1
|
Rocha MDSA, de Oliveira LRS, Xavier DM, Ottone NCDS, Ferreira PPR, Paulino KAO, Costa JSR, Fonseca GFAC, Silva G, Silva PA, da Silva SS, Almeida JPDP, Coimbra CC, Esteves EA, Ferraresi C, de Castro Magalhaes F. The effects of different doses of single- and dual-wavelength whole-body photobiomodulation on metabolic parameters in obese mice. Photochem Photobiol 2025; 101:746-761. [PMID: 39555993 DOI: 10.1111/php.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Photobiomodulation (PBM) shows beneficial effects on obesity-related alterations. It is not known if dual- is more beneficial than single-wavelength, nor the dose-response effect of such treatments. The effects of different doses of single- and dual-wavelength whole-body PBM on metabolic parameters in obese mice were evaluated. Male Swiss albino mice were fed with standard (Chow) or a cafeteria (CAF) diet and allocated into Sham (lights off), and PBM (whole-body blanket (140 cm2) composed of 20 LED clusters, 2.14 mW/cm2/cluster, for 67 or 133 s: 1 or 2 J per cluster; 20 and 40 J total energy; and 0.143 and 0.286 J/cm2) with 660 nm (660), 850 (850) nm, or 660 nm + 850 nm (660/850). CAF induced insulin resistance that was inhibited in 660-1, 660-2, 850-1, and 660/850-2. CAF increased serum total cholesterol that was inhibited in 660-1, 660-2, 850-1, 660/850-1, and 660/850-2. There were no PBM-induced changes in other variables assessed. The effects of whole-body PBM in metabolic paraments in obese mice were wavelength and dose dependent: increasing the dose for 660 did not affect the outcomes; increasing the dose for 850 negatively affected the outcomes, and increasing the dose for 660/850 was mostly beneficial on the outcomes.
Collapse
Affiliation(s)
- Maíra da Silva Almeida Rocha
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
| | - Lucas Renan Sena de Oliveira
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
| | - Diêgo Mendes Xavier
- Department of Physiotherapy, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
| | | | - Pedro Paulo Ribeiro Ferreira
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
| | - Kaio Augusto Oliveira Paulino
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
| | - Juliana Sales Rodrigues Costa
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
| | | | - Gabriela Silva
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
| | - Patrick Almeida Silva
- Department of Physiotherapy, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
| | - Saulo Soares da Silva
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
| | - João Paulo de Paula Almeida
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
| | - Cândido Celso Coimbra
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elizabethe Adriana Esteves
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
- Department of Nutrition, Federal University of the Jequitinhonha and Mucuri Valleys-Diamantina, Diamantina, Brazil
| | - Cleber Ferraresi
- Department of Physical Therapy, Federal University of Sao Carlos-UFSCAR, Sao Carlos, Brazil
| | - Flavio de Castro Magalhaes
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys-UFVJM, Diamantina, Brazil
- Department of Health, Exercise, and Sports Sciences, University of New Mexico-UNM. Johnson Center, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Ishida N, Harada S, Toki R, Hirata A, Matsumoto M, Miyagawa N, Iida M, Edagawa S, Miyake A, Kuwabara K, Shibuki T, Kato S, Arakawa K, Kinoshita K, Sakurai-Yageta M, Tamiya G, Nagashima K, Muraoka H, Sato Y, Takebayashi T. Causal relationship between body mass index and insulin resistance: Linear and nonlinear Mendelian randomization study in a Japanese population. J Diabetes Investig 2025. [PMID: 40302205 DOI: 10.1111/jdi.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 05/02/2025] Open
Abstract
AIMS/INTRODUCTION Obesity is a known risk factor for several chronic diseases, including type 2 diabetes mellitus, which results from increased insulin resistance and impaired insulin secretion. However, the association between obesity and insulin resistance in Asian populations has not yet been fully elucidated. Therefore, we aimed to investigate the causal relationship between body mass index (BMI) and glycemic traits using Mendelian randomization (MR). MATERIALS AND METHODS We performed individual-level MR analyses using genetic risk scores based on BMI-related variants in 3,745 individuals without diabetes mellitus from a Japanese cohort. We examined heterogeneity through subgroup analyses based on potential modifiers and determined the shape of the causal relationship using nonlinear MR analyses to further assess the impact of BMI on the homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS MR analyses revealed a significant positive association between BMI and HOMA-IR (β = 0.077; 95% confidence interval, 0.014-0.141; P = 0.016; outcome variable was log-transformed and standardized). Additional analyses revealed heterogeneity among subgroups differentiated by age, sex, lifestyle habits, and cardiometabolic traits. Nonlinear MR analyses suggested a potential J-shaped causal relationship between BMI and HOMA-IR. CONCLUSIONS Our findings demonstrated that obesity and low BMI may contribute to increased insulin resistance. Furthermore, the impact of BMI on insulin resistance could vary owing to effect modification. Managing BMI is crucial in individuals at high risk of increased insulin resistance and may have important implications for preventing type 2 diabetes, especially given the low insulin secretory capacity observed in East Asian populations.
Collapse
Affiliation(s)
- Noriyuki Ishida
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
- Graduate School of Health Management, Keio University, Fujisawa, Kanagawa, Japan
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Toki
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Aya Hirata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Minako Matsumoto
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Naoko Miyagawa
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Miho Iida
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Shun Edagawa
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Atsuko Miyake
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Kuwabara
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Takuma Shibuki
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Suzuka Kato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Mika Sakurai-Yageta
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | | | - Yasunori Sato
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
- Department of Biostatistics, Keio University School of Medicine, Tokyo, Japan
| | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Burkhardt B, Chaudry O, Kast S, von Stengel S, Kohl M, Roemer FW, Engelke K, Uder M, Kemmler W. The effect of whole-body electromyostimulation on visceral adipose tissue volume in overweight-to-obese adults with knee osteoarthritis: A randomized controlled study. Front Physiol 2025; 16:1544332. [PMID: 40303596 PMCID: PMC12037472 DOI: 10.3389/fphys.2025.1544332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Physical exercise favorably affects visceral adipose tissue (VAT), which is a risk factor for cardiometabolic diseases. However, many people are unable or unwilling to conduct frequent and intensive exercise programs that have favorable effects on VAT. The present study aimed to determine the effect of time-efficient and joint-friendly whole-body electromyostimulation (WB-EMS) technology on VAT volume in overweight-to-obese adults with osteoarthritis of the knee. Methods In total, 46 women and 26 men (58.4 ± 7.0 years; BMI: 30.2 ± 4.2 kg/m2) with femuro-tibial knee osteoarthritis were randomly allocated to WB-EMS (n = 36) with 1.5 × 20 min/week for 29 weeks or a usual care control group (CG: n = 36) with six sessions of physiotherapy. Magnetic resonance imaging (MRI) using a non-contrast enhanced two-point Dixon gradient echo volumetric interpolated breath-hold examination determined the VAT from mid L2 to mid L3. Results In summary, VAT volume increased non-significantly in the CG (p = 0.246) and decreased non-significantly in the WB-EMS group (p = 0.143). We failed to determine significant WB-EMS-induced effects, i.e., group differences for absolute changes in the VAT volume (p = 0.090). However, we observed gender differences with significantly higher effects in men than in women (p = 0.032). Discussion We conclude that low volume, non-superimposed WB-EMS is not a perfect tool for decreasing VAT, particularly in overweight-to-obese women.
Collapse
Affiliation(s)
- Benazir Burkhardt
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Oliver Chaudry
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Stephanie Kast
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Simon von Stengel
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Kohl
- Department of Medical and Life Sciences, University of Furtwangen, Schwenningen, Germany
| | - Frank W. Roemer
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Klaus Engelke
- Department of Medicine III, University Hospital Erlangen, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Kemmler
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Carosso AR, Conforti A, Cimadomo D, Spadoni V, Zacà C, Massarotti C, Vaiarelli A, Venturella R, Vitagliano A, Busnelli A, Cozzolino M, Borini A. The relevance of female overweight in infertility treatment: a position statement of the Italian Society of Fertility and Sterility and Reproductive Medicine (SIFES-MR). J Assist Reprod Genet 2025; 42:1343-1354. [PMID: 39903407 PMCID: PMC12055699 DOI: 10.1007/s10815-024-03379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
PURPOSE Obesity is increasingly at the center of modern international healthcare systems. This is a position statement of the Italian Society of Fertility and Sterility and Reproductive Medicine (SIFES-MR) aimed at evaluating the impact of female overweight on infertility in order to improve fertility outcomes, including Assisted Reproductive technology (ART) treatments. METHODS The SIFES-MR writing group for this position statement was composed by Italian reproductive physicians, embryologists, and scientists with expertise in fertility evaluation, assisted reproduction technologies, and laboratory quality management. The positions stated are based on consensus by the authors, who met over a six-month period. The consensus emerged after thorough review of pertinent literature and standards concerning the impact of female overweight, complemented by extensive dialogue and discussion among the authors. Additionally, input from society members was considered, leading to revisions and eventual approval by the SIFES-MR governing council. RESULTS An increasing number of women affected by overweight and infertility accessing to ART treatments are expected in the future. A comprehensive counseling since the first access to infertility care is mandatory and should promote weight restoration, with the aim to improve the likelihood of spontaneous unassisted conception. Careful preconceptional evaluation of obese women is strongly encouraged for counseling purpose and comorbidities should be corrected by a multidisciplinary approach before spontaneous or medically assisted conception. Indeed, female obesity is responsible for high-risk pregnancies, with potential consequences in infants and during childhood. When in vitro fertilization is indicated, the risk of venous thromboembolism exacerbated by controlled ovarian stimulation should be assessed. CONCLUSIONS Before IVF, different therapeutic approaches and expectant management to reduce overweight could be offered, and the age-related algorithm herein proposed by SIFES may represent an interesting tool for a better personalization of infertility care in these women. The treatment of infertility cannot ignore the correct management of female overweight, given the serious consequences that this condition can have on the outcomes of pregnancies and future generations. IVF specialists should tailor access and modalities of IVF treatment to this class of high-risk women.
Collapse
Affiliation(s)
- Andrea Roberto Carosso
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital Città della Salute e della Scienza di Torino, University of Torino, Via Ventimiglia 1, 10126, Turin, Italy.
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Danilo Cimadomo
- IVIRMA Global Reseach Alliance, Genera, Clinica Valle Giulia, Rome, Italy
| | | | - Carlotta Zacà
- IVIRMA Global Research Alliance, 9.baby, Bologna, Italy
| | - Claudia Massarotti
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI Department), University of Genova, Genova, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Reseach Alliance, Genera, Clinica Valle Giulia, Rome, Italy
| | - Roberta Venturella
- Unit of Obstetrics and Gynecology, University of Catanzaro "Magna Grecia", Catanzaro, Italy
| | - Amerigo Vitagliano
- First Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine (DIM), University of Bari, Bari, Italy
| | - Andrea Busnelli
- Department of Obstetrics and Gynecology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Mauro Cozzolino
- IVIRMA Global Research Alliance, IVI Roma, Rome, Italy
- IVIRMA Global Research Alliance, Fundación IVI-IIS la Fe, Valencia, Spain
| | - Andrea Borini
- IVIRMA Global Research Alliance, 9.baby, Bologna, Italy
| |
Collapse
|
5
|
Chang Chusan YA, Eneli I, Hennessy E, Pronk NP, Economos CD. Next Steps in Efforts to Address the Obesity Epidemic. Annu Rev Public Health 2025; 46:171-191. [PMID: 39745940 DOI: 10.1146/annurev-publhealth-060922-044108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Obesity prevalence continues to rise globally at alarming rates, with adverse health and economic implications. In this state-of-the-art review, we provide an analysis of selected evidence about the current knowledge in the obesity literature, including a synthesis of current challenges in obesity and its determinants. In addition, we review past and current efforts to combat the obesity epidemic, highlighting both successful efforts and areas for further development. Last, we offer insights into the next steps to address the obesity epidemic and advance the field of obesity through both research and practice by (a) adopting a systems perspective, (b) fostering cross-sector and community collaborations, (c) advancing health equity, (d) narrowing the research-to-practice and research-to-policy gaps with multidisciplinary approaches, and (e) embracing complementary approaches for concurrent obesity prevention and treatment.
Collapse
Affiliation(s)
- Yuilyn A Chang Chusan
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA;
| | - Ihuoma Eneli
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children's Hospital Colorado, Denver, Colorado, USA
| | - Erin Hennessy
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA;
| | | | - Christina D Economos
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA;
| |
Collapse
|
6
|
Marín Baselga R, Teigell-Muñoz FJ, Porcel JM, Ramos Lázaro J, García Rubio S. Ultrasound for body composition assessment: a narrative review. Intern Emerg Med 2025; 20:23-34. [PMID: 39240412 DOI: 10.1007/s11739-024-03756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Ultrasound has become an increasingly valuable tool for the assessment of body composition, offering several applications and indications in clinical practice. Ultrasound allows bedside evaluation of muscle mass, fat compartments, and extravascular water, providing a cost-effective, portable, and accessible alternative to traditional methods, such as Dual-energy X-ray Absorptiometry (DEXA), Bioelectrical Impedance Analysis (BIA), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). It is particularly useful in evaluating conditions, such as malnutrition, sarcopenia, and sarcopenic obesity, which require poor muscle mass to establish a diagnosis. The potential uses of ultrasound in body composition assessment include measurement of muscle thickness, cross-sectional area, pennation angle, and echo-intensity, which are indicative of muscle health. Additionally, ultrasound can be used to evaluate various fat compartments, including visceral, subcutaneous, and ectopic fat, which are important for understanding metabolic health and cardiovascular risk. However, the widespread adoption of ultrasound is challenged by the lack of standardized measurements and the absence of ultrasound measures in the validated diagnostic criteria. This article reviews the current applications of ultrasound in body composition assessment, highlighting the recent advancements and the correlation between ultrasound parameters and clinical outcomes. It discusses the advantages of ultrasound while also addressing its limitations, such as the need for standardized protocols and cut-off points. By providing a comprehensive update based on recent publications, this article aims to enhance the clinical utility of ultrasound in assessing and monitoring body composition and pave the way for future research in this field.
