1
|
Osman EO, Garcias-Bonet N, Cardoso PM, Rosado PM, García FC, Ferrier-Pagès C, Peixoto RS. Phototrophic bacteria as potential probiotics for corals. NPJ BIODIVERSITY 2025; 4:16. [PMID: 40301674 PMCID: PMC12041382 DOI: 10.1038/s44185-025-00085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/14/2025] [Indexed: 05/01/2025]
Abstract
Coral-associated microorganisms provide crucial nutritional, protective, and developmental benefits, yet many functional traits remain unexplored. Phototrophic bacteria may enhance coral nutrition and reduce oxidative stress during bleaching via photosynthesis and antioxidant production. Despite this potential, their role in the holobiont's energy budget and heat stress resilience is understudied. This review explores the functional traits and potential of phototrophic bacteria to enhance coral health and resilience under environmental stress.
Collapse
Affiliation(s)
- Eslam O Osman
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Neus Garcias-Bonet
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pedro M Cardoso
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Phillipe M Rosado
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Francisca C García
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Raquel S Peixoto
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
2
|
Chemel M, Peru E, Binsarhan M, Logares R, Lartaud F, Galand PE. Cold-water coral mortality under ocean warming is associated with pathogenic bacteria. ENVIRONMENTAL MICROBIOME 2024; 19:76. [PMID: 39407340 PMCID: PMC11481251 DOI: 10.1186/s40793-024-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Cold-water corals form vast reefs that are highly valuable habitats for diverse deep-sea communities. However, as the deep ocean is warming, it is essential to assess the resilience of cold-water corals to future conditions. The effects of elevated temperatures on the cold-water coral Lophelia pertusa (now named Desmophyllum pertusum) from the north-east Atlantic Ocean were experimentally investigated at the holobiont level, the coral host, and its microbiome. We show that at temperature increases of + 3 and + 5 °C, L. pertusa exhibits significant mortality concomitant with changes in its microbiome composition. In addition, a metagenomic approach revealed the presence of gene markers for bacterial virulence factors suggesting that coral death was due to infection by pathogenic bacteria. Interestingly, different coral colonies had different survival rates and, colony-specific microbiome signatures, indicating strong colony-specific variability in their response to warming waters. These results suggest that L. pertusa can only survive a long-term temperature increase of < 3 °C. Therefore, regional variations in deep-sea temperature increase should be considered in future estimates of the global distribution of cold-water corals.
Collapse
Affiliation(s)
- Mathilde Chemel
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France.
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France
| | | | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
3
|
Ricci F, Leggat W, Pasella MM, Bridge T, Horowitz J, Girguis PR, Ainsworth T. Deep sea treasures - Insights from museum archives shed light on coral microbial diversity within deepest ocean ecosystems. Heliyon 2024; 10:e27513. [PMID: 38468949 PMCID: PMC10926130 DOI: 10.1016/j.heliyon.2024.e27513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Deep sea benthic habitats are low productivity ecosystems that host an abundance of organisms within the Cnidaria phylum. The technical limitations and the high cost of deep sea surveys have made exploring deep sea environments and the biology of the organisms that inhabit them challenging. In spite of the widespread recognition of Cnidaria's environmental importance in these ecosystems, the microbial assemblage and its role in coral functioning have only been studied for a few deep water corals. Here, we explored the microbial diversity of deep sea corals by recovering nucleic acids from museum archive specimens. Firstly, we amplified and sequenced the V1-V3 regions of the 16S rRNA gene of these specimens, then we utilized the generated sequences to shed light on the microbial diversity associated with seven families of corals collected from depth in the Coral Sea (depth range 1309 to 2959 m) and Southern Ocean (depth range 1401 to 2071 m) benthic habitats. Surprisingly, Cyanobacteria sequences were consistently associated with six out of seven coral families from both sampling locations, suggesting that these bacteria are potentially ubiquitous members of the microbiome within these cold and deep sea water corals. Additionally, we show that Cnidaria might benefit from symbiotic associations with a range of chemosynthetic bacteria including nitrite, carbon monoxide and sulfur oxidizers. Consistent with previous studies, we show that sequences associated with the bacterial phyla Proteobacteria, Verrucomicrobia, Planctomycetes and Acidobacteriota dominated the microbial community of corals in the deep sea. We also explored genomes of the bacterial genus Mycoplasma, which we identified as associated with specimens of three deep sea coral families, finding evidence that these bacteria may aid the host immune system. Importantly our results show that museum specimens retain components of host microbiome that can provide new insights into the diversity of deep sea coral microbiomes (and potentially other organisms), as well as the diversity of microbes writ large in deep sea ecosystems.
Collapse
Affiliation(s)
- Francesco Ricci
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW, Australia
- University of Melbourne, School of Biosciences, Parkville, VIC, Australia
- Monash University, Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - William Leggat
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, NSW, Australia
| | - Marisa M. Pasella
- University of Melbourne, School of Biosciences, Parkville, VIC, Australia
| | - Tom Bridge
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Jeremy Horowitz
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Peter R. Girguis
- University of Harvard, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Tracy Ainsworth
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW, Australia
| |
Collapse
|
4
|
Wang S, Jiang L, Zhao Z, Chen Z, Wang J, Alain K, Cui L, Zhong Y, Peng Y, Lai Q, Dong X, Shao Z. Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments. THE ISME JOURNAL 2024; 18:wrae119. [PMID: 38916247 PMCID: PMC11474244 DOI: 10.1093/ismejo/wrae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. So far chemolithoautotrophic bacteria are widely recognized as the principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches integrated with cultivation assays to investigate the diversity, distribution, and activity of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs shows that the main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture experiments further demonstrate that members of chemolithoautotrophic Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove sediments preferentially drain energy from diverse reduced inorganic compounds other than from organics. Overall, our results suggest that chemolithoautotrophs rather than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Jun Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, EMR6002 BIOMEX, Biologie Interactions et adaptations des Organismes en Milieu EXtrême, IRP 1211 MicrobSea, F-29280 Plouzané, France
| | - Liang Cui
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yangsheng Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
5
|
Cordes EE, Demopoulos AWJ, Davies AJ, Gasbarro R, Rhoads AC, Lobecker E, Sowers D, Chaytor JD, Morrison CL, Weinnig AM, Brooke S, Lunden JJ, Mienis F, Joye SB, Quattrini AM, Sutton TT, McFadden CS, Bourque JR, McClain-Counts JP, Andrews BD, Betters MJ, Etnoyer PJ, Wolff GA, Bernard BB, Brooks JM, Rasser MK, Adams C. Expanding our view of the cold-water coral niche and accounting of the ecosystem services of the reef habitat. Sci Rep 2023; 13:19482. [PMID: 37945613 PMCID: PMC10636194 DOI: 10.1038/s41598-023-45559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Coral reefs are iconic ecosystems that support diverse, productive communities in both shallow and deep waters. However, our incomplete knowledge of cold-water coral (CWC) niche space limits our understanding of their distribution and precludes a complete accounting of the ecosystem services they provide. Here, we present the results of recent surveys of the CWC mound province on the Blake Plateau off the U.S. east coast, an area of intense human activity including fisheries and naval operations, and potentially energy and mineral extraction. At one site, CWC mounds are arranged in lines that total over 150 km in length, making this one of the largest reef complexes discovered in the deep ocean. This site experiences rapid and extreme shifts in temperature between 4.3 and 10.7 °C, and currents approaching 1 m s-1. Carbon is transported to depth by mesopelagic micronekton and nutrient cycling on the reef results in some of the highest nitrate concentrations recorded in the region. Predictive models reveal expanded areas of highly suitable habitat that currently remain unexplored. Multidisciplinary exploration of this new site has expanded understanding of the cold-water coral niche, improved our accounting of the ecosystem services of the reef habitat, and emphasizes the importance of properly managing these systems.
