1
|
Ferreira T, Dias F, Alves Â, Gama A, Mano JF, Oliveira PA, Medeiros R. Let-7b, miR-29b, and miR-125b as Potential Biomarkers for Differentiating Canine Mammary Carcinoma Histological Types. Animals (Basel) 2024; 15:20. [PMID: 39794962 PMCID: PMC11718878 DOI: 10.3390/ani15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Epigenetics is the study of changes in organisms that result from modifications in gene expression rather than alterations in the genetic code itself [...].
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (F.D.); (Â.A.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (F.D.); (Â.A.)
| | - Ângela Alves
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (F.D.); (Â.A.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João F. Mano
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (F.D.); (Â.A.)
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Research Department of the Portuguese League against Cancer—Regional Nucleus of the North (Liga Portuguesa Contra o Cancro—Núcleo Regional do Norte), 4200-177 Porto, Portugal
- Virology Service, Portuguese Institute of Oncology (IPO), 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal
| |
Collapse
|
2
|
Wang Z, Guo Y, Li K, Huo Y, Wang S, Dong S, Ma M. Targeting the PI3K/mTOR pathway in idiopathic pulmonary fibrosis: Advances and therapeutic potential. Bioorg Med Chem 2024; 115:117908. [PMID: 39471771 DOI: 10.1016/j.bmc.2024.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 11/01/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease characterized by irreversible tissue scarring, leading to severe respiratory dysfunction. Despite current treatments with the drugs Pirfenidone and Nintedanib, effective management of IPF remains inadequate due to limited therapeutic benefits and significant side effects. This review focuses on the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway, a critical regulator of cellular processes linked to fibrosis, such as fibroblast proliferation, inflammation, and epithelial-mesenchymal transition (EMT). We discuss recent advances in understanding the role of the PI3K/mTOR pathway in IPF pathogenesis and highlight emerging therapies targeting this pathway. The review compiles evidence from both preclinical and clinical studies, suggesting that PI3K/mTOR inhibitors may offer new hope for IPF treatment by modulating fibrosis and improving patient outcomes. Moreover, it outlines the potential for these inhibitors to be developed into effective, personalized treatment options, underscoring the importance of further research to explore their efficacy and safety profiles comprehensively.
Collapse
Affiliation(s)
- Zhengyang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yanzhi Guo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kaiyin Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yan Huo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuyan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
3
|
Patni H, Chaudhary R, Kumar A. Unleashing nanotechnology to redefine tumor-associated macrophage dynamics and non-coding RNA crosstalk in breast cancer. NANOSCALE 2024; 16:18274-18294. [PMID: 39292162 DOI: 10.1039/d4nr02795g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Breast cancer is a significant global health issue. Tumor-associated macrophages (TAMs) are crucial in influencing the tumor microenvironment and the progression of the disease. TAMs exhibit remarkable plasticity in adopting distinct phenotypes ranging from pro-inflammatory and anti-tumorigenic (M1-like) to immunosuppressive and tumor-promoting (M2-like). This review elucidates the multifaceted roles of TAMs in driving breast tumor growth, angiogenesis, invasion, and metastatic dissemination. Significantly, it highlights the intricate crosstalk between TAMs and non-coding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, as a crucial regulatory mechanism modulating TAM polarization and functional dynamics that present potential therapeutic targets. Nanotechnology-based strategies are explored as a promising approach to reprogramming TAMs toward an anti-tumor phenotype. Various nanoparticle delivery systems have shown potential for modulating TAM polarization and inhibiting tumor-promoting effects. Notably, nanoparticles can deliver ncRNA therapeutics to TAMs, offering unique opportunities to modulate their polarization and activity.
Collapse
Affiliation(s)
- Hardik Patni
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ramesh Chaudhary
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
4
|
Sivasankar C, Hewawaduge C, Muthuramalingam P, Lee JH. Tumor-targeted delivery of lnc antisense RNA against RCAS1 by live-attenuated tryptophan-auxotrophic Salmonella inhibited 4T1 breast tumors and metastasis in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102053. [PMID: 37941832 PMCID: PMC10628790 DOI: 10.1016/j.omtn.2023.102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Emerging chemo- and radiotherapy resistance exacerbated the cancer risk and necessitated novel treatment strategies. Although RNA therapeutics against pro-oncogenic genes are highly effective, tumor-specific delivery remains a barrier to the implementation of this valuable tool. In this study, we report a tryptophan-auxotrophic Salmonella typhimurium strain as an onco-therapeutic delivery system with tumor-targeting ability using 4T1 mice breast-cancer model. The receptor-binding cancer antigen expressed on SiSo cell (RCAS1) is a cancer-specific protein that induces the apoptosis of peripheral lymphocytes and confers tumor immune evasion. We designed a long non-coding antisense-RNA against RCAS1 (asRCAS1) and delivered by Salmonella using a non-antibiotic, auxotrophic-selective, eukaryotic expression plasmid, pJHL204. After in vivo tumor-to-tumor passaging, the JOL2888 (ΔtrpA, ΔtrpE, Δasd + asRCAS1) strain exhibited high sustainability in tumors, but did not last in healthy organs, thereby demonstrating tumor specificity and safety. RCAS1 inhibition in the tumor was confirmed by western blotting and qPCR. In mice, JOL2888 treatment reduced tumor-associated macrophages, improved the T cell population, elicited cell-mediated immunity, and suppressed cancer-promoting genes. Consequently, the JOL2888 treatment significantly decreased the tumor volume by 80%, decreased splenomegaly by 30%, and completely arrested lung metastasis. These findings highlight the intrinsic tumor-targeting ability of tryptophan-auxotrophic Salmonella for delivering onco-therapeutic macromolecules.
Collapse
Affiliation(s)
- Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus 54596, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus 54596, Republic of Korea
| | | | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus 54596, Republic of Korea
| |
Collapse
|
5
|
Hirner-Eppeneder H, Öcal E, Stechele M, Öcal O, Gu S, Kimm MA, Wildgruber M, Salvermoser L, Kazmierczak P, Corradini S, Rudelius M, Piontek G, Pech M, Goldberg SN, Ricke J, Alunni-Fabbroni M. Post-therapeutic microRNA-146a in liquid biopsies may determine prognosis in metastatic gastrointestinal cancer patients receiving 90Y-radioembolization. J Cancer Res Clin Oncol 2023; 149:13017-13026. [PMID: 37466799 PMCID: PMC10587196 DOI: 10.1007/s00432-023-05185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE The role of microRNA-146a (miR-146a) in defining the tumor immune microenvironment (TIME) is well established. The aim of this study was to evaluate circulating miR-146a as an early prognostic marker of 90Y-radioembolization (90Y-RE) in metastatic liver cancer and to assess the correlation between circulating miR-146a and TIME cellular composition in distant, yet untreated metastases. METHODS Twenty-one patients with bilobar liver lesions from gastro-intestinal cancer underwent lobar 90Y-RE. Biopsy of contralateral lobe abscopal tumors was acquired at the onset of a second treatment session at a median of 21 days after initial RE, immediately prior to ablation therapy of the contralateral lobe tumor. miR-146a was measured by RT-qPCR in plasma collected 24 h before (T1) and 48 h after (T2) initial unilobar 90Y-RE. The level of miR-146a was correlated with the infiltration of CD4 + , CD8 + , FoxP3 T cells, CD163 + M2 macrophages and immune-exhausted T cells in the abscopal tumor tissue acquired before the second treatment session. RESULTS Plasma samples collected at T2 showed a higher concentration of miR-146a with respect to T1 in 43% of the patients (p = 0.002). In these patients, tumors revealed a pro-tumorigenic immune composition with enrichment of Tim3 + immune exhausted cells (p = 0.021), in combination with a higher infiltration of CD163 + M2 macrophages and a lower infiltration of CD8 + T cells. Patients with a higher level of miR-146a after 90Y-RE showed a trend to shorter OS (p = 0.055). CONCLUSION miR-146a may represent a novel prognostic biomarker for 90Y-radioembolization in metastatic liver cancer.
Collapse
Affiliation(s)
- Heidrun Hirner-Eppeneder
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Elif Öcal
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Matthias Stechele
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Osman Öcal
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Sijing Gu
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Melanie A Kimm
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Lukas Salvermoser
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Philipp Kazmierczak
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martina Rudelius
- Department of Pathology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guido Piontek
- Department of Pathology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| | - S Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy and Division of Image-Guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Marianna Alunni-Fabbroni
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| |
Collapse
|
6
|
Akshaya RL, Saranya I, Selvamurugan N. MicroRNAs mediated interaction of tumor microenvironment cells with breast cancer cells during bone metastasis. Breast Cancer 2023; 30:910-925. [PMID: 37578597 DOI: 10.1007/s12282-023-01491-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Breast cancer (BC) bone metastasis is primarily osteolytic and has limited therapeutic options. Metastasized BC cells prime the secondary environment in bone by forming a tumor niche, which favors their homing and colonization. The tumor microenvironment (TME) is primarily generated by the cancer cells. Bone TME is an intricate network of multiple cells, including altered bone, tumor, stromal, and immune cells. Recent findings highlight the significance of small non-coding microRNAs (miRNAs) in influencing TME during tumor metastasis. MiRNAs from TME-resident cells facilitate the interaction between the tumor and its microenvironment, thereby regulating the biological processes of tumors. These miRNAs can serve as oncogenes or tumor suppressors. Hence, both miRNA inhibitors and mimics are extensively utilized in pre-clinical trials for modulating the phenotypes of tumor cells and associated stromal cells. This review briefly summarizes the recent developments on the functional role of miRNAs secreted directly or indirectly from the TME-resident cells in facilitating tumor growth, progression, and metastasis. This information would be beneficial in developing novel targeted therapies for BC.
Collapse
Affiliation(s)
- R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India.
| |
Collapse
|
7
|
Duarte-Sanmiguel S, Salazar-Puerta AI, Panic A, Dodd D, Francis C, Alzate-Correa D, Ortega-Pineda L, Lemmerman L, Rincon-Benavides MA, Dathathreya K, Lawrence W, Ott N, Zhang J, Deng B, Wang S, Santander SP, McComb DW, Reategui E, Palmer AF, Carson WE, Higuita-Castro N, Gallego-Perez D. ICAM-1-decorated extracellular vesicles loaded with miR-146a and Glut1 drive immunomodulation and hinder tumor progression in a murine model of breast cancer. Biomater Sci 2023; 11:6834-6847. [PMID: 37646133 PMCID: PMC10591940 DOI: 10.1039/d3bm00573a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Tumor-associated immune cells play a crucial role in cancer progression. Myeloid-derived suppressor cells (MDSCs), for example, are immature innate immune cells that infiltrate the tumor to exert immunosuppressive activity and protect cancer cells from the host's immune system and/or cancer-specific immunotherapies. While tumor-associated immune cells have emerged as a promising therapeutic target, efforts to counter immunosuppression within the tumor niche have been hampered by the lack of approaches that selectively target the immune cell compartment of the tumor, to effectively eliminate "tumor-protecting" immune cells and/or drive an "anti-tumor" phenotype. Here we report on a novel nanotechnology-based approach to target tumor-associated immune cells and promote "anti-tumor" responses in a murine model of breast cancer. Engineered extracellular vesicles (EVs) decorated with ICAM-1 ligands and loaded with miR-146a and Glut1, were biosynthesized (in vitro or in vivo) and administered to tumor-bearing mice once a week for up to 5 weeks. The impact of this treatment modality on the immune cell compartment and tumor progression was evaluated via RT-qPCR, flow cytometry, and histology. Our results indicate that weekly administration of the engineered EVs (i.e., ICAM-1-decorated and loaded with miR-146a and Glut1) hampered tumor progression compared to ICAM-1-decorated EVs with no cargo. Flow cytometry analyses of the tumors indicated a shift in the phenotype of the immune cell population toward a more pro-inflammatory state, which appeared to have facilitated the infiltration of tumor-targeting T cells, and was associated with a reduction in tumor size and decreased metastatic burden. Altogether, our results indicate that ICAM-1-decorated EVs could be a powerful platform nanotechnology for the deployment of immune cell-targeting therapies to solid tumors.
