1
|
Chen X, Lin W, Tortorella MD. Towards advanced regenerative therapeutics to tackle cardio-cerebrovascular diseases. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2025; 53:100520. [PMID: 40230658 PMCID: PMC11995107 DOI: 10.1016/j.ahjo.2025.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
The development of vascularized organoids as novel modelling tools of the human cardio-cerebrovascular system for preclinical research has become an essential platform for studying human vascularized tissues/organs for development of personalized therapeutics during recent decades. Organ-on-chip technology is promising for investigating physiological in vitro responses in drug screening development and advanced disease models. Vascularized tissue/organ-on-a-chip benefits every step of drug discovery pipeline as a screening tool with close human genome relevance to investigate human systems biology. Simultaneously, cardio-cerebrovascular-on-chip-integrated microfluidic system serves as an alternative to preclinical animal research for studying (patho-)physiological processes of human blood vessels during embryonic development and cardio-cerebrovascular disease. Integrated with next-generation techniques, such as three-dimensional bioprinting of both cells and matrix, may enable vascularized organoid-on-chip-based novel drug development as personalized therapeutics.
Collapse
Affiliation(s)
- Xi Chen
- Cardiovascular Research Institute & Department of Physiology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Weiping Lin
- Barts and The London School of Medicine and Dentistry, Queen Mary University, London, UK
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, CAS, Hong Kong SAR China
| | - Micky Daniel Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, CAS, Hong Kong SAR China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Kim H, Hong SH, Jeong HE, Han S, Ahn J, Kim JA, Yang JH, Oh HJ, Chung S, Lee SE. Microfluidic model for in vitro acute Toxoplasma gondii infection and transendothelial migration. Sci Rep 2022; 12:11449. [PMID: 35794197 PMCID: PMC9259589 DOI: 10.1038/s41598-022-15305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
The protozoan parasite Toxoplasma gondii (T. gondii) causes one of the most common human zoonotic diseases and infects approximately one-third of the global population. T. gondii infects nearly every cell type and causes severe symptoms in susceptible populations. In previous laboratory animal studies, T. gondii movement and transmission were not analyzed in real time. In a three-dimensional (3D) microfluidic assay, we successfully supported the complex lytic cycle of T. gondii in situ by generating a stable microvasculature. The physiology of the T. gondii-infected microvasculature was monitored in order to investigate the growth, paracellular and transcellular migration, and transmission of T. gondii, as well as the efficacy of T. gondii drugs.
Collapse
Affiliation(s)
- Hyunho Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea.,Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sung-Hee Hong
- Division of Vectors and Parasitic Diseases, Korea Diseases Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hyo Eun Jeong
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | | | - Jinchul Ahn
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Jin-A Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | | | - Hyun Jeong Oh
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea.
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea. .,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
| | - Sang-Eun Lee
- Division of Vectors and Parasitic Diseases, Korea Diseases Control and Prevention Agency, Cheongju, Republic of Korea.
| |
Collapse
|
4
|
Kim J, Park H, Kim H, Kim Y, Oh HJ, Chung S. Microfluidic one-directional interstitial flow generation from cancer to cancer associated fibroblast. Acta Biomater 2022; 144:258-265. [PMID: 35364320 DOI: 10.1016/j.actbio.2022.03.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/05/2022] [Accepted: 03/24/2022] [Indexed: 11/01/2022]
Abstract
Tumors, unlike normal tissue, have vascular anomalies and create interstitial flow (IF), which allows soluble substances from cancer cells to be transported directionally toward the tumor stroma. In the stroma, IF activates fibroblasts. Cancer-associated fibroblasts (CAFs) are formed from stimulated cells and aid cancer growth. A microfluidic device was designed to generate a one-directional flow of a small volume mimicking IF from donor cells to recipient at steady-state conditions only based on the medium evaporation from reservoirs with different diameter. The IF carried substances from donor cells, which stimulated the activation of fibroblasts on the receiving side, as well as their migration and stellate formation. Matrix metallopeptidases 9 and 14 as well as CAF markers such as fibroblast activation protein alpha, vimentin, and alpha-smooth muscle actin are abundantly expressed in the migrating fibroblasts. The created platform mimicked one-directional delivery in tumor stroma. This will allow researchers to investigate how cancer cells activate and differentiate stromal cells. STATEMENT OF SIGNIFICANCE: We show how to provide continuous one-directional interstitial flow (IF) in a microfluidic device without using any power source and instrumentation. This microfluidic technology was used to simulate the tumor microenvironment. Fibroblasts in the tumor stroma are activated and migrated toward cancer cells, as recapitulated by co-culture of cancer cells as donor and fibroblasts as recipient under the one-directional IF. We believe that soluble substances from cancerous cells delivered by the one-directional IF efficiently regulated the development of cancer-associated fibroblasts (CAFs), as shown by increasing roundness and decreased circularity, taking on a stellate morphology, and by enhanced invasion into a type I collagen hydrogel. Migrating fibroblasts into the hydrogel had significant levels of MMP-9, MMP-14, FAP, vimentin, and αSMA, all of which are CAF markers, bearing a capacity to form hot stroma affecting tumor malignancy.