Collapse
Affiliation(s)
| | | | - José M Porcel
- Internal Medicine Department, Hospital Universitario Arnau Vilanova, IRBLleida, Lleida, Spain
| | - Javier Ramos Lázaro
- Internal Medicine Department, Hospital Universitario de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Samuel García Rubio
- Internal Medicine Department, Hospital Santa Marina, ISS BioBizkaia, Bilbao, Spain.
| |
Collapse
|
7
|
Hellberg A, Salamon D, Ujvari D, Rydén M, Hirschberg AL. Weight Changes Are Linked to Adipose Tissue Genes in Overweight Women with Polycystic Ovary Syndrome. Int J Mol Sci 2024; 25:11566. [PMID: 39519120 PMCID: PMC11547111 DOI: 10.3390/ijms252111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Women with polycystic ovary syndrome (PCOS) have varying difficulties in achieving weight loss by lifestyle intervention, which may depend on adipose tissue metabolism. The objective was to study baseline subcutaneous adipose tissue gene expression as a prediction of weight loss by lifestyle intervention in obese/overweight women with PCOS. This is a secondary analysis of a randomized controlled trial where women with PCOS, aged 18-40 and body mass index (BMI) ≥ 27 were initially randomized to either a 4-month behavioral modification program or minimal intervention according to standard care. Baseline subcutaneous adipose tissue gene expression was related to weight change after the lifestyle intervention. A total of 55 obese/overweight women provided subcutaneous adipose samples at study entry. Weight loss was significant after behavioral modification (-2.2%, p = 0.0014), while there was no significant weight loss in the control group (-1.1%, p = 0.12). In microarray analysis of adipose samples, expression of 40 genes differed significantly between subgroups of those with the greatest weight loss or weight gain. 10 genes were involved in metabolic pathways including glutathione metabolism, gluconeogenesis, and pyruvate metabolism. Results were confirmed by real-time polymerase chain reaction (RT-PCR) in all 55 subjects. Expressions of GSTM5, ANLN, and H3C2 correlated with weight change (R = -0.41, p = 0.002; R = -0.31, p = 0.023 and R = -0.32, p = 0.016, respectively). GSTM5, involved in glutathione metabolism, was the strongest predictor of weight loss, and together with baseline waist-hip ratio (WHR) explained 31% of the variation in body weight change. This study shows that baseline subcutaneous adipose tissue genes play a role for body weight outcome in response to lifestyle intervention in overweight/obese women with PCOS.
Collapse
Affiliation(s)
- Anton Hellberg
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.S.); (D.U.); (A.L.H.)
| | - Daniel Salamon
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.S.); (D.U.); (A.L.H.)
| | - Dorina Ujvari
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.S.); (D.U.); (A.L.H.)
- Department of Microbiology, Tumor and Cell Biology, National Pandemic Centre, Centre for Translational Microbiome Research, Karolinska Institutet, 17165 Solna, Sweden
| | - Mikael Rydén
- Department of Medicine Huddinge (H7), Karolinska Institutet, C2-94 Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| | - Angelica Lindén Hirschberg
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (D.S.); (D.U.); (A.L.H.)
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital Solna, 17176 Stockholm, Sweden
| |
Collapse
|
8
|
Li M, Cui M, Li G, Liu Y, Xu Y, Eftekhar SP, Ala M. The Pathophysiological Associations Between Obesity, NAFLD, and Atherosclerotic Cardiovascular Diseases. Horm Metab Res 2024; 56:683-696. [PMID: 38471571 DOI: 10.1055/a-2266-1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Obesity, non-alcoholic fatty liver disease (NAFLD), and atherosclerotic cardiovascular diseases are common and growing public health concerns. Previous epidemiological studies unfolded the robust correlation between obesity, NAFLD, and atherosclerotic cardiovascular diseases. Obesity is a well-known risk factor for NAFLD, and both of them can markedly increase the odds of atherosclerotic cardiovascular diseases. On the other hand, significant weight loss achieved by lifestyle modification, bariatric surgery, or medications, such as semaglutide, can concomitantly improve NAFLD and atherosclerotic cardiovascular diseases. Therefore, certain pathophysiological links are involved in the development of NAFLD in obesity, and atherosclerotic cardiovascular diseases in obesity and NAFLD. Moreover, recent studies indicated that simultaneously targeting several mechanisms by tirzepatide and retatrutide leads to greater weight loss and markedly improves the complications of metabolic syndrome. These findings remind the importance of a mechanistic viewpoint for breaking the association between obesity, NAFLD, and atherosclerotic cardiovascular diseases. In this review article, we mainly focus on shared pathophysiological mechanisms, including insulin resistance, dyslipidemia, GLP1 signaling, inflammation, oxidative stress, mitochondrial dysfunction, gut dysbiosis, renin-angiotensin-aldosterone system (RAAS) overactivity, and endothelial dysfunction. Most of these pathophysiological alterations are primarily initiated by obesity. The development of NAFLD further exacerbates these molecular and cellular alterations, leading to atherosclerotic cardiovascular disease development or progression as the final manifestation of molecular perturbation. A better insight into these mechanisms makes it feasible to develop new multi-target approaches to simultaneously unhinge the deleterious chain of events linking obesity and NAFLD to atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Man Cui
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoxia Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueqiu Liu
- Clinical Specialty of Integrated Chinese and Western Medicine, The First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Moein Ala
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Mirjalili SR, Soltani S, Meybodi ZH, Marques-Vidal P, Firouzabadi DD, Eshraghi R, Restrepo D, Ghoshouni H, Sarebanhassanabadi M. Which surrogate insulin resistance indices best predict coronary artery disease? A machine learning approach. Cardiovasc Diabetol 2024; 23:214. [PMID: 38907271 PMCID: PMC11193173 DOI: 10.1186/s12933-024-02306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Various surrogate markers of insulin resistance have been developed, capable of predicting coronary artery disease (CAD) without the need to detect serum insulin. For accurate prediction, they depend only on glucose and lipid profiles, as well as anthropometric features. However, there is still no agreement on the most suitable one for predicting CAD. METHODS We followed a cohort of 2,000 individuals, ranging in age from 20 to 74, for a duration of 9.9 years. We utilized multivariate Cox proportional hazard models to investigate the association between TyG-index, TyG-BMI, TyG-WC, TG/HDL, plus METS-IR and the occurrence of CAD. The receiver operating curve (ROC) was employed to compare the predictive efficacy of these indices and their corresponding cutoff values for predicting CAD. We also used three distinct embedded feature selection methods: LASSO, Random Forest feature selection, and the Boruta algorithm, to evaluate and compare surrogate markers of insulin resistance in predicting CAD. In addition, we utilized the ceteris paribus profile on the Random Forest model to illustrate how the model's predictive performance is affected by variations in individual surrogate markers, while keeping all other factors consistent in a diagram. RESULTS The TyG-index was the only surrogate marker of insulin resistance that demonstrated an association with CAD in fully adjusted model (HR: 2.54, CI: 1.34-4.81). The association was more prominent in females. Moreover, it demonstrated the highest area under the ROC curve (0.67 [0.63-0.7]) in comparison to other surrogate indices for insulin resistance. All feature selection approaches concur that the TyG-index is the most reliable surrogate insulin resistance marker for predicting CAD. Based on the Ceteris paribus profile of Random Forest the predictive ability of the TyG-index increased steadily after 9 with a positive slope, without any decline or leveling off. CONCLUSION Due to the simplicity of assessing the TyG-index with routine biochemical assays and given that the TyG-index was the most effective surrogate insulin resistance index for predicting CAD based on our results, it seems suitable for inclusion in future CAD prevention strategies.
Collapse
Affiliation(s)
- Seyed Reza Mirjalili
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Pedro Marques-Vidal
- Department of Internal Medicine, BH10-642, Rue du Bugnon 46, Rue du Bugnon 46, Lausanne, CH-1011, Switzerland
| | | | - Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - David Restrepo
- Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Telematics Department, University of Cauca, Popayán, Cauca, Colombia
| | - Hamed Ghoshouni
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadtaghi Sarebanhassanabadi
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Warmbrunn MV, Bahrar H, de Clercq NC, Koopen AM, de Groot PF, Rutten J, Joosten LAB, Kootte RS, Bouter KEC, ter Horst KW, Hartstra AV, Serlie MJ, Soeters MR, van Raalte DH, Davids M, Levin E, Herrema H, Riksen NP, Netea MG, Groen AK, Nieuwdorp M. Novel Proteome Targets Marking Insulin Resistance in Metabolic Syndrome. Nutrients 2024; 16:1822. [PMID: 38931177 PMCID: PMC11206392 DOI: 10.3390/nu16121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
CONTEXT/OBJECTIVE In order to better understand which metabolic differences are related to insulin resistance in metabolic syndrome (MetSyn), we used hyperinsulinemic-euglycemic (HE) clamps in individuals with MetSyn and related peripheral insulin resistance to circulating biomarkers. DESIGN/METHODS In this cross-sectional study, HE-clamps were performed in treatment-naive men (n = 97) with MetSyn. Subjects were defined as insulin-resistant based on the rate of disappearance (Rd). Machine learning models and conventional statistics were used to identify biomarkers of insulin resistance. Findings were replicated in a cohort with n = 282 obese men and women with (n = 156) and without (n = 126) MetSyn. In addition to this, the relation between biomarkers and adipose tissue was assessed by nuclear magnetic resonance imaging. RESULTS Peripheral insulin resistance is marked by changes in proteins related to inflammatory processes such as IL-1 and TNF-receptor and superfamily members. These proteins can distinguish between insulin-resistant and insulin-sensitive individuals (AUC = 0.72 ± 0.10) with MetSyn. These proteins were also associated with IFG, liver fat (rho 0.36, p = 1.79 × 10-9) and visceral adipose tissue (rho = 0.35, p = 6.80 × 10-9). Interestingly, these proteins had the strongest association in the MetSyn subgroup compared to individuals without MetSyn. CONCLUSIONS MetSyn associated with insulin resistance is characterized by protein changes related to body fat content, insulin signaling and pro-inflammatory processes. These findings provide novel targets for intervention studies and should be the focus of future in vitro and in vivo studies.
Collapse
Affiliation(s)
- Moritz V. Warmbrunn
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
- Amsterdam UMC, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam UMC, Cardiovascular Sciences, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Harsh Bahrar
- Department of Internal Medicine, Radboud University Medical Center, 6525 EP Nijmegen, The Netherlands; (H.B.)
| | - Nicolien C. de Clercq
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Annefleur M. Koopen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Pieter F. de Groot
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Joost Rutten
- Department of Internal Medicine, Radboud University Medical Center, 6525 EP Nijmegen, The Netherlands; (H.B.)
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud University Medical Center, 6525 EP Nijmegen, The Netherlands; (H.B.)
| | - Ruud S. Kootte
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Kristien E. C. Bouter
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Kasper W. ter Horst
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Annick V. Hartstra
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Mireille J. Serlie
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Daniel H. van Raalte
- Diabetes Center, Department of Endocrniology and Metabolism, Amsterdam UMC, VU University Medical Centers, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, VU University, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Niels P. Riksen
- Department of Internal Medicine, Radboud University Medical Center, 6525 EP Nijmegen, The Netherlands; (H.B.)
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, 6525 EP Nijmegen, The Netherlands; (H.B.)
| | - Albert K. Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.V.W.); (N.C.d.C.); (P.F.d.G.); (R.S.K.); (A.K.G.)
| |
Collapse
|
11
|
Ealey KN, Togo J, Lee JH, Patel Y, Kim JR, Park SY, Sung HK. Intermittent fasting promotes rejuvenation of immunosenescent phenotypes in aged adipose tissue. GeroScience 2024; 46:3457-3470. [PMID: 38379117 PMCID: PMC11009208 DOI: 10.1007/s11357-024-01093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
The aging of white adipose tissue (WAT) involves senescence of adipose stem and progenitor cells (ASPCs) and dysregulation of immune cell populations, serving as a major driver of age-associated adipose dysfunction and metabolic diseases. Conversely, the elimination of senescent ASPCs is associated with improvements in overall health. Intermittent fasting (IF), a dietary intervention that incorporates periodic cycles of fasting and refeeding, has been reported to promote weight loss and fat mass reduction and improve glucose and insulin homeostasis in both murine and human studies. While previous studies have assessed the effects of IF on obesity-associated metabolic dysfunction, few studies have examined the aging-specific changes to ASPCs and immune cell populations in WAT. Here, we show that IF in 18-20-month-old mice reduced senescent phenotypes of ASPCs and restored their adipogenic potential. Intriguingly, IF-treated mice exhibited an increase in adipose eosinophils, which has been reported to be associated with improved WAT homeostasis and immunological fitness in aged mice. The observed cellular and metabolic changes suggest that IF may be a feasible lifestyle regimen to reduce cellular senescence which could result in attenuation of downstream aging-induced WAT dysfunction and metabolic diseases.
Collapse
Affiliation(s)
- Kafi N Ealey
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jacques Togo
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yash Patel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jae-Ryong Kim
- Department of Biochemistry, Yeungnam University, Daegu, 42415, Republic of Korea.
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Daegu, 42415, Republic of Korea.
| | - So-Young Park
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Daegu, 42415, Republic of Korea.
- Department of Physiology, Yeungnam University, Daegu, 42415, Republic of Korea.
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Korbecki J, Bosiacki M, Pilarczyk M, Gąssowska-Dobrowolska M, Jarmużek P, Szućko-Kociuba I, Kulik-Sajewicz J, Chlubek D, Baranowska-Bosiacka I. Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases. Cancers (Basel) 2024; 16:2115. [PMID: 38893234 PMCID: PMC11171337 DOI: 10.3390/cancers16112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Jarmużek
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | | | - Justyna Kulik-Sajewicz
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
13
|
Rontogianni MO, Bouras E, Aglago EK, Freisling H, Murphy N, Cotterchio M, Hampe J, Lindblom A, Pai RK, Pharoah PDP, Phipps AI, van Duijnhoven FJB, Visvanathan K, van Guelpen B, Li CI, Brenner H, Pellatt AJ, Ogino S, Gunter MJ, Peters U, Christakoudi S, Tsilidis KK. Allometric versus traditional body-shape indices and risk of colorectal cancer: a Mendelian randomization analysis. Int J Obes (Lond) 2024; 48:709-716. [PMID: 38297030 PMCID: PMC11058311 DOI: 10.1038/s41366-024-01479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Traditional body-shape indices such as Waist Circumference (WC), Hip Circumference (HC), and Waist-to-Hip Ratio (WHR) are associated with colorectal cancer (CRC) risk, but are correlated with Body Mass Index (BMI), and adjustment for BMI introduces a strong correlation with height. Thus, new allometric indices have been developed, namely A Body Shape Index (ABSI), Hip Index (HI), and Waist-to-Hip Index (WHI), which are uncorrelated with weight and height; these have also been associated with CRC risk in observational studies, but information from Mendelian randomization (MR) studies is missing. METHODS We used two-sample MR to examine potential causal cancer site- and sex-specific associations of the genetically-predicted allometric body-shape indices with CRC risk, and compared them with BMI-adjusted traditional body-shape indices, and BMI. Data were obtained from UK Biobank and the GIANT consortium, and from GECCO, CORECT and CCFR consortia. RESULTS WHI was positively associated with CRC in men (OR per SD: 1.20, 95% CI: 1.03-1.39) and in women (1.15, 1.06-1.24), and similarly for colon and rectal cancer. ABSI was positively associated with colon and rectal cancer in men (1.27, 1.03-1.57; and 1.40, 1.10-1.77, respectively), and with colon cancer in women (1.20, 1.07-1.35). There was little evidence for association between HI and colon or rectal cancer. The BMI-adjusted WHR and HC showed similar associations to WHI and HI, whereas WC showed similar associations to ABSI only in women. CONCLUSIONS This large MR study provides strong evidence for a potential causal positive association of the allometric indices ABSI and WHI with CRC in both sexes, thus establishing the association between abdominal fat and CRC without the limitations of the traditional waist size indices and independently of BMI. Among the BMI-adjusted traditional indices, WHR and HC provided equivalent associations with WHI and HI, while differences were observed between WC and ABSI.