Collapse
Affiliation(s)
| | - Ana I Salazar-Puerta
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
| | - Ana Panic
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Daniel Dodd
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA
| | - Carlie Francis
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Diego Alzate-Correa
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
| | - Lilibeth Ortega-Pineda
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Luke Lemmerman
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Maria A Rincon-Benavides
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
| | - Kavya Dathathreya
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - William Lawrence
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA
| | - Neil Ott
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Jingjing Zhang
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - Binbin Deng
- The Ohio State University, Center for Electron Microscopy and Microanalysis (CEMAS), Columbus, OH 43210, USA
| | - Shipeng Wang
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Sandra P Santander
- Juan N. Corpas University Foundation, Center of Phytoimmunomodulation Department of Medicine, Bogota, Colombia
| | - David W McComb
- The Ohio State University, Center for Electron Microscopy and Microanalysis (CEMAS), Columbus, OH 43210, USA
- The Ohio State University, Department of Materials Science and Engineering, Columbus, OH 43210, USA
| | - Eduardo Reategui
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - Andre F Palmer
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - William E Carson
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
- The Ohio State University, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
- The Ohio State University, Department of Neurological Surgery, Columbus, OH, 43210, USA
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
- The Ohio State University, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Nour SM, Abbasi N, Sadi S, Ravan N, Alipourian A, Yarizadeh M, Soofi A, Ataei A, Tehrany PM. miRNAs as key modulators between normal cells and tumor microenvironment interactions. Chem Biol Drug Des 2023; 102:939-950. [PMID: 37402595 DOI: 10.1111/cbdd.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
The tumor microenvironment (TME) is well-defined target for understanding tumor progression and various cell types. Major elements of the tumor microenvironment are the followings: endothelial cells, fibroblasts, signaling molecules, extracellular matrix, and infiltrating immune cells. MicroRNAs (miRNAs) are a group of small noncoding RNAs with major functions in the gene expression regulation at post-transcriptional level that have also appeared to exerts key functions in the cancer initiation/progression in diverse biological processes and the tumor microenvironment. This study summarized various roles of miRNAs in the complex interactions between the tumor and normal cells in their microenvironment.
Collapse
Affiliation(s)
| | - Nadia Abbasi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Sadi
- Medical Doctor, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ravan
- Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Yarizadeh
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Ali Ataei
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Pooya M Tehrany
- Faculty of Medicine, National University of Malaysia, Bani, Malaysia
| |
Collapse
|
9
|
Wang C, Wang X, Zhang D, Sun X, Wu Y, Wang J, Li Q, Jiang G. The macrophage polarization by miRNAs and its potential role in the treatment of tumor and inflammation (Review). Oncol Rep 2023; 50:190. [PMID: 37711048 PMCID: PMC10523439 DOI: 10.3892/or.2023.8627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
The characteristics of monocyte/macrophage lineage are diversity and plasticity, mainly manifested by M1 and M2 subtypes in the body tissues, and playing different roles in the immunity. In the polarization process of macrophages, the classic molecular mechanism is related to sequential transcription factors. Whether in tumor or inflammatory local microenvironment, the pathological factors of the local microenvironment often affect the polarization of M1 and M2 macrophages, and participate in the occurrence and development of these pathological processes. In recent years, a growing number of research results demonstrated that non‑coding RNA (ncRNA) also participates in the polarization process of macrophages, in addition to traditional cytokines and transcriptional regulation signal pathway molecules. Among numerous ncRNAs, microRNAs (miRNAs) have attracted more attention from scholars both domestically and internationally, and significant progress has been made in basic and clinical research. Therefore, for improved understanding of the molecular mechanism of miRNAs in macrophage polarization and analysis of the potential value of this regulatory pathway in tumor and inflammatory intervention therapy, a comprehensive review of the progress of relevant literature research was conducted and some viewpoints and perspectives were proposed.
Collapse
Affiliation(s)
- Chaozhe Wang
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
| | - Xidi Wang
- Department of Laboratory Medicine, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Danfeng Zhang
- Department of Laboratory Medicine, Lixia People's Hospital, Jinan, Shandong 250013, P.R. China
| | - Xiaolin Sun
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Yunhua Wu
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
| | - Jing Wang
- Department of Immunology, Shandong Yinfeng Academy of Life Science, Jinan, Shandong 250013, P.R. China
| | - Qing Li
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Guosheng Jiang
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| |
Collapse
|
10
|
Shettigar A, Salunke R, Modi D, Mukherjee N. Targeting molecular cross-talk between tumor cells and tumor associated macrophage as therapeutic strategy in triple negative breast cancer. Int Immunopharmacol 2023; 119:110250. [PMID: 37163922 DOI: 10.1016/j.intimp.2023.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Triple-negative Breast cancer (TNBC) is a subtype of breast cancer (BC) that lacks expression for ER/PR/Her2 receptors and is associated with aggressive disease pathogenesis and the worst prognosis among other subtypes of BC. Accumulating evidence-based studies indicate the high immunogenic ability of TNBC tumors and the applicability of immunotherapeutic strategies to overcome therapy resistance and tumor recurrence in TNBC patients. However, not all TNBC patients respond equally well to current immunotherapies that mainly target the adaptive immune system for tumor rejection. Recent studies are contemplating the efficacy of tumor-associated macrophage (TAM) targeted therapies since these subpopulations of cells comprise one of the major components of tumor-infiltrating immune cells (TIIs) in the TNBC tumor microenvironment (TME) and play an essential role in priming the adaptive immune response mediators towards both antitumorigenic and pro-tumorigenic response facilitated by intercellular cross-talk between tumor cells and TAM populations present within TNBC-TME. The present review discusses these molecular mechanisms and their consequence on the progression of TNBC tumors. Also, the therapeutic strategies targeting candidate genes/pathways involved in molecular cross-talk between TAM-TNBC cells and their impact on the development and progression of TNBC tumors are also discussed.
Collapse
Affiliation(s)
- Anusha Shettigar
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Rushigandha Salunke
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Deepak Modi
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Nupur Mukherjee
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India.
| |
Collapse
|
11
|
Zhang C, Wei S, Dai S, Li X, Wang H, Zhang H, Sun G, Shan B, Zhao L. The NR_109/FUBP1/c-Myc axis regulates TAM polarization and remodels the tumor microenvironment to promote cancer development. J Immunother Cancer 2023; 11:jitc-2022-006230. [PMID: 37217247 DOI: 10.1136/jitc-2022-006230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and exert an important role in tumor progression. Due to the heterogeneity and plasticity of TAMs, modulating the polarization states of TAMs is considered as a potential therapeutic strategy for tumors. Long noncoding RNAs (lncRNAs) have been implicated in various physiological and pathological processes, yet the underlying mechanism on how lncRNAs manipulate the polarization states of TAMs is still unclear and remains to be further investigated. METHODS Microarray analyses were employed to characterize the lncRNA profile involved in THP-1-induced M0, M1 and M2-like macrophage. Among those differentially expressed lncRNAs, NR_109 was further studied, for its function in M2-like macrophage polarization and the effects of the condition medium or macrophages mediated by NR_109 on tumor proliferation, metastasis and TME remodeling both in vitro and in vivo. Moreover, we revealed how NR_109 interacted with far upstream element-binding protein 1 (FUBP1) to regulate the protein stability through hindering ubiquitination modification by competitively binding with JVT-1. Finally, we examined sections of tumor patients to probe the correlation among the expression of NR_109 and related proteins, showing the clinical significance of NR_109. RESULTS We found that lncRNA NR_109 was highly expressed in M2-like macrophages. Knockdown NR_109 impeded IL-4 induced M2-like macrophage polarization and significantly reduced the activity of M2-like macrophages to support the proliferation and metastasis of tumor cells in vitro and in vivo. Mechanistically, NR_109 competed with JVT-1 to bind FUBP1 at its C-terminus domain, impeded the ubiquitin-mediated degradation of FUBP1, activated c-Myc transcription and thus promoted M2-like macrophages polarization. Meanwhile, as a transcription factor, c-Myc could bind to the promoter of NR_109 and enhance the transcription of NR_109. Clinically, high NR_109 expression was found in CD163+ TAMs from tumor tissues and was positively correlated with poor clinical stages of patients with gastric cancer and breast cancer. CONCLUSIONS Our work revealed for the first time that NR_109 exerted a crucial role in regulating the phenotype-remodeling and function of M2-like macrophages via a NR_109/FUBP1/c-Myc positive feedback loop. Thus, NR_109 has great translational potentials in the diagnosis, prognosis and immunotherapy of cancer.
Collapse
Affiliation(s)
- Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suli Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huixia Wang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Mavatkar AD, Naidu CM, Prabhu JS, Nair MG. The dynamic tumor-stromal crosstalk: implications of 'stromal-hot' tumors in the process of epithelial-mesenchymal transition in breast cancer. Mol Biol Rep 2023; 50:5379-5393. [PMID: 37046108 DOI: 10.1007/s11033-023-08422-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Breast cancer metastatic programming involves an intricate process by which the tumor cell coevolves with the surrounding extracellular niche. The supporting cells from the local host stroma get transformed into cancer-associated stromal cells. This complex crosstalk leads to extracellular matrix remodeling, invasion, and eventually distant metastasis. METHODS In this review, we examine the protein-miRNA secretome that is crucial for this crosstalk. We also provide evidence from the literature for the pivotal role played by the various stromal cells like fibroblasts, adipocytes, and immune cells in promoting the process of EMT in breast cancer. Through in-silico analysis, we have also attempted to establish that stromal presence is integral to the process of EMT. RESULTS AND CONCLUSION The in-silico analysis delineates the persuasive role of the stroma in mediating epithelial-to-mesenchymal transition. This review elucidates the importance of examining the role of the stromal niche that can yield promising diagnostic markers and pave avenues for formulating tailored anti-cancer therapy. Process of EMT as driven by 'stroma-hot' tumors: The process of EMT is driven by the stromal cells. The stromal cells in the form of fibroblasts, adipocytes, endothelial cells, mesenchymal stromal cells and tissue associated macrophages secrete the miRNA-protein secretome that modulates the stromal niche and the tumor cells to be become 'tumor associated'. This drives tumor progression and invasion. The 'stromal-hot' tumors eventually get the benefit of the surplus nurturing from the stroma that facilitates EMT leading to distant organ seeding and metastasis.