Collapse
|
5
|
Gamma irradiation exposure for collapsed cell junctions and reduced angiogenesis of 3-D in vitro blood vessels. Sci Rep 2021; 11:18230. [PMID: 34521931 PMCID: PMC8440565 DOI: 10.1038/s41598-021-97692-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
During radiotherapy, microenvironments neighboring the tumor are also exposed to gamma irradiation; this results in unexpected side effects. Blood vessels can serve as microenvironments for tumors and they play an important role in providing nutrients to tumors. This is mostly related to tumor progression, metastasis, and relapse after therapy. Many studies have been performed to obtain a better understanding of tumor vasculature after radiotherapy with in vitro models. However, compared to 3-D models, 2-D in vitro endothelial monolayers cannot physiologically reflect in vivo blood vessels. We previously remodeled the extracellular matrix (ECM) hydrogel that enhanced the tight barrier formation of 3-D blood vessels and the vascular endothelial growth factor (VEGF) gradient induced angiogenesis in a microfluidic device. In this study, the blood vessel model is further introduced to understand how gamma irradiation affects the endothelial monolayer. After the gamma irradiation exposure, we observed a collapsed endothelial barrier and a reduced angiogenic potential. Changes in the cell behaviors of the tip and stalk cells were also detected in the angiogenesis model after irradiation, which is difficult to observe in 2-D monolayer models. Therefore, the 3-D in vitro blood vessel model can be used to understand radiation-induced endothelial injuries.
Collapse
|
6
|
Yu H, Kang D, Whang M, Kim T, Kim J. A Microfluidic Model Artery for Studying the Mechanobiology of Endothelial Cells. Adv Healthc Mater 2021; 10:e2100508. [PMID: 34297476 DOI: 10.1002/adhm.202100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/25/2021] [Indexed: 11/07/2022]
Abstract
Recent vascular mechanobiology studies find that endothelial cells (ECs) convert multiple mechanical forces into functional responses in a nonadditive way, suggesting that signaling pathways such as those regulating cytoskeleton may be shared among the processes of converting individual forces. However, previous in vitro EC-culture platforms are inherent with extraneous mechanical components, which may saturate or insufficiently activate the shared signaling pathways and accordingly, may misguide EC mechanobiological responses being investigated. Here, a more physiologically relevant model artery is reported that accurately reproduces most of the mechanical forces found in vivo, which can be individually varied in any combination to pathological levels to achieve diseased states. Arterial geometries of normal and diseased states are also realized. By mimicking mechanical microenvironments of early-stage atherosclerosis, it is demonstrated that the elevated levels of the different types of stress experienced by ECs strongly correlate with the disruption of barrier integrity, suggesting that boundaries of an initial lesion could be sites for efficient disease progression.
Collapse
Affiliation(s)
- Hyeonji Yu
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Dongwon Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Minji Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Taeyoung Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jungwook Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
7
|
Engineering a Vascularized Hypoxic Tumor Model for Therapeutic Assessment. Cells 2021; 10:cells10092201. [PMID: 34571851 PMCID: PMC8468635 DOI: 10.3390/cells10092201] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/23/2023] Open
Abstract
Solid tumors in advanced cancer often feature a structurally and functionally abnormal vasculature through tumor angiogenesis, which contributes to cancer progression, metastasis, and therapeutic resistances. Hypoxia is considered a major driver of angiogenesis in tumor microenvironments. However, there remains a lack of in vitro models that recapitulate both the vasculature and hypoxia in the same model with physiological resemblance to the tumor microenvironment, while allowing for high-content spatiotemporal analyses for mechanistic studies and therapeutic evaluations. We have previously constructed a hypoxia microdevice that utilizes the metabolism of cancer cells to generate an oxygen gradient in the cancer cell layer as seen in solid tumor sections. Here, we have engineered a new composite microdevice-microfluidics platform that recapitulates a vascularized hypoxic tumor. Endothelial cells were seeded in a collagen channel formed by viscous fingering, to generate a rounded vascular lumen surrounding a hypoxic tumor section composed of cancer cells embedded in a 3-D hydrogel extracellular matrix. We demonstrated that the new device can be used with microscopy-based high-content analyses to track the vascular phenotypes, morphology, and sprouting into the hypoxic tumor section over a 7-day culture, as well as the response to different cancer/stromal cells. We further evaluated the integrity/leakiness of the vascular lumen in molecular delivery, and the potential of the platform to study the movement/trafficking of therapeutic immune cells. Therefore, our new platform can be used as a model for understanding tumor angiogenesis and therapeutic delivery/efficacy in vascularized hypoxic tumors.