Collapse
Affiliation(s)
- Marina O Rontogianni
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Hygiene, Social-Preventive Medicine and Medical Statistics, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Elom Kouassivi Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Michelle Cotterchio
- Ontario Health (Cancer Care Ontario), Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | | | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Christopher I Li
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Translational Research Program and Epidemiology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew J Pellatt
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Texas, TX, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK.
| |
Collapse
|
14
|
Lee DJ, O'Donnell EK, Raje N, Panaroni C, Redd R, Ligibel J, Sears DD, Nadeem O, Ghobrial IM, Marinac CR. Design and Rationale of Prolonged Nightly Fasting for Multiple Myeloma Prevention (PROFAST): Protocol for a Randomized Controlled Pilot Trial. JMIR Res Protoc 2024; 13:e51368. [PMID: 38466984 DOI: 10.2196/51368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Obesity is an established, modifiable risk factor of multiple myeloma (MM); yet, no lifestyle interventions are routinely recommended for patients with overweight or obesity with MM precursor conditions. Prolonged nightly fasting is a simple, practical dietary regimen supported by research, suggesting that the synchronization of feeding-fasting timing with sleep-wake cycles favorably affects metabolic pathways implicated in MM. We describe the design and rationale of a randomized controlled pilot trial evaluating the efficacy of a regular, prolonged nighttime fasting schedule among individuals with overweight or obesity at high risk for developing MM or a related lymphoid malignancy. OBJECTIVE We aim to investigate the effects of 4-month prolonged nightly fasting on body composition and tumor biomarkers among individuals with overweight or obesity with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), or smoldering Waldenström macroglobulinemia (SWM). METHODS Individuals with MGUS, SMM, or SWM aged ≥18 years and a BMI of ≥25 kg/m2 are randomized to either a 14-hour nighttime fasting intervention or a healthy lifestyle education control group. Participants' baseline diet and lifestyle patterns are characterized through two 24-hour dietary recalls: questionnaires querying demographic, comorbidity, lifestyle, and quality-of-life information; and wrist actigraphy measurements for 7 days. Fasting intervention participants are supported through one-on-one telephone counseling by a health coach and automated SMS text messaging to support fasting goals. Primary end points of body composition, including visceral and subcutaneous fat (by dual-energy x-ray absorptiometry); bone marrow adiposity (by bone marrow histology); and tumor biomarkers, specifically M-proteins and serum free light-chain concentrations (by gel-based and serum free light-chain assays), are assessed at baseline and after the 4-month study period; changes therein from baseline are evaluated using a repeated measures mixed-effects model that accounts for the correlation between baseline and follow-up measures and is generally robust to missing data. Feasibility is assessed as participant retention (percent dropout in each arm) and percentage of days participants achieved a ≥14-hour fast. RESULTS The PROlonged nightly FASTing (PROFAST) study was funded in June 2022. Participant recruitment commenced in April 2023. As of July 2023, six participants consented to the study. The study is expected to be completed by April 2024, and data analysis and results are expected to be published in the first quarter of 2025. CONCLUSIONS PROFAST serves as an important first step in exploring the premise that prolonged nightly fasting is a strategy to control obesity and obesity-related mechanisms of myelomagenesis. In evaluating the feasibility and impact of prolonged nightly fasting on body composition, bone marrow adipose tissue, and biomarkers of tumor burden, this pilot study may generate hypotheses regarding metabolic mechanisms underlying MM development and ultimately inform clinical and public health strategies for MM prevention. TRIAL REGISTRATION ClinicalTrials.gov NCT05565638; http://clinicaltrials.gov/ct2/show/NCT05565638. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/51368.
Collapse
Affiliation(s)
- David J Lee
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Elizabeth K O'Donnell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Noopur Raje
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Cristina Panaroni
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Robert Redd
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jennifer Ligibel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Omar Nadeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Catherine R Marinac
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
15
|
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 2024; 21:164-183. [PMID: 38066102 DOI: 10.1038/s41575-023-00867-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
16
|
Zaman A, Grau L, Jeffers R, Steinke S, Catenacci VA, Cornier M, Rynders CA, Thomas EA. The effects of early time restricted eating plus daily caloric restriction compared to daily caloric restriction alone on continuous glucose levels. Obes Sci Pract 2024; 10:e702. [PMID: 38264001 PMCID: PMC10804344 DOI: 10.1002/osp4.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 01/25/2024] Open
Abstract
Background The median eating duration in the U.S. is 14.75 h, spread throughout the period of wakefulness and ending before sleep. Food intake at an inappropriate circadian time may lead to adverse metabolic outcomes. Emerging literature suggests that time restricted eating (TRE) may improve glucose tolerance and insulin sensitivity. The aim was to compare 24-h glucose profiles and insulin sensitivity in participants after completing 12 weeks of a behavioral weight loss intervention based on early TRE plus daily caloric restriction (E-TRE+DCR) or DCR alone. Methods Eighty-one adults with overweight or obesity (age 18-50 years, BMI 25-45 kg/m2) were randomized to either E-TRE+DCR or DCR alone. Each participant wore a continuous glucose monitor (CGM) for 7 days and insulin sensitivity was estimated using the homeostatic model assessment of insulin resistance (HOMA-IR) at Baseline and Week 12. Changes in CGM-derived measures and HOMA-IR from Baseline to Week 12 were assessed within and between groups using random intercept mixed models. Results Forty-four participants had valid CGM data at both time points, while 38 had valid glucose, insulin, HOMA-IR, and hemoglobin A1c (A1c) data at both timepoints. There were no significant differences in sex, age, BMI, or the percentage of participants with prediabetes between the groups (28% female, age 39.2 ± 6.9 years, BMI 33.8 ± 5.7 kg/m2, 16% with prediabetes). After adjusting for weight, there were no between-group differences in changes in overall average sensor glucose, standard deviation of glucose levels, the coefficient of variation of glucose levels, daytime or nighttime average sensor glucose, fasting glucose, insulin, HOMA-IR, or A1c. However, mean amplitude of glycemic excursions changed differently over time between the two groups, with a greater reduction found in the DCR as compared to E-TRE+DCR (p = 0.03). Conclusion There were no major differences between E-TRE+DCR and DCR groups in continuous glucose profiles or insulin sensitivity 12 weeks after the intervention. Because the study sample included participants with normal baseline mean glucose profiles and insulin sensitivity, the ability to detect changes in these outcomes may have been limited.
Collapse
Affiliation(s)
- Adnin Zaman
- Division of Endocrinology, Metabolism and DiabetesDepartment of MedicineUniversity of ColoradoAnschutz Medical CampusAuroraColoradoUSA
- Anschutz Health & Wellness Center at the University of ColoradoAnschutz Medical CampusAuroraColoradoUSA
| | - Laura Grau
- Department of Biostatistics and InformaticsColorado School of Public HealthUniversity of ColoradoAnschutz Medical CampusAuroraColoradoUSA
| | - Rebecca Jeffers
- Division of Endocrinology, Metabolism and DiabetesDepartment of MedicineUniversity of ColoradoAnschutz Medical CampusAuroraColoradoUSA
| | - Sheila Steinke
- Division of Endocrinology, Metabolism and DiabetesDepartment of MedicineUniversity of ColoradoAnschutz Medical CampusAuroraColoradoUSA
- Anschutz Health & Wellness Center at the University of ColoradoAnschutz Medical CampusAuroraColoradoUSA
| | - Victoria A. Catenacci
- Division of Endocrinology, Metabolism and DiabetesDepartment of MedicineUniversity of ColoradoAnschutz Medical CampusAuroraColoradoUSA
- Anschutz Health & Wellness Center at the University of ColoradoAnschutz Medical CampusAuroraColoradoUSA
| | - Marc‐Andre Cornier
- Division of Endocrinology, Metabolism and DiabetesDepartment of MedicineUniversity of ColoradoAnschutz Medical CampusAuroraColoradoUSA
- Anschutz Health & Wellness Center at the University of ColoradoAnschutz Medical CampusAuroraColoradoUSA
- Division of Endocrinology, Diabetes and Metabolic DiseasesDepartment of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Rocky Mountain Regional Veterans AdministrationAuroraColoradoUSA
| | - Corey A. Rynders
- Anschutz Health & Wellness Center at the University of ColoradoAnschutz Medical CampusAuroraColoradoUSA
| | - Elizabeth A. Thomas
- Division of Endocrinology, Metabolism and DiabetesDepartment of MedicineUniversity of ColoradoAnschutz Medical CampusAuroraColoradoUSA
- Anschutz Health & Wellness Center at the University of ColoradoAnschutz Medical CampusAuroraColoradoUSA
- Rocky Mountain Regional Veterans AdministrationAuroraColoradoUSA
| |
Collapse
|
17
|
Issaka A, Paradies Y, Cameron AJ, Stevenson C. The association between body weight indices, behavioral factors, and type 2 diabetes mellitus in Africa: A systematic review and meta-analysis of population-based epidemiological studies. Nutr Metab Cardiovasc Dis 2024; 34:1-18. [PMID: 38016892 DOI: 10.1016/j.numecd.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/07/2023] [Accepted: 06/14/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND AIM Type 2 diabetes mellitus (T2DM) is a significant public health concern in Africa. While the associations between modifiable risk factors and T2DM are likely to be Africa-specific, their overall estimations have not been published. This study aimed to use systematic and meta-analytic methods to examine the strength of associations between modifiable risk factors and T2DM in Africa. METHODS AND RESULTS A systematic search of literature published between January 2000 to March 2022 was conducted. The review included only population-based studies and data extracted from 57 studies. Of these, unadjusted data from 50 studies were included in meta-analysis. With considerable heterogeneity between studies, random-effect models were calculated to ascertain the odds ratios (OR) and 95% confidence intervals (CI) for the associations between obesity (OB) and overweight (OV), defined by BMI; central obesity (waist circumference (OB-WC), waist-to-hip-ratio (OB-WHR)), alcohol, fruit and vegetable consumption, smoking, physical activity (PA) and T2DM. Moderator effects of age, African regions, and urban/rural location were assessed. Risk factors associated with T2DM include BMI-OB [OR = 3.05, 95% CI: (2.58, 3.61)], BMI-OV [OR = 2.38, 95% CI: (1.51, 3.75)], and BMI-OV/OB [OR = 2.07, 95% CI: (1.82, 2.34)]; OB-WC [OR = 2.58, 95% CI: (2.09, 3.18)] and OB-WHR [OR = 2.22, 95% CI: (1.69, 2.92)]; PA [OR = 1.85, 95% CI: (1.50, 2.30)]. Significant moderator effects were not observed. CONCLUSION Obesity defined by BMI and central obesity, but not behavioral risk factors were most strongly associated with T2DM in African populations, emphasizing the need for obesity prevention to limit the rise of T2DM. REGISTRATION The PROSPERO registration number is CRD42016043027.
Collapse
Affiliation(s)
- Ayuba Issaka
- Global Obesity Centre (GLOBE), School of Health and Social Development, Faculty of Health, Institute for Health Transformation, Deakin University, 1 Gheringhap St, Geelong, VIC 3220, Australia; Alfred Deakin Institute for Citizenship and Globalisation, Faculty of Arts and Education, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia; Baker Heart and Diabetes Institute, Non-Communicable Diseases and Implementation Science Unit, VIC, Australia.
| | - Yin Paradies
- Alfred Deakin Institute for Citizenship and Globalisation, Faculty of Arts and Education, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Adrian J Cameron
- Global Obesity Centre (GLOBE), School of Health and Social Development, Faculty of Health, Institute for Health Transformation, Deakin University, 1 Gheringhap St, Geelong, VIC 3220, Australia
| | - Christopher Stevenson
- Global Obesity Centre (GLOBE), School of Health and Social Development, Faculty of Health, Institute for Health Transformation, Deakin University, 1 Gheringhap St, Geelong, VIC 3220, Australia
| |
Collapse
|
18
|
Ivan EBC, Teresa EG, Catalina LS, Alberto Francisco RG, Elena RVD. Gender Differences in the Predictive Value of Obesity Indices for Insulin Resistance in Adult Mexican Individuals. Endocr Metab Immune Disord Drug Targets 2024; 24:1640-1650. [PMID: 38415492 DOI: 10.2174/0118715303284893240215070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Obesity-linked insulin resistance (IR) is an important risk factor for metabolic diseases, and anthropometric indices are commonly used for risk assessment. AIM The study aimed to assess possible differences between women and men in the predictive value and association of nine obesity indices with IR, as assessed by HOMA-IR, in a nondiabetic adult population. METHODS The cross-sectional study included individuals recruited from a hospital in Mexico City. Indices evaluated were waist circumference (WC), hip circumference (HC), body mass index (BMI), waist-to-hip ratio, waist-to-height ratio, visceral adiposity index, body adiposity index (BAI), relative fat mass (RFM), and conicity index (CI). Fasting plasma glucose and insulin were measured to calculate HOMA-IR. Correlation analysis was performed between obesity indices and HOMA-IR. Receiver operating characteristics curve analyses were performed to determine predictive accuracy and cut-off values of obesity indices for IR. A binary logistic regression (BLR) analysis with OR calculation was performed to determine the strength of association with HOMA-IR. RESULTS We included 378 individuals (59% females, mean age 46.38 ±12.25 years). The highest Pearson coefficient value was observed for BMI among women, while among men, the highest values were found for BMI and BAI. WC among women, and BAI and RFM among men showed the highest sensitivity, while the highest specificity was observed for WHR among women and WC among men with respect to insulin prediction. In the adjusted BLR model, BMI, WC, and WHR among women and WC and RFM and BAI among men were independently associated with IR, showing the highest odds ratio (OR). CONCLUSION In Mexican adults, WC, WHR, RFM and BAI could be complementary tools for BMI in screening for IR.