Collapse
Affiliation(s)
- Apoorva D Mavatkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India.
| |
Collapse
|
13
|
Yan Z, Wen JX, Cao XS, Zhao W, Han YL, Wen XH, Yan L, Zhang M, Wang YF, Hai L, Wang YJ, Zheng WQ, Hu ZD. Tumor cell-derived exosomal microRNA-146a promotes non-small cell lung cancer cell invasion and proliferation by inhibiting M1 macrophage polarization. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1307. [PMID: 36660623 PMCID: PMC9843328 DOI: 10.21037/atm-22-5565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Background Tumor-associated macrophages (TAMs) affects the outcomes of non-small cell lung cancer (NSCLC). NSCLC cells released exosomes to suppress the antitumor activity of TAMs. MiR-146a is a critical regulator in TAM polarization. We hypothesized that NSCLC cells released exosomal miR-146a to regulate TAM polarization and thus affected its antitumor activity. Methods We used H1299 cells-derived exosomes to stimulate THP-1 cells that was pretreated with phorbol 12-myristate 13-acetate (M0 macrophage). Flow cytometry and reverse transcription-quantitative polymerase chain reaction (PCR) were used to determine the polarization of macrophages. The conditioned medium of exosome-treated M0 cells was used to culture H1299 cells, and the Cell Counting Kit-8, Ki67, transwell and scratch wound assays were used to determine the biological behavior of H1299 cells. To investigate whether exosomal miR-146a regulates TAM macrophages through targeting tumor necrosis factor receptor-associated factor 6 (TRAF-6) and interleukin-1 receptor-associated kinase 1 (IRAK-1), we used small interfering RNA to knockdown the expressions of them. Results Upregulation of miR-146a inhibited M1 polarization and thus impaired the antitumor activity of TAMs. Exosomes released by H1299 cells can be taken by M0 macrophage, and they upregulated the expression of miR-146a in M0 macrophage. The exosome suppresses M1 polarization by exosomal miR-146a. TRAF-6 and IRAK-1 mediated the inhibitive effects of exosomal miR-146a on M1 polarization. Conclusions NSCLC cells released exosomal miR-146a to inhibit the expressions of TRAF-6 and IRAK-1 in TAMs, resulting in the impaired antitumor activity of TAMs. NSCLC cell-derived exosomal miR-146a represents a novel therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Zhi Yan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Xi-Shan Cao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen Zhao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yu-Ling Han
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Xu-Hui Wen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Man Zhang
- Department of Thoracic Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ya-Fei Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ling Hai
- Department of Pathology, the College of Basic Medical, Inner Mongolia Medical University, Hohhot, China;,Department of Pathology, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ying-Jun Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
14
|
Vadevoo SMP, Gunassekaran GR, Yoo JD, Kwon TH, Hur K, Chae S, Lee B. Epigenetic therapy reprograms M2-type tumor-associated macrophages into an M1-like phenotype by upregulating miR-7083-5p. Front Immunol 2022; 13:976196. [PMID: 36483544 PMCID: PMC9724234 DOI: 10.3389/fimmu.2022.976196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Reprogramming M2-type, pro-tumoral tumor-associated macrophages (TAMs) into M1-type, anti-tumoral macrophages is a key strategy in cancer therapy. In this study, we exploited epigenetic therapy using the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) and the histone deacetylation inhibitor trichostatin A (TSA), to reprogram M2-type macrophages into an M1-like phenotype. Treatment of M2-type macrophages with the combination of 5-aza-dC and TSA decreased the levels of M2 macrophage cytokines while increasing those of M1 macrophage cytokines, as compared to the use of either therapy alone. Conditioned medium of M2 macrophages treated with the combination of 5-aza-dC and TSA sensitized the tumor cells to paclitaxel. Moreover, treatment with the combination inhibited tumor growth and improved anti-tumor immunity in the tumor microenvironment. Depletion of macrophages reduced the anti-tumor growth activity of the combination therapy. Profiling of miRNAs revealed that the expression of miR-7083-5p was remarkably upregulated in M2 macrophages, following treatment with 5-aza-dC and TSA. Transfection of miR-7083-5p reprogrammed the M2-type macrophages towards an M1-like phenotype, and adoptive transfer of M2 macrophages pre-treated with miR-7083-5p into mice inhibited tumor growth. miR-7083-5p inhibited the expression of colony-stimulating factor 2 receptor alpha and CD43 as candidate targets. These results show that epigenetic therapy upon treatment with the combination of 5-aza-dC and TSA skews M2-type TAMs towards the M1-like phenotype by upregulating miR-7083-5p, which contributes to the inhibition of tumor growth.
Collapse
Affiliation(s)
- Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea
| | - Jae Do Yoo
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea,Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea,Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Sehyun Chae
- Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea,Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, South Korea,*Correspondence: Byungheon Lee,
| |
Collapse
|
15
|
Ilieva M, Panella R, Uchida S. MicroRNAs in Cancer and Cardiovascular Disease. Cells 2022; 11:3551. [PMID: 36428980 PMCID: PMC9688578 DOI: 10.3390/cells11223551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although cardiac tumor formation is rare, accumulating evidence suggests that the two leading causes of deaths, cancers, and cardiovascular diseases are similar in terms of pathogenesis, including angiogenesis, immune responses, and fibrosis. These similarities have led to the creation of new exciting field of study called cardio-oncology. Here, we review the similarities between cancer and cardiovascular disease from the perspective of microRNAs (miRNAs). As miRNAs are well-known regulators of translation by binding to the 3'-untranslated regions (UTRs) of messenger RNAs (mRNAs), we carefully dissect how a specific set of miRNAs are both oncomiRs (miRNAs in cancer) and myomiRs (muscle-related miRNAs). Furthermore, from the standpoint of similar pathogenesis, miRNAs categories related to the similar pathogenesis are discussed; namely, angiomiRs, Immune-miRs, and fibromiRs.
Collapse
Affiliation(s)
| | | | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| |
Collapse
|
16
|
Nengroo MA, Khan MA, Verma A, Datta D. Demystifying the CXCR4 conundrum in cancer biology: Beyond the surface signaling paradigm. Biochim Biophys Acta Rev Cancer 2022; 1877:188790. [PMID: 36058380 DOI: 10.1016/j.bbcan.2022.188790] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
The oncogenic chemokine duo CXCR4-CXCL12/SDF-1 (C-X-C Receptor 4-C-X-C Ligand 12/ Stromal-derived factor 1) has been the topic of intense scientific disquisitions since Muller et al., in her ground-breaking research, described this axis as a critical determinant of organ-specific metastasis in breast cancer. Elevated CXCR4 levels correlate with distant metastases, poor prognosis, and unfavourable outcomes in most solid tumors. Therapeutic impediment of the axis in clinics with Food and Drug Administration (FDA) approved inhibitors like AMD3100 or Plerixafor yield dubious results, contrary to pre-clinical developments. Clinical trials entailing inhibition of CXCR7 (C-X-C Receptor 7), another convicted chemokine receptor that exhibits affinity for CXCL12, reveal outcomes analogous to that of CXCR4-CXCL12 axis blockade. Of note, the cellular CXCR4 knockout phenotype varies largely from that of inhibitor treatments. These shaky findings pique great curiosity to delve further into the realm of this infamous chemokine receptor to provide a probable explanation. A multitude of recent reports suggests the presence of an increased intracellular CXCR4 pool in various cancers, both cytoplasmic and nuclear. This intracellular CXCR4 protein reserve seems active as it correlates with vital tumor attributes, viz. prognosis, aggressiveness, metastasis, and disease-free survival. Diminishing this entire intracellular CXCR4 load apart from the surface signals looks encouraging from a therapeutic point of view. Transcending beyond the classically accepted concept of ligand-mediated surface signaling, this review sheds new light on plausible associations of intracellularly compartmentalised CXCR4 with various aspects of tumorigenesis. Besides, this review also puts forward a comprehensive account of CXCR4 regulation in different cancers.
Collapse
Affiliation(s)
- Mushtaq Ahmad Nengroo
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Muqtada Ali Khan
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
17
|
An Eleven-microRNA Signature Related to Tumor-Associated Macrophages Predicts Prognosis of Breast Cancer. Int J Mol Sci 2022; 23:ijms23136994. [PMID: 35805995 PMCID: PMC9266835 DOI: 10.3390/ijms23136994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) has been known to play important roles in tumor development and progression. However, the understanding of the involvement of miRNAs in regulating tumor-associated macrophages (TAMs) and how these TAM-related miRNAs (TRMs) modulate cancer progression is still in its infancy. This study aims to explore the prognostic value of TRMs in breast cancer via the construction of a novel TRM signature. Potential TRMs were identified from the literature, and their prognostic value was evaluated using 1063 cases in The Cancer Genome Atlas Breast Cancer database. The TRM signature was further validated in the external Gene Expression Omnibus GSE22220 dataset. Gene sets enrichment analyses were performed to gain insight into the biological functions of this TRM signature. An eleven-TRM signature consisting of mir-21, mir-24-2, mir-125a, mir-221, mir-22, mir-501, mir-365b, mir-660, mir-146a, let-7b and mir-31 was constructed. This signature significantly differentiated the high-risk group from the low-risk in terms of overall survival (OS)/ distant-relapse free survival (DRFS) (p value < 0.001). The prognostic value of the signature was further enhanced by incorporating other independent prognostic factors in a nomogram-based prediction model, yielding the highest AUC of 0.79 (95% CI: 0.72−0.86) at 5-year OS. Enrichment analyses confirmed that the differentially expressed genes were mainly involved in immune-related pathways such as adaptive immune response, humoral immune response and Th1 and Th2 cell differentiation. This eleven-TRM signature has great potential as a prognostic factor for breast cancer patients besides unravelling the dysregulated immune pathways in high-risk breast cancer.
Collapse
|
18
|
Liu XX, Wang MJ, Kan QN, Li C, Xiao Z, Jiang YH, Li W, Li X, Jiang ZY. Kukoamine A Improves Mycoplasma pneumoniae Pneumonia by Regulating miR-222-3p/Superoxide Dismutase 2. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2064013. [PMID: 35774277 PMCID: PMC9239828 DOI: 10.1155/2022/2064013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022]
Abstract
Mycoplasma pneumoniae pneumonia (MPP) represents a common respiratory disease in children patients. Kukoamine A (KuA) is a spermine alkaloid found in the Chinese herb Cortex Lycii radices, which has a variety of pharmacological properties. However, no study has been reported on the role of KuA in MPP. Exosomes, a type of lipid bilayer-enclosed extracellular vesicles, can be delivered to the target cells, where they regulate function and physiology. With the use of human alveolar basal epithelial cells (HABECs) as an in vitro model, in this study, we sought to characterize the changes in levels of superoxide dismutase 2 (SOD2) and proinflammatory cytokines including IL-6 and TNF-α in HABECs in response to exosomes, which were isolated from peripheral blood serum of MPP patients. We found that, compared to normal, MPP patients exhibited a significant up-regulated miR-222-3p. Further, exosomal miR-222-3p downregulated SOD2 activity but promoted nuclear NF-κB activity and expression of IL-6 and TNF-α in HABECs, ultimately leading to an oxidative stress condition. Interestingly, such stimulating effects were attenuated by the pretreatment of KuA. This study suggests a critical role possessed by KuA in MPP by regulating the miR-222-3p/SOD2 axis, which represents a promising strategy for the treatment of MPP.