Collapse
Affiliation(s)
- Erik E Cordes
- Department of Biology, Temple University, Philadelphia, USA.
| | | | - Andrew J Davies
- Department of Biological Sciences and Graduate School of Oceanography, University of Rhode Island, Kingston, USA
| | - Ryan Gasbarro
- Department of Biology, Temple University, Philadelphia, USA
| | - Alexandria C Rhoads
- Department of Biological Sciences and Graduate School of Oceanography, University of Rhode Island, Kingston, USA
| | | | - Derek Sowers
- Ocean Exploration Trust, South Kingston, USA, Rhode Island
| | - Jason D Chaytor
- Woods Hole Coastal and Marine Science Center, U.S. Geological Survey, Woods Hole, USA
| | - Cheryl L Morrison
- Eastern Ecological Science Center, U.S. Geological Survey, Turner Falls, USA
| | - Alexis M Weinnig
- Department of Biology, Temple University, Philadelphia, USA
- Eastern Ecological Science Center, U.S. Geological Survey, Turner Falls, USA
| | - Sandra Brooke
- Coastal and Marine Laboratory, Florida State University, Tallahassee, USA
| | - Jay J Lunden
- Department of Biology, Temple University, Philadelphia, USA
| | - Furu Mienis
- Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Samantha B Joye
- Department of Marine Science, University of Georgia, Athens, USA
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Washington, USA
| | - Tracey T Sutton
- Department of Marine and Environmental Sciences, Nova Southeastern University, Fort Lauderdale, USA
| | | | - Jill R Bourque
- U.S. Geological Survey Wetland and Aquatic Research Center, Lafayette, USA
| | | | - Brian D Andrews
- Woods Hole Coastal and Marine Science Center, U.S. Geological Survey, Woods Hole, USA
| | | | - Peter J Etnoyer
- Deep Coral Ecology Lab, NOAA National Centers for Coastal Ocean Science, Charleston, USA
| | | | | | | | - Michael K Rasser
- Division of Environmental Sciences, Bureau of Ocean Energy Management, Washington, USA
| | - Caitlin Adams
- NOAA Office of Ocean Exploration & Research, Silver Spring, MD, USA
| |
Collapse
|
6
|
Maier SR, Brooke S, De Clippele LH, de Froe E, van der Kaaden AS, Kutti T, Mienis F, van Oevelen D. On the paradox of thriving cold-water coral reefs in the food-limited deep sea. Biol Rev Camb Philos Soc 2023; 98:1768-1795. [PMID: 37236916 DOI: 10.1111/brv.12976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
The deep sea is amongst the most food-limited habitats on Earth, as only a small fraction (<4%) of the surface primary production is exported below 200 m water depth. Here, cold-water coral (CWC) reefs form oases of life: their biodiversity compares with tropical coral reefs, their biomass and metabolic activity exceed other deep-sea ecosystems by far. We critically assess the paradox of thriving CWC reefs in the food-limited deep sea, by reviewing the literature and open-access data on CWC habitats. This review shows firstly that CWCs typically occur in areas where the food supply is not constantly low, but undergoes pronounced temporal variation. High currents, downwelling and/or vertically migrating zooplankton temporally boost the export of surface organic matter to the seabed, creating 'feast' conditions, interspersed with 'famine' periods during the non-productive season. Secondly, CWCs, particularly the most common reef-builder Desmophyllum pertusum (formerly known as Lophelia pertusa), are well adapted to these fluctuations in food availability. Laboratory and in situ measurements revealed their dietary flexibility, tissue reserves, and temporal variation in growth and energy allocation. Thirdly, the high structural and functional diversity of CWC reefs increases resource retention: acting as giant filters and sustaining complex food webs with diverse recycling pathways, the reefs optimise resource gains over losses. Anthropogenic pressures, including climate change and ocean acidification, threaten this fragile equilibrium through decreased resource supply, increased energy costs, and dissolution of the calcium-carbonate reef framework. Based on this review, we suggest additional criteria to judge the health of CWC reefs and their chance to persist in the future.
Collapse
Affiliation(s)
- Sandra R Maier
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, Nuuk, 3900, Greenland
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| | - Sandra Brooke
- Coastal & Marine Laboratory, Florida State University, 3618 Coastal Highway 98, St. Teresa, FL, 32327, USA
| | - Laurence H De Clippele
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Grant Institute, King's Buildings, Edinburgh, EH9 3FE, UK
| | - Evert de Froe
- Centre for Fisheries Ecosystem Research, Fisheries and Marine Institute at Memorial University of Newfoundland, 155 Ridge Rd, St. John's, NL A1C 5R3, Newfoundland and Labrador, Canada
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, Den Burg (Texel), 1790 AB, The Netherlands
| | - Anna-Selma van der Kaaden
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| | - Tina Kutti
- Institute of Marine Research (IMR), PO box 1870 Nordnes, Bergen, NO-5817, Norway
| | - Furu Mienis
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, Den Burg (Texel), 1790 AB, The Netherlands
| | - Dick van Oevelen
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| |
Collapse
|
7
|
Vinha B, Rossi S, Gori A, Hanz U, Pennetta A, De Benedetto GE, Mienis F, Huvenne VAI, Hebbeln D, Wienberg C, Titschack J, Freiwald A, Piraino S, Orejas C. Trophic ecology of Angolan cold-water coral reefs (SE Atlantic) based on stable isotope analyses. Sci Rep 2023; 13:9933. [PMID: 37336945 DOI: 10.1038/s41598-023-37035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
Cold-water coral (CWC) reefs of the Angolan margin (SE Atlantic) are dominated by Desmophyllum pertusum and support a diverse community of associated fauna, despite hypoxic conditions. In this study, we use carbon and nitrogen stable isotope analyses (δ13C and δ15N) to decipher the trophic network of this relatively unknown CWC province. Although fresh phytodetritus is available to the reef, δ15N signatures indicate that CWCs (12.90 ± 1.00 ‰) sit two trophic levels above Suspended Particulate Organic Matter (SPOM) (4.23 ± 1.64 ‰) suggesting that CWCs are highly reliant on an intermediate food source, which may be zooplankton. Echinoderms and the polychaete Eunice norvegica occupy the same trophic guild, with high δ13C signatures (-14.00 ± 1.08 ‰) pointing to a predatory feeding behavior on CWCs and sponges, although detrital feeding on 13C enriched particles might also be important for this group. Sponges presented the highest δ15N values (20.20 ± 1.87 ‰), which could be due to the role of the sponge holobiont and bacterial food in driving intense nitrogen cycling processes in sponges' tissue, helping to cope with the hypoxic conditions of the reef. Our study provides first insights to understand trophic interactions of CWC reefs under low-oxygen conditions.