Collapse
|
8
|
Kim TH, Yan JJ, Jang JY, Lee GM, Lee SK, Kim BS, Chung JJ, Kim SH, Jung Y, Yang J. Tissue-engineered vascular microphysiological platform to study immune modulation of xenograft rejection. SCIENCE ADVANCES 2021; 7:7/22/eabg2237. [PMID: 34049875 PMCID: PMC8163083 DOI: 10.1126/sciadv.abg2237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Most of the vascular platforms currently being studied are lab-on-a-chip types that mimic capillary networks and are applied for vascular response analysis in vitro. However, these platforms have a limitation in clearly assessing the physiological phenomena of native blood vessels compared to in vivo evaluation. Here, we developed a simply fabricable tissue-engineered vascular microphysiological platform (TEVMP) with a three-dimensional (3D) vascular structure similar to an artery that can be applied for ex vivo and in vivo evaluation. Furthermore, we applied the TEVMP as ex vivo and in vivo screening systems to evaluate the effect of human CD200 (hCD200) overexpression in porcine endothelial cells (PECs) on vascular xenogeneic immune responses. These screening systems, in contrast to 2D in vitro and cellular xenotransplantation in vivo models, clearly demonstrated that hCD200 overexpression effectively suppressed vascular xenograft rejection. The TEVMP has a high potential as a platform to assess various vascular-related responses.
Collapse
Affiliation(s)
- Tae Hee Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ji-Jing Yan
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Young Jang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gwang-Min Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Kyung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea
| | - Jaeseok Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Transplantation Center, Seoul National University hospital, Seoul, Republic of Korea
| |
Collapse
|
9
|
Santamaría R, González-Álvarez M, Delgado R, Esteban S, Arroyo AG. Remodeling of the Microvasculature: May the Blood Flow Be With You. Front Physiol 2020; 11:586852. [PMID: 33178049 PMCID: PMC7593767 DOI: 10.3389/fphys.2020.586852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
The vasculature ensures optimal delivery of nutrients and oxygen throughout the body, and to achieve this function it must continually adapt to varying tissue demands. Newly formed vascular plexuses during development are immature and require dynamic remodeling to generate well-patterned functional networks. This is achieved by remodeling of the capillaries preserving those which are functional and eliminating other ones. A balanced and dynamically regulated capillary remodeling will therefore ensure optimal distribution of blood and nutrients to the tissues. This is particularly important in pathological contexts in which deficient or excessive vascular remodeling may worsen tissue perfusion and hamper tissue repair. Blood flow is a major determinant of microvascular reshaping since capillaries are pruned when relatively less perfused and they split when exposed to high flow in order to shape the microvascular network for optimal tissue perfusion and oxygenation. The molecular machinery underlying blood flow sensing by endothelial cells is being deciphered, but much less is known about how this translates into endothelial cell responses as alignment, polarization and directed migration to drive capillary remodeling, particularly in vivo. Part of this knowledge is theoretical from computational models since blood flow hemodynamics are not easily recapitulated by in vitro or ex vivo approaches. Moreover, these events are difficult to visualize in vivo due to their infrequency and briefness. Studies had been limited to postnatal mouse retina and vascular beds in zebrafish but new tools as advanced microscopy and image analysis are strengthening our understanding of capillary remodeling. In this review we introduce the concept of remodeling of the microvasculature and its relevance in physiology and pathology. We summarize the current knowledge on the mechanisms contributing to capillary regression and to capillary splitting highlighting the key role of blood flow to orchestrate these processes. Finally, we comment the potential and possibilities that microfluidics offers to this field. Since capillary remodeling mechanisms are often reactivated in prevalent pathologies as cancer and cardiovascular disease, all this knowledge could be eventually used to improve the functionality of capillary networks in diseased tissues and promote their repair.