Collapse
Affiliation(s)
- Xiu-Xiu Liu
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ming-Jing Wang
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qian-Na Kan
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Cui Li
- Institute of Respiratory Diseases, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhen Xiao
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yong-Hong Jiang
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen Li
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiao Li
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhi-Yan Jiang
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
19
|
Goswami KK, Bose A, Baral R. Macrophages in tumor: An inflammatory perspective. Clin Immunol 2021; 232:108875. [PMID: 34740843 DOI: 10.1016/j.clim.2021.108875] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023]
Abstract
Inflammation is a part of carefully co-ordinated healing immune exercise to eliminate injurious stimuli. However, in substantial number of cancer types, it contributes in shaping up of robust tumor microenvironment (TME). Solid TME promotes infiltration of tumor associated macrophages (TAMs) that contributes to cancer promotion. TAMs are functionally heterogeneous and display an extraordinary degree of plasticity, which allow 'Switching' of macrophages into an 'M2', phenotype, linked with immunosuppression, advancement of tumor angiogenesis with metastatic consequences. In contrary to the classical M1 macrophages, these M2 TAMs are high-IL-10, TGF-β secreting-'anti-inflammatory'. In this review, we will discuss the modes of infiltration and switching of TAMs into M2 anti-inflammatory state in the TME to promote immunosuppression and inflammation-driven cancer.
Collapse
Affiliation(s)
- Kuntal Kanti Goswami
- Department of Microbiology, Asutosh College, 92, S. P. Mukherjee Road, Kolkata 700026, India.
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
20
|
Wang S, Yang X, Xie W, Fu S, Chen Q, Li Z, Zhang Z, Sun T, Gong B, Ma M. LncRNA GAPLINC Promotes Renal Cell Cancer Tumorigenesis by Targeting the miR-135b-5p/CSF1 Axis. Front Oncol 2021; 11:718532. [PMID: 34722262 PMCID: PMC8551964 DOI: 10.3389/fonc.2021.718532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are closely related to the occurrence and development of cancer. Gastric adenocarcinoma-associated, positive CD44 regulator, long intergenic noncoding RNA (GAPLINC) is a recently identified lncRNA that can actively participate in the tumorigenesis of various cancers. Here, we investigated the functional roles and mechanism of GAPLINC in renal cell carcinoma (RCC) development. Methods Differentially expressed lncRNAs between RCC tissues and normal kidney tissues were detected by using a microarray technique. RNA sequencing was applied to explore the mRNA expression profile changes after GAPLINC silencing. After gain- and loss-of-function approaches were implemented, the effect of GAPLINC on RCC in vitro and in vivo was assessed by cell proliferation and migration assays. Moreover, rescue experiments and luciferase reporter assays were used to study the interactions between GAPLINC, miR-135b-5p and CSF1. Results GAPLINC was significantly upregulated in RCC tissues and cell lines and was associated with a poor prognosis in RCC patients. Knockdown of GAPLINC repressed RCC growth in vitro and in vivo, while overexpression of GAPLINC exhibited the opposite effect. Mechanistically, we found that GAPLINC upregulates oncogene CSF1 expression by acting as a sponge of miR-135b-5p. Conclusion Taken together, our results suggest that GAPLINC is a novel prognostic marker and molecular therapeutic target for RCC.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaorong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhilong Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Moradi-Chaleshtori M, Shojaei S, Mohammadi-Yeganeh S, Hashemi SM. Transfer of miRNA in tumor-derived exosomes suppresses breast tumor cell invasion and migration by inducing M1 polarization in macrophages. Life Sci 2021; 282:119800. [PMID: 34245773 DOI: 10.1016/j.lfs.2021.119800] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023]
Abstract
AIMS Macrophage repolarization from M1 to M2 phenotype is one of the hallmarks of malignancy. M2 macrophages are the most represented population in the tumor microenvironment and play an active role in tumor progression. In recent years, microRNAs (miRNAs) have been identified as a regulator of macrophage polarization. MAIN METHODS In this study, miR-130 was delivered to M2 macrophages using tumor-derived exosomes. Then, we evaluated the macrophage polarization status by assessment of specific markers and cytokines for M1 and M2 phenotype. The phagocytosis ability of macrophages was also investigated. Additionally, we performed migration and invasion assays to detect the effect of macrophage reprogramming on breast cancer cells migration and invasion. KEY FINDINGS The findings of the current study indicated that exosomes efficiently delivered miR-130 into macrophages. Delivery of miR-130 into macrophages resulted in upregulation of M1 specific markers and cytokines, including CD86, Irf5, Nos2, TNF-α, and IL-1β and downregulation of M2 specific markers and cytokines, including CD206, Ym1, Arg, TGF-β, and IL-10. The phagocytosis ability of macrophages also enhanced after treatment with miRNA-loaded exosomes. Furthermore, migration and invasion assays demonstrated reduced ability of 4T1 breast cancer cells for migration and invasion after macrophages reprogramming. SIGNIFICANCE These observations suggest that repolarization of M2 macrophages to M1 phenotype using miRNA-containing exosomes can be a therapeutic strategy against tumor invasion and metastasis in breast cancer.
Collapse
Affiliation(s)
- Maryam Moradi-Chaleshtori
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Shojaei
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Chamseddine AN, Assi T, Mir O, Chouaib S. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. Pharmacol Ther 2021; 231:107986. [PMID: 34481812 DOI: 10.1016/j.pharmthera.2021.107986] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAM) plasticity and diversity are both essential hallmarks of the monocyte-macrophage lineage and the tumor-derived inflammation. TAM exemplify the perfect adaptable cell with dynamic phenotypic modifications that reflect changes in their functional polarization status. Under several tumor microenvironment (TME)-related cues, TAM shift their polarization, hence promoting or halting cancer progression. Immune checkpoint inhibitors (ICI) displayed unprecedented clinical responses in various refractory cancers; but only approximately a third of patients experienced durable responses. It is, therefore, crucial to enhance the response rate of immunotherapy. Several mechanisms of resistance to ICI have been elucidated including TAM role with its essential immunosuppressive functions that reduce both anti-tumor immunity and the subsequent ICI efficacy. In the past few years, thorough research has led to a better understanding of TAM biology and innovative approaches can now be adapted through targeting macrophages' recruitment axis as well as TAM activation and polarization status within the TME. Some of these therapeutic strategies are currently being evaluated in several clinical trials in association with ICI agents. This combination between TAM modulation and ICI allows targeting TAM intrinsic immunosuppressive functions and tumor-promoting factors as well as overcoming ICI resistance. Hence, such strategies, with a better understanding of the mechanisms driving TAM modulation, may have the potential to optimize ICI efficacy.
Collapse
Affiliation(s)
- Ali N Chamseddine
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France; Department of Biostatistics and Epidemiology, CESP INSERM U1018, OncoStat, Gustave Roussy, F-94805, Villejuif, France.
| | - Tarek Assi
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France
| | - Olivier Mir
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France; Department of Pharmacology, Gustave Roussy, F-94805, Villejuif, France; Department of Ambulatory Care, Gustave Roussy, F-94805, Villejuif, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, F-94805, Villejuif, France
| |
Collapse
|
23
|
Breast Cancer Drug Resistance: Overcoming the Challenge by Capitalizing on MicroRNA and Tumor Microenvironment Interplay. Cancers (Basel) 2021; 13:cancers13153691. [PMID: 34359591 PMCID: PMC8345203 DOI: 10.3390/cancers13153691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
The clinical management of breast cancer reaches new frontiers every day. However, the number of drug resistant cases is still high, and, currently, this constitutes one of the major challenges that cancer research has to face. For instance, 50% of women affected with HER2 positive breast cancer presents or acquires resistance to trastuzumab. Moreover, for patients affected with triple negative breast cancer, standard chemotherapy is still the fist-line therapy, and often patients become resistant to treatments. Tumor microenvironment plays a crucial role in this context. Indeed, cancer-associated stromal cells deliver oncogenic cues to the tumor and vice versa to escape exogenous insults. It is well known that microRNAs are among the molecules exploited in this aberrant crosstalk. Indeed, microRNAs play a crucial function both in the induction of pro-tumoral traits in stromal cells and in the stroma-mediated fueling of tumor aggressiveness. Here, we summarize the most recent literature regarding the involvement of miRNAs in the crosstalk between tumor and stromal cells and their capability to modulate tumor microenvironment characteristics. All up-to-date findings suggest that microRNAs in the TME could serve both to reverse malignant phenotype of stromal cells, modulating response to therapy, and as predictive/prognostic biomarkers.
Collapse
|
24
|
Munir MT, Kay MK, Kang MH, Rahman MM, Al-Harrasi A, Choudhury M, Moustaid-Moussa N, Hussain F, Rahman SM. Tumor-Associated Macrophages as Multifaceted Regulators of Breast Tumor Growth. Int J Mol Sci 2021; 22:6526. [PMID: 34207035 PMCID: PMC8233875 DOI: 10.3390/ijms22126526] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly occurring cancer in women of Western countries and is the leading cause of cancer-related mortality. The breast tumor microenvironment contains immune cells, fibroblasts, adipocytes, mesenchymal stem cells, and extracellular matrix. Among these cells, macrophages or tumor-associated macrophages (TAMs) are the major components of the breast cancer microenvironment. TAMs facilitate metastasis of the breast tumor and are responsible for poor clinical outcomes. High TAM density was also found liable for the poor prognosis of breast cancer. These observations make altering TAM function a potential therapeutic target to treat breast cancer. The present review summarizes the origin of TAMs, mechanisms of macrophage recruitment and polarization in the tumor, and the contributions of TAMs in tumor progression. We have also discussed our current knowledge about TAM-targeted therapies and the roles of miRNAs and exosomes in re-educating TAM function.
Collapse
Affiliation(s)
- Maliha Tabassum Munir
- Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.T.M.); (N.M.-M.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Matthew K. Kay
- Texas A&M University Health Sciences Center, College Station, TX 77843, USA; (M.K.K.); (M.C.)
| | - Min H. Kang
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Md Mizanur Rahman
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz 616, Oman;
| | - Mahua Choudhury
- Texas A&M University Health Sciences Center, College Station, TX 77843, USA; (M.K.K.); (M.C.)
| | - Naima Moustaid-Moussa
- Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.T.M.); (N.M.-M.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Fazle Hussain
- Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz 616, Oman;
| |
Collapse
|
25
|
Fodor A, Lazar AL, Buchman C, Tiperciuc B, Orasan OH, Cozma A. MicroRNAs: The Link between the Metabolic Syndrome and Oncogenesis. Int J Mol Sci 2021; 22:ijms22126337. [PMID: 34199293 PMCID: PMC8231835 DOI: 10.3390/ijms22126337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) represents a cluster of disorders that increase the risk of a plethora of conditions, in particular type two diabetes, cardiovascular diseases, and certain types of cancers. MetS is a complex entity characterized by a chronic inflammatory state that implies dysregulations of adipokins and proinflammatory cytokins together with hormonal and growth factors imbalances. Of great interest is the implication of microRNA (miRNA, miR), non-coding RNA, in cancer genesis, progression, and metastasis. The adipose tissue serves as an important source of miRs, which represent a novel class of adipokines, that play a crucial role in carcinogenesis. Altered miRs secretion in the adipose tissue, in the context of MetS, might explain their implication in the oncogenesis. The interplay between miRs expressed in adipose tissue, their dysregulation and cancer pathogenesis are still intriguing, taking into consideration the fact that miRNAs show both carcinogenic and tumor suppressor effects. The aim of our review was to discuss the latest publications concerning the implication of miRs dysregulation in MetS and their significance in tumoral signaling pathways. Furthermore, we emphasized the role of miRNAs as potential target therapies and their implication in cancer progression and metastasis.