Collapse
Affiliation(s)
- Elizalde-Barrera Cesar Ivan
- Department of Internal Medicine. Hospital General de Zona Numero 30, Instituto Mexicano del Seguro Social. Eje 4 Sur, Av. Pdte. Plutarco Elías Calles 473, Santa Anita, Iztacalco, 08300 Ciudad de México, Mexico
| | - Estrada-Garcia Teresa
- Department of Molecular Biomedicine, CINVESTAV-IPN. Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México
| | - Lopez-Saucedo Catalina
- Department of Molecular Biomedicine, CINVESTAV-IPN. Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México
| | - Rubio-Guerra Alberto Francisco
- Metabolic and Research Clinic, Hospital General de Ticomán, SS DF. Plan de San Luis s/n, La Purísima Ticoman, Gustavo A. Madero, 07330 Ciudad de México, Mexico
| | - Ramirez-Velasco Diana Elena
- Department of Internal Medicine, Hospital GeneraI de Zona No 3, San Juan del Río Queretaro, Instituto Mexicano del Seguro Social. Queretaro, Mexico, Calle Paseo Central Km. 0+600, Los Arrayanes, San Juan Del Río, 76908 Querétaro, México
| |
Collapse
|
19
|
Adeva-Andany MM, Domínguez-Montero A, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, González-Lucán M. Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases. Curr Diabetes Rev 2024; 20:e160823219824. [PMID: 37587805 DOI: 10.2174/1573399820666230816111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
The risk for metabolic and cardiovascular complications of obesity is defined by body fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In humans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose tissue reflects enhanced insulin sensitivity. Prospective studies document an association between larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. Case-control studies reveal an association between genetic predisposition to insulin resistance and a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptorgamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposition, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the effects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue (lipodystrophy) is associated with insulin resistance and its clinical manifestations, including essential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular disease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesity without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or defective adipocyte differentiation. Lean and obese humans develop insulin resistance when the capacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is no longer attainable at that location. Existing adipocytes become large and reflect the presence of insulin resistance.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
20
|
Garg UK, Mathur N, Sahlot R, Tiwari P, Sharma B, Saxena A, Jainaw RK, Agarwal L, Gupta S, Mathur SK. Abdominal fat depots and their association with insulin resistance in patients with type 2 diabetes. PLoS One 2023; 18:e0295492. [PMID: 38064530 PMCID: PMC10707599 DOI: 10.1371/journal.pone.0295492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Asian-Indians show thin fat phenotype, characterized by predominantly central deposition of excess fat. The roles of abdominal subcutaneous fat (SAT), intra-peritoneal adipose tissue, and fat depots surrounding the vital organs (IPAT-SV) and liver fat in insulin resistance (IR), type-2 diabetes (T2D) and metabolic syndrome (MetS) in this population are sparsely investigated. AIMS AND OBJECTIVES Assessment of liver fat, SAT and IPAT-SV by MRI in subjects with T2D and MetS; and to investigate its correlation with IR, specifically according to different quartiles of HOMA-IR. METHODS Eighty T2D and the equal number of age sex-matched normal glucose tolerant controls participated in this study. Abdominal SAT, IPAT-SV and liver fat were measured using MRI. IR was estimated by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). RESULTS T2D and MetS subjects have higher quantity liver fat and IPAT-SV fat than controls (P = 9 x 10-4 and 4 x 10-4 for T2D and 10-4 and 9 x 10-3 for MetS subjects respectively). MetS subjects also have higher SAT fat mass (P = 0.012), but not the BMI adjusted SAT fat mass (P = 0.48). Higher quartiles of HOMA-IR were associated with higher BMI, W:H ratio, waist circumference, and higher liver fat mass (ANOVA Test P = 0.020, 0.030, 2 x 10-6 and 3 x 10-3 respectively with F-values 3.35, 3.04, 8.82, 4.47 respectively). In T2D and MetS subjects, HOMA-IR showed a moderately strong correlation with liver fat (r = 0.467, P < 3 x 10-5 and r = 0.493, P < 10-7), but not with SAT fat and IPAT-SV. However, in MetS subjects IPAT-SV fat mass showed borderline correlation with IR (r = 0.241, P < 0.05), but not with the BMI adjusted IPAT-SV fat mass (r = 0.13, P = 0.26). In non-T2D and non-MetS subjects, no such correlation was seen. On analyzing the correlation between the three abdominal adipose compartment fat masses and IR according to its severity, the correlation with liver fat mass becomes stronger with increasing quartiles of HOMA-IR, and the strongest correlation is seen in the highest quartile (r = 0.59, P < 10-3). On the other hand, SAT fat mass tended to show an inverse relation with IR with borderline negative correlation in the highest quartile (r = -0.284, P < 0.05). IPAT-SV fat mass did not show any statistically significant correlation with HOMA-IR, but in the highest quartile it showed borderline, but statistically insignificant positive correlation (P = 0.07). CONCLUSION In individuals suffering from T2D and MetS, IR shows a trend towards positive and borderline negative correlation with liver fat and SAT fat masses respectively. The positive trend with liver fat tends to become stronger with increasing quartile of IR. Therefore, these findings support the theory that possibly exhaustion of protective compartment's capacity to store excess fat results in its pathological deposition in liver as ectopic fat.
Collapse
Affiliation(s)
- Umesh Kumar Garg
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Nitish Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Rahul Sahlot
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Pradeep Tiwari
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, India
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Balram Sharma
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Aditya Saxena
- Department of Computer Engineering & Applications, GLA University, Mathura, India
| | - Raj Kamal Jainaw
- Department of Surgery, Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Laxman Agarwal
- Department of Surgery, Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Shalu Gupta
- Department of Surgery, Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Sandeep Kumar Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, India
| |
Collapse
|
21
|
Monsalve FA, Delgado-López F, Fernández-Tapia B, González DR. Adipose Tissue, Non-Communicable Diseases, and Physical Exercise: An Imperfect Triangle. Int J Mol Sci 2023; 24:17168. [PMID: 38138997 PMCID: PMC10743187 DOI: 10.3390/ijms242417168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/24/2023] Open
Abstract
The study of adipose tissue has received considerable attention due to its importance not just in maintaining body energy homeostasis but also in playing a role in a number of other physiological processes. Beyond storing energy, adipose tissue is important in endocrine, immunological, and neuromodulatory functions, secreting hormones that participate in the regulation of energy homeostasis. An imbalance of these functions will generate structural and functional changes in the adipose tissue, favoring the secretion of deleterious adipocytokines that induce a pro-inflammatory state, allowing the development of metabolic and cardiovascular diseases and even some types of cancer. A common theme worldwide has been the development of professional guidelines for the control and treatment of obesity, with emphasis on hypocaloric diets and exercise. The aim of this review is to examine the pathophysiological mechanisms of obesity, considering the relationship among adipose tissue and two aspects that contribute positively or negatively to keeping a healthy body homeostasis, namely, exercise and noninfectious diseases. We conclude that the relationship of these aspects does not have homogeneous effects among individuals. Nevertheless, it is possible to establish some common mechanisms, like a decrease in pro-inflammatory markers in the case of exercise, and an increase in chronic inflammation in non-communicable diseases. An accurate diagnosis might consider the particular variables of a patient, namely their molecular profile and how it affects its metabolism, routines, and lifestyle; their underling health conditions; and probably even the constitution of their microbiome. We foresee that the development and accessibility of omics approaches and precision medicine will greatly improve the diagnosis, treatment, and successful outcomes for obese patients.
Collapse
Affiliation(s)
- Francisco A. Monsalve
- Department of Basic Biomedical Science, Faculty of Health Sciences, Universidad de Talca, Talca 3465548, Chile;
| | - Fernando Delgado-López
- Laboratories of Biomedical Research, Department of Preclinical Sciences, Faculty of Medicine, Universidad Católica del Maule, Talca 3466706, Chile;
| | | | - Daniel R. González
- Department of Basic Biomedical Science, Faculty of Health Sciences, Universidad de Talca, Talca 3465548, Chile;
| |
Collapse
|
22
|
Muralidharan J, Romain C, Bresciani L, Mena P, Angelino D, Del Rio D, Chung LH, Alcaraz PE, Cases J. Nutrikinetics and urinary excretion of phenolic compounds after a 16-week supplementation with a flavanone-rich ingredient. Food Funct 2023; 14:10506-10519. [PMID: 37943075 DOI: 10.1039/d3fo02820h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Background: Polyphenols are a broad group of compounds with a complex metabolic fate. Flavanones and their metabolites provide cardiovascular protection and assistance in long-term body composition management. Objective: This study evaluates the nutrikinetics and the bioavailability of phenolic compounds after both acute and chronic supplementation with a flavanone-rich product, namely Sinetrol® Xpur, in healthy overweight and obese volunteers. Design: An open-label study including 20 volunteers was conducted for 16 weeks. Participants received Sinetrol® Xpur, either a low dose (900 mg per day) or a high dose (1800 mg per day), in capsules during breakfast and lunch. They were advised to follow an individualized isocaloric diet and avoid a list of polyphenol-rich foods 48 hours before and during the pharmacokinetic measurements. Results: Over 20 phase II and colonic metabolites were measured in the plasma. Two peaks were observed at 1 h and 7h-10 h after the first capsule ingestion. No significant differences in the AUC were observed in circulating metabolites between both doses. In urine excretion, 53 metabolites were monitored, including human phase II and colonic metabolites, at weeks 1 and 16. Cumulative urine excretion was higher after the high dose than after the low dose in both acute and chronic studies. Total urinary metabolites were significantly lower in week 16 compared to week 1. Conclusion: Although the urinary excreted metabolites reduced significantly over 16 weeks, the circulating metabolites did not decrease significantly. This study suggests that chronic intake might not offer the same bioavailability as in the acute study, and this effect does not seem to be dose-dependent. The clinical trial registry number is NCT03823196.
Collapse
Affiliation(s)
| | - Cindy Romain
- Fytexia, ZAE via Europa - 3 rue d'Athènes, 34350 Vendres, France.
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Donato Angelino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, 64100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Linda H Chung
- Research Center for High Performance Sport - UCAM Universidad Católica de Murcia, Murcia, Spain
- Department of Food and Nutrition Technology, Universidad Católica de Murcia, Murcia, Spain
| | - Pedro E Alcaraz
- Research Center for High Performance Sport - UCAM Universidad Católica de Murcia, Murcia, Spain
- Department of Food and Nutrition Technology, Universidad Católica de Murcia, Murcia, Spain
| | - Julien Cases
- Fytexia, ZAE via Europa - 3 rue d'Athènes, 34350 Vendres, France.
| |
Collapse
|
23
|
Fernández-Pombo A, Sánchez-Iglesias S, Castro-Pais AI, Ginzo-Villamayor MJ, Cobelo-Gómez S, Prado-Moraña T, Díaz-López EJ, Casanueva FF, Loidi L, Araújo-Vilar D. Natural history and comorbidities of generalised and partial lipodystrophy syndromes in Spain. Front Endocrinol (Lausanne) 2023; 14:1250203. [PMID: 38034001 PMCID: PMC10687442 DOI: 10.3389/fendo.2023.1250203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023] Open
Abstract
The rarity of lipodystrophies implies that they are not well-known, leading to delays in diagnosis/misdiagnosis. The aim of this study was to assess the natural course and comorbidities of generalised and partial lipodystrophy in Spain to contribute to their understanding. Thus, a total of 140 patients were evaluated (77.1% with partial lipodystrophy and 22.9% with generalised lipodystrophy). Clinical data were collected in a longitudinal setting with a median follow-up of 4.7 (0.5-17.6) years. Anthropometry and body composition studies were carried out and analytical parameters were also recorded. The estimated prevalence of all lipodystrophies in Spain, excluding Köbberling syndrome, was 2.78 cases/million. The onset of phenotype occurred during childhood in generalised lipodystrophy and during adolescence-adulthood in partial lipodystrophy, with the delay in diagnosis being considerable for both cohorts. There are specific clinical findings that should be highlighted as useful features to take into account when making the differential diagnosis of these disorders. Patients with generalised lipodystrophy were found to develop their first metabolic abnormalities sooner and a different lipid profile has also been observed. Mean time to death was 83.8 ± 2.5 years, being shorter among patients with generalised lipodystrophy. These results provide an initial point of comparison for ongoing prospective studies such as the ECLip Registry study.
Collapse
Affiliation(s)
- Antía Fernández-Pombo
- Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana I. Castro-Pais
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - Maria José Ginzo-Villamayor
- Department of Estatística, Análise Matemática e Optimización, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Silvia Cobelo-Gómez
- Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Everardo Josué Díaz-López
- Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Felipe F. Casanueva
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - Lourdes Loidi
- Galician Public Foundation for Genomic Medicine (SERGAS-Xunta de Galicia), Santiago de Compostela, Spain
| | - David Araújo-Vilar
- Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
24
|
Lee K. Relationships of neck circumference and abdominal obesity with insulin resistance considering relative handgrip strength in middle-aged and older individuals. Arch Gerontol Geriatr 2023; 114:105097. [PMID: 37311370 DOI: 10.1016/j.archger.2023.105097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE This cross-sectional study evaluated how neck circumference (NC) influences the association between abdominal obesity (AO) and insulin resistance (IR) while considering relative handgrip strength (RHGS) in middle-aged and older people. METHODS Using data from the 2019 Korea National Health and Nutrition Examination Survey for 3804 Korean adults aged 40-80 years, AO (waist circumference [WC] ≥90 cm for men, ≥85 cm for women), large NC (sex-specific highest 5th quintile), weak RHGS (sex-specific 1st quintile of HGS/body mass index), and IR (homeostasis model assessment of IR [HOMA-IR] ≥2.5) were defined. A complex sample general linear model and logistic regression analyses were performed after adjusting for confounding factors. RESULTS As NC increased, the relationship between WC and HOMA-IR increased (p for interaction <0.001). In the group with AO, large NC, or both, the adjusted odds ratio (AOR) for IR increased in the group with weak RHGS than in the group with normal RHGS. In the group with normal NC, the AOR for IR in those with AO (vs. those without AO) was 3.3 (95% confidence interval, 2.6-4.3) even after controlling for RHGS; however, the AOR was 5.3 (95% confidence interval, 2.7-10.4) in the group with large NC. These relationships of WC, NC, and RHGS with IR were comparable across sex and age groups. CONCLUSIONS Large NC increased the association between AO and IR independent of RHGS and the relationships between large NC and AO and insulin resistance varied according to RHGS.