Collapse
Affiliation(s)
- Beatriz Vinha
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, 73100, Lecce, Italy.
- Hanse Wissenschaftskolleg - Institute for Advanced Study, 27753, Delmenhorst, Germany.
| | - Sergio Rossi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, 73100, Lecce, Italy
- Instituto de Ciências Do Mar, LABOMAR, Universidade Federal do Ceará, Fortaleza, 60165-081, Brazil
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196, Rome, Italy
| | - Andrea Gori
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, 73100, Lecce, Italy
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Recerca de La Biodiversitat (IRBio), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Ulrike Hanz
- Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research, Texel, 1790AB, the Netherlands
- Bentho-Pelagic Processes, Alfred Wegener Institute for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Antonio Pennetta
- Laboratorio di Spettrometria di Massa Analitica e Isotopica, Dipartimento di Beni Culturali, Università del Salento, 73100, Lecce, Italy
| | - Giuseppe E De Benedetto
- Laboratorio di Spettrometria di Massa Analitica e Isotopica, Dipartimento di Beni Culturali, Università del Salento, 73100, Lecce, Italy
| | - Furu Mienis
- Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research, Texel, 1790AB, the Netherlands
| | - Veerle A I Huvenne
- Hanse Wissenschaftskolleg - Institute for Advanced Study, 27753, Delmenhorst, Germany
- Ocean BioGeosciences, National Oceanography Centre, Southampton, S014 3ZH, UK
| | - Dierk Hebbeln
- MARUM - Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | - Claudia Wienberg
- MARUM - Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | - Jürgen Titschack
- MARUM - Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
- Senckenberg Am Meer, Marine Research Department, 26382, Wilhelmshaven, Germany
| | - André Freiwald
- Senckenberg Am Meer, Marine Research Department, 26382, Wilhelmshaven, Germany
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, 73100, Lecce, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196, Rome, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Covadonga Orejas
- Hanse Wissenschaftskolleg - Institute for Advanced Study, 27753, Delmenhorst, Germany
- Instituto Español de Oceanografía, Centro Oceanográfico de Gijón, (IEO-CSIC), 33212, Gijón, Spain
| |
Collapse
|
8
|
Osman EO, Vohsen SA, Girard F, Cruz R, Glickman O, Bullock LM, Anderson KE, Weinnig AM, Cordes EE, Fisher CR, Baums IB. Capacity of deep-sea corals to obtain nutrition from cold seeps aligned with microbiome reorganization. GLOBAL CHANGE BIOLOGY 2023; 29:189-205. [PMID: 36271605 PMCID: PMC10092215 DOI: 10.1111/gcb.16447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp. type B3 that live near and far from visual signs of currently active seepage at five sites in the deep Gulf of Mexico. We tested whether these corals rely on chemosynthetically-derived food in seep habitats and how the proximity to cold seeps may influence; (i) coral colony traits (i.e., health status, growth rate, regrowth after sampling, and branch loss) and associated epifauna, (ii) associated microbiome, and (iii) host transcriptomes. Stable isotope data showed that many coral colonies utilized chemosynthetically derived food, but the feeding strategy differed by coral species. The microbiome composition of C. delta, unlike Paramuricea sp., varied significantly between seep and non-seep colonies and both coral species were associated with various sulfur-oxidizing bacteria (SUP05). Interestingly, the relative abundances of SUP05 varied among seep and non-seep colonies and were strongly correlated with carbon and nitrogen stable isotope values. In contrast, the proximity to cold seeps did not have a measurable effect on gene expression, colony traits, or associated epifauna in coral species. Our work provides the first evidence that some corals may gain benefits from living near cold seeps with apparently limited costs to the colonies. Cold seeps provide not only hard substrate but also food to cold-water corals. Furthermore, restructuring of the microbiome communities (particularly SUP05) is likely the key adaptive process to aid corals in utilizing seepage-derived carbon. This highlights that those deep-sea corals may upregulate particular microbial symbiont communities to cope with environmental gradients.
Collapse
Affiliation(s)
- Eslam O. Osman
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Marine Biology LabZoology Department, Faculty of ScienceAl‐Azhar UniversityCairoEgypt
- Red Sea Research Center (RSRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Samuel A. Vohsen
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Fanny Girard
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
| | - Rafaelina Cruz
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Orli Glickman
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Lena M. Bullock
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Kaitlin E. Anderson
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | | | | | - Charles R. Fisher
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Iliana B. Baums
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)AmmerländerHeerstraße 231, 26129 OldenburgGermany
| |
Collapse
|
9
|
Hanz U, Riekenberg P, de Kluijver A, van der Meer M, Middelburg JJ, de Goeij JM, Bart MC, Wurz E, Colaço A, Duineveld G, Reichart G, Rapp H, Mienis F. The important role of sponges in carbon and nitrogen cycling in a deep‐sea biological hotspot. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ulrike Hanz
- NIOZ‐Royal Netherlands Institute for Sea Research, Den Burg Texel Netherlands
| | - Philip Riekenberg
- NIOZ‐Royal Netherlands Institute for Sea Research, Den Burg Texel Netherlands
| | - Anna de Kluijver
- Department of Earth Sciences Utrecht University Utrecht Netherlands
| | - Marcel van der Meer
- NIOZ‐Royal Netherlands Institute for Sea Research, Den Burg Texel Netherlands
| | | | - Jasper M. de Goeij
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Martijn C. Bart
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Erik Wurz
- Wageningen University and Research Department of Animal Sciences Wageningen Netherlands
| | | | - Gerard Duineveld
- NIOZ‐Royal Netherlands Institute for Sea Research, Den Burg Texel Netherlands
| | - Gert‐Jan Reichart
- NIOZ‐Royal Netherlands Institute for Sea Research, Den Burg Texel Netherlands
- Department of Earth Sciences Utrecht University Utrecht Netherlands
| | - Hans‐Tore Rapp
- Department of Biology and K.G. Jebsen Centre for Deep Sea Research University of Bergen Bergen Norway
| | - Furu Mienis
- NIOZ‐Royal Netherlands Institute for Sea Research, Den Burg Texel Netherlands
| |
Collapse
|
10
|
Godefroid M, Hédouin L, Mercière A, Dubois P. Thermal stress responses of the antipatharian Stichopathes sp. from the mesophotic reef of Mo'orea, French Polynesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153094. [PMID: 35051469 DOI: 10.1016/j.scitotenv.2022.153094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Antipatharians, also called black corals, are present in almost all oceans of the world, until extreme depths. In several regions, they aggregate in higher densities to form black coral beds that support diverse animal communities and create biodiversity hotspots. These recently discovered ecosystems are currently threatened by fishing activities and illegal harvesting for commercial purposes. Despite this, studies dedicated to the physiology of antipatharians are scarce and their responses to global change stressors have remained hardly explored since recently. Here, we present the first study on the physiological responses of a mesophotic antipatharian Stichopathes sp. (70-90 m) to thermal stress through a 16-d laboratory exposure (from 26 to 30.5 °C). Oxygen consumption measurements allowed identifying the physiological tipping point of Stichopathes sp. (Topt = 28.3 °C; 2.7 °C above mean ambient condition). Our results follow theoretical predictions as performances start to decrease beyond Topt, with lowered oxygen consumption rates, impairment of the healing capacities, increased probability of tissue necrosis and stress responses activated as a function of temperature (i.e. increase in mucocyte density and total antioxidant capacity). Altogether, our work indicates that Stichopathes sp. lives at suboptimal performances during the coldest months of the year, but also that it is likely to have low acclimatization capacity and a narrow thermal breadth.