Collapse
Affiliation(s)
- Adriana Fodor
- Department of Diabetes and Nutrtion, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Andrada Luciana Lazar
- Department of Dermatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Cristina Buchman
- Department of Oncology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Brandusa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Olga Hilda Orasan
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.H.O.); (A.C.)
| | - Angela Cozma
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.H.O.); (A.C.)
| |
Collapse
|
26
|
Xing Y, Ruan G, Ni H, Qin H, Chen S, Gu X, Shang J, Zhou Y, Tao X, Zheng L. Tumor Immune Microenvironment and Its Related miRNAs in Tumor Progression. Front Immunol 2021; 12:624725. [PMID: 34084160 PMCID: PMC8167795 DOI: 10.3389/fimmu.2021.624725] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
MiRNA is a type of small non-coding RNA, by regulating downstream gene expression that affects the progression of multiple diseases, especially cancer. MiRNA can participate in the biological processes of tumor, including proliferation, invasion and escape, and exhibit tumor enhancement or inhibition. The tumor immune microenvironment contains numerous immune cells. These cells include lymphocytes with tumor suppressor effects such as CD8+ T cells and natural killer cells, as well as some tumor-promoting cells with immunosuppressive functions, such as regulatory T cells and myeloid-derived suppressor cells. MiRNA can affect the tumor immune microenvironment by regulating the function of immune cells, which in turn modulates the progression of tumor cells. Investigating the role of miRNA in regulating the tumor immune microenvironment will help elucidate the specific mechanisms of interaction between immune cells and tumor cells, and may facilitate the use of miRNA as a predictor of immune disorders in tumor progression. This review summarizes the multifarious roles of miRNA in tumor progression through regulation of the tumor immune microenvironment, and provides guidance for the development of miRNA drugs to treat tumors and for the use of miRNA as an auxiliary means in tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Venosa A, Smith LC, Gow AJ, Zarbl H, Laskin JD, Laskin DL. Macrophage activation in the lung during the progression of nitrogen mustard induced injury is associated with histone modifications and altered miRNA expression. Toxicol Appl Pharmacol 2021; 423:115569. [PMID: 33971176 DOI: 10.1016/j.taap.2021.115569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
Activated macrophages have been implicated in lung injury and fibrosis induced by the cytotoxic alkylating agent, nitrogen mustard (NM). Herein, we determined if macrophage activation is associated with histone modifications and altered miRNA expression. Treatment of rats with NM (0.125 mg/kg, i.t.) resulted in increases in phosphorylation of H2A.X in lung macrophages at 1 d and 3 d post-exposure. This DNA damage response was accompanied by methylation of histone (H) 3 lysine (K) 4 and acetylation of H3K9, marks of transcriptional activation, and methylation of H3K36 and H3K9, marks associated with transcriptional repression. Increases in histone acetyl transferase and histone deacetylase were also observed in macrophages 1 d and 28 d post-NM exposure. PCR array analysis of miRNAs (miR)s involved in inflammation and fibrosis revealed unique and overlapping expression profiles in macrophages isolated 1, 3, 7, and 28 d post-NM. An IPA Core Analysis of predicted mRNA targets of differentially expressed miRNAs identified significant enrichment of Diseases and Functions related to cell cycle arrest, apoptosis, cell movement, cell adhesion, lipid metabolism, and inflammation 1 d and 28 d post NM. miRNA-mRNA interaction network analysis revealed highly connected miRNAs representing key upstream regulators of mRNAs involved in significantly enriched pathways including miR-34c-5p and miR-27a-3p at 1 d post NM and miR-125b-5p, miR-16-5p, miR-30c-5p, miR-19b-3p and miR-148b-3p at 28 d post NM. Collectively, these data show that NM promotes histone remodeling and alterations in miRNA expression linked to lung macrophage responses during inflammatory injury and fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - L Cody Smith
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
28
|
Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett 2021; 509:63-80. [PMID: 33838282 DOI: 10.1016/j.canlet.2021.03.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB (NF-κB) signaling pathway is considered as a potential therapeutic target in cancer therapy. It has been well established that transcription factor NF-κB is involved in regulating physiological and pathological events including inflammation, immune response and differentiation. Increasing evidences suggest that deregulated NF-κB signaling can enhance cancer cell proliferation, metastasis and also mediate radio-as well as chemo-resistance. On the contrary, non-coding RNAs (ncRNAs) have been found to modulate NF-κB signaling pathway under different settings. MicroRNAs (miRNAs) can dually inhibit/induce NF-κB signaling thereby affecting the growth and migration of cancer cells. Furthermore, the response of cancer cells to radiotherapy and chemotherapy may also be regulated by miRNAs. Regulation of NF-κB by miRNAs may be mediated via binding to 3/-UTR region. Interestingly, anti-tumor compounds can increase the expression of tumor-suppressor miRNAs in inhibiting NF-κB activation and the progression of cancers. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can also effectively modulate NF-κB signaling thus affecting tumorigenesis. It is noteworthy that several studies have demonstrated that lncRNAs and circRNAs can affect miRNAs in targeting NF-κB activation. They can act as competing endogenous RNA (ceRNA) thereby reducing miRNA expression to induce NF-κB activation that can in turn promote cancer progression and malignancy.
Collapse
|
29
|
Nair MG, Somashekaraiah VM, Ramamurthy V, Prabhu JS, Sridhar TS. miRNAs: Critical mediators of breast cancer metastatic programming. Exp Cell Res 2021; 401:112518. [PMID: 33607102 DOI: 10.1016/j.yexcr.2021.112518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA mediated aberrant gene regulation has been implicated in several diseases including cancer. Recent research has highlighted the role of epigenetic modulation of the complex process of breast cancer metastasis by miRNAs. miRNAs play a crucial role in the process of metastatic evolution by facilitating alterations in the phenotype of tumor cells and the tumor microenvironment that promote this process. They act as critical determinants of the multi-step progression starting from carcinogenesis all the way to organotropism. In this review, we focus on the current understanding of the compelling role of miRNAs in breast cancer metastasis.
Collapse
Affiliation(s)
- Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India.
| | | | - Vishakha Ramamurthy
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - T S Sridhar
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| |
Collapse
|
30
|
Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer 2021; 20:24. [PMID: 33522932 PMCID: PMC7849140 DOI: 10.1186/s12943-021-01313-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Noncoding RNA (ncRNA) transcripts that did not code proteins but regulate their functions were extensively studied for the last two decades and the plethora of discoveries have instigated scientists to investigate their dynamic roles in several diseases especially in cancer. However, there is much more to learn about the role of ncRNAs as drivers of malignant cell evolution in relation to macrophage polarization in the tumor microenvironment. At the initial stage of tumor development, macrophages have an important role in directing Go/No-go decisions to the promotion of tumor growth, immunosuppression, and angiogenesis. Tumor-associated macrophages behave differently as they are predominantly induced to be polarized into M2, a pro-tumorigenic type when recruited with the tumor tissue and thereby favoring the tumorigenesis. Polarization of macrophages into M1 or M2 subtypes plays a vital role in regulating tumor progression, metastasis, and clinical outcome, highlighting the importance of studying the factors driving this process. A substantial number of studies have demonstrated that ncRNAs are involved in the macrophage polarization based on their ability to drive M1 or M2 polarization and in this review we have described their functions and categorized them into oncogenes, tumor suppressors, Juggling tumor suppressors, and Juggling oncogenes.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Carlotta Pioppini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Life Science Plaza, Suite: LSP9.3012, 2130 W, Holcombe Blvd, Ste. 910, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Zhang H, Luan S, Xiao X, Lin L, Zhao X, Liu X. Silenced microRNA-222 suppresses inflammatory response in gestational diabetes mellitus mice by promoting CXCR4. Life Sci 2020; 266:118850. [PMID: 33278386 DOI: 10.1016/j.lfs.2020.118850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is induced by multiple factors, and the microRNAs (miRNAs) are well-known to be implicated in GDM progression. We aimed to explore the functional mechanisms of miR-222 in the inflammatory response in GDM by mediating C-X-C chemokine receptor type 4 (CXCR4) and NLRP3 inflammasomes. METHODS GDM models were established by intraperitoneal injection of streptozocin, and the levels of miR-222 and CXCR4 in GDM patients' placenta tissues as well as GDM mice' placenta and pancreatic tissues were determined. The GDM mice were treated with miR-222 Antagomir/Agomir or overexpressed CXCR4 to evaluate the apoptosis and pathological changes in tissues, and the levels of blood glucose, insulin, biochemical indices, inflammatory factors and inflammasome-related proteins. Importantly, the target relation between miR-222 and CXCR4 was verified. RESULTS MiR-222 was increased while CXCR4 was decreased in GDM patients and mice. The down-regulated miR-222 and up-regulated CXCR4 could promote insulin sensitivity and insulin level, while inhibit apoptosis, inflammation and glucagon level in GDM mice. Moreover, CXCR4 was targeted by miR-222. CONCLUSION We demonstrated that the silenced miR-222 could suppress inflammatory response in GDM mice by promoting CXCR4 and inactivating NLRP3 inflammasomes, which may contribute to GDM treatment.
Collapse
Affiliation(s)
- Haiyu Zhang
- Department of Prenatal Diagnosis, Weifang People's Hospital, Weifang 261041, Shandong, China
| | - Shoujing Luan
- Department of Endocrinology and Metabolism, Weifang People's Hospital, Weifang 261041, Shandong, China
| | - Xiao Xiao
- Department of Endocrinology and Metabolism, Weifang People's Hospital, Weifang 261041, Shandong, China
| | - Lingyu Lin
- Clinical Laboratory, Weifang People's Hospital, Weifang 261041, Shandong, China
| | - Xiaowei Zhao
- Department of Prenatal Diagnosis, Weifang People's Hospital, Weifang 261041, Shandong, China
| | - Xueyao Liu
- Clinical Laboratory, Weifang People's Hospital, Weifang 261041, Shandong, China.
| |
Collapse
|
32
|
Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B 2020; 10:2156-2170. [PMID: 33304783 PMCID: PMC7714989 DOI: 10.1016/j.apsb.2020.04.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages have a leading position in the tumor microenvironment (TME) which paves the way to carcinogenesis. Initially, monocytes and macrophages are recruited to the sites where the tumor develops. Under the guidance of different microenvironmental signals, macrophages would polarize into two functional phenotypes, named as classically activated macrophages (M1) and alternatively activated macrophages (M2). Contrary to the anti-tumor effect of M1, M2 exerts anti-inflammatory and tumorigenic characters. In progressive tumor, M2 tumor-associated macrophages (TAMs) are in the majority, being vital regulators reacting upon TME. This review elaborates on the role of TAMs in tumor progression. Furthermore, prospective macrophage-focused therapeutic strategies, including drugs not only in clinical trials but also at primary research stages, are summarized followed by a discussion about their clinical application values. Nanoparticulate systems with efficient drug delivery and improved antitumor effect are also summed up in this article.