Collapse
Affiliation(s)
- Kayoung Lee
- Department of Family Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Republic of Korea.
| |
Collapse
|
25
|
Macklin M, Thompson C, Kawano-Dourado L, Bauer Ventura I, Weschenfelder C, Trostchansky A, Marcadenti A, Tighe RM. Linking Adiposity to Interstitial Lung Disease: The Role of the Dysfunctional Adipocyte and Inflammation. Cells 2023; 12:2206. [PMID: 37759429 PMCID: PMC10526202 DOI: 10.3390/cells12182206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Adipose tissue has functions beyond its principal functions in energy storage, including endocrine and immune functions. When faced with a surplus of energy, the functions of adipose tissue expand by mechanisms that can be both adaptive and detrimental. These detrimental adipose tissue functions can alter normal hormonal signaling and promote local and systemic inflammation with wide-ranging consequences. Although the mechanisms by which adipose tissue triggers metabolic dysfunction and local inflammation have been well described, little is known about the relationship between adiposity and the pathogenesis of chronic lung conditions, such as interstitial lung disease (ILD). In this review, we detail the conditions and mechanisms by which adipose tissue becomes dysfunctional and relate this dysfunction to inflammatory changes observed in various forms of ILD. Finally, we review the existing basic and clinical science literature linking adiposity to ILD, highlighting the need for additional research on the mechanisms of adipocyte-mediated inflammation in ILD and its clinical implications.
Collapse
Affiliation(s)
- Michael Macklin
- Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA;
| | - Chelsea Thompson
- Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA;
| | - Leticia Kawano-Dourado
- Hcor Research Institute (IP-Hcor), Hcor, São Paulo 04004-050, Brazil; (L.K.-D.); (A.M.)
- Pulmonary Division, Heart Institute (InCor), University of Sao Paulo Medical School, São Paulo 05403-903, Brazil
| | | | - Camila Weschenfelder
- Graduate Program in Health Sciences (Cardiology), Cardiology Institute, University Foundation of Cardiology (IC/FUC), Porto Alegre 90050-170, Brazil;
| | - Andrés Trostchansky
- Department of Biochemistry and Biomedical Research Center, School of Medicine, University of the Republic, Montevideo 11800, Uruguay;
| | - Aline Marcadenti
- Hcor Research Institute (IP-Hcor), Hcor, São Paulo 04004-050, Brazil; (L.K.-D.); (A.M.)
- Graduate Program in Health Sciences (Cardiology), Cardiology Institute, University Foundation of Cardiology (IC/FUC), Porto Alegre 90050-170, Brazil;
- Graduate Program in Epidemiology, School of Public Health, University of São Paulo (FSP-USP), São Paulo 01246-904, Brazil
| | - Robert M. Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
26
|
Tataka Y, Hiratsu A, Fujihira K, Nagayama C, Kamemoto K, Fushimi T, Takase H, Miyashita M. Habitual Physical Activity and Dietary Profiles in Older Japanese Males with Normal-Weight Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6408. [PMID: 37510640 PMCID: PMC10379222 DOI: 10.3390/ijerph20146408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Normal-weight obesity is defined as having high body fat but a normal body mass index (BMI). This study examined whether there are differences in habitual physical activity and diet between individuals with normal-weight obesity and obese or non-obesity. This study included 143 males aged 65-75 years, and they were classified into the following three groups according to BMI and visceral fat area (VFA): obese group (n = 27 (BMI: ≥25 kg/m2 and VFA: ≥100 cm2)), normal-weight obese group (n = 35 (BMI: <25 kg/m2 and VFA: ≥100 cm2)) and non-obese group (n = 81 (BMI: <25 kg/m2 and VFA < 100 cm2)). Lowered high-density lipoprotein cholesterol and elevated triglyceride and alanine transaminase were observed in the normal-weight obese group than in the non-obese group (all for p ≤ 0.04, effect size ≥ 0.50). No differences were found in physical activity and dietary habits between non-obese and normal-weight obese groups (all for p > 0.05). Although impaired lipid and liver function parameters were observed in older males with normal-weight obesity compared with older males with non-obesity, physical activity and dietary profiles in themselves were not shown these differences in the present study.
Collapse
Affiliation(s)
- Yusei Tataka
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Ayano Hiratsu
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Kyoko Fujihira
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Chihiro Nagayama
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Kayoko Kamemoto
- Waseda Institute for Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Takashi Fushimi
- Biological Science Research, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Hideto Takase
- Biological Science Research, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Masashi Miyashita
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| |
Collapse
|
27
|
Liao J, Li Y, Gui X, Zhang Y, Hu X, Cheng L, Hu W, Bai F. Serum Isthmin-1 Was Increased in Type 2 Diabetic Patients but Not in Diabetic Sensorimotor Peripheral Neuropathy. Diabetes Metab Syndr Obes 2023; 16:2013-2024. [PMID: 37427082 PMCID: PMC10327676 DOI: 10.2147/dmso.s411127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose This study aimed to investigate the relationship between serum isthmin-1 (ISM1) and type 2 diabetes mellitus (T2DM), and the alteration of serum ISM1 level in both diabetic sensorimotor peripheral neuropathy (DSPN) and diabetic adults with obesity. Patients and Methods We recruited 180 participants (120 T2DM and 60 controls) in the cross-sectional study. First, we compared the serum ISM1 concentration in diabetic patients and non-diabetic controls. Secondly, according to DSPN, patients were divided into DSPN and non-DSPN groups. Last, patients were categorized as lean T2DM (15 males, 15 females), overweight T2DM (35 males, 19 females), and obese T2DM groups (23 males, 13 females) according to gender and body mass index (BMI). All participants were collected with clinical characteristics and biochemical profiles. Serum ISM1 was detected in all subjects by ELISA. Results Higher serum ISM1 [7.78 ng/mL (IQR: 6.33-9.06) vs 5.22 (3.86-6.04), P <0.001] was observed in diabetic patients compared to non-diabetic controls. Binary logistic regression analysis showed that serum ISM1 was a risk factor for type 2 diabetes after adjustment (OR=4.218, 95% CI: 1.843-9.653, P=0.001). Compared to the non-DSPN group, serum ISM1 level was not changed significantly in patients who suffered from DSPN. Diabetic females with obesity had lower level of serum ISM1 (7.10±1.29 ng/mL) when compared to the lean T2DM (8.42±1.36 ng/mL, P <0.05) and the overweight T2DM (8.33±1.27 ng/mL, P <0.05). However, serum ISM1 was not changed significantly in male groups or all patients together. Conclusion Serum ISM1 was a risk factor for type 2 diabetes, and it was associated with diabetic adults with obesity while there was sexual dimorphism. However, serum ISM1 levels were not correlated with DSPN.
Collapse
Affiliation(s)
- Jiaxin Liao
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Yuting Li
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Xiaoting Gui
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Yong Zhang
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Xu Hu
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Liang Cheng
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Wen Hu
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Feng Bai
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| |
Collapse
|
28
|
Valenzuela PL, Carrera-Bastos P, Castillo-García A, Lieberman DE, Santos-Lozano A, Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol 2023; 20:475-494. [PMID: 36927772 DOI: 10.1038/s41569-023-00847-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/18/2023]
Abstract
The prevalence of obesity has reached pandemic proportions, and now approximately 25% of adults in Westernized countries have obesity. Recognized as a major health concern, obesity is associated with multiple comorbidities, particularly cardiometabolic disorders. In this Review, we present obesity as an evolutionarily novel condition, summarize the epidemiological evidence on its detrimental cardiometabolic consequences and discuss the major mechanisms involved in the association between obesity and the risk of cardiometabolic diseases. We also examine the role of potential moderators of this association, with evidence for and against the so-called 'metabolically healthy obesity phenotype', the 'fatness but fitness' paradox or the 'obesity paradox'. Although maintenance of optimal cardiometabolic status should be a primary goal in individuals with obesity, losing body weight and, particularly, excess visceral adiposity seems to be necessary to minimize the risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre ("i + 12"), Madrid, Spain.
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain.
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Alejandro Santos-Lozano
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre ("i + 12"), Madrid, Spain
- Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
| |
Collapse
|
29
|
Hawley NL, Duckham RL, Carlson JC, Naseri T, Reupena MS, Lameko V, Pomer A, Wetzel A, Selu M, Lupematisila V, Unasa F, Vesi L, Fatu T, Unasa S, Faasalele-Savusa K, Rivara AC, Russell E, Delany JP, Viali S, Kershaw EE, Minster RL, Weeks DE, McGarvey ST. The protective effect of rs373863828 on type 2 diabetes does not operate through a body composition pathway in adult Samoans. Obesity (Silver Spring) 2022; 30:2468-2476. [PMID: 36284436 PMCID: PMC10111239 DOI: 10.1002/oby.23559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim of this study was to understand whether the paradoxical association of missense variant rs373863828 in CREB3 regulatory factor (CREBRF) with higher BMI but lower odds of diabetes is explained by either metabolically favorable body fat distribution or greater fat-free mass. METHODS This study explored the association of the minor allele with dual-energy x-ray absorptiometry-derived body composition in n = 421 Samoans and used path analysis to examine the mediating role of fat and fat-free mass on the relationship between rs373863828 and fasting glucose. RESULTS Among females, the rs373863828 minor A allele was associated with greater BMI. There was no association of genotype with percent body fat, visceral adiposity, or fat distribution in either sex. In both females and males, lean mass was greater with each A allele: 2.16 kg/copy (p = 0.0001) and 1.73 kg/copy (p = 0.02), respectively. Path analysis showed a direct negative effect of rs373863828 genotype on fasting glucose (p = 0.004) consistent with previous findings, but also an indirect positive effect on fasting glucose operating through fat-free mass (p = 0.027). CONCLUSIONS The protective effect of rs373863828 in CREBRF, common among Pacific Islanders, on type 2 diabetes does not operate through body composition. Rather, the variant's effects on body size/composition and fasting glucose likely operate via different, tissue-specific mechanisms.
Collapse
Affiliation(s)
- Nicola L. Hawley
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Rachel L. Duckham
- Institute of Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, Australia
| | - Jenna C. Carlson
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Alysa Pomer
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Abigail Wetzel
- International Health Institute, Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Melania Selu
- Obesity, Lifestyle and Genetic Adaptations Study Group, Apia, Samoa
| | | | - Folla Unasa
- Obesity, Lifestyle and Genetic Adaptations Study Group, Apia, Samoa
| | - Lupesina Vesi
- Obesity, Lifestyle and Genetic Adaptations Study Group, Apia, Samoa
| | - Tracy Fatu
- Obesity, Lifestyle and Genetic Adaptations Study Group, Apia, Samoa
| | - Seipepa Unasa
- Obesity, Lifestyle and Genetic Adaptations Study Group, Apia, Samoa
| | | | - Anna C. Rivara
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Emily Russell
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - James P. Delany
- AdventHealth, Translational Research Institute, Orlando, FL, USA
| | | | - Erin E. Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan L. Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel E. Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen T. McGarvey
- International Health Institute, Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| |
Collapse
|
30
|
Adipose Tissue Dysfunction in Obesity: Role of Mineralocorticoid Receptor. Nutrients 2022; 14:nu14224735. [PMID: 36432422 PMCID: PMC9699173 DOI: 10.3390/nu14224735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022] Open
Abstract
The mineralocorticoid receptor (MR) acts as an essential regulator of blood pressure, volume status, and electrolyte balance. However, in recent decades, a growing body of evidence has suggested that MR may also have a role in mediating pro-inflammatory, pro-oxidative, and pro-fibrotic changes in several target organs, including the adipose tissue. The finding that MR is overexpressed in the adipose tissue of patients with obesity has led to the hypothesis that this receptor can contribute to adipokine dysregulation and low-grade chronic inflammation, alterations that are linked to the development of obesity-related metabolic and cardiovascular complications. Moreover, several studies in animal models have investigated the role of MR antagonists (MRAs) in preventing the metabolic alterations observed in obesity. In the present review we will focus on the potential mechanisms by which MR activation can contribute to adipose tissue dysfunction in obesity and on the possible beneficial effects of MRAs in this setting.
Collapse
|
31
|
Börgeson E, Boucher J, Hagberg CE. Of mice and men: Pinpointing species differences in adipose tissue biology. Front Cell Dev Biol 2022; 10:1003118. [PMID: 36187476 PMCID: PMC9521710 DOI: 10.3389/fcell.2022.1003118] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of obesity and metabolic diseases continues to rise, which has led to an increased interest in studying adipose tissue to elucidate underlying disease mechanisms. The use of genetic mouse models has been critical for understanding the role of specific genes for adipose tissue function and the tissue’s impact on other organs. However, mouse adipose tissue displays key differences to human fat, which has led, in some cases, to the emergence of some confounding concepts in the adipose field. Such differences include the depot-specific characteristics of visceral and subcutaneous fat, and divergences in thermogenic fat phenotype between the species. Adipose tissue characteristics may therefore not always be directly compared between species, which is important to consider when setting up new studies or interpreting results. This mini review outlines our current knowledge about the cell biological differences between human and mouse adipocytes and fat depots, highlighting some examples where inadequate knowledge of species-specific differences can lead to confounding results, and presenting plausible anatomic explanations that may underlie the differences. The article thus provides critical insights and guidance for researchers working primarily with only human or mouse fat tissue, and may contribute to new ideas or concepts in the important and evolving field of adipose biology.
Collapse
Affiliation(s)
- Emma Börgeson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Vaestra Goetaland, Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jeremie Boucher
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Metabolic Disease, Evotec International GmbH, Göttingen, Germany
| | - Carolina E. Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Carolina E. Hagberg,
| |
Collapse
|
32
|
Htun KT, Jaikumkao K, Pan J, Moe Moe AT, Intachai N, Promsan S, Lungkaphin A, Tapanya M, Pasanta D, Tungjai M, Kaewjaeng S, Kim HJ, Kaewkhao J, Lai C, Kothan S. Noninvasive NMR/MRS Metabolic Parameters to Evaluate Metabolic Syndrome in Rats. Diagnostics (Basel) 2022; 12:1621. [PMID: 35885526 PMCID: PMC9323612 DOI: 10.3390/diagnostics12071621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: Ectopic fat deposition and its effects, metabolic syndrome, have been significantly correlated to lifestyle and caloric consumption. There is no specific noninvasive evaluation tool being used in order to establish clinical markers for tracing the metabolic pathway implicated in obesity-related abnormalities that occur in the body as a result of a high-fat diet (HFD). The purpose of this work is to investigate in vivo ectopic fat distribution and in vitro metabolite profiles given by HFDs, as well as how they are inter-related, in order to find surrogate metabolic biomarkers in the development of metabolic syndrome utilizing noninvasive approaches. (2) Methods: Male Wistar rats were divided into a standard normal chow diet, ND group, and HFD group. After 16 weeks of different diet administration, blood samples were collected for proton nuclear magnetic resonance (1H NMR) and biochemical analysis. Magnetic resonance imaging/proton magnetic resonance spectroscopy (MRI/1H MRS) was performed on the abdomen, liver, and psoas muscle of the rats. (3) Results: Visceral fat showed the strongest relationship with blood cholesterol. Although liver fat content (LFC) was not associated with any biophysical profiles, it had the highest correlation with metabolites such as (-CH2)n very-low-density lipoprotein/low-density lipoprotein (VLDL/LDL), lactate, and N-acetyl glycoprotein of serum 1H NMR. HFD showed no obvious influence on muscle fat accumulation. Acetoacetate, N-acetyl glycoprotein, lactate, (-CH2)n VLDL/LDL, and valine were the five possible metabolic biomarkers used to differentiate HFD from ND in the present study. (4) Conclusions: Our study has validated the influence of long-term HFD-induced ectopic fat on body metabolism as well as the metabolic profile deterioration both in vivo and in vitro.