Collapse
Affiliation(s)
- Mathilde Godefroid
- Laboratoire de Biologie marine, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/15, 1050 Bruxelles, Belgium.
| | - Laetitia Hédouin
- PSL Research University: EPHE-CNRS-UPVD, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Mo'orea, French Polynesia; Laboratoire d'Excellence « CORAIL», Mo'orea, French Polynesia
| | - Alexandre Mercière
- PSL Research University: EPHE-CNRS-UPVD, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Mo'orea, French Polynesia; Laboratoire d'Excellence « CORAIL», Mo'orea, French Polynesia
| | - Philippe Dubois
- Laboratoire de Biologie marine, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/15, 1050 Bruxelles, Belgium
| |
Collapse
|
11
|
Quintanilla E, Rodrigues CF, Henriques I, Hilário A. Microbial Associations of Abyssal Gorgonians and Anemones (>4,000 m Depth) at the Clarion-Clipperton Fracture Zone. Front Microbiol 2022; 13:828469. [PMID: 35432234 PMCID: PMC9006452 DOI: 10.3389/fmicb.2022.828469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/18/2022] [Indexed: 01/04/2023] Open
Abstract
Deep coral-dominated communities play paramount roles in benthic environments by increasing their complexity and biodiversity. Coral-associated microbes are crucial to maintain fitness and homeostasis at the holobiont level. However, deep-sea coral biology and their associated microbiomes remain largely understudied, and less from remote and abyssal environments such as those in the Clarion-Clipperton Fracture Zone (CCZ) in the tropical Northeast (NE) Pacific Ocean. Here, we study microbial-associated communities of abyssal gorgonian corals and anemones (>4,000 m depth) in the CCZ; an area harboring the largest known global reserve of polymetallic nodules that are commercially interesting for the deep-sea nodule mining. Coral samples (n = 25) belonged to Isididae and Primnoidae families, while anemones (n = 4) to Actinostolidae family. Significant differences in bacterial community compositions were obtained between these three families, despite sharing similar habitats. Anemones harbored bacterial microbiomes composed mainly of Hyphomicrobiaceae, Parvibaculales, and Pelagibius members. Core microbiomes of corals were mainly dominated by different Spongiibacteraceae and Terasakiellaceae bacterial members, depending on corals' taxonomy. Moreover, the predicted functional profiling suggests that deep-sea corals harbor bacterial communities that allow obtaining additional energy due to the scarce availability of nutrients. This study presents the first report of microbiomes associated with abyssal gorgonians and anemones and will serve as baseline data and crucial insights to evaluate and provide guidance on the impacts of deep-sea mining on these key abyssal communities.
Collapse
Affiliation(s)
- Elena Quintanilla
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Clara F. Rodrigues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Isabel Henriques
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
12
|
The marine nitrogen cycle: new developments and global change. Nat Rev Microbiol 2022; 20:401-414. [PMID: 35132241 DOI: 10.1038/s41579-022-00687-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/25/2022]
Abstract
The ocean is home to a diverse and metabolically versatile microbial community that performs the complex biochemical transformations that drive the nitrogen cycle, including nitrogen fixation, assimilation, nitrification and nitrogen loss processes. In this Review, we discuss the wealth of new ocean nitrogen cycle research in disciplines from metaproteomics to global biogeochemical modelling and in environments from productive estuaries to the abyssal deep sea. Influential recent discoveries include new microbial functional groups, novel metabolic pathways, original conceptual perspectives and ground-breaking analytical capabilities. These emerging research directions are already contributing to urgent efforts to address the primary challenge facing marine microbiologists today: the unprecedented onslaught of anthropogenic environmental change on marine ecosystems. Ocean warming, acidification, nutrient enrichment and seawater stratification have major effects on the microbial nitrogen cycle, but widespread ocean deoxygenation is perhaps the most consequential for the microorganisms involved in both aerobic and anaerobic nitrogen transformation pathways. In turn, these changes feed back to the global cycles of greenhouse gases such as carbon dioxide and nitrous oxide. At a time when our species casts a lengthening shadow across all marine ecosystems, timely new advances offer us unique opportunities to understand and better predict human impacts on nitrogen biogeochemistry in the changing ocean of the Anthropocene.
Collapse
|
13
|
Madrepora oculata forms large frameworks in hypoxic waters off Angola (SE Atlantic). Sci Rep 2021; 11:15170. [PMID: 34312452 PMCID: PMC8313707 DOI: 10.1038/s41598-021-94579-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022] Open
Abstract
This study aims to map the occurrence and distribution of Madrepora oculata and to quantify density and colony sizes across recently discovered coral mounds off Angola. Despite the fact that the Angolan populations of M. oculata thrive under extreme hypoxic conditions within the local oxygen minimum zone, they reveal colonies with remarkable heights of up to 1250 mm—which are the tallest colonies ever recorded for this species—and average densities of 0.53 ± 0.37 (SD) colonies m−2. This is particularly noteworthy as these values are comparable to those documented in areas without any oxygen constraints. The results of this study show that the distribution pattern documented for M. oculata appear to be linked to the specific regional environmental conditions off Angola, which have been recorded in the direct vicinity of the thriving coral community. Additionally, an estimated average colony age of 95 ± 76 (SD) years (total estimated age range: 16–369 years) indicates relatively old M. oculata populations colonizing the Angolan coral mounds. Finally, the characteristics of the Angolan populations are benchmarked and discussed in the light of the existing knowledge on M. oculata gained from the North Atlantic and Mediterranean Sea.
Collapse
|
14
|
Thompson HF, Gutierrez T. Detection of hydrocarbon-degrading bacteria on deepwater corals of the northeast Atlantic using CARD-FISH. J Microbiol Methods 2021; 187:106277. [PMID: 34237402 DOI: 10.1016/j.mimet.2021.106277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
Recently, studies have begun to identify oil-degrading bacteria and host-taxon specific bacterial assemblages associated with the coral holobiont, including deep-sea cold-water corals, which are thought to provide metabolic functions and additional carbon sources to their coral hosts. Here, we describe the identification of Marinobacter on the soft tissue of Lophelia pertusa coral polyps by Catalyzed Reporter Deposition Fluorescence in situ Hybridization (CARD-FISH). L. pertusa samples from three reef sites in the northeast Atlantic (Logachev, Mingulay and Pisces) were collected at depth by vacuum seal to eliminate contamination issues. After decalcification, histological processing and sagittal sectioning of the soft coral polyp tissues, the 16S rRNA-targeted oligonucleotide HRP-labelled probe Mrb-0625-a, and Cyanine 3 (Cy3)-labelled tyramides, were used to identify members of the hydrocarbon-degrading genus Marinobacter. Mrb-0625-a-hybridized bacterial cell signals were detected in different anatomical sites of all polyps collected from each of the three reef sites, suggesting a close, possibly intimate, association between them, but the purpose of which remains unknown. We posit that Marinobacter, and possibly other hydrocarbon-degrading bacteria associated with Lophelia, may confer the coral with the ability to cope with toxic levels of hydrocarbons in regions of natural oil seepage and where there is an active oil and gas industry presence.