Collapse
Affiliation(s)
- Qiyao Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ningning Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiejian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Li L, Lai K, Li C, Gong Y, Xu F, Zhao H, Zhou L, Huang C, Jin C. APRPG-modified nanoliposome loaded with miR-146a-5p inhibitor suppressed choroidal neovascularization by targeting endothelial cells. Cutan Ocul Toxicol 2020; 39:354-362. [PMID: 32928013 DOI: 10.1080/15569527.2020.1823406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION To explore the effect and mechanism of APRPG-modified nanoliposomes loaded with miR-146a-5p inhibitor (ANL-miR-146a-5p inhibitor) on endothelial cell proliferation, migration, tube formation, and choroidal neovascularization (CNV) in mice. METHODS ANL-miR-146a-5p inhibitors were generated by thin film hydration; in vitro, endothelial cell uptake experiment was used to detect the targeting effect of ANL-miR-146a-5p inhibitor; endothelial cells proliferation, migration, and tube formation were detected, respectively, by CCK8 assay, scratch assay, and Matrigel tube formation assay. In vivo, the mice CNV models were established by 810 nm laser photocoagulation. Mice choroidal flatmounts were performed to detect the volume of CNV after intravitreal injection of L-miR-146a-5p inhibitor, ANL-miR-146a-5p inhibitor, or normal saline; the vascular endothelial growth factor (VEGF) expression of mice choroidal tissue was detected by ELISA; HE section and electrophysiology (ERG) were performed to check the toxicity of ANL-miR-146a-5p inhibitor on mice retina. RESULTS ANL are targeted to endothelial cells and are more targeted in inflammatory environment. At the same concentration, ANL-miR-146a-5p inhibitor's ability to inhibit endothelial cell proliferation, migration, tube formation, CNV formation, and VEGF expression is better than L-miR-146a-5p inhibitor (p < 0.05); ANL-miR-146a-5p inhibitor had no toxicity on the structure of mouse retina; ANL-miR-146a-5p inhibitor had no toxicity on the a-wave and b-wave amplitudes and b-wave implicit times (p > 0.05). CONCLUSIONS ANL-miR-146a-5p inhibitor can more effectively down-regulate the expression level of VEGF through its targeting to endothelial cells, thereby more effectively inhibiting endothelial cell proliferation, migration, tube formation, and mice CNV formation.
Collapse
Affiliation(s)
- Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Cong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fabao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongkun Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lijun Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chuangxin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Chatterjee B, Saha P, Bose S, Shukla D, Chatterjee N, Kumar S, Tripathi PP, Srivastava AK. MicroRNAs: As Critical Regulators of Tumor- Associated Macrophages. Int J Mol Sci 2020; 21:ijms21197117. [PMID: 32992449 PMCID: PMC7582892 DOI: 10.3390/ijms21197117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging shreds of evidence suggest that tumor-associated macrophages (TAMs) modulate various hallmarks of cancer during tumor progression. Tumor microenvironment (TME) prime TAMs to execute important roles in cancer development and progression, including angiogenesis, matrix metalloproteinases (MMPs) secretion, and extracellular matrix (ECM) disruption. MicroRNAs (miRNAs) are critical epigenetic regulators, which modulate various functions in diverse types of cells, including macrophages associated with TME. In this review article, we provide an update on miRNAs regulating differentiation, maturation, activation, polarization, and recruitment of macrophages in the TME. Furthermore, extracellular miRNAs are secreted from cancerous cells, which control macrophages phenotypic plasticity to support tumor growth. In return, TAMs also secrete various miRNAs that regulate tumor growth. Herein, we also describe the recent updates on the molecular connection between tumor cells and macrophages. A better understanding of the interaction between miRNAs and TAMs will provide new pharmacological targets to combat cancer.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Devendra Shukla
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, WB 700026, India;
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education & Research, Tirupati, Andhra Pradesh 517507, India;
| | - Prem Prakash Tripathi
- Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India;
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
- Correspondence:
| |
Collapse
|
35
|
Yu Y, Luo Y, Fang Z, Teng W, Yu Y, Tian J, Guo P, Xu R, Wu J, Li Y. Mechanism of Sanguinarine in Inhibiting Macrophages to Promote Metastasis and Proliferation of Lung Cancer via Modulating the Exosomes in A549 Cells. Onco Targets Ther 2020; 13:8989-9003. [PMID: 32982290 PMCID: PMC7490052 DOI: 10.2147/ott.s261054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Sanguinarine (SNG) is a benzophenanthridine alkaloid obtained from the roots of Sanguinaria canadensis and has an anticancer effect. The aim of this study was to explore the mechanism of SNG in inhibiting macrophages via regulating the exosomes derived from lung carcinoma cells to reduce metastasis and proliferation of lung carcinoma. Methods Human lung cancer cells (A549 cells) were treated with 4μM of SNG. Exosomes of A549 cells were extracted from A549 cells supernatant, and THP-1 cells were cultured with exosomes. Then, the supernatant of THP-1 cells was collected and cultured with A549 cells. Cell proliferation was measured via plate clone formation and CCK-8 assays. Migration was assessed by using Transwell assay and scratch test. Cellular invasion was detected by Transwell assay. Apoptosis was determined using flow cytometry. Moreover, the protein expressions of GAPDH, P65 and P-P65 in THP-1 cells were measured by Western blot. Levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and chemotactic cytokines ligand 2 (CCL-2) extracted from THP-1 cells were determined by reverse transcription-polymerase chain reaction (RT-PCR). Results Compared to the control group, exosomes could activate THP-1 cells, and the invasion, migration, and proliferation of A549 cells were consequently enhanced. Exosomes could increase the protein expression of p-p65 and the RNA expression levels of TNF-α, IL-6, and CCL-2 in THP-1 cells. Compared with the exosome group, SNG-treated exosomes inhibited THP-1 cells so that the invasion, proliferation, and migration of A549 cells were attenuated and apoptosis was promoted. In THP-1 cells, SNG-treated exosomes inhibited P-P65 expression and the RNA expression levels of TNF-α, IL-6, and CCL-2. Conclusion Exosomes treated by SNG inhibited THP-1 cells so that the invasion, proliferation, and migration of A549 cells were inhibited, and the apoptosis was promoted. The mechanism is possibly associated with the inhibition of NF-κB pathway in THP-1 cells.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Wenjing Teng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yongchun Yu
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jianhui Tian
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, People's Republic of China
| | - Peng Guo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Rongzhong Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| |
Collapse
|
36
|
Yap J, McCurdy S, Alcala M, Irei J, Garo J, Regan W, Lee BH, Kitamoto S, Boisvert WA. Expression of Chitotriosidase in Macrophages Modulates Atherosclerotic Plaque Formation in Hyperlipidemic Mice. Front Physiol 2020; 11:714. [PMID: 32655419 PMCID: PMC7324766 DOI: 10.3389/fphys.2020.00714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
Objective To determine whether overexpression of the chitin degrading enzyme, chitotriosidase (CHIT1), modulates macrophage function and ameliorates atherosclerosis. Approach and Results Using a mouse model that conditionally overexpresses CHIT1 in macrophages (CHIT1-Tg) crossbred with the Ldlr -/- mouse provided us with a means to investigate the effects of CHIT1 overexpression in the context of atherosclerosis. In vitro, CHIT1 overexpression by murine macrophages enhanced protein expression of IL-4, IL-8, and G-CSF by BMDM upon stimulation with a combination of lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Phosphorylation of ERK1/2 and Akt was also down regulated when exposed to the same inflammatory stimuli. Hyperlipidemic, Ldlr -/--CHIT1-Tg (CHIT1-OE) mice were fed a high-fat diet for 12 weeks in order to study CHIT1 overexpression in atherosclerosis. Although plaque size and lesion area were not affected by CHIT1 overexpression in vivo, the content of hyaluronic acid (HA) and collagen within atherosclerotic plaques of CHIT1-OE mice was significantly greater. Localization of both ECM components was markedly different between groups. Conclusions These data demonstrate that CHIT1 alters cytokine expression and signaling pathways of classically activated macrophages. In vivo, CHIT1 modifies ECM distribution and content in atherosclerotic plaques, both of which are important therapeutic targets.
Collapse
Affiliation(s)
- Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Sara McCurdy
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Martin Alcala
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Jan Garo
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Whitney Regan
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Bog-Hieu Lee
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Seoul, South Korea
| | - Shiro Kitamoto
- Departments of Cardiovascular Medicine and Advanced Therapeutics for Cardiovascular Diseases, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
37
|
Li L, Lai K, Gong Y, Huang C, Xu F, Li Y, Jin C. Downregulation of miR-146a-5p Inhibits Choroidal Neovascularization via the NF-κB Signaling Pathway by Targeting OTUD7B. Curr Eye Res 2020; 45:1514-1525. [PMID: 32438838 DOI: 10.1080/02713683.2020.1772831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Choroidal neovascularization (CNV) is the key pathological change caused by irreversible blindness resulting from neovascular AMD (nAMD). However, the pathological mechanisms underlying CNV remain largely unknown. Here, we aimed to investigate the role of miR-146a-5p in CNV formation. MATERIALS AND METHODS At the cellular level, we overexpressed or downregulated miR-146a-5p in an umbilical vein endothelial cell line (EA.hy926) by transfecting cells with either a miR-146a-5p mimic or an inhibitor. CCK8, wound healing, and Matrigel assays were performed to examine the proliferation, migration, and tube formation of endothelial cells (EA.hy926). Target relationship between miR-146a-5p and OTUD7B was verified using a double luciferase reporter experiment. An experimental CNV model was established by treating fundi of male C57BL/6 J mice with 810 nm laser. Fundus fluorescein angiography (FFA) was performed to evaluate the leakage of CNV on day 7 after miR-146a-5p antagomir intravitreal injection. The CNV volume was measured using Choroidal Flatmounts in a confocal study. The expression levels of VEGF, ICAM1, and NF-κB (p50 and p65) were detected both in vitro and in vivo. RESULTS The expression of miR-146a-5p was increased in LPS-stimulated endothelial cells and in experimental CNV RPE-choroidal complexes in mouse models. LPS-induced proliferation, migration, and tube formation were inhibited by the miR-146a-5p inhibitor. The miR-146a-5p antagomir attenuated CNV formation and fluorescent leakage in the vivo CNV model. In the LPS-stimulated endothelial cells and the CNV mouse model, the NF-κB signaling pathway was activated and the expression of VEGF and ICAM1 increased. Conversely, downregulation of miR-146a-5p inactivated the NF-κB signaling pathway and reduced the expression of VEGF and ICAM1. CONCLUSIONS Our results indicated that downregulation of miR-146a-5p inhibited experimental CNV formation via inactivation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Chuangxin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Fabao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Yingqin Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
38
|
Petanidis S, Domvri K, Porpodis K, Anestakis D, Freitag L, Hohenforst-Schmidt W, Tsavlis D, Zarogoulidis K. Inhibition of kras-derived exosomes downregulates immunosuppressive BACH2/GATA-3 expression via RIP-3 dependent necroptosis and miR-146/miR-210 modulation. Biomed Pharmacother 2020; 122:109461. [PMID: 31918262 DOI: 10.1016/j.biopha.2019.109461] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Immunosuppressive chemoresistance is a major challenge in lung cancer treatment. Exosomes present in the tumor microenviroment are implicated in chemoresistant-related immune suppression, and metastasis but the exact pathogenic role of lung-derived exosomes is still uncertain. Recent reports reveal that lung cancer pathogenesis is strictly associated with a exosomal tumor supportive status and a dysfunctional immune system. In this study, we investigate the role of Kras-derived exosomes in chemoresistant immunosuppression in which neoplastic cells create a metabolic-sustained microenvironment. Findings reveal that Kras-derived exosomes induce regulation of SMARCE1/NCOR1 chromatin remodeling genes promoting pre-metastatic niche formation in naive mice and consequently increase lung metastatic burden. Furthermore, exosomal Kras inhibition downregulated transcription factor BACH2/GATA-3 expression in lung tumor tissues by shifting pyruvate/PKM2 dependent metabolism, contributing to a tumor-restraining status. Further co-treatment with carboplatin triggered RIP3/TNFa dependent necroptosis in ex vivo cells accompanied by differential expression of immunosuppressive miR-146/miR-210 regulators in metastatic lung cancer patients. Overall, these findings demonstrate the multifaceted roles of Kras-derived exosomes in sustaining lung immunosuppressive metastasis and provide new opportunities for effective metastasis inhibition, especially in chemoresistant tumors.