Collapse
Affiliation(s)
- Ricardo Santamaría
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María González-Álvarez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Raquel Delgado
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Esteban
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alicia G. Arroyo
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Chung B, Kim J, Nam J, Kim H, Jeong Y, Liu HW, Cho Y, Kim YH, Oh HJ, Chung S. Evaluation of Cell-Penetrating Peptides Using Microfluidic In Vitro 3D Brain Endothelial Barrier. Macromol Biosci 2020; 20:e1900425. [PMID: 32329170 DOI: 10.1002/mabi.201900425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/27/2020] [Indexed: 02/06/2023]
Abstract
In drug delivery to the human brain, blood vessels are a significant hurdle because they restrict the entry of most solutes to protect brain. To overcome this hurdle, an in vitro 3D model for brain endothelial barrier is developed using a microfluidic device with hydrogel providing a 3D extracellular matrix scaffold. Using the model, peptides known to utilize receptor-mediated transcytosis are verified, which has been one of the most promising mechanisms for brain-specific penetration. The cytotoxicity and cellular damage to the peptide are investigated and the receptor-mediated transcytosis and brain endothelial specific penetrating abilities of the peptides in a quantitative manner are demonstrated. As a preclinical test, applying the quantification assays conducted in this study are suggested, including the penetrating ability, cytotoxicity, endothelial damage, and receptor specificity. Using this microfluidic device as an in vitro platform for evaluating various brain targeting drugs and drug carrier candidates is also proposed.
Collapse
Affiliation(s)
- Bohye Chung
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Jiyoung Nam
- Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunho Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Yeju Jeong
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Hui-Wen Liu
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Youngkyu Cho
- Department of IT Convergence, Korea University, Seoul, Republic of Korea
| | - Yong Ho Kim
- Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun Jeong Oh
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Seok Chung
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,School of Mechanical Engineering, Korea University, Seoul, Republic of Korea.,Department of IT Convergence, Korea University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Shin Y, Lim S, Kim J, Jeon JS, Yoo H, Gweon B. Emulating endothelial dysfunction by implementing an early atherosclerotic microenvironment within a microfluidic chip. LAB ON A CHIP 2019; 19:3664-3677. [PMID: 31565711 DOI: 10.1039/c9lc00352e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies on endothelial dysfunction in relation to vascular diseases including atherosclerosis have highlighted the key contribution of the microenvironment of endothelial cells (ECs). By mimicking the microenvironment of early atherosclerotic lesions, here, we replicate the pathophysiological phenotype and function of ECs within microchannels. Considering the elevated deposition of fibronectin (FN) in early atherosclerotic plaques and the close correlation between the vascular stiffness and the progression of atherosclerosis, we utilized FN coated hydrogels with increased stiffness for endothelial substrates within the microchannels. As a result, we demonstrated that endothelial integrity on FN coated microchannels is likely to be undermined exhibiting a random orientation in response to the applied fluid flow, notable disruption of vascular endothelial cadherins (VE-cadherins), and higher endothelial permeability as opposed to that on microchannels coated with collagen (CL), the atheroresistant vascular model.
Collapse
Affiliation(s)
- Yujin Shin
- Department of Biomedical Engineering, Hanyang University, Republic of Korea
| | - Seongjin Lim
- Department of Mechanical Engineering, KAIST, Republic of Korea.
| | - Jinwon Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, Republic of Korea.
| | - Hongki Yoo
- Department of Biomedical Engineering, Hanyang University, Republic of Korea and Department of Mechanical Engineering, KAIST, Republic of Korea.
| | - Bomi Gweon
- Department of Biomedical Engineering, Hanyang University, Republic of Korea and Department of Mechanical Engineering, Sejong University, Republic of Korea.
| |
Collapse
|
12
|
Springer NL, Iyengar NM, Bareja R, Verma A, Jochelson MS, Giri DD, Zhou XK, Elemento O, Dannenberg AJ, Fischbach C. Obesity-Associated Extracellular Matrix Remodeling Promotes a Macrophage Phenotype Similar to Tumor-Associated Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2019-2035. [PMID: 31323189 PMCID: PMC6880774 DOI: 10.1016/j.ajpath.2019.06.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/23/2022]
Abstract
Obesity is associated with adipose inflammation, defined by macrophages encircling dead adipocytes, as well as extracellular matrix (ECM) remodeling and increased risk of breast cancer. Whether ECM affects macrophage phenotype in obesity is uncertain. A better understanding of this relationship could be strategically important to reduce cancer risk or improve outcomes in the obese. Using clinical samples, computational approaches, and in vitro decellularized ECM models, this study quantified the relative abundance of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in human breast adipose tissue, determined molecular similarities between obesity and tumor-associated macrophages, and assessed the regulatory effect of obese versus lean ECM on macrophage phenotype. Our results suggest that breast adipose tissue contains more M2- than M1-biased macrophages across all body mass index categories. Obesity further increased M2-biased macrophages but did not affect M1-biased macrophage density. Gene Set Enrichment Analysis suggested that breast tissue macrophages from obese versus lean women are more similar to tumor-associated macrophages. These changes positively correlated with adipose tissue interstitial fibrosis, and in vitro experiments indicated that obese ECM directly stimulates M2-biased macrophage functions. However, mammographic density cannot be used as a clinical indicator of these changes. Collectively, these data suggest that obesity-associated interstitial fibrosis promotes a macrophage phenotype similar to tumor-associated macrophages, which may contribute to the link between obesity and breast cancer.