Collapse
Affiliation(s)
- Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (K.J.); (A.T.M.M.); (N.I.); (M.T.); (D.P.); (M.T.); (S.K.)
| | - Krit Jaikumkao
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (K.J.); (A.T.M.M.); (N.I.); (M.T.); (D.P.); (M.T.); (S.K.)
| | - Jie Pan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (K.J.); (A.T.M.M.); (N.I.); (M.T.); (D.P.); (M.T.); (S.K.)
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Aye Thidar Moe Moe
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (K.J.); (A.T.M.M.); (N.I.); (M.T.); (D.P.); (M.T.); (S.K.)
| | - Nuttawadee Intachai
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (K.J.); (A.T.M.M.); (N.I.); (M.T.); (D.P.); (M.T.); (S.K.)
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (A.L.)
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (A.L.)
| | - Monruedee Tapanya
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (K.J.); (A.T.M.M.); (N.I.); (M.T.); (D.P.); (M.T.); (S.K.)
| | - Duanghathai Pasanta
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (K.J.); (A.T.M.M.); (N.I.); (M.T.); (D.P.); (M.T.); (S.K.)
| | - Montree Tungjai
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (K.J.); (A.T.M.M.); (N.I.); (M.T.); (D.P.); (M.T.); (S.K.)
| | - Siriprapa Kaewjaeng
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (K.J.); (A.T.M.M.); (N.I.); (M.T.); (D.P.); (M.T.); (S.K.)
| | - Hong Joo Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea;
| | - Jakrapong Kaewkhao
- Center of Excellence in Glass Technology and Materials Science (CEGM), Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand;
| | - Christopher Lai
- Health and Social Science Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore;
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (K.J.); (A.T.M.M.); (N.I.); (M.T.); (D.P.); (M.T.); (S.K.)
| |
Collapse
|
33
|
Reckelhoff JF, Shawky NM, Romero DG, Yanes Cardozo LL. Polycystic Ovary Syndrome: Insights from Preclinical Research. KIDNEY360 2022; 3:1449-1457. [PMID: 36176644 PMCID: PMC9416822 DOI: 10.34067/kid.0002052022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/13/2022] [Indexed: 01/11/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, affecting approximately 10%. PCOS is diagnosed by the presence of at least two of these three criteria: hyperandrogenemia, oligo- or anovulation, and polycystic ovaries. The most common type (80%) of PCOS includes hyperandrogenemia. PCOS is also characterized by obesity or overweight (in 80% of US women with PCOS), insulin resistance with elevated plasma insulin but not necessarily hyperglycemia, dyslipidemia, proteinuria, and elevated BP. Although elevated compared with age-matched controls, BP may not reach levels considered treatable according to the current clinical hypertension guidelines. However, it is well known that elevated BP, even modestly so, increases the risk of cardiovascular disease. We have developed a model of hyperandrogenemia in rodents that mimics the characteristics of PCOS in women, with increases in body weight, insulin resistance, dyslipidemia, andproteinuria and elevated BP. This review discusses potential mechanisms responsible for the elevated BP in the adult and aging PCOS rat model that may be extrapolated to women with PCOS.
Collapse
Affiliation(s)
- Jane F. Reckelhoff
- Department of Cell and Molecular Biology Women’s Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Noha M. Shawky
- Department of Cell and Molecular Biology Women’s Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G. Romero
- Department of Cell and Molecular Biology Women’s Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Licy L. Yanes Cardozo
- Department of Cell and Molecular Biology Women’s Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
34
|
de Sousa Neto IV, Durigan JLQ, da Silva ASR, de Cássia Marqueti R. Adipose Tissue Extracellular Matrix Remodeling in Response to Dietary Patterns and Exercise: Molecular Landscape, Mechanistic Insights, and Therapeutic Approaches. BIOLOGY 2022; 11:biology11050765. [PMID: 35625493 PMCID: PMC9138682 DOI: 10.3390/biology11050765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary Adipose tissue is considered a metabolic organ that adjusts overall energy homeostasis and critical hormones to the body’s needs. In conditions of caloric intake surpassing energy expenditure, lipid accumulation occurs with constant extracellular matrix deposition. Excess lipids and adipocyte hypertrophy may reduce extracellular matrix flexibility in conjunction with hypoxia and inflammation. These processes induce the development of adipose tissue fibrosis and correlated metabolic dysfunctions, such as insulin resistance. With the increasing rate of chronic diseases worldwide, it is essential to generate a more precise knowledge of fibrotic processes, as well as to create optimal models to study potential therapies to combat the harmful effects of extracellular matrix deposition. In this work, we focused on the physiological processes in the remodeling of adipose tissue fibrosis, along with their relevance to clinical indications. Furthermore, we emphasize understanding how lifestyle can alleviate adipocyte dysfunction. Several studies showed that a nutritionally balanced diet combined with exercise is a remarkable potential strategy for lipolytic activity, preventing rapid extracellular matrix expansion in parallel with insulin and glucose action improvements. Thus, the emerging beneficial role of exercise training and low-calorie diet on adipose tissue ECM remodeling is a topic that deserves attention from health professionals. Abstract The extracellular matrix (ECM) is a 3-dimensional network of molecules that play a central role in differentiation, migration, and survival for maintaining normal homeostasis. It seems that ECM remodeling is required for adipose tissue expansion. Despite evidence indicating that ECM is an essential component of tissue physiology, adipose tissue ECM has received limited attention. Hence, there is great interest in approaches to neutralize the harmful effects of ECM enlargement. This review compiles and discusses the current literature on adipose tissue ECM remodeling in response to different dietary patterns and exercise training. High-calorie diets result in substantial adipose tissue ECM remodeling, which in turn could lead to fibrosis (excess deposition of collagens, elastin, and fibronectin), inflammation, and the onset of metabolic dysfunction. However, combining a nutritionally balanced diet with exercise is a remarkable potential strategy for lipolytic activity, preventing rapid ECM expansion in different adipose tissue depots. Despite the distinct exercise modalities (aerobic or resistance exercise) reversing adipose tissue fibrosis in animal models, the beneficial effect on humans remains controversial. Defining molecular pathways and specific mechanisms that mediate the positive effects on adipose tissue, ECM is essential in developing optimized interventions to improve health and clinical outcomes.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- Molecular Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília, Brasília 70910-900, Brazil; or
- Correspondence:
| | | | - Adelino Sanchez Ramos da Silva
- Graduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil;
- School of Physical Education and Sport of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Rita de Cássia Marqueti
- Molecular Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília, Brasília 70910-900, Brazil; or
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília 70910-900, Brazil;
- Graduate Program in Health Sciences and Technology, Universidade de Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
35
|
Ju SH, Yi HS. Implication of Sex Differences in Visceral Fat for the Assessment of Incidence Risk of Type 2 Diabetes Mellitus. Diabetes Metab J 2022; 46:414-416. [PMID: 35656564 PMCID: PMC9171154 DOI: 10.4093/dmj.2022.0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sang Hyeon Ju
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Corresponding author: Hyon-Seung Yi https://orcid.org/0000-0002-3767-1954 Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Korea E-mail:
| |
Collapse
|
36
|
Kahn DE, Bergman BC. Keeping It Local in Metabolic Disease: Adipose Tissue Paracrine Signaling and Insulin Resistance. Diabetes 2022; 71:599-609. [PMID: 35316835 PMCID: PMC8965661 DOI: 10.2337/dbi21-0020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/03/2022] [Indexed: 01/04/2023]
Abstract
Alterations in adipose tissue composition and function are associated with obesity and contribute to the development of type 2 diabetes. While the significance of this relationship has been cemented, our understanding of the multifaceted role of adipose tissue in metabolic heath and disease continues to evolve and expand. Heterogenous populations of cells that make up adipose tissue throughout the body generate diverse secretomes containing a mosaic of bioactive compounds with vast structural and signaling capabilities. While there are many reports highlighting the important role of adipose tissue endocrine signaling in insulin resistance and type 2 diabetes, the direct, local, paracrine effect of adipose tissue has received less attention. Recent studies have begun to underscore the importance of considering anatomically discrete adipose depots for their specific impact on local microenvironments and metabolic function in neighboring tissues as well as regulation of whole-body physiology. This article highlights the important role of adipose tissue paracrine signaling on metabolic function and insulin sensitivity in nearby tissues and organs, specifically focusing on visceral, pancreatic, subcutaneous, intermuscular, and perivascular adipose tissue depots.
Collapse
Affiliation(s)
- Darcy E. Kahn
- University of Colorado Anschutz Medical Campus, Aurora, CO
| | | |
Collapse
|
37
|
Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes. Int J Obes (Lond) 2022; 46:535-543. [PMID: 34799672 DOI: 10.1038/s41366-021-01021-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND In obesity, adipose tissue dysfunction resulting from excessive fat accumulation leads to systemic insulin resistance (IR), the underlying alteration of Type 2 Diabetes. The specific pathways dysregulated in dysfunctional adipocytes and the extent to which it affects adipose metabolic functions remain incompletely characterized. METHODS We interrogated the transcriptional adaptation to increased adiposity in association with insulin resistance in visceral white adipose tissue from lean men, or men presenting overweight/obesity (BMI from 19 to 33) and discordant for insulin sensitivity. In human adipocytes in vitro, we investigated the direct contribution of IR in altering metabolic gene programming and glucose utilization using 13C-isotopic glucose tracing. RESULTS We found that gene expression associated with impaired glucose and lipid metabolism and inflammation represented the strongest association with systemic insulin resistance, independently of BMI. In addition, we showed that inducing IR in mature human white adipocytes was sufficient to reprogram the transcriptional profile of genes involved in important metabolic functions such as glycolysis, the pentose phosphate pathway and de novo lipogenesis. Finally, we found that IR induced a rewiring of glucose metabolism, with higher incorporation of glucose into citrate, but not into downstream metabolites within the TCA cycle. CONCLUSIONS Collectively, our data highlight the importance of obesity-derived insulin resistance in impacting the expression of key metabolic genes and impairing the metabolic processes of glucose utilization, and reveal a role for metabolic adaptation in adipose dysfunction in humans.
Collapse
|
38
|
Muñoz-Hernando J, Escribano J, Ferré N, Closa-Monasterolo R, Grote V, Koletzko B, Gruszfeld D, ReDionigi A, Verduci E, Xhonneux A, Luque V. Usefulness of the waist-to-height ratio for predicting cardiometabolic risk in children and its suggested boundary values. Clin Nutr 2022; 41:508-516. [PMID: 35016145 DOI: 10.1016/j.clnu.2021.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/20/2021] [Accepted: 12/04/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND & AIMS Only limited information is available on the usefulness of the waist-to-height ratio (WHtR) as an abdominal obesity marker in children. Our aim was to compare the ability of a WHtR >90th percentile, a WHtR ≥0.50, a WHtR ≥0.55 and a BMI z-score ≥2 SD to predict cardiometabolic risk in children followed-up at different ages. METHODS We evaluated data from 660 children at 5, 8 and 11 years of age who participated in the Childhood Obesity Project trial in 5 European countries. We classified children with or without cardiometabolic (CMet) risk (yes vs. no) according to the presence of ≥2 parameters (blood pressure, HOMA-IR, triglyceride levels and high-density lipoprotein (HDL) cholesterol levels) ≥90th percentile. RESULTS The odds ratio for CMet risk in children at all followed-up ages was statistically significant for all measures. The OR for the WHtR≥0.55 cut-off was 29.1 (5.6, 151.7) at 5 years of age, 11.8 (4.1, 33.8) at 8 year of age and 3.6 (1.7, 7.7) at 11 years of age, compared to the WHtR<0.55 cut-off. The WHtR≥0.55 cut-off showed a higher OR at younger ages than the BMI z-score ≥2SD, WHtR ≥90th percentile and WHtR≥0.50 cut-offs and a higher positive predictive value (82% at 5 years of age compared to 55%, 36% and 41%, respectively). CONCLUSION A WHtR≥0.55 is a suitable cut-off for screening children at high cardiometabolic risk in the general young European population.
Collapse
Affiliation(s)
- Judit Muñoz-Hernando
- Paediatrics, Nutrition and Development Research Unit, Universitat Rovira i Virgili, IISPV, 43201, Reus, Spain.
| | - Joaquin Escribano
- Paediatrics, Nutrition and Development Research Unit, Universitat Rovira i Virgili, IISPV, 43201, Reus, Spain.
| | - Natalia Ferré
- Paediatrics, Nutrition and Development Research Unit, Universitat Rovira i Virgili, IISPV, 43201, Reus, Spain
| | - Ricardo Closa-Monasterolo
- Paediatrics, Nutrition and Development Research Unit, Universitat Rovira i Virgili, IISPV, 43201, Reus, Spain
| | - Veit Grote
- Dept. Paediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU - Ludwig-Maximilians-Universität, 80337, Munich, Germany
| | - Berthold Koletzko
- Dept. Paediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU - Ludwig-Maximilians-Universität, 80337, Munich, Germany; Else-Kröner-Seniorprofessor of Paediatrics, LMU Ludwig-Maximilians-Universität, 80337, Munich, Germany.
| | - Dariusz Gruszfeld
- Neonatal Department, Children's Memorial Health Institute, 04-730, Warsaw, Poland.
| | - Alice ReDionigi
- Department of Health Sciences, University of Milan, 20146, Milan, Italy.
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, 20146, Milan, Italy.
| | | | - Veronica Luque
- Paediatrics, Nutrition and Development Research Unit, Universitat Rovira i Virgili, IISPV, 43201, Reus, Spain; Serra Hunter Fellow, Universitat Rovira i Virgili, 43201, Reus, Spain.
| |
Collapse
|
39
|
Spann RA, Morrison CD, den Hartigh LJ. The Nuanced Metabolic Functions of Endogenous FGF21 Depend on the Nature of the Stimulus, Tissue Source, and Experimental Model. Front Endocrinol (Lausanne) 2022; 12:802541. [PMID: 35046901 PMCID: PMC8761941 DOI: 10.3389/fendo.2021.802541] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that is involved in the regulation of lipid, glucose, and energy metabolism. Pharmacological FGF21 administration promotes weight loss and improves insulin sensitivity in rodents, non-human primates, and humans. However, pharmacologic effects of FGF21 likely differ from its physiological effects. Endogenous FGF21 is produced by many cell types, including hepatocytes, white and brown adipocytes, skeletal and cardiac myocytes, and pancreatic beta cells, and acts on a diverse array of effector tissues such as the brain, white and brown adipose tissue, heart, and skeletal muscle. Different receptor expression patterns dictate FGF21 function in these target tissues, with the primary effect to coordinate responses to nutritional stress. Moreover, different nutritional stimuli tend to promote FGF21 expression from different tissues; i.e., fasting induces hepatic-derived FGF21, while feeding promotes white adipocyte-derived FGF21. Target tissue effects of FGF21 also depend on its capacity to enter the systemic circulation, which varies widely from known FGF21 tissue sources in response to various stimuli. Due to its association with obesity and non-alcoholic fatty liver disease, the metabolic effects of endogenously produced FGF21 during the pathogenesis of these conditions are not well known. In this review, we will highlight what is known about endogenous tissue-specific FGF21 expression and organ cross-talk that dictate its diverse physiological functions, with particular attention given to FGF21 responses to nutritional stress. The importance of the particular experimental design, cellular and animal models, and nutritional status in deciphering the diverse metabolic functions of endogenous FGF21 cannot be overstated.
Collapse
Affiliation(s)
- Redin A. Spann
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
40
|
Alves CAS, Martins PC, de Lima LRA, Silva DAS. What anthropometric indicators are associated with insulin resistance? Cross-sectional study on children and adolescents with diagnosed human immunodeficiency virus. SAO PAULO MED J 2022; 140:94-100. [PMID: 35043871 PMCID: PMC9623830 DOI: 10.1590/1516-3180.2021.0303.27052021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Studies that test associations between anthropometric indicators and insulin resistance (IR) need to provide better evidence in the context of the pediatric population (children and adolescents) with human immunodeficiency virus (HIV), as anthropometric indicators present a better explanation of the distribution of body fat. OBJECTIVE To test the associations between anthropometric indicators and insulin resistance (IR) among children and adolescents diagnosed with HIV. DESIGN AND SETTING Cross-sectional study on 65 children and adolescents (8-15 years) infected with HIV through vertical transmission conducted at the Joana de Gusmão Children's Hospital, Florianópolis, Brazil. METHODS The anthropometric indicators measured were the abdominal (ASF), triceps (TSF), subscapular (SSF) and calf (CSF) skinfolds. The relaxed arm (RAC), waist (WC) and neck (NC) circumferences were also measured. Body mass index (BMI) was calculated from the relationship between body mass and height. IR was calculated through the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR). Simple and multiple linear regression analyses were used. RESULTS After adjustment for covariates (sex, bone age, CD4+ T lymphocytes, CD8+ T lymphocytes, viral load, and physical activity), associations between IR and models with SSF and CSF remained. Each of these explained 20% of IR variability. For females, in the adjusted analyses, direct associations between IR and models with ASF (R² = 0.26) and TSF (R² = 0.31) were observed. CONCLUSIONS SSF and CSF in males and ASF and TSF in females were associated with IR in HIV-infected children and adolescents.
Collapse
Affiliation(s)
- Carlos Alencar Souza Alves
- MSc. Doctoral Student, Postgraduate Program on Physical Education, Universidade Federal de Santa Catarina (UFSC), Florianópolis (SC), Brazil.
| | - Priscila Custódio Martins
- MSc. Doctoral Student, Postgraduate Program in Physical Education, Universidade Federal de Santa Catarina (UFSC), Florianópolis (SC), Brazil.
| | - Luiz Rodrigo Augustemak de Lima
- PhD. Adjunct Professor, Institute of Physical Education and Sport, Universidade Federal de Alagoas (UFAL), Maceió (AL), Brazil.
| | - Diego Augusto Santos Silva
- PhD. Associate Professor, Department of Physical Education, Universidade Federal de Santa Catarina (UFSC), Florianópolis (SC), Brazil.
| |
Collapse
|
41
|
Gomez-Perez SL, Zhang Y, Mourtzakis M, Tussing-Humphreys L, Ridlon J, Gaskins HR, Mutlu E. Comparison between handheld ultrasound and regional and whole-body dual energy x-ray absorptiometry (DXA) for body fat assessment. Clin Nutr ESPEN 2021; 46:386-393. [PMID: 34857225 DOI: 10.1016/j.clnesp.2021.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To determine the extent of agreement between a handheld ultrasound (US) attached to an android tablet and the reference method dual energy x-ray absorptiometry (DXA) for the measurement of adiposity. METHODS A whole-body DXA scan and abdominal adipose tissue thickness measurements using a handheld US were obtained from 104 adults (63 females, 41 males). Body fat percent (BF%), total fat mass (kg), and trunk fat mass (kg) were obtained from DXA. Subcutaneous adipose tissue (SAT), superficial subcutaneous adipose tissue (SSAT), and deep subcutaneous adipose tissue (DSAT) thickness were obtained from US. Sex-specific total fat mass, trunk fat mass, and BF% estimates by US were compared with DXA. Spearman's correlations and Bland-Altman plots were used to assess agreement between the methods. RESULTS US SAT correlated strongly with total fat mass for both females (rs = 0.74) and males (rs = 0.87) as did trunk fat mass (females, rs = 0.81; males, rs = 0.83); as did SSAT and DSAT (females: rs = 0.65 and rs = 0.66; males: rs = 0.63 and rs = 0.85, respectively, all p-values < 0.0001). Bland-Altman plots demonstrated strong agreement for total and trunk fat mass for both males and females. For BF%, acceptable limits of agreement were observed for males but not for females, substantial proportional bias as indicated by a negative slope was noted for BF% using SAT (r = -0.298, p = 0.0177). CONCLUSION The handheld US and technique to analyze abdominal adipose tissue thickness showed strong agreement with DXA results and generated highly comparable estimates for total and trunk fat mass for both sexes.
Collapse
Affiliation(s)
| | - Yanyu Zhang
- Rush University Medical Center, Rush Bioinformatics and Biostatistics Core, Chicago, IL, USA
| | - Marina Mourtzakis
- University of Waterloo, Department of Kinesiology, Waterloo, Ontario, Canada
| | - Lisa Tussing-Humphreys
- University of Illinois at Chicago, Department of Kinesiology and Nutrition, UIC Cancer Center, Chicago, IL, USA
| | - Jason Ridlon
- University of Illinois Urbana-Champaign, Department of Animal Sciences, Urbana-Champaign, IL, USA; Cancer Center at Illinois, Urbana-Champaign, IL, USA
| | - H Rex Gaskins
- University of Illinois Urbana-Champaign, Department of Animal Sciences, Urbana-Champaign, IL, USA; Cancer Center at Illinois, Urbana-Champaign, IL, USA
| | - Ece Mutlu
- Rush University Medical Center, Department of Medicine, Chicago, IL, USA
| |
Collapse
|
42
|
Sánchez YL, Yepes-Calderón M, Valbuena L, Milán AF, Trillos-Almanza MC, Granados S, Peña M, Estrada-Castrillón M, Aristizábal JC, Narvez-Sanchez R, Gallo-Villegas J, Calderón JC. Musclin Is Related to Insulin Resistance and Body Composition, but Not to Body Mass Index or Cardiorespiratory Capacity in Adults. Endocrinol Metab (Seoul) 2021; 36:1055-1068. [PMID: 34674511 PMCID: PMC8566119 DOI: 10.3803/enm.2021.1104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We studied whether musclin function in humans is related to glycemic control, body composition, and cardiorespiratory capacity. METHODS A cross-sectional study was performed in sedentary adults with or without metabolic syndrome (MS). Serum musclin was measured by enzyme-linked immunosorbent assay. Insulin resistance (IR) was evaluated by the homeostatic model assessment (HOMA-IR). Body composition was determined by dual-energy X-ray absorptiometry and muscle composition by measuring carnosine in the thigh, a surrogate of fiber types, through proton magnetic resonance spectroscopy. Cardiorespiratory capacity was assessed through direct ergospirometry. RESULTS The control (n=29) and MS (n=61) groups were comparable in age (51.5±6.5 years old vs. 50.7±6.1 years old), sex (72.4% vs. 70.5% women), total lean mass (58.5%±7.4% vs. 57.3%±6.8%), and peak oxygen consumption (VO2peak) (31.0±5.8 mL O2./kg.min vs. 29.2±6.3 mL O2/kg.min). Individuals with MS had higher body mass index (BMI) (30.6±4.0 kg/m2 vs. 27.4± 3.6 kg/m2), HOMA-IR (3.5 [95% confidence interval, CI, 2.9 to 4.6] vs. 1.7 [95% CI, 1.1 to 2.0]), and musclin (206.7 pg/mL [95% CI, 122.7 to 387.8] vs. 111.1 pg/mL [95% CI, 63.2 to 218.5]) values than controls (P˂0.05). Musclin showed a significant relationship with HOMA-IR (β=0.23; 95% CI, 0.12 to 0.33; P˂0.01), but not with VO2peak, in multiple linear regression models adjusted for age, sex, fat mass, lean mass, and physical activity. Musclin was significantly associated with insulin, glycemia, visceral fat, and regional muscle mass, but not with BMI, VCO2peak, maximum heart rate, maximum time of work, or carnosine. CONCLUSION In humans, musclin positively correlates with insulinemia, IR, and a body composition profile with high visceral adiposity and lean mass, but low body fat percentage. Musclin is not related to BMI or cardiorespiratory capacity.
Collapse
Affiliation(s)
- Yeliana L. Sánchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Manuela Yepes-Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Luis Valbuena
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
- Indeportes Antioquia, Medellin,
Colombia
| | - Andrés F. Milán
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - María C. Trillos-Almanza
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Sergio Granados
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Miguel Peña
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | | | - Juan C. Aristizábal
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Raúl Narvez-Sanchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Jaime Gallo-Villegas
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
- Sports Medicine Postgraduate Program, and GRINMADE Research Group, SICOR Center, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| |
Collapse
|
43
|
Sulc J, Sonrel A, Mounier N, Auwerx C, Marouli E, Darrous L, Draganski B, Kilpeläinen TO, Joshi P, Loos RJF, Kutalik Z. Composite trait Mendelian randomization reveals distinct metabolic and lifestyle consequences of differences in body shape. Commun Biol 2021; 4:1064. [PMID: 34518635 PMCID: PMC8438050 DOI: 10.1038/s42003-021-02550-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
Obesity is a major risk factor for a wide range of cardiometabolic diseases, however the impact of specific aspects of body morphology remains poorly understood. We combined the GWAS summary statistics of fourteen anthropometric traits from UK Biobank through principal component analysis to reveal four major independent axes: body size, adiposity, predisposition to abdominal fat deposition, and lean mass. Mendelian randomization analysis showed that although body size and adiposity both contribute to the consequences of BMI, many of their effects are distinct, such as body size increasing the risk of cardiac arrhythmia (b = 0.06, p = 4.2 ∗ 10-17) while adiposity instead increased that of ischemic heart disease (b = 0.079, p = 8.2 ∗ 10-21). The body mass-neutral component predisposing to abdominal fat deposition, likely reflecting a shift from subcutaneous to visceral fat, exhibited health effects that were weaker but specifically linked to lipotoxicity, such as ischemic heart disease (b = 0.067, p = 9.4 ∗ 10-14) and diabetes (b = 0.082, p = 5.9 ∗ 10-19). Combining their independent predicted effects significantly improved the prediction of obesity-related diseases (p < 10-10). The presented decomposition approach sheds light on the biological mechanisms underlying the heterogeneity of body morphology and its consequences on health and lifestyle.
Collapse
Affiliation(s)
- Jonathan Sulc
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anthony Sonrel
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Ninon Mounier
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Chiara Auwerx
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
- Centre for Genomic Health, Life Sciences, London, UK
| | - Liza Darrous
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zoltán Kutalik
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK.
| |
Collapse
|
44
|
Nab L, van Smeden M, de Mutsert R, Rosendaal FR, Groenwold RHH. Sampling Strategies for Internal Validation Samples for Exposure Measurement-Error Correction: A Study of Visceral Adipose Tissue Measures Replaced by Waist Circumference Measures. Am J Epidemiol 2021; 190:1935-1947. [PMID: 33878166 PMCID: PMC8408354 DOI: 10.1093/aje/kwab114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/29/2022] Open
Abstract
Statistical correction for measurement error in epidemiologic studies is possible, provided that information about the measurement error model and its parameters are available. Such information is commonly obtained from a randomly sampled internal validation sample. It is however unknown whether randomly sampling the internal validation sample is the optimal sampling strategy. We conducted a simulation study to investigate various internal validation sampling strategies in conjunction with regression calibration. Our simulation study showed that for an internal validation study sample of 40% of the main study’s sample size, stratified random and extremes sampling had a small efficiency gain over random sampling (10% and 12% decrease on average over all scenarios, respectively). The efficiency gain was more pronounced in smaller validation samples of 10% of the main study’s sample size (i.e., a 31% and 36% decrease on average over all scenarios, for stratified random and extremes sampling, respectively). To mitigate the bias due to measurement error in epidemiologic studies, small efficiency gains can be achieved for internal validation sampling strategies other than random, but only when measurement error is nondifferential. For regression calibration, the gain in efficiency is, however, at the cost of a higher percentage bias and lower coverage.