Collapse
Affiliation(s)
- Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow, 119992, Russian Federation
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 57010, Greece
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 57010, Greece
| | - Doxakis Anestakis
- Department of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, 54124, Greece
| | - Lutz Freitag
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich Switzerland
| | | | - Drosos Tsavlis
- Department of Medicine, Laboratory of Experimental Physiology, Aristotle University of Thessaloniki, 54124, Greece
| | - Konstantinos Zarogoulidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| |
Collapse
|
39
|
Pan Z, Tian Y, Niu G, Cao C. Role of microRNAs in remodeling the tumor microenvironment (Review). Int J Oncol 2020; 56:407-416. [PMID: 31894326 PMCID: PMC6959460 DOI: 10.3892/ijo.2019.4952] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are short non‑coding RNAs that are known to regulate gene expression at the post‑transcriptional level. miRNA expression is often deregulated in several human cancers, affecting the communication between tumor stroma and tumor cells, among other functions. Understanding the role of miRNAs in the tumor microenvironment is crucial for fully elucidating the molecular mechanisms underlying tumor progression and exploring novel diagnostic biomarkers and therapeutic targets. The present review focused on the role of miRNAs in remodeling the tumor microenvironment, with an emphasis on their impact on tumor growth, metastasis and resistance to treatment, as well as their potential clinical applications.
Collapse
Affiliation(s)
- Zhaoji Pan
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221000
| | - Yiqing Tian
- Xinyi People’s Hospital, Xuzhou, Jiangsu 221400, P.R. China
| | - Guoping Niu
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221000
| | - Chengsong Cao
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221000
| |
Collapse
|
40
|
Liu C, Zhang Y, Liang S, Ying Y. Aldehyde dehydrogenase 1, a target of miR-222, is expressed at elevated levels in cervical cancer. Exp Ther Med 2020; 19:1673-1680. [PMID: 32104219 PMCID: PMC7027150 DOI: 10.3892/etm.2020.8425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the expression of microRNA-222 (miR-222) and aldehyde dehydrogenase 1 (ALDH1) in tissues and peripheral blood of cervical cancer patients, and to elucidate their underlying mechanisms of action. Tumor tissues and tumor-adjacent tissues were obtained from 33 cervical cancer patients and peripheral blood was obtained from these patients and 28 healthy subjects. The expression of miR-222 and ALDH1 mRNA was evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To examine the levels of ALDH1 protein in tissues and blood, western blotting and ELISA were used. To confirm a direct interaction between miR-222 and ALDH1 mRNA, a dual luciferase reporter assay was performed. HeLA cells were transfected with agomiR-222 and expression of ALDH1 in the cells was measured by RT-qPCR and western blotting. MTT assay was preform to investigate the proliferation of HeLA cells. Expression of ALDH1 mRNA and protein was elevated in cervical cancer tissues and peripheral blood from patients compared with tumor-adjacent tissues and healthy controls, while the expression of miR-222 was reduced. Upregulation of miR-222 inhibited HeLA cell proliferation possibly due to a reduction in the expression of ALDH1. A dual luciferase reporter assay showed that miR-222 can bind with the 3′-untranslated seed region of ALDH1 mRNA to regulate its expression. miR-222 regulation of ALDH1 expression may play a role in the prevention of cervical cancer.
Collapse
Affiliation(s)
- Changde Liu
- Clinical Laboratory, The Hui People Hospital of Beijing, Beijing 100054, P.R. China
| | - Yan Zhang
- Clinical Laboratory, Yuquan Hospital of Tsinghua University, Beijing 100049, P.R. China
| | - Shanghua Liang
- Department of Pathology, Beijing Dian Medical Testing Laboratory Co., Beijing 102609, P.R. China
| | - Yuhua Ying
- Department of Gynaecology, Yuquan Hospital of Tsinghua University, Beijing 100049, P.R. China
| |
Collapse
|
41
|
Chu C, Lei X, Li Y, Luo Y, Ding Y, Zhou W, Ji W. High expression of miR-222-3p in children with Mycoplasma pneumoniae pneumonia. Ital J Pediatr 2019; 45:163. [PMID: 31842954 PMCID: PMC6916232 DOI: 10.1186/s13052-019-0750-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Mycoplasma pneumoniae is a leading cause of community-acquired pneumonia in children. However, its mechanism of pathogenesis is not fully understood, and microRNAs might play a role. This study aimed to explore the microRNA-222-3p (miR-222-3p) expression and its possible role in children with M.pneumoniae pneumonia (MPP). Methods Thirty-six children with MPP and twenty-seven age-matched controls from Children’s Hospital of Soochow University were enrolled in this study. MiR-222-3p and cluster of differentiation 4 (CD4) mRNA were detected using real-time PCR in children’s peripheral blood plasma samples. THP-1 cells and mice were stimulated with M.pneumoniae lipid-associated membrane proteins(LAMPs). Results Children with MPP had significantly higher levels of miR-222-3p and lower levels of CD4 in peripheral blood plasma (P < 0.05). Additionally, Sixteen children with MPP complicated with pleural effusion had higher miR-222-3p levels than those without pleural effusion. MiR-222-3p or CD4 in THP-1 cells increased or decreased, respectively, in a dose dependent manner after LAMP stimulation. In LAMP-stimulated mice massive inflammatory cells infiltrates surrounded the bronchioles, and miR-222-3p increased in the bronchoalveolar lavage fluid. In conclusion, miR-222-3p was highly expressed in children with MPP, especially those with pleural effusion. Conclusion Small sample studies showed that M.pneumoniae or its LAMPs could increase miR-222-3p and decrease CD4 in macrophages,both in vitro and vivo.Thus, miR-222-3p might be an MPP biomarker for the diagnosis and prognosis.
Collapse
Affiliation(s)
- Chu Chu
- Department of Infectious Disease, Children's Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Xiaoli Lei
- Department of Infectious Disease, Children's Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Yuqin Li
- Department of Infectious Disease, Children's Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Yali Luo
- Department of Infectious Disease, Children's Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Ying Ding
- Department of Infectious Disease, Children's Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Weifang Zhou
- Department of Infectious Disease, Children's Hospital of Soochow University, Soochow University, Suzhou, 215123, China.
| | - Wei Ji
- Department of Respiratory Disease, Children's Hospital of Soochow University, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
42
|
Gholami M, Larijani B, Zahedi Z, Mahmoudian F, Bahrami S, Omran SP, Saadatian Z, Hasani-Ranjbar S, Taslimi R, Bastami M, Amoli MM. Inflammation related miRNAs as an important player between obesity and cancers. J Diabetes Metab Disord 2019; 18:675-692. [PMID: 31890692 PMCID: PMC6915181 DOI: 10.1007/s40200-019-00459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
The growing trend in addition to their burden, prevalence, and death has made obesity and cancer two of the most concerning diseases worldwide. Obesity is an important risk factor for common types of cancers where the risk of some cancers is directly related to the obesity. Various inflammatory mechanisms and increased level of pro-inflammatory cytokines have been investigated in many previous studies, which play key roles in the pathophysiology and development of both of these conditions. On the other hand, in the recent years, many studies have individually focused on the biomarker's role and therapeutic targeting of microRNAs (miRNAs) in different types of cancers and obesity including newly discovered small noncoding RNAs (sncRNAs) which regulate gene expression and RNA silencing. This study is a comprehensive review of the main inflammation related miRNAs in obesity/obesity related traits. For the first time, the main roles of miRNAs in obesity related cancers have been discussed in response to the question raised in the following hypothesis; do the main inflammatory miRNAs link obesity with obesity-related cancers regarding their role as biomarkers? Graphical abstractConceptual design of inflammatory miRNAs which provide link between obesity and cancers.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Zahedi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Parvizi Omran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| | - Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| |
Collapse
|
43
|
Syed SN, Frank AC, Raue R, Brüne B. MicroRNA-A Tumor Trojan Horse for Tumor-Associated Macrophages. Cells 2019; 8:E1482. [PMID: 31766495 PMCID: PMC6953083 DOI: 10.3390/cells8121482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) significantly contribute to the regulation of gene expression, by virtue of their ability to interact with a broad, yet specific set of target genes. MiRs are produced and released by almost every cell type and play an important role in horizontal gene regulation in the tumor microenvironment (TME). In the TME, both tumor and stroma cells cross-communicate via diverse factors including miRs, which are taking central stage as a therapeutic target of anti-tumor therapy. One of the immune escape strategies adopted by tumor cells is to release miRs as a Trojan horse to hijack circulating or tumor-localized monocytes/macrophages to tune them for pro-tumoral functions. On the other hand, macrophage-derived miRs exert anti-tumor functions. The transfer of miRs from host to recipient cells depends on the supramolecular structure and composition of miR carriers, which determine the distinct uptake mechanism by recipient cells. In this review, we provide a recent update on the miR-mediated crosstalk between tumor cells and macrophages and their mode of uptake in the TME.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
44
|
Cheng WC, Liao TT, Lin CC, Yuan LTE, Lan HY, Lin HH, Teng HW, Chang HC, Lin CH, Yang CY, Huang SC, Jiang JK, Yang SH, Yang MH, Hwang WL. RAB27B-activated secretion of stem-like tumor exosomes delivers the biomarker microRNA-146a-5p, which promotes tumorigenesis and associates with an immunosuppressive tumor microenvironment in colorectal cancer. Int J Cancer 2019; 145:2209-2224. [PMID: 30980673 DOI: 10.1002/ijc.32338] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
Abstract
The dynamic cell-cell communication is essential for tissue homeostasis in normal physiological circumstances and contributes to a diversified tumor microenvironment. Although exosomes are extracellular vesicles that actively participate in cell-cell interaction by shutting cellular components, impacts of tumor exosomes in the context of cancer stemness remain elusive. Here, we expand colorectal cancer stem cells (CRCSCs) as cancer spheroids and demonstrate that the β-catenin/Tcf-4-activated RAB27B expression is required for the secretion of CRCSC exosomes. In an exosomal RNA sequencing analysis, a switch of exosomal RNA species from retrotransposons to microRNAs (miRNAs) is identified upon expanding CRCSCs. miRNA-146a-5p (miR-146a) is the major miRNA in CRCSC exosomes and exosomal miR-146a promotes stem-like properties and tumorigenicity by targeting Numb in recipient CRC cells. Among 53 CRC patients, those with abundant exosomal miR-146a expression in serum exhibits higher miR-146aHigh /NumbLow CRCSC traits, an increased number of tumor-filtrating CD66(+) neutrophils and a decreased number of tumor-infiltrating CD8(+) T cells. Our study elucidates a unique mechanism of tumor exosome-mediated stemness expansion.