Collapse
Affiliation(s)
- Nora L Springer
- Field of Biological and Biomedical Sciences, Cornell University, Ithaca, New York; Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York; Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas
| | - Neil M Iyengar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Akanksha Verma
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Maxine S Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dilip D Giri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xi K Zhou
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | | | - Claudia Fischbach
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York.
| |
Collapse
|
13
|
Gabriela Espinosa M, Catalin Staiculescu M, Kim J, Marin E, Wagenseil JE. Elastic Fibers and Large Artery Mechanics in Animal Models of Development and Disease. J Biomech Eng 2019; 140:2666245. [PMID: 29222533 DOI: 10.1115/1.4038704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Development of a closed circulatory system requires that large arteries adapt to the mechanical demands of high, pulsatile pressure. Elastin and collagen uniquely address these design criteria in the low and high stress regimes, resulting in a nonlinear mechanical response. Elastin is the core component of elastic fibers, which provide the artery wall with energy storage and recoil. The integrity of the elastic fiber network is affected by component insufficiency or disorganization, leading to an array of vascular pathologies and compromised mechanical behavior. In this review, we discuss how elastic fibers are formed and how they adapt in development and disease. We discuss elastic fiber contributions to arterial mechanical behavior and remodeling. We primarily present data from mouse models with elastic fiber deficiencies, but suggest that alternate small animal models may have unique experimental advantages and the potential to provide new insights. Advanced ultrastructural and biomechanical data are constantly being used to update computational models of arterial mechanics. We discuss the progression from early phenomenological models to microstructurally motivated strain energy functions for both collagen and elastic fiber networks. Although many current models individually account for arterial adaptation, complex geometries, and fluid-solid interactions (FSIs), future models will need to include an even greater number of factors and interactions in the complex system. Among these factors, we identify the need to revisit the role of time dependence and axial growth and remodeling in large artery mechanics, especially in cardiovascular diseases that affect the mechanical integrity of the elastic fibers.
Collapse
Affiliation(s)
| | | | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Eric Marin
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, , St. Louis, MO 63130 e-mail:
| |
Collapse
|
14
|
Crampton AL, Cummins KA, Wood DK. A high-throughput microtissue platform to probe endothelial function in vitro. Integr Biol (Camb) 2019; 10:555-565. [PMID: 30140833 DOI: 10.1039/c8ib00111a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A critical role of vascular endothelium is as a semi-permeable barrier, dynamically regulating the flux of solutes between blood and the surrounding tissue. Existing platforms that quantify endothelial function in vitro are either significantly throughput limited or overlook physiologically relevant extracellular matrix (ECM) interactions and thus do not recapitulate in vivo function. Leveraging droplet microfluidics, we developed a scalable platform to measure endothelial function in nanoliter-volume, ECM-based microtissues. In this study, we describe our high-throughput method for fabricating endothelial-coated collagen microtissues that incorporate physiologically relevant cell-ECM interactions. We showed that the endothelial cells had characteristic morphology, expressed tight junction proteins, and remodeled the ECM via compaction and deposition of basement membrane. We also measured macromolecular permeability using two optical modalities, and found the cell layers: (1) had permeability values comparable to in vivo measurements and (2) were responsive to physiologically-relevant modulators of endothelial permeability (TNF-α and TGF-β). This is the first demonstration, to the authors' knowledge, of high-throughput assessment (n > 150) of endothelial permeability on natural ECM. Additionally, this technology is compatible with standard cell culture equipment (e.g. multi-well plates) and could be scaled up further to be integrated with automated liquid handling systems and automated imaging platforms. Overall, this platform recapitulates the functions of traditional transwell inserts, but extends application to high-throughput studies and introduces new possibilities for interrogating cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Alexandra L Crampton
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, USA.
| | | | | |
Collapse
|
15
|
Kim H, Chung H, Kim J, Choi D, Shin Y, Kang YG, Kim B, Seo S, Chung S, Seok SH. Macrophages-Triggered Sequential Remodeling of Endothelium-Interstitial Matrix to Form Pre-Metastatic Niche in Microfluidic Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900195. [PMID: 31179226 PMCID: PMC6548952 DOI: 10.1002/advs.201900195] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/01/2019] [Indexed: 05/07/2023]
Abstract
The primed microenvironment of future metastatic sites, called the pre-metastatic niche, is a prerequisite for overt metastasis. However, a mechanistic understanding of the contributions of recruited cells to the niche is hindered by complex in vivo systems. Herein, a microfluidic platform that incorporates endothelial cells and extracellular matrix (ECM) scaffolds is developed, and the distinct role of recruited monocytes and macrophages in establishing pre-metastatic niches is delineated. It is observed that monocyte-derived matrix metalloproteinase 9 facilitates cancer cell extravasation through destruction of endothelial tight junctions. Furthermore, subsequent cancer cell invasiveness is significantly enhanced. Close examination of ECM structures reveals that cancer cells move within characteristic "microtracks" generated by macrophages, suggesting that macrophages could serve as a compensatory mechanism for the reduced migratory capacity of cancer cells. Thus, the first evidence of monocyte/macrophage-induced remodeling is shown, and these findings will open up new horizons for improving characterization of the pre-metastatic niche and corresponding immunotherapies.
Collapse
Affiliation(s)
- Hyunho Kim
- School of Mechanical EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Hyewon Chung
- Department of Microbiology and ImmunologyInstitute of Endemic DiseaseCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Jaehoon Kim
- School of Mechanical EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Dong‐Hee Choi
- School of Mechanical EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yoojin Shin
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Yong Guk Kang
- Department of Bio‐Convergence EngineeringCollege of Health ScienceKorea UniversitySeoul02841Republic of Korea
| | - Beop‐Min Kim
- Department of Bio‐Convergence EngineeringCollege of Health ScienceKorea UniversitySeoul02841Republic of Korea
| | - Sang‐Uk Seo
- Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Seok Chung
- School of Mechanical EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and ImmunologyInstitute of Endemic DiseaseCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| |
Collapse
|
16
|
Heidari H, Taylor H. Review Article: Capturing the physiological complexity of the brain's neuro-vascular unit in vitro. BIOMICROFLUIDICS 2018; 12:051502. [PMID: 30364144 PMCID: PMC6191301 DOI: 10.1063/1.5045126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/27/2018] [Indexed: 06/01/2023]
Abstract
With the accelerating pace of brain research in recent years and the growing appreciation of the complexity of the brain and several brain-associated neurological diseases, the demand for powerful tools to enhance drug screening, diagnosis, and fundamental research is greater than ever. Highly representative models of the central nervous system (CNS) can play a critical role in meeting these needs. Unfortunately, in vivo animal models lack controllability, are difficult to monitor, and do not model human-specific brain behavior accurately. On the other hand, in silico computational models struggle to capture comprehensively the intertwined biological, chemical, electrical, and mechanical complexity of the brain. This leaves us with the promising domain of "organ-on-chip" in vitro models. In this review, we describe some of the most pioneering efforts in this expanding field, offering a perspective on the new possibilities as well as the limitations of each approach. We focus particularly on how the models reproduce the blood-brain barrier (BBB), which mediates mass transport to and from brain tissue. We also offer a brief commentary on strategies for evaluating the blood-brain barrier functionality of these in vitro models, including trans-endothelial electrical resistance (TEER), immunocytochemistry, and permeability analysis. From the early membrane-based models of the BBB that have grown into the Transwell® class of devices, to the era of microfluidic chips and a future of bio-printed tissue, we see enormous improvement in the reliability of in vitro models. More and more of the biological and structural complexity of the BBB is being captured by microfluidic chips, and the organ-specificity of bio-printed tissue is also significantly improved. Although we believe that the long-term solution will eventually take the form of automated and parallelized bio-printing systems, we find that valuable transport studies can already be accomplished with microfluidic platforms.
Collapse
Affiliation(s)
- Hossein Heidari
- Department of Mechanical Engineering, University of California, 6159 Etcheverry Hall, Berkeley, California 94720, USA
| | - Hayden Taylor
- Department of Mechanical Engineering, University of California, 6159 Etcheverry Hall, Berkeley, California 94720, USA
| |
Collapse
|
17
|
Future Research Directions in the Design of Versatile Extracellular Matrix in Tissue Engineering. Int Neurourol J 2018; 22:S66-75. [PMID: 30068068 PMCID: PMC6077942 DOI: 10.5213/inj.1836154.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
Native and artificial extracellular matrices (ECMs) have been widely applied in biomedical fields as one of the most effective components in tissue regeneration. In particular, ECM-based drugs are expected to be applied to treat diseases in organs relevant to urology, because tissue regeneration is particularly important for preventing the recurrence of these diseases. Native ECMs provide a complex in vivo architecture and native physical and mechanical properties that support high biocompatibility. However, the applications of native ECMs are limited due to their tissue-specificity and chemical complexity. Artificial ECMs have been fabricated in an attempt to create a broadly applicable scaffold by using controllable components and a uniform formulation. On the other hands, artificial ECMs fail to mimic the properties of a native ECM; consequently, their applications in tissues are also limited. For that reason, the design of a versatile, hybrid ECM that can be universally applied to various tissues is an emerging area of interest in the biomedical field.
Collapse
|
18
|
Zhao Q, Cui H, Wang J, Chen H, Wang Y, Zhang L, Du X, Wang M. Regulation Effects of Biomimetic Hybrid Scaffolds on Vascular Endothelium Remodeling. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23583-23594. [PMID: 29943973 DOI: 10.1021/acsami.8b06205] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The formation of complete and well-functioning endothelium is critical for the success of tissue-engineered vascular grafts yet remaining a fundamental challenge. Endothelium remodeling onto the lumen of tissue-engineered vascular grafts is affected by their topographical, mechanical, and biochemical characteristics. For meeting multiple requirements, composite strategies have recently emerged for fabricating hybrid scaffolds, where the integrated properties are tuned by varying their compositions. However, the underlying principle how the integrated properties of hybrid scaffolds regulate vascular endothelium remodeling remains unclear. To uncover the regulation effects of hybrid scaffolds on vascular endothelium remodeling, we prepared different biomimetic hybrid scaffolds using gelatin methacrylamide (GelMA) and poly-ε-caprolactone (PCL) and then investigated vascular endothelial cell responses on them. GelMA and PCL, respectively, conferred the resulting scaffolds with biomimetic bioactivity and mechanical properties, which were tuned by varying GelMA/PCL mass ratios (3:1, 1:1, or 1:3). On different GelMA/PCL hybrid scaffolds, distinct vascular endothelial cell responses were observed. Firm cell-scaffold/cell-cell interactions were rapidly established on the hybrid scaffolds with the highest mass ratio of bioactive GelMA. However, they were mechanically insufficient as vascular grafts. On the contrary, the scaffolds with the highest mass ratio of PCL showed significantly reinforced mechanical properties but poor biological performance. Between the two extremes, the scaffolds with the same GelMA/PCL mass ratio balanced the pros and cons of two materials. Therefore, they could meet the mechanical requirements of vascular grafts and support the early-stage vascular endothelial cell remodeling by appropriate biological signaling and mechanotransduction. This investigation experimentally proves that scaffold bioactivity is the dominant factor affecting vascular endothelial cell adhesion and remodeling, whereas mechanical properties are crucial factors for the integrity of endothelium. This work offers a universal design strategy for desirable vascular grafts for improved endothelium remodeling.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Huanqing Cui
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Juan Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Hongxu Chen
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Lidong Zhang
- Department of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Min Wang
- Department of Mechanical Engineering , The University of Hong Kong , Hong Kong , China
| |
Collapse
|
19
|
Han S, Kim J, Li R, Ma A, Kwan V, Luong K, Sohn LL. Hydrophobic Patterning-Based 3D Microfluidic Cell Culture Assay. Adv Healthc Mater 2018; 7:e1800122. [PMID: 29700986 PMCID: PMC6342489 DOI: 10.1002/adhm.201800122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/20/2018] [Indexed: 01/11/2023]
Abstract
Engineering physiologically relevant in vitro models of human organs remains a fundamental challenge. Despite significant strides made within the field, many promising organ-on-a-chip models fall short in recapitulating cellular interactions with neighboring cell types, surrounding extracellular matrix (ECM), and exposure to soluble cues due, in part, to the formation of artificial structures that obstruct >50% of the surface area of the ECM. Here, a 3D cell culture platform based upon hydrophobic patterning of hydrogels that is capable of precisely generating a 3D ECM within a microfluidic channel with an interaction area >95% is reported. In this study, for demonstrative purposes, type I collagen (COL1), Matrigel (MAT), COL1/MAT mixture, hyaluronic acid, and cell-laden MAT are formed in the device. Three potential applications are demonstrated, including creating a 3D endothelium model, studying the interstitial migration of cancer cells, and analyzing stem cell differentiation in a 3D environment. The hydrophobic patterned-based 3D cell culture device provides the ease-of-fabrication and flexibility necessary for broad potential applications in organ-on-a-chip platforms.
Collapse
Affiliation(s)
- Sewoon Han
- The California Institute for Quantitative Biosciences, Stanley Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Junghyun Kim
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rui Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alice Ma
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vincent Kwan
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin Luong
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lydia L. Sohn
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Stassen OMJA, Muylaert DEP, Bouten CVC, Hjortnaes J. Current Challenges in Translating Tissue-Engineered Heart Valves. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:71. [PMID: 28782083 PMCID: PMC5545463 DOI: 10.1007/s11936-017-0566-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart valve disease is a major health burden, treated by either valve repair or valve replacement, depending on the affected valve. Nearly 300,000 valve replacements are performed worldwide per year. Valve replacement is lifesaving, but not without complications. The in situ tissue-engineered heart valve is a promising alternative to current treatments, but the translation of this novel technology to the clinic still faces several challenges. These challenges originate from the variety encountered in the patient population, the conversion of an implant into a living tissue, the highly mechanical nature of the heart valve, the complex homeostatic tissue that has to be reached at the end stage of the regenerating heart valve, and all the biomaterial properties that can be controlled to obtain this tissue. Many of these challenges are multidimensional and multiscalar, and both the macroscopic properties of the complete heart valve and the microscopic properties of the patient’s cells interacting with the materials have to be optimal. Using newly developed in vitro models, or bioreactors, where variables of interest can be controlled tightly and complex mixtures of cell populations similar to those encountered in the regenerating valve can be cultured, it is likely that the challenges can be overcome.