Collapse
Affiliation(s)
- Linda Nab
- Correspondence to Linda Nab, Department of Clinical Epidemiology, Leiden University Medical Center, Postzone C7-P, P.O. Box 9600, 2300 RC Leiden, the Netherlands (e-mail: )
| | | | | | | | | |
Collapse
|
45
|
Issaka A, Cameron AJ, Paradies Y, Kiwallo JB, Bosu WK, Houehanou YCN, Wesseh CS, Houinato DS, Nazoum DJP, Stevenson C. Associations between obesity indices and both type 2 diabetes and impaired fasting glucose among West African adults: Results from WHO STEPS surveys. Nutr Metab Cardiovasc Dis 2021; 31:2652-2660. [PMID: 34226119 DOI: 10.1016/j.numecd.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIM Various obesity indices such as BMI, waist circumference (WC), waist-hip ratio, (WHR) and waist-to-height ratio (WHtR) are associated with the risk of type 2 Diabetes Mellitus (T2DM). Given few studies examining the strength of the association in this population, we aimed to identify which obesity indices are most strongly associated with T2DM and impaired fasting glucose (IFG) among adults from five West African countries. METHODS AND RESULTS Data from 15,520 participants from the World Health Organisation (WHO) STEPs surveys in Burkina Faso, Benin, Mali, Liberia, and Ghana were included in analyses. Multinomial logistic regression was used to calculate the relative risk (RR) per standard deviation (SD) of each anthropometric measure, modelled as both continuous variables and as categorical variables based on established cut-points. In the analyses with continuous variables, the unadjusted RRs for T2DM per SD were 1.30 (1.23, 1.37) for body mass index (BMI); 1.56 (1.46, 1.67) for WC; 2.57 (2.15, 3.09) for WHtR and 1.16 (1.03, 1.31) for WHR. WHtR showed the strongest association with T2DM in all adjusted analyses. For models using categorical variables based on established cut-points, obesity defined using waist circumference (OB-WC) and OB-BMI showed the strongest associations with T2DM, and OB-WHR, the weakest association in all adjusted analyses. CONCLUSION WHtR and WC appear to be the indices most strongly associated with T2DM and IFG respectively. Given its simplicity, WC may be the metric that most usefully conveys risk for T2DM in West African adults.
Collapse
Affiliation(s)
- Ayuba Issaka
- School of Health and Social Development, Faculty of Health, Deakin University, Geelong, Waurn Ponds Campus, Locked Bag 20000, Geelong, VIC, 3220, Australia; Alfred Deakin Institute for Citizenship and Globalisation, Faculty of Arts and Education, Deakin University, 221 Burwood Highway, Burwood, Victoria, 3125, Australia.
| | - Adrian J Cameron
- School of Health and Social Development, Faculty of Health, Deakin University, Geelong, Waurn Ponds Campus, Locked Bag 20000, Geelong, VIC, 3220, Australia.
| | - Yin Paradies
- Alfred Deakin Institute for Citizenship and Globalisation, Faculty of Arts and Education, Deakin University, 221 Burwood Highway, Burwood, Victoria, 3125, Australia.
| | - Jean B Kiwallo
- Directorate of Population Health Protection (DPSP) of the Burkina Faso, Ministry of Health, Ouagadougou, Burkina Faso.
| | - William K Bosu
- West Africa Health Organization, 01 BP 153, Bobo-Dioulasso, Burkina Faso.
| | - Yèssito Corine N Houehanou
- National School of Senior Technicians Training in Public Health and Epidemiological Surveillance, University of Parakou, Postal Box 122, Parakou, Benin.
| | - Chea S Wesseh
- Ministry of Health, Republic of Liberia, Congo Town, Monrovia, Liberia.
| | - Dismand S Houinato
- Laboratory of Epidemiology of Chronic and Neurological Diseases (LEMACEN), Faculty of Health Sciences, 01 Postal Box 188 Cotonou, University of Abomey Calavi, Cotonou, Benin.
| | - Diarra J P Nazoum
- Former Head of Noncommunicable Diseases, National Directorate of Health, Ministry of Health and Public Hygiene, Bomako, Mali.
| | - Christopher Stevenson
- School of Health and Social Development, Faculty of Health, Deakin University, Geelong, Waurn Ponds Campus, Locked Bag 20000, Geelong, VIC, 3220, Australia.
| |
Collapse
|
46
|
Silva-Boghossian CM, Dezonne RS. What Are the Clinical and Systemic Results of Periodontitis Treatment in Obese Individuals? ACTA ACUST UNITED AC 2021; 8:48-65. [PMID: 34367878 PMCID: PMC8327900 DOI: 10.1007/s40496-021-00295-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/24/2022]
Abstract
Purpose of Review Periodontitis and obesity are characterized by a dysregulated inflammatory state. Obese individuals have a higher chance of presenting periodontitis. Clinical studies in different populations demonstrate that individuals with obesity have worse periodontal conditions. This current review aims to explore recent literature to understand what the impacts of obesity on periodontal treatment outcomes are and to learn whether periodontal treatment can improve systemic biomarkers in obese individuals. Recent Findings Short- and long-term evaluations demonstrated that non-surgical periodontal treatment could improve clinical parameters in obese individuals, represented as the reduction in mean probing depth, sites with probing depth ≥ 4 mm, and extension of bleeding on probing. However, obese individuals may have less clinical improvement when compared to normal-weight individuals with a similar periodontal profile. Additionally, periodontal treatment may contribute to a reduction in systemic levels of retinol-binding protein 4 and leptin, while promoting an increase in systemic levels of adiponectin. Summary Overall, obese individuals with periodontitis can significantly benefit from non-surgical periodontal treatment. However, clinical improvements seem to be less prominent in obese individuals with periodontitis compared to non-obese individuals with similar periodontal status. Nevertheless, periodontal treatment may impact significantly on the reduction of several biochemical biomarkers of obesity with or without weight reduction. Further investigations are needed to improve our comprehension of the mechanisms underlying those findings.
Collapse
Affiliation(s)
- Carina M. Silva-Boghossian
- Periodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco, 325, Cidade Universitaria, Rio de Janeiro, RJ CEP 21941-617 Brazil
| | - Romulo S. Dezonne
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, RJ Brazil
| |
Collapse
|
47
|
Han S, Jeon YJ, Park GM, Lee TY, Park SE, Yu G, Kang BJ. Differences in Abdominal Body Composition According to Glycemic Status: An Inverse Probability Treatment Weighting Analysis. Endocrinol Metab (Seoul) 2021; 36:855-864. [PMID: 34376042 PMCID: PMC8419614 DOI: 10.3803/enm.2021.1086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies have reported that abdominal fat and muscle changes occur in diabetic patients. However, there are few studies about such changes among prediabetic patients. In this study, we evaluated the differences in abdominal fat and muscles based on abdominopelvic computed tomography in prediabetic and diabetic subjects compared to normal subjects. METHODS We performed a cross-sectional study using health examination data from March 2014 to June 2019 at Ulsan University Hospital and classified subjects into normal, prediabetic, and diabetic groups. We analyzed the body mass index corrected area of intra-abdominal components among the three groups using inverse probability treatment weighting (IPTW) analysis. RESULTS Overall, 8,030 subjects were enrolled; 5,137 (64.0%), 2,364 (29.4%), and 529 (6.6%) subjects were included in the normal, prediabetic, and diabetic groups, respectively. After IPTW adjustment of baseline characteristics, there were significant differences in log visceral adipose tissue index (VATI; 1.22±0.64 cm2/[kg/m2] vs. 1.30±0.63 cm2/[kg/m2] vs. 1.47±0.64 cm2/[kg/m2], P<0.001) and low-attenuation muscle index (LAMI; 1.02±0.36 cm2/[kg/m2] vs. 1.03±0.36 cm2/[kg/m2] vs. 1.09±0.36 cm2/[kg/m2], P<0.001) among the normal, prediabetic, and diabetic groups. Prediabetic subjects had higher log VATI (estimated coefficient= 0.082, P<0.001), and diabetic subjects had higher log VATI (estimated coefficient=0.248, P<0.001) and LAMI (estimated coefficient=0.078, P<0.001) compared to normal subjects. CONCLUSION Considering that VATI and LAMI represented visceral fat and lipid-rich skeletal muscle volumes, respectively, visceral obesity was identified in both prediabetic and diabetic subjects compared to normal subjects in this study. However, intra-muscular fat infiltration was observed in diabetic subjects only.
Collapse
Affiliation(s)
- Seungbong Han
- Department of Biostatistics, Korea University College of Medicine, Seoul,
Korea
| | - Young-Jee Jeon
- Department of Family Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan,
Korea
| | - Gyung-Min Park
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan,
Korea
| | - Tae Young Lee
- Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan,
Korea
| | - Soon Eun Park
- Department of Anesthesiology and Pain Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan,
Korea
| | - Gyeongseok Yu
- Department of Anesthesiology and Pain Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan,
Korea
| | - Byung Ju Kang
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan,
Korea
| |
Collapse
|
48
|
Moazzeni SS, Tamehri Zadeh SS, Asgari S, Azizi F, Hadaegh F. Anthropometric indices and the risk of incident sudden cardiac death among adults with and without diabetes: over 15 years of follow-up in The Tehran Lipid and Glucose Study. Diabetol Metab Syndr 2021; 13:82. [PMID: 34321080 PMCID: PMC8320203 DOI: 10.1186/s13098-021-00701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND We investigated the association of anthropometric indices including body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), and hip circumference (HC) with the risk of incident sudden cardiac death (SCD) among Iranian population with and without type 2 diabetes mellitus (T2DM). METHODS The study population included 9,089 subjects without and 1,185 subjects with T2DM, aged ≥ 20 years. Participants were recruited in 1999-2001 or 2001-2005, and followed for incident SCD annually, up to 20 March 2018. Multivariate Cox proportional hazard models, adjusted for traditional risk factors of cardiovascular disease, were applied to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of anthropometric indices (as continuous and categorical variables). RESULTS During a follow-up of over 15 years, 144 (1.58%) and 86 (7.26%) incident SCD occurred in non-T2DM and T2DM groups, respectively. Among non-T2DM group, a 1 standard deviation (SD) increase in WHtR was associated with higher risk of incident SCD by a HR of 1.23 (95% CI: 1.00-1.50) in the multivariable model. From the first quartile to the fourth quartile of WHtR, the trend of SCD risk was significant in age- and sex-adjusted analysis (P-value for trend: 0.041). Other indices did not show significant associations with SCD. Among T2DM group, a 1 SD increase in WHR had a HR of 1.36 (1.05-1.76) in the multivariable model. Considering WHR as categorical variables, the trend of SCD risk across quartiles of WHR was significant. Furthermore, a 1 SD increase in HC led to reduced risk of incident SCD with a HR of 0.75 (0.58-0.97) in multivariable analysis; this lower risk remained significant even after adjustment for WC. Compared to the first quartile, the fourth quartile of HC also showed a HR of 0.50 (0.25-0.99) (P-value for trend = 0.018). BMI, WC, and WHtR did not have significant associations with incident SCD. CONCLUSION In our long-term population-based study, we demonstrated central but not general obesity (as assessed by WHR in participants with T2DM, and WHtR in participants without T2DM) as a herald of incident SCD. Moreover, HC can have an inverse association with SCD among participants with T2DM.
Collapse
Affiliation(s)
- Seyyed Saeed Moazzeni
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Velenjak, P.O. Box no19395-4763, Tehran, Iran
| | - Seyed Saeed Tamehri Zadeh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Velenjak, P.O. Box no19395-4763, Tehran, Iran
| | - Samaneh Asgari
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Velenjak, P.O. Box no19395-4763, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Velenjak, P.O. Box no19395-4763, Tehran, Iran.
| |
Collapse
|
49
|
High frequency and long persistency of ballooning hepatocyte were associated with glucose intolerance in patients with severe obesity. Sci Rep 2021; 11:15392. [PMID: 34321567 PMCID: PMC8319304 DOI: 10.1038/s41598-021-94937-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) and glucose intolerance are associated with an increased risk of mortality in patients with severe obesity; however, whether histological findings of the liver are related to glucose intolerance in these patients remain unknown. Sixty-nine consecutive patients who underwent metabolic surgery between June 2008 and February 2020 were included; histological findings of the liver and laboratory data were analyzed. Twenty patients with biopsy-proven NASH were chronologically evaluated using sequential biopsies; data before metabolic surgery was considered as the baseline. Glucose intolerance—demonstrated by an increased area under the curve (AUC) for blood sugar (BS) during the 75-g oral glucose tolerance test—and increased homeostatic model assessment for insulin resistance (HOMA-IR) correlated with the grade of hepatocyte ballooning in patients. Patients with persistent ballooning at the follow-up biopsy had a higher HOMA-IR, high AUC for BS, and lower adiponectin level than those in patients in whom ballooning was eliminated, while there was no significant difference in body weight. We concluded that glucose intolerance was associated with the grade of hepatocyte ballooning; additionally, persistent hepatocyte ballooning sustained glucose intolerance, while elimination of hepatocyte ballooning improved the condition. Glucose intolerance may, thus, mediate balloon formation of the hepatocyte.
Collapse
|
50
|
Buck CO, Li N, Eaton CB, Kelsey KT, Cecil KM, Kalkwarf HJ, Yolton K, Lanphear BP, Chen A, Braun JM. Neonatal and Adolescent Adipocytokines as Predictors of Adiposity and Cardiometabolic Risk in Adolescence. Obesity (Silver Spring) 2021; 29:1036-1045. [PMID: 34029449 PMCID: PMC8567116 DOI: 10.1002/oby.23160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This study aimed to examine associations of changes in leptin and adiponectin concentrations from birth to age 12 years with adolescent adiposity and cardiometabolic risk in the Health Outcomes and Measures of Environment (HOME) Study, a prospective birth cohort (Cincinnati, Ohio; N = 166). METHODS Adiposity and cardiometabolic risk factors were assessed at age 12 years using anthropometry, dual-energy x-ray absorptiometry, and fasting serum biomarkers. Cardiometabolic risk scores were calculated by summing age- and sex- standardized z scores for individual cardiometabolic risk factors. RESULTS Most serum adipocytokine concentrations at birth were not associated with adiposity or cardiometabolic risk outcomes. Leptin and adiponectin concentrations at age 12 years were associated with all outcomes in the expected direction. Adolescents with increasing (β: 4.2; 95% CI: 3.2 to 5.2) and stable (β: 2.2; 95% CI: 1.2 to 3.2) leptin concentrations from birth to age 12 years had higher cardiometabolic risk scores than adolescents with decreasing concentrations (reference group). Adolescents with increasing (e.g., fat mass index = β: -1.04; 95% CI: -1.27 to -0.80) and stable (β: 0.66; 95% CI: -0.92 to -0.40) adiponectin/leptin ratios had more favorable adiposity outcomes than adolescents with decreasing ratios. CONCLUSIONS In this cohort, changes in leptin concentrations and adiponectin/leptin ratios over childhood were associated with adiposity and cardiometabolic risk scores, indicating that adipocytokine concentrations are potential biomarkers for predicting excess adiposity and cardiometabolic risk in adolescence.
Collapse
Affiliation(s)
| | - Nan Li
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI
| | - Charles B. Eaton
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI
- Department of Family Medicine, Alpert Medical School of Brown University, Providence, RI
- Kent Memorial Hospital, Warwick, RI
| | - Karl T. Kelsey
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence
| | - Kim M. Cecil
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Departments of Pediatrics and Radiology, University of Cincinnati College of Medicine, Cincinnati
| | - Heidi J. Kalkwarf
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati
| | - Kimberly Yolton
- Department of Pediatrics, Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Joseph M. Braun
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI
| |
Collapse
|