Collapse
Affiliation(s)
- Wei-Chung Cheng
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan
| | - Tsai-Tsen Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Chi Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Hsin-Yi Lan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Hsin Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Wei Teng
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Chuan Chang
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Shih-Ching Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Lun Hwang
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
45
|
Wang X, Jiang B, Sun H, Zheng D, Zhang Z, Yan L, Li E, Wu Y, Xu RH. Noninvasive application of mesenchymal stem cell spheres derived from hESC accelerates wound healing in a CXCL12-CXCR4 axis-dependent manner. Theranostics 2019; 9:6112-6128. [PMID: 31534540 PMCID: PMC6735514 DOI: 10.7150/thno.32982] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/29/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSC) derived from adult tissues effectively promote wound healing. However, MSC quality varies, and the quantity of MSC is limited, as MSC are acquired through donations. Moreover, the survival and functioning of dissociated MSC delivered to an inflammatory lesion are subject to challenges. Methods: Here, spheres (EMSCSp) generated from human embryonic stem cell-derived MSC (EMSC) were directly dropped onto excised wounds in mice; the effects of EMSCSp were compared to those of dissociated EMSC (EMSCDiss). Following transplantation, we measured the extent of wound closure, dissected the histological features of the wounds, determined transcriptomic changes in cells isolated from the treated and control wounds, and evaluated the molecular mechanism of the effects of EMSC. Results: The application of EMSCSp onto murine dermal wounds substantially increased survival and efficacy of EMSC compared to the topical application of EMSCDiss. RNA sequencing (RNA-Seq) of cells isolated from the wounds highlighted the involvement of CXCL12-CXCR4 signaling in the effects of EMSCSp, which was verified in EMSC via CXCL12 knockdown and in target cells (vascular endothelial cells, epithelial keratinocytes, and macrophages) via CXCR4 inhibition. Finally, we enhanced the biosafety of EMSCSp by engineering cells with an inducible suicide gene. Conclusions: Together, these data suggest the topical application of EMSCSp as an unlimited, quality-assured, safe, and noninvasive therapy for wound healing and the CXCL12-CXCR4 axis as a key player in this treatment.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bin Jiang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Huiyan Sun
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Dejin Zheng
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhenwu Zhang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Li Yan
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Enqin Li
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
46
|
Liu Q, Wang W, Li F, Yu D, Xu C, Hu H. Triptolide Inhibits Breast Cancer Cell Metastasis Through Inducing the Expression of miR-146a, a Negative Regulator of Rho GTPase. Oncol Res 2019; 27:1043-1050. [PMID: 31072418 PMCID: PMC7848294 DOI: 10.3727/096504019x15560124931900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Triptolide, an extract of Tripterygium wilfordii, has been shown to have a potent anticancer activity. In the present study, it was found that triptolide could effectively induce apoptosis and inhibit proliferation and invasion in malignant MDA-MB-231 breast cancer cells. The study focused on its effect on inhibiting invasion, which has not been extensively reported to date. We predicted that triptolide may change invasion activity via microRNAs (miRNAs), which have been recognized as important regulators of gene expression. miRNAome variation in MDA-MB-231 cells with or without triptolide treatment demonstrated that miR-146a was upregulated following treatment with triptolide. Our previous studies have shown that miR-146a can inhibit migration and invasion by targeting RhoA in breast cancer. This time, we found that miR-146a can target Rac1, another key member of the Rho GTPase family. Luciferase reporter containing Rac1 3′-UTR was constructed to prove this hypothesis. In addition, following treatment with triptolide, the expression of RhoA and Rac1 was found to be decreased. These results indicated that triptolide exerts its anti-invasion activity through a miRNA-mediated mechanism, which indirectly regulates the expression of Rho GTPase. Triptolide combined with miR-146a could improve the effect of triptolide treatment on breast cancer.
Collapse
Affiliation(s)
- Qin Liu
- Department of Blood Transfusion, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei Wang
- Department of Clinic Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China
| | - Fangqiong Li
- Department of Clinic Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China
| | - Dongyang Yu
- Department of Clinic Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Chunfen Xu
- Department of Blood Transfusion, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hongbing Hu
- Department of Blood Transfusion, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
47
|
Bahiraee A, Ebrahimi R, Halabian R, Aghabozorgi AS, Amani J. The role of inflammation and its related microRNAs in breast cancer: A narrative review. J Cell Physiol 2019; 234:19480-19493. [PMID: 31025369 DOI: 10.1002/jcp.28742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Breast cancer is recognized as the most common type of cancer among women with a high rate of mortality all over the world. Over the past years, growing attention has been regarded to realize more about the mechanisms underlying the disease process. It is revealed that the progression of breast cancer may be strongly linked to chronic inflammation owing to the role of inflammatory factors in genetic instability and subsequent cancer predisposition. Although the association between breast cancer and inflammatory pathways has been well-defined now, only recent evidence pointed towards the inflammation-related microRNAs (miRNAs) as potential biomarkers and therapeutic targets involved in the crosstalk of multiple pathways during breast cancer development. Moreover, the practical interactions between these miRNAs and inflammatory factors are also a little characterized. In this review, we intended to describe the effects of predominant inflammatory pathways such as cytokines, phosphoinositide 3-kinase/protein kinase B, and nuclear factor kappa B in association with tumor promoting and tumor suppressing miRNAs on breast cancer progression. Providing new studies in the field of combining biomarkers for early diagnosis, prognosis, and monitoring breast cancer are very important. Notably, understanding the underlying mechanisms of miRNAs as a possible link between inflammation and tumorigenesis may offer a novel insight for combating this epidemic.
Collapse
Affiliation(s)
- Alireza Bahiraee
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirsaeed Sabeti Aghabozorgi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Curtale G, Rubino M, Locati M. MicroRNAs as Molecular Switches in Macrophage Activation. Front Immunol 2019; 10:799. [PMID: 31057539 PMCID: PMC6478758 DOI: 10.3389/fimmu.2019.00799] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
The efficacy of macrophage- mediated inflammatory response relies on the coordinated expression of key factors, which expression is finely regulated at both transcriptional and post-transcriptional level. Several studies have provided compelling evidence that microRNAs play pivotal roles in modulating macrophage activation, polarization, tissue infiltration, and resolution of inflammation. In this review, we highlight the essential molecular mechanisms underlying the different phases of inflammation that are targeted by microRNAs to inhibit or accelerate restoration to tissue integrity and homeostasis. We further review the impact of microRNA-dependent regulation of tumor-associated macrophages and the relative implication for tumor biology.
Collapse
Affiliation(s)
- Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Marcello Rubino
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
49
|
IL-34 Inhibits Acute Rejection of Rat Liver Transplantation by Inducing Kupffer Cell M2 Polarization. Transplantation 2019; 102:e265-e274. [PMID: 29570162 DOI: 10.1097/tp.0000000000002194] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Recent studies have demonstrated that IL-34 is implicated in the regulation of macrophage functions. However, the effect of IL-34 on Kupffer cells (KCs) in acute rejection (AR) of liver transplantation remains unclear. METHODS IL-34 expression was detected in graft and serum from allotransplantation and syngeneic transplantation groups. The adeno-associated virus-expressing IL-34 was used to assess the effect of IL-34 on AR of rat liver transplantation. The effect of IL-34 on KC polarization was evaluated by in vitro and in vivo assays. Kupffer cells in donors were depleted by clodronate treatment before transplantation, and the nontreated KCs or lipopolysaccharide-treated KCs were transferred into recipients during liver transplantation. RESULTS IL-34 expression levels in grafts and serum were decreased in the allotransplantation group compared with the syngeneic transplantation group. Adeno-associated virus-expressing IL-34 treatment induced KC M2 polarization in vivo and inhibited the AR of rat liver transplantation. Moreover, we found that IL-34 switched the phenotype of KCs from M1 to M2 by activating the PI3K/Akt pathway in vitro. In addition, the results of KC deletion and adaptive transfer experiments showed that the AR inhibition induced by IL-34 was M2 KC-dependent. CONCLUSIONS IL-34 plays an important role in KC M2 polarization-dependent AR inhibition of rat liver transplantation.
Collapse
|
50
|
Huang Y, Liao Z, Lin X, Wu X, Chen X, Bai X, Zhuang Y, Yang Y, Zhang J. Overexpression of miR-146a Might Regulate Polarization Transitions of BV-2 Cells Induced by High Glucose and Glucose Fluctuations. Front Endocrinol (Lausanne) 2019; 10:719. [PMID: 31695681 PMCID: PMC6817609 DOI: 10.3389/fendo.2019.00719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Microglia are critical in neuroinflammation. M1/M2 polarization transitions of microglial phenotypes determine the states of neuroinflammation and are regulated by multiple pathways, including miRNAs and other epigenetic regulations. This study investigated the polarization transitions of microglia induced by high glucose and glucose fluctuations, and the role of miR-146a in regulating M1/M2 polarization transitions of microglia. BV-2 cells were cultured with 25 mmol/L glucose, 75 mmol/L glucose, and 25 mmol/L-75 mmol/L glucose fluctuation for 48 h. BV-2 cells overexpressing miR-146a were generated using a lentiviral vector. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure mRNA expression of miR-146a, CD11b, iNOS, Arg-1, IRAK1, TRAF6, and NF-κB. Immunofluorescence was used to measure CD11b expression. Western blot was used to measure protein expression of CD11b, iNOS, and Arg-1. Compared with those in the 25 mmol/L glucose control group, expression of CD11b, iNOS, TNF-α, and IL-6 in the 75 mmol/L glucose or glucose fluctuation groups of cultured BV-2 cells were significantly increased, while Arg-1 and IL-10 was significantly decreased. These effects were reversed by overexpression of miR-146a. Furthermore, expression of IRAK1, TRAF6, and NF-κB was significantly increased in the high glucose and glucose fluctuation groups; this was reduced after miR-146a overexpression. In sum, high glucose and glucose fluctuations induced polarization transitions from M1 to M2 phenotype in BV-2 cells. Overexpression of miR-146a might protect BV-2 cells from high glucose and glucose fluctuation associated with M1/M2 polarization transitions by downregulating the expression of IRAK1, TRAF6, and NF-κB.
Collapse
Affiliation(s)
- Yinqiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhenling Liao
- Department of Endocrinology, The First People's Hospital of Shaoguan City, Shaoguan, China
| | - Xiahong Lin
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Xiahong Lin
| | - Xiaohong Wu
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoyu Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xuefeng Bai
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yong Zhuang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yingxia Yang
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jinying Zhang
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|