1
|
Kreis NN, Moon HH, Wordeman L, Louwen F, Solbach C, Yuan J, Ritter A. KIF2C/MCAK a prognostic biomarker and its oncogenic potential in malignant progression, and prognosis of cancer patients: a systematic review and meta-analysis as biomarker. Crit Rev Clin Lab Sci 2024; 61:404-434. [PMID: 38344808 PMCID: PMC11815995 DOI: 10.1080/10408363.2024.2309933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/24/2024]
Abstract
KIF2C/MCAK (KIF2C) is the most well-characterized member of the kinesin-13 family, which is critical in the regulation of microtubule (MT) dynamics during mitosis, as well as interphase. This systematic review briefly describes the important structural elements of KIF2C, its regulation by multiple molecular mechanisms, and its broad cellular functions. Furthermore, it systematically summarizes its oncogenic potential in malignant progression and performs a meta-analysis of its prognostic value in cancer patients. KIF2C was shown to be involved in multiple crucial cellular processes including cell migration and invasion, DNA repair, senescence induction and immune modulation, which are all known to be critical during the development of malignant tumors. Indeed, an increasing number of publications indicate that KIF2C is aberrantly expressed in multiple cancer entities. Consequently, we have highlighted its involvement in at least five hallmarks of cancer, namely: genome instability, resisting cell death, activating invasion and metastasis, avoiding immune destruction and cellular senescence. This was followed by a systematic search of KIF2C/MCAK's expression in various malignant tumor entities and its correlation with clinicopathologic features. Available data were pooled into multiple weighted meta-analyses for the correlation between KIF2Chigh protein or gene expression and the overall survival in breast cancer, non-small cell lung cancer and hepatocellular carcinoma patients. Furthermore, high expression of KIF2C was correlated to disease-free survival of hepatocellular carcinoma. All meta-analyses showed poor prognosis for cancer patients with KIF2Chigh expression, associated with a decreased overall survival and reduced disease-free survival, indicating KIF2C's oncogenic potential in malignant progression and as a prognostic marker. This work delineated the promising research perspective of KIF2C with modern in vivo and in vitro technologies to further decipher the function of KIF2C in malignant tumor development and progression. This might help to establish KIF2C as a biomarker for the diagnosis or evaluation of at least three cancer entities.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Ha Hyung Moon
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
2
|
Sun M, Wang Y, Xin G, Yang B, Jiang Q, Zhang C. NuSAP regulates microtubule flux and Kif2A localization to ensure accurate chromosome congression. J Cell Biol 2024; 223:e202108070. [PMID: 38117947 PMCID: PMC10733630 DOI: 10.1083/jcb.202108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023] Open
Abstract
Precise chromosome congression and segregation requires the proper assembly of a steady-state metaphase spindle, which is dynamic and maintained by continuous microtubule flux. NuSAP is a microtubule-stabilizing and -bundling protein that promotes chromosome-dependent spindle assembly. However, its function in spindle dynamics remains unclear. Here, we demonstrate that NuSAP regulates the metaphase spindle length control. Mechanistically, NuSAP facilitates kinetochore capture and spindle assembly by promoting Eg5 binding to microtubules. It also prevents excessive microtubule depolymerization through interaction with Kif2A, which reduces Kif2A spindle-pole localization. NuSAP is phosphorylated by Aurora A at Ser-240 during mitosis, and this phosphorylation promotes its interaction with Kif2A on the spindle body and reduces its localization with the spindle poles, thus maintaining proper spindle microtubule flux. NuSAP knockout resulted in the formation of shorter spindles with faster microtubule flux and chromosome misalignment. Taken together, we uncover that NuSAP participates in spindle assembly, dynamics, and metaphase spindle length control through the regulation of microtubule flux and Kif2A localization.