Collapse
Affiliation(s)
- Haydn Frank Thompson
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.
| |
Collapse
|
15
|
Mutalipassi M, Riccio G, Mazzella V, Galasso C, Somma E, Chiarore A, de Pascale D, Zupo V. Symbioses of Cyanobacteria in Marine Environments: Ecological Insights and Biotechnological Perspectives. Mar Drugs 2021; 19:227. [PMID: 33923826 PMCID: PMC8074062 DOI: 10.3390/md19040227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/07/2023] Open
Abstract
Cyanobacteria are a diversified phylum of nitrogen-fixing, photo-oxygenic bacteria able to colonize a wide array of environments. In addition to their fundamental role as diazotrophs, they produce a plethora of bioactive molecules, often as secondary metabolites, exhibiting various biological and ecological functions to be further investigated. Among all the identified species, cyanobacteria are capable to embrace symbiotic relationships in marine environments with organisms such as protozoans, macroalgae, seagrasses, and sponges, up to ascidians and other invertebrates. These symbioses have been demonstrated to dramatically change the cyanobacteria physiology, inducing the production of usually unexpressed bioactive molecules. Indeed, metabolic changes in cyanobacteria engaged in a symbiotic relationship are triggered by an exchange of infochemicals and activate silenced pathways. Drug discovery studies demonstrated that those molecules have interesting biotechnological perspectives. In this review, we explore the cyanobacterial symbioses in marine environments, considering them not only as diazotrophs but taking into consideration exchanges of infochemicals as well and emphasizing both the chemical ecology of relationship and the candidate biotechnological value for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Mirko Mutalipassi
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Valerio Mazzella
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Christian Galasso
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Emanuele Somma
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 34127 Trieste, Italy;
- Department of Marine Biotechnology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Antonia Chiarore
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy;
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Valerio Zupo
- Department of Marine Biotechnology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077 Naples, Italy;
| |
Collapse
|
16
|
van de Water JAJM, Coppari M, Enrichetti F, Ferrier-Pagès C, Bo M. Local Conditions Influence the Prokaryotic Communities Associated With the Mesophotic Black Coral Antipathella subpinnata. Front Microbiol 2020; 11:537813. [PMID: 33123099 PMCID: PMC7573217 DOI: 10.3389/fmicb.2020.537813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
Black corals are important habitat-forming species in the mesophotic and deep-sea zones of the world’s oceans because of their arborescent colony structure and tendency to form animal forests. Although we have started unraveling the ecology of mesophotic black corals, the importance of the associated microbes to their health has remained unexplored. Here, we provide in-depth assessments of black coral-microbe symbioses by investigating the spatial and temporal stability of these associations, and make comparisons with a sympatric octocoral with similar colony structure. To this end, we collected samples of Antipathella subpinnata colonies from three mesophotic shoals situated along the Ligurian Coast of the Mediterranean Sea (Bordighera, Portofino, Savona) in the spring of 2017. At the Portofino shoal, samples of A. subpinnata and the gorgonian Eunicella cavolini were collected in November 2016 and May 2017. Bacterial communities were profiled using 16S rRNA gene amplicon sequencing. The bacterial community of E. cavolini was consistently dominated by Endozoicomonas. Contrastingly, the black coral microbiome was more diverse, and was primarily composed of numerous Bacteroidetes, Alpha- and Gammaproteobacterial taxa, putatively involved in all steps of the nitrogen and sulfur cycles. Compositional differences in the A. subpinnata microbiome existed between all locations and both time points, and no phylotypes were consistently associated with A. subpinnata. This highlights that local conditions may influence the bacterial community structure and potentially nutrient cycling within the A. subpinnata holobiont. But it also suggests that this coral holobiont possesses a high degree of microbiome flexibility, which may be a mechanism to acclimate to environmental change.
Collapse
Affiliation(s)
| | - Martina Coppari
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Francesco Enrichetti
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy
| | | | - Marzia Bo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| |
Collapse
|
17
|
Sun X, Kong T, Häggblom MM, Kolton M, Li F, Dong Y, Huang Y, Li B, Sun W. Chemolithoautotropic Diazotrophy Dominates the Nitrogen Fixation Process in Mine Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6082-6093. [PMID: 32216300 DOI: 10.1021/acs.est.9b07835] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nutrient deficiency, especially bio-available nitrogen deficiency, often impedes the bioremediation efforts of mining generated tailings. Biological nitrogen fixation is a critical process necessary for the initial nitrogen buildup in tailings. Current knowledge regarding the diazotrophs that inhabit tailings is still in its infancy. Therefore, in this study, a comprehensive investigation combining geochemical characterization, sequence analyses, molecular techniques, and activity measurements was conducted to characterize the diazotrophic community residing in tailing environments. Significant differences between tailings and their adjacent soils in prokaryotic and diazotrophic communities were detected. Meanwhile, strong and significant correlations between the absolute abundance of the nitrogen fixation (nifH), carbon fixation (cbbL), sulfur oxidation (soxB), and arsenite oxidation (aioA) genes were observed in the tailings but not in the soils. The reconstructed nif-containing metagenome-assembled genomes (MAGs) suggest that the carbon fixation and sulfur oxidation pathways were important for potential diazotrophs inhabiting the tailings. Activity measurements further confirmed that diazotrophs inhabiting tailings preferentially use inorganic electron donors (e.g., elemental sulfur) compared to organic electron donors (e.g., sucrose), while diazotrophs inhabiting soils preferred organic carbon sources. Collectively, these findings suggest that chemolithoautotrophic diazotrophs may play essential roles in acquiring nutrients and facilitating ecological succession in tailings.
Collapse
Affiliation(s)
- Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Tianle Kong
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Max Kolton
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Yuqing Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| |
Collapse
|
18
|
Abstract
Nitrogen fixation, the reduction of atmospheric dinitrogen gas (N2) to ammonia, is critical for biological productivity but is difficult to study in the vast expanse of the global ocean. Decades of field studies and the infusion of molecular biological, genomic, isotopic, and geochemical modeling approaches have led to new paradigms and questions. The discovery of previously unknown N2-fixing (diazotrophic) microorganisms and unusual physiological adaptations, combined with diagnostic distributions of nutrients and their isotopes as well as measured and modeled biogeographic patterns, have revolutionized our understanding of marine N2 fixation and its role in the global nitrogen cycle. Anthropogenic upper-ocean warming, increased dissolved carbon dioxide, and acidification will affect the distribution and relative importance of specific subgroups of N2 fixers in the sea; these changes have implications for foodwebs and biogeochemical cycles.
Collapse
Affiliation(s)
- Jonathan P. Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, CA 95003, USA
| | - Douglas G. Capone
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
19
|
Galand PE, Remize M, Meistertzheim AL, Pruski AM, Peru E, Suhrhoff TJ, Le Bris N, Vétion G, Lartaud F. Diet shapes cold-water corals bacterial communities. Environ Microbiol 2019; 22:354-368. [PMID: 31696646 DOI: 10.1111/1462-2920.14852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 01/17/2023]
Abstract
Different cold-water coral (CWC) species harbour distinct microbial communities and the community composition is thought to be linked to the ecological strategies of the host. Here we test whether diet shapes the composition of bacterial communities associated with CWC. We compared the microbiomes of two common CWC species in aquaria, Lophelia pertusa and Madrepora oculata, when they were either starved, or fed respectively with a carnivorous diet, two different herbivorous diets, or a mix of the 3. We targeted both the standing stock (16S rDNA) and the active fraction (16S rRNA) of the bacterial communities and showed that in both species, the corals' microbiome was specific to the given diet. A part of the microbiome remained, however, species-specific, which indicates that the microbiome's plasticity is framed by the identity of the host. In addition, the storage lipid content of the coral tissue showed that different diets had different effects on the corals' metabolisms. The combined results suggest that L. pertusa may be preying preferentially on zooplankton while M. oculata may in addition use phytoplankton and detritus. The results cast a new light on coral microbiomes as they indicate that a portion of the CWC's bacterial community could represent a food influenced microbiome.
Collapse
Affiliation(s)
- Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Marine Remize
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Anne-Leila Meistertzheim
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Audrey M Pruski
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Tim Jesper Suhrhoff
- Jacobs University, Campus Ring 1, 28759, Bremen, Germany.,Department of Earth Sciences, ETH Zürich, Institute of Geochemistry and Petrology, Clausiusstrasse 25, 8092, Zürich, Switzerland
| | - Nadine Le Bris
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Gilles Vétion
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| |
Collapse
|
20
|
Genomic repertoire of Mameliella alba Ep20 associated with Symbiodinium from the endemic coral Mussismilia braziliensis. Symbiosis 2019. [DOI: 10.1007/s13199-019-00655-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Bednarz VN, van de Water JAJM, Rabouille S, Maguer JF, Grover R, Ferrier-Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol 2018; 21:480-495. [PMID: 30452101 DOI: 10.1111/1462-2920.14480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Dinitrogen (N2 ) fixing bacteria (diazotrophs) are an important source of new nitrogen in oligotrophic environments and represent stable members of the microbiome in tropical corals, while information on corals from temperate oligotrophic regions is lacking. Therefore, this study provides new insights into the diversity and activity of diazotrophs associated with the temperate coral Oculina patagonica from the Mediterranean Sea by combining metabarcoding sequencing of amplicons of both the 16S rRNA and nifH genes and 15 N2 stable isotope tracer analysis to assess diazotroph-derived nitrogen (DDN) assimilation by the coral. Results show that the diazotrophic community of O. patagonica is dominated by autotrophic bacteria (i.e. Cyanobacteria and Chlorobia). The majority of DDN was assimilated into the tissue and skeletal matrix, and DDN assimilation significantly increased in bleached corals. Thus, diazotrophs may constitute an additional nitrogen source for the coral host, when nutrient exchange with Symbiodinium is disrupted (e.g. bleaching) and external food supply is limited (e.g. oligotrophic summer season). Furthermore, we hypothesize that DDN can facilitate the fast proliferation of endolithic algae, which provide an alternative carbon source for bleached O. patagonica. Overall, O. patagonica could serve as a good model for investigating the importance of diazotrophs in coral recovery from bleaching.
Collapse
Affiliation(s)
- Vanessa N Bednarz
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Jeroen A J M van de Water
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Sophie Rabouille
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire océanologique, F-06230, Villefranche/mer, France.,CNRS, UMR 7093, LOV, Observatoire océanologique, F-06230, Villefranche/mer, France
| | - Jean-François Maguer
- LEMAR - UMR 6539 UBO/CNRS/IRD, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, Plouzané 29280, France
| | - Renaud Grover
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Christine Ferrier-Pagès
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| |
Collapse
|
22
|
Novel Autotrophic Organisms Contribute Significantly to the Internal Carbon Cycling Potential of a Boreal Lake. mBio 2018; 9:mBio.00916-18. [PMID: 30108167 PMCID: PMC6094481 DOI: 10.1128/mbio.00916-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxygen-stratified lakes are typical for the boreal zone and also a major source of greenhouse gas emissions in the region. Due to shallow light penetration, restricting the growth of phototrophic organisms, and large allochthonous organic carbon inputs from the catchment area, the lake metabolism is expected to be dominated by heterotrophic organisms. In this study, we test this assumption and show that the potential for autotrophic carbon fixation and internal carbon cycling is high throughout the water column. Further, we show that during the summer stratification carbon fixation can exceed respiration in a boreal lake even below the euphotic zone. Metagenome-assembled genomes and 16S profiling of a vertical transect of the lake revealed multiple organisms in an oxygen-depleted compartment belonging to novel or poorly characterized phyla. Many of these organisms were chemolithotrophic, potentially deriving their energy from reactions related to sulfur, iron, and nitrogen transformations. The community, as well as the functions, was stratified along the redox gradient. The autotrophic potential in the lake metagenome below the oxygenic zone was high, pointing toward a need for revising our concepts of internal carbon cycling in boreal lakes. Further, the importance of chemolithoautotrophy for the internal carbon cycling suggests that many predicted climate change-associated fluctuations in the physical properties of the lake, such as altered mixing patterns, likely have consequences for the whole-lake metabolism even beyond the impact to the phototrophic community. Autotrophic organisms at the base of the food web are the only life form capable of turning inorganic carbon into the organic form, facilitating the survival of all other organisms. In certain environments, the autotrophic production is limited by environmental conditions and the food web is supported by external carbon inputs. One such environment is stratified boreal lakes, which are one of the biggest natural sources of greenhouse gas emissions in the boreal region. Thus, carbon cycling in these habitats is of utmost importance for the future climate. Here, we demonstrate a high potential for internal carbon cycling via phototrophic and novel chemolithotrophic organisms in the anoxic, poorly illuminated layers of a boreal lake. Our results significantly increase our knowledge on the microbial communities and their metabolic potential in oxygen-depleted freshwaters and help to understand and predict how climate change-induced alterations could impact the lake carbon dynamics.
Collapse
|
23
|
Niche overlap between a cold-water coral and an associated sponge for isotopically-enriched particulate food sources. PLoS One 2018; 13:e0194659. [PMID: 29579118 PMCID: PMC5868806 DOI: 10.1371/journal.pone.0194659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/07/2018] [Indexed: 11/19/2022] Open
Abstract
The cold-water coral Lophelia pertusa is an ecosystem engineer that builds reef structures on the seafloor. The interaction of the reef topography with hydrodynamics is known to enhance the supply of suspended food sources to the reef communities. However, the reef framework is also a substrate for other organisms that may compete for the very same suspended food sources. Here, we used the passive suspension feeder Lophelia pertusa and the active suspension feeding sponge Hymedesmia coriacea as model organisms to study niche overlap using isotopically-enriched algae and bacteria as suspended food sources. The coral and the sponge were fed with a combination of 13C-enriched bacteria/15N-enriched algae or 15N-enriched bacteria/13C-enriched algae, which was subsequently traced into bulk tissue, coral skeleton and dissolved inorganic carbon (i.e. respiration). Both the coral and the sponge assimilated and respired the suspended bacteria and algae, indicating niche overlap between these species. The assimilation rates of C and N into bulk tissue of specimens incubated separately were not significantly different from assimilation rates during incubations with co-occurring corals and sponges. Hence, no evidence for exploitative resource competition was found, but this is likely due to the saturating experimental food concentration that was used. We do not rule out that exploitative competition occurs in nature during periods of low food concentrations. Food assimilation and respiration rates of the sponge were almost an order of magnitude higher than those of the cold-water coral. We hypothesize that the active suspension feeding mode of the sponge explains the observed differences in resource uptake as opposed to the passive suspension feeding mode of the cold-water coral. These feeding mode differences may set constraints on suitable habitats for cold-water corals and sponges in their natural habitats.
Collapse
|
24
|
Abstract
Tropical scleractinian corals are dependent to varying degrees on their photosymbiotic partners. Under normal levels of temperature and irradiance, they can provide most, but not all, of the host's nutritional requirements. Heterotrophy is required to adequately supply critical nutrients, especially nitrogen and phosphorus. Scleractinian corals are known as mesozooplankton predators, and most employ tentacle capture. The ability to trap nano- and picoplankton has been demonstrated by several coral species and appears to fulfill a substantial proportion of their daily metabolic requirements. The mechanism of capture likely involves mucociliary activity or extracoelenteric digestion, but the relative contribution of these avenues have not been evaluated. Many corals employ mesenterial filaments to procure food in various forms, but the functional morphology and chemical activities of these structures have been poorly documented. Corals are capable of acquiring nutrition from particulate and dissolved organic matter, although the degree of reliance on these sources generally has not been established. Corals, including tropical, deep- and cold-water species, are known as a major source of carbon and other nutrients for benthic communities through the secretion of mucus, despite wide variation in chemical composition. Mucus is cycled through the planktonic microbial loop, the benthos, and the microbial community within the sediments. The consensus indicates that the dissolved organic fraction of mucus usually exceeds the insoluble portion, and both serve as sources for the growth of nano- and picoplankton. As many corals employ mucus to trap food, a portion is taken back during feeding. The net gain or loss has not been evaluated, although production is generally thought to exceed consumption. The same is true for the net uptake and loss of dissolved organic matter by mucus secretion. Octocorals are thought not to employ mucus capture or mesenterial filaments during feeding and generally rely on tentacular filtration of weakly swimming mesozooplankton, particulates, dissolved organic matter, and picoplankton. Nonsymbiotic species in the tropics favor phytoplankton and weakly swimming zooplankton. Azooxanthellate soft corals are opportunistic feeders and shift their diet according to the season from phyto- and nanoplankton in summer to primarily particulate organic matter (POM) in winter. Cold-water species favor POM, phytodetritus, microplankton, and larger zooplankton when available. Antipatharians apparently feed on mesozooplankton but also use mucus nets, possibly for capture of POM. Feeding modes in this group are poorly known.
Collapse
Affiliation(s)
- Walter M Goldberg
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
25
|
Baussant T, Nilsen M, Ravagnan E, Westerlund S, Ramanand S. Physiological responses and lipid storage of the coral Lophelia pertusa at varying food density. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:266-284. [PMID: 28569653 DOI: 10.1080/15287394.2017.1297274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite the importance of the cold-water coral Lophelia pertusa to deep-sea reef ecosystem functioning, current knowledge of key physiological responses to available food resources is scarce. Scenarios with varying food density may help to understand how corals deal with seasonal variations in the dark ocean and might be used to study consequences of anthropogenic activities potentially affecting food availability. Thus, the physiological responses of L. pertusa to varying food (Artemia salina nauplii) concentration, ranging from 20% to 300% of carbon equivalent turned over by basal coral respiration, were investigated. A starvation group was also included. Measurements of respiration, growth, mucus production, and energy reserves (storage fatty acids) were performed at several time intervals over 26 weeks. In general, data showed a stronger effect of experimental time on measured responses, but no significant influence of food density treatment. In starved corals, respiration rate declined to 52% of initial respiration, while skeleton growth rate was maintained at the same rate as Artemia-fed corals throughout the investigation. Mucus production measured as the sum of dissolved organic carbon (DOC) and particulate organic carbon (POC) was also similar across food treatments, but POC production exceeded that of DOC at the highest food density. No marked effect was observed on storage fatty acids. These results confirm that L. pertusa is highly resilient to environmental conditions with suboptimal food densities over a time scale of months. Regulation of several physiological processes, including respiration and mucus production, possibly in combination with an opportunistic feeding strategy, contributed to this tolerance to maintain viable corals. Thus, it appears that L. pertusa is well adapted to life in the deep sea.
Collapse
Affiliation(s)
- Thierry Baussant
- a Department of Environment , International Research Institute of Stavanger , Randaberg , Norway
| | - Marianne Nilsen
- a Department of Environment , International Research Institute of Stavanger , Randaberg , Norway
- b Department of Research and Development , Western Norway University of Applied Sciences (HVL), Campus Sogndal , Sogndal , Norway
| | - Elisa Ravagnan
- a Department of Environment , International Research Institute of Stavanger , Randaberg , Norway
| | - Stig Westerlund
- a Department of Environment , International Research Institute of Stavanger , Randaberg , Norway
| | - Sreerekha Ramanand
- a Department of Environment , International Research Institute of Stavanger , Randaberg , Norway
| |
Collapse
|
26
|
Kellogg CA, Goldsmith DB, Gray MA. Biogeographic Comparison of Lophelia-Associated Bacterial Communities in the Western Atlantic Reveals Conserved Core Microbiome. Front Microbiol 2017; 8:796. [PMID: 28522997 PMCID: PMC5415624 DOI: 10.3389/fmicb.2017.00796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
Over the last decade, publications on deep-sea corals have tripled. Most attention has been paid to Lophelia pertusa, a globally distributed scleractinian coral that creates critical three-dimensional habitat in the deep ocean. The bacterial community associated with L. pertusa has been previously described by a number of studies at sites in the Mediterranean Sea, Norwegian fjords, off Great Britain, and in the Gulf of Mexico (GOM). However, use of different methodologies prevents direct comparisons in most cases. Our objectives were to address intra-regional variation and to identify any conserved bacterial core community. We collected samples from three distinct colonies of L. pertusa at each of four locations within the western Atlantic: three sites within the GOM and one off the east coast of the United States. Amplicon libraries of 16S rRNA genes were generated using primers targeting the V4–V5 hypervariable region and 454 pyrosequencing. The dominant phylum was Proteobacteria (75–96%). At the family level, 80–95% of each sample was comprised of five groups: Pirellulaceae, Pseudonocardiaceae, Rhodobacteraceae, Sphingomonadaceae, and unclassified Oceanospirillales. Principal coordinate analysis based on weighted UniFrac distances showed a clear distinction between the GOM and Atlantic samples. Interestingly, the replicate samples from each location did not always cluster together, indicating there is not a strong site-specific influence. The core bacterial community, conserved in 100% of the samples, was dominated by the operational taxonomic units of genera Novosphingobium and Pseudonocardia, both known degraders of aromatic hydrocarbons. The sequence of another core member, Propionibacterium, was also found in prior studies of L. pertusa from Norway and Great Britain, suggesting a role as a conserved symbiont. By examining more than 40,000 sequences per sample, we found that GOM samples were dominated by the identified conserved core sequences, whereas open Atlantic samples had a much higher proportion of locally consistent bacteria. Further, predictive functional profiling highlights the potential for the L. pertusa microbiome to contribute to chemoautotrophy, nutrient cycling, and antibiotic production.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| | - Dawn B Goldsmith
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| | - Michael A Gray
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| |
Collapse
|
27
|
Röthig T, Yum LK, Kremb SG, Roik A, Voolstra CR. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Sci Rep 2017; 7:44714. [PMID: 28303925 PMCID: PMC5356181 DOI: 10.1038/srep44714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/13/2017] [Indexed: 11/16/2022] Open
Abstract
Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L-1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.
