Department of Radiation Oncology, Sidney Kimmel Cancer Center (TC), Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- 2Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania; and
| |
Collapse
|
34
|
Zhang YJ, Wang F, Zhou Y, Li Y, Zhou T, Zheng J, Zhang JJ, Li S, Xu DP, Li HB. Effects of 20 Selected Fruits on Ethanol Metabolism: Potential Health Benefits and Harmful Impacts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:399. [PMID: 27043608 PMCID: PMC4847061 DOI: 10.3390/ijerph13040399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Abstract
The consumption of alcohol is often accompanied by other foods, such as fruits and vegetables. This study is aimed to investigate the effects of 20 selected fruits on ethanol metabolism to find out their potential health benefits and harmful impacts. The effects of the fruits on ethanol metabolism were characterized by the concentrations of ethanol and acetaldehyde in blood, as well as activities of alcohol dehydrogenase and acetaldehyde dehydrogenase in liver of mice. Furthermore, potential health benefits and harmful impacts of the fruits were evaluated by biochemical parameters including aspartate transaminase (AST), alanine transferase (ALT), malondialdehyde, and superoxide dismutase. Generally, effects of these fruits on ethanol metabolism were very different. Some fruits (such as Citrus limon (yellow), Averrhoa carambola, Pyrus spp., and Syzygium samarangense) could decrease the concentration of ethanol in blood. In addition, several fruits (such as Cucumis melo) showed hepatoprotective effects by significantly decreasing AST or ALT level in blood, while some fruits (such as Averrhoa carambola) showed adverse effects. The results suggested that the consumption of alcohol should not be accompanied by some fruits, and several fruits could be developed as functional foods for the prevention and treatment of hangover and alcohol use disorder.
Collapse
Affiliation(s)
- Yu-Jie Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
| | - Fang Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, Guangdong Province, China.
| |
Collapse
|