Collapse
Affiliation(s)
- Mengjie Sun
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yao Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Guangwei Xin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Biying Yang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Chuanmao Zhang
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Damizia M, Altieri L, Costanzo V, Lavia P. Distinct Mitotic Functions of Nucleolar and Spindle-Associated Protein 1 (NuSAP1) Are Controlled by Two Consensus SUMOylation Sites. Cells 2023; 12:2545. [PMID: 37947624 PMCID: PMC10650578 DOI: 10.3390/cells12212545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleolar and Spindle-Associated Protein 1 (NuSAP1) is an important mitotic regulator, implicated in control of mitotic microtubule stability and chromosome segregation. NuSAP1 regulates these processes by interacting with several protein partners. Its abundance, activity and interactions are therefore tightly regulated during mitosis. Protein conjugation with SUMO (Small Ubiquitin-like MOdifier peptide) is a reversible post-translational modification that modulates rapid changes in the structure, interaction(s) and localization of proteins. NuSAP1 was previously found to interact with RANBP2, a nucleoporin with SUMO ligase and SUMO-stabilizing activity, but how this interaction affects NuSAP1 activity has remained elusive. Here, we show that NuSAP1 interacts with RANBP2 and forms proximity ligation products with SUMO2/3 peptides in a RANBP2-dependent manner at key mitotic sites. A bioinformatic search identified two putative SUMO consensus sites in NuSAP1, within the DNA-binding and the microtubule-binding domains, respectively. Site-specific mutagenesis, and mitotic phenotyping in cell lines expressing each NuSAP1 mutant version, revealed selective roles of each individual site in control of NuSAP1 localization and in generation of specific mitotic defects and distinct fates in daughter cells. These results identify therefore two new regulatory sites for NuSAP1 functions and implicate RANBP2 in control of NuSAP1 activity.
Collapse
Affiliation(s)
- Michela Damizia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy; (M.D.); (L.A.); (V.C.)
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- Department of Cellular, Computational and Integrated Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Ludovica Altieri
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy; (M.D.); (L.A.); (V.C.)
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Costanzo
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy; (M.D.); (L.A.); (V.C.)
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy; (M.D.); (L.A.); (V.C.)
| |
Collapse
|
4
|
Zheng H, Wang M, Zhang S, Hu D, Yang Q, Chen M, Zhang X, Zhang Y, Dai J, Liou YC. Comprehensive pan-cancer analysis reveals NUSAP1 is a novel predictive biomarker for prognosis and immunotherapy response. Int J Biol Sci 2023; 19:4689-4708. [PMID: 37781040 PMCID: PMC10535697 DOI: 10.7150/ijbs.80017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/15/2023] [Indexed: 10/03/2023] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is a microtubule-associated protein that plays a crucial role in mitosis. Despite initial reports suggesting a potential involvement of NUSAP1 in tumor progression and malignant cell regulation, there has been no systematic analysis of its role in the tumor immune microenvironment, nor its predictive value for prognosis and immunotherapy response across different cancer types. In this study, we analyze NUSAP1 mRNA and protein expression levels in various human normal and tumor tissues, using data from TCGA, GTEx, CPTAC, HPA databases, and clinical samples. Our findings reveal that NUSAP1 is highly expressed in multiple tumor tissues across most cancer types and is primarily expressed in malignant and immune cells, according to single-cell sequencing data from the TISCH database. Prognostic analysis based on curated survival data from the TCGA database indicates that NUSAP1 expression levels can predict clinical outcomes for 26 cancer types. Furthermore, Gene Set Enrichment Analysis (GSEA) suggests that NUSAP1 promotes cell proliferation, tumor cell invasion, and regulation of anti-tumor response. Analysis of immune score, immune cell infiltration, and anti-cancer immunity cycle using ESTIMATE, TIMER, and TIP databases show that high NUSAP1 levels are associated with low CD4+T and NKT cell infiltration but high Th2 and MDSC infiltration, inversely correlated with antigen-presenting molecules and positively correlated with a variety of immune negative regulatory molecules. Notably, patients with melanoma, lung, and kidney cancer with high NUSAP1 expression levels have shorter survival times and lower immunotherapy response rates. Using Cmap analysis, we identify Entinostat and AACOCF3 as potential inhibitors of NUSAP1-mediated pro-oncogenic effects. In vitro and in vivo experiments further confirm that NUSAP1 knockdown significantly reduces the proliferation ability of A549 and MCF-7 cells. Overall, our study highlights the potential of NUSAP1 expression as a novel biomarker for predicting prognosis and immuno-therapeutic efficacy across different human cancers and suggests its potential for developing novel antitumor drugs or improving immunotherapy.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Minghao Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shiyu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Dongxue Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ming Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jigang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Mo A, Paz‐Ebstein E, Yanovsky‐Dagan S, Lai A, Mor‐Shaked H, Gilboa T, Yang E, Shao DD, Walsh CA, Harel T. A recurrent de novo variant in NUSAP1 escapes nonsense-mediated decay and leads to microcephaly, epilepsy, and developmental delay. Clin Genet 2023; 104:73-80. [PMID: 37005340 PMCID: PMC10236379 DOI: 10.1111/cge.14335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
NUSAP1 encodes a cell cycle-dependent protein with key roles in mitotic progression, spindle formation, and microtubule stability. Both over- and under-expression of NUSAP1 lead to dysregulation of mitosis and impaired cell proliferation. Through exome sequencing and Matchmaker Exchange, we identified two unrelated individuals with the same recurrent, de novo heterozygous variant (NM_016359.5 c.1209C > A; p.(Tyr403Ter)) in NUSAP1. Both individuals had microcephaly, severe developmental delay, brain abnormalities, and seizures. The gene is predicted to be tolerant of heterozygous loss-of-function mutations, and we show that the mutant transcript escapes nonsense mediated decay, suggesting that the mechanism is likely dominant-negative or toxic gain of function. Single-cell RNA-sequencing of an affected individual's post-mortem brain tissue indicated that the NUSAP1 mutant brain contains all main cell lineages, and that the microcephaly could not be attributed to loss of a specific cell type. We hypothesize that pathogenic variants in NUSAP1 lead to microcephaly possibly by an underlying defect in neural progenitor cells.