Collapse
Affiliation(s)
- Till Röthig
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lauren K. Yum
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Stephan G. Kremb
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Anna Roik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
28
|
The Assimilation of Diazotroph-Derived Nitrogen by Scleractinian Corals Depends on Their Metabolic Status. mBio 2017; 8:mBio.02058-16. [PMID: 28074021 PMCID: PMC5241398 DOI: 10.1128/mbio.02058-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tropical corals are associated with a diverse community of dinitrogen (N2)-fixing prokaryotes (diazotrophs) providing the coral an additional source of bioavailable nitrogen (N) in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN) by corals is still unknown. Here, in a series of 15N2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals’ metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m) corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM). Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals) assimilated significantly more DDN, which contributed up to 15% of the corals’ N demand (compared to 1% in shallow corals). Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater. Tropical corals are associated with specialized bacteria (i.e., diazotrophs) able to transform dinitrogen (N2) gas into a bioavailable form of nitrogen, but how much of this diazotroph-derived nitrogen (DDN) is assimilated by corals under different environmental conditions is still unknown. Here, we used 15N2 labeling to trace the fate of DDN within the coral symbiosis. We show that DDN is assimilated by both the animal host and the endosymbiotic algae. In addition, the amount of assimilated DDN was significantly greater in mesophotic, bleached, or phosphorus-enriched corals than in surface corals, which almost did not take up this nitrogen form. DDN can thus be of particular importance for the nutrient budget of corals whenever they are limited by the availability of other forms of dissolved nutrients.
Collapse
|
29
|
Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol 2016; 2:16193. [PMID: 27775698 DOI: 10.1038/nmicrobiol.2016.193] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/07/2016] [Indexed: 02/03/2023]
Abstract
The shallow water bivalve Codakia orbicularis lives in symbiotic association with a sulfur-oxidizing bacterium in its gills. The endosymbiont fixes CO2 and thus generates organic carbon compounds, which support the host's growth. To investigate the uncultured symbiont's metabolism and symbiont-host interactions in detail we conducted a proteogenomic analysis of purified bacteria. Unexpectedly, our results reveal a hitherto completely unrecognized feature of the C. orbicularis symbiont's physiology: the symbiont's genome encodes all proteins necessary for biological nitrogen fixation (diazotrophy). Expression of the respective genes under standard ambient conditions was confirmed by proteomics. Nitrogenase activity in the symbiont was also verified by enzyme activity assays. Phylogenetic analysis of the bacterial nitrogenase reductase NifH revealed the symbiont's close relationship to free-living nitrogen-fixing Proteobacteria from the seagrass sediment. The C. orbicularis symbiont, here tentatively named 'Candidatus Thiodiazotropha endolucinida', may thus not only sustain the bivalve's carbon demands. C. orbicularis may also benefit from a steady supply of fixed nitrogen from its symbiont-a scenario that is unprecedented in comparable chemoautotrophic symbioses.
Collapse
|
30
|
Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M, Kleiner M, Bulgheresi S, Mußmann M, Herbold C, Seah BKB, Antony CP, Liu D, Belitz A, Weber M. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol 2016; 2:16195. [PMID: 27775707 PMCID: PMC6872982 DOI: 10.1038/nmicrobiol.2016.195] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/07/2016] [Indexed: 12/04/2022]
Abstract
Chemosynthetic symbioses are partnerships between invertebrate animals
and chemosynthetic bacteria. The latter are the primary producers, providing most of
the organic carbon needed for the animal host's nutrition. We sequenced genomes of
the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species
encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic
symbiont was previously known to be capable of nitrogen fixation. We detected
nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and
proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric
nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability
to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic
habitats, where nitrogen availability often limits primary productivity. The chemosynthetic symbionts of the bivalve Loripes lucinalis and nematode Laxus
oneistus are found to encode nitrogen fixation genes, with evidence for
active nitrogen fixation.
Collapse
Affiliation(s)
- Jillian M Petersen
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry meets Microbiology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria.,Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen 28359, Germany
| | - Anna Kemper
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen 28359, Germany
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen 28359, Germany
| | - Ulisse Cardini
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry meets Microbiology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Matthijs van der Geest
- Centre for Marine Biodiversity, Exploitation and Conservation (MARBEC), UMR 9190, IRD-IFREMER-CNRS-UM, Université de Montpellier, Montpellier Cedex 5 34095, France.,Department of Coastal Systems and Utrecht University, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Manuel Kleiner
- Department of Geoscience, University of Calgary, 2500 University Drive Northwest, Alberta T2N 1N4, Canada
| | - Silvia Bulgheresi
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Marc Mußmann
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry meets Microbiology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Craig Herbold
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry meets Microbiology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Brandon K B Seah
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen 28359, Germany
| | - Chakkiath Paul Antony
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen 28359, Germany
| | - Dan Liu
- Department of Geoscience, University of Calgary, 2500 University Drive Northwest, Alberta T2N 1N4, Canada
| | - Alexandra Belitz
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry meets Microbiology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Miriam Weber
- HYDRA Institute for Marine Sciences, Elba Field Station, Campo nell'Elba, Livorno 54037, Italy
| |
Collapse
|
31
|
Kellogg CA, Ross SW, Brooke SD. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus. PeerJ 2016; 4:e2529. [PMID: 27703865 PMCID: PMC5047221 DOI: 10.7717/peerj.2529] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023] Open
Abstract
Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, US Geological Survey , St. Petersburg , FL , United States of America
| | - Steve W Ross
- Center for Marine Science, University of North Carolina at Wilmington , Wilmington , NC , United States of America
| | - Sandra D Brooke
- Coastal and Marine Laboratory, Florida State University , St. Teresa , FL , United States of America
| |
Collapse
|
32
|
Lawler SN, Kellogg CA, France SC, Clostio RW, Brooke SD, Ross SW. Coral-Associated Bacterial Diversity Is Conserved across Two Deep-Sea Anthothela Species. Front Microbiol 2016; 7:458. [PMID: 27092120 PMCID: PMC4820459 DOI: 10.3389/fmicb.2016.00458] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4–V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.
Collapse
Affiliation(s)
- Stephanie N Lawler
- College of Marine Science, University of South Florida, St. Petersburg FL, USA
| | - Christina A Kellogg
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg FL, USA
| | - Scott C France
- Department of Biology, University of Louisiana at Lafayette Lafayette, LA, USA
| | - Rachel W Clostio
- Department of Biology, University of Louisiana at Lafayette Lafayette, LA, USA
| | - Sandra D Brooke
- Coastal and Marine Laboratory, Florida State University, St. Teresa FL, USA
| | - Steve W Ross
- Center for Marine Science, University of North Carolina Wilmington Wilmington, NC, USA
| |
Collapse
|