Collapse
Affiliation(s)
- O M J A Stassen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - D E P Muylaert
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J Hjortnaes
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Study of composite vascular scaffold combining with differentiated VSMC- and VEC-like cells in vitro and in vivo. J Biomater Appl 2017. [DOI: 10.1177/0885328217715363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Abstract
In vivo, cells of the vascular system are subjected to various mechanical stimuli and have demonstrated the ability to adapt their behavior via mechanotransduction. Recent advances in microfluidic and "on-chip" techniques have provided the technology to study these alterations in cell behavior. Contrary to traditional in vitro assays such as transwell plates and parallel plate flow chambers, these microfluidic devices (MFDs) provide the opportunity to integrate multiple mechanical cues (e.g. shear stress, confinement, substrate stiffness, vessel geometry and topography) with in situ quantification capabilities. As such, MFDs can be used to recapitulate the in vivo mechanical setting and systematically vary microenvironmental conditions for improved mechanobiological studies of the endothelium. Additionally, adequate modelling provides for enhanced understanding of disease progression, design of cell separation and drug delivery systems, and the development of biomaterials for tissue engineering applications. Here, we will discuss the advances in knowledge about endothelial cell mechanosensing resulting from the design and application of biomimetic on-chip and microfluidic platforms.
Collapse
|
23
|
Vasculature-On-A-Chip for In Vitro Disease Models. Bioengineering (Basel) 2017; 4:bioengineering4010008. [PMID: 28952486 PMCID: PMC5590435 DOI: 10.3390/bioengineering4010008] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Vascularization, the formation of new blood vessels, is an essential biological process. As the vasculature is involved in various fundamental physiological phenomena and closely related to several human diseases, it is imperative that substantial research is conducted on characterizing the vasculature and its related diseases. A significant evolution has been made to describe the vascularization process so that in vitro recapitulation of vascularization is possible. The current microfluidic systems allow elaborative research on the effects of various cues for vascularization, and furthermore, in vitro technologies have a great potential for being applied to the vascular disease models for studying pathological events and developing drug screening platforms. Here, we review methods of fabrication for microfluidic assays and inducing factors for vascularization. We also discuss applications using engineered vasculature such as in vitro vascular disease models, vasculature in organ-on-chips and drug screening platforms.
Collapse
|
24
|
Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, Montoya MC, Östling P, Pietiäinen V, Price LS, Shorte SL, Turcatti G, von Schantz C, Carragher NO. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 2016; 15:751-769. [PMID: 27616293 DOI: 10.1038/nrd.2016.175] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates.
Collapse
Affiliation(s)
- Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; and at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Nathalie Aulner
- Imagopole-Citech, Institut Pasteur, Paris 75015, France.,European Cell-Based Assays Interest Group
| | - Marc Bickle
- Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.,European Cell-Based Assays Interest Group
| | - Anthony M Davies
- Translational Cell Imaging Queensland (TCIQ), Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane 4102 QLD, Australia; and The Irish National Centre for High Content Screening and Analysis, Trinity Translational Medicine Institute, Trinity College Dublin, Phase 3 Trinity Health Sciences 1.20, St James Hospital, Dublin D8, Republic of Ireland.,European Cell-Based Assays Interest Group
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research, The Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France.,European Cell-Based Assays Interest Group
| | - Daniel Ebner
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK.,European Cell-Based Assays Interest Group
| | - Maria C Montoya
- Cellomics Unit, Cell Biology &Physiology Program, Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,European Cell-Based Assays Interest Group
| | - Päivi Östling
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm 17165, Sweden.,European Cell-Based Assays Interest Group
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Leo S Price
- Faculty of Science, Leiden Academic Centre for Drug Research, Toxicology, Universiteit Leiden, The Netherlands; and at OcellO, J.H Oortweg 21, 2333 CH, Leiden, The Netherlands.,European Cell-Based Assays Interest Group
| | - Spencer L Shorte
- Imagopole-Citech, Institut Pasteur, Paris 75015, France.,European Cell-Based Assays Interest Group
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland.,European Cell-Based Assays Interest Group
| | - Carina von Schantz
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.,European Cell-Based Assays Interest Group
| |
Collapse
|