Collapse
Affiliation(s)
- Alisa Mo
- Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Emuna Paz‐Ebstein
- Department of GeneticsHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | | | - Abbe Lai
- Division of Genetics and Genomics, Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
| | - Hagar Mor‐Shaked
- Department of GeneticsHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Tal Gilboa
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Pediatric Neurology UnitHadassah Medical CenterJerusalemIsrael
| | - Edward Yang
- Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Diane D. Shao
- Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMassachusettsUSA
| | - Tamar Harel
- Department of GeneticsHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
6
|
Li Y, Shi H, Zhao Z, Xu M. Identification of castration-dependent and -independent driver genes and pathways in castration-resistant prostate cancer (CRPC). BMC Urol 2022; 22:162. [PMID: 36258196 PMCID: PMC9580185 DOI: 10.1186/s12894-022-01113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the most diagnosed cancers in the world. PCa inevitably progresses to castration-resistant prostate cancer (CRPC) after androgen deprivation therapy treatment, and castration-resistant state means a shorter survival time than other causes. Here we aimed to define castration-dependent and -independent diver genes and molecular pathways in CRPC which are responsible for such lethal metastatic events. Methods By employing digital gene expression (DGE) profiling, the alterations of the epididymal gene expression profile in the mature and bilateral castrated rat were explored. Then we detect and characterize the castration-dependent and -independent genes and pathways with two data set of CPRC-associated gene expression profiles publicly available on the NCBI. Results We identified 1,632 up-regulated and 816 down-regulated genes in rat’s epididymis after bilateral castration. Differential expression analysis of CRPC samples compared with the primary PCa samples was also done. In contrast to castration, we identified 97 up-regulated genes and 128 down-regulated genes that changed in both GEO dataset and DGE profile, and 120 up-regulated genes and 136 down-regulated genes changed only in CRPC, considered as CRPC-specific genes independent of castration. CRPC-specific DEGs were mainly enriched in cell proliferation, while CRPC-castration genes were associated with prostate gland development. NUSAP1 and NCAPG were identified as key genes, which might be promising biomarkers of the diagnosis and prognosis of CRPC. Conclusion Our study will provide insights into gene regulation of CRPC dependent or independent of castration and will improve understandings of CRPC development and progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-022-01113-5.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Yantai University, 30th Qingquan Road, 264005, Yantai, Shandong Province, China.
| | - Hui Shi
- College of Life Sciences, Yantai University, 30th Qingquan Road, 264005, Yantai, Shandong Province, China
| | - Zhenjun Zhao
- College of Life Sciences, Yantai University, 30th Qingquan Road, 264005, Yantai, Shandong Province, China
| | - Minghui Xu
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Riba A, Oravecz A, Durik M, Jiménez S, Alunni V, Cerciat M, Jung M, Keime C, Keyes WM, Molina N. Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning. Nat Commun 2022; 13:2865. [PMID: 35606383 PMCID: PMC9126911 DOI: 10.1038/s41467-022-30545-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
Despite the fact that the cell cycle is a fundamental process of life, a detailed quantitative understanding of gene regulation dynamics throughout the cell cycle is far from complete. Single-cell RNA-sequencing (scRNA-seq) technology gives access to these dynamics without externally perturbing the cell. Here, by generating scRNA-seq libraries in different cell systems, we observe cycling patterns in the unspliced-spliced RNA space of cell cycle-related genes. Since existing methods to analyze scRNA-seq are not efficient to measure cycling gene dynamics, we propose a deep learning approach (DeepCycle) to fit these patterns and build a high-resolution map of the entire cell cycle transcriptome. Characterizing the cell cycle in embryonic and somatic cells, we identify major waves of transcription during the G1 phase and systematically study the stages of the cell cycle. Our work will facilitate the study of the cell cycle in multiple cellular models and different biological contexts. Single-cell RNA-sequencing technology gives access to cell cycle dynamics without externally perturbing the cell. Here the authors present DeepCycle,a robust deep learning method to infer the cell cycle state in single cells from scRNA-seq data.
Collapse
|
8
|
Zeng T, Chen G, Qiao X, Chen H, Sun L, Ma Q, Li N, Wang J, Dai C, Xu F. NUSAP1 Could be a Potential Target for Preventing NAFLD Progression to Liver Cancer. Front Pharmacol 2022; 13:823140. [PMID: 35431924 PMCID: PMC9010788 DOI: 10.3389/fphar.2022.823140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) has gradually emerged as the most prevalent cause of chronic liver diseases. However, specific changes during the progression of NAFLD from non-fibrosis to advanced fibrosis and then hepatocellular carcinoma (HCC) are unresolved. Here, we firstly identify the key gene linking NAFLD fibrosis and HCC through analysis and experimental verification.Methods: Two GEO datasets (GSE89632, GSE49541) were performed for identifying differentially expressed genes (DEGs) associated with NAFLD progression from non-fibrosis to early fibrosis and eventually to advanced fibrosis. Subsequently, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis, protein-protein interaction (PPI) network were integrated to explore the potential function of the DEGs and hub genes. The expression of NUSAP1 was confirmed in vivo and in vitro NAFLD models at mRNA and protein level. Then, cell proliferation and migration under high fat conditions were verified by cell counting kit-8 (CCK-8) and wound-healing assays. The lipid content was measured with Oil Red O staining. Finally, the analysis of clinical survival curves was performed to reveal the prognostic value of the crucial genes among HCC patients via the online web-tool GEPIA2 and KM plotter.Results: 5510 DEGs associated with non-fibrosis NAFLD, 3913 DEGs about NAFLD fibrosis, and 739 DEGs related to NAFLD progression from mild fibrosis to advanced fibrosis were identified. Then, a total of 112 common DEGs were found. The result of enrichment analyses suggested that common DEGs were strongly associated with the glucocorticoid receptor pathway, regulation of transmembrane transporter activity, peroxisome, and proteoglycan biosynthetic process. Six genes, including KIAA0101, NUSAP1, UHRF1, RAD51AP1, KIF22, and ZWINT, were identified as crucial candidate genes via the PPI network. The expression of NUSAP1 was validated highly expressed in vitro and vivo NAFLD models at mRNA and protein level. NUSAP1 silence could inhibit the ability of cell proliferation, migration and lipid accumulation in vitro. Finally, we also found that NUSAP1 was significantly up-regulated at transcriptional and protein levels, and associated with poor survival and advanced tumor stage among HCC patients.Conclusion: NUSAP1 may be a potential therapeutic target for preventing NAFLD progression to liver cancer.
Collapse
Affiliation(s)
- Taofei Zeng
- Department of General Surgery, Hepatobiliary and Splenic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guanglei Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Chen
- Department of General Surgery, Pancreatic and Thyroid Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lisha Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingtian Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, The Second Affiliated Hospital of DaLian Medical University, Dalian, China
| | - Junqi Wang
- Department of General Surgery, Hepatobiliary and Splenic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Hepatobiliary and Splenic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Xu
- Department of General Surgery, Hepatobiliary and Splenic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Feng Xu, ,
| |
Collapse
|
9
|
Gao Z, Jia H, Yu F, Guo H, Li B. KIF2C promotes the proliferation of hepatocellular carcinoma cells in vitro and in vivo. Exp Ther Med 2021; 22:1094. [PMID: 34504548 PMCID: PMC8383772 DOI: 10.3892/etm.2021.10528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with high mortality and morbidity rates. In recent years, HCC targeted therapy has gained increasing attention. Due to the heterogeneity and high metastasis of HCC, more effective therapeutic targets are needed. Kinesin family member 2C (KIF2C), also known as mitotic centromere-associated kinesin, is a microtubule-based motor protein which is involved in a variety of important cellular processes, such as mitosis. The effects of KIF2C on cancer progression and development have been widely studied; however, its potential effects on HCC remains unclear. In the present study, high expression of KIF2C in human HCC tissues was demonstrated using The Cancer Genome Atlas database and immunohistochemistry assays. KIF2C expression was associated with HCC prognosis, including overall survival and disease-free survival. KIF2C expression was also associated with clinical pathological characteristics including the number of tumor nodes (P=0.015) and tumor size (P=0.009). KIF2C knockdown inhibited the proliferation of HCC cells in vitro, confirmed by MTT and colony formation assays, and suppressed tumor growth in mice which was confirmed by a xenograft mouse model. Together, the results suggested that KIF2C may serve as a promising therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Zhenya Gao
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Huanxia Jia
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Fang Yu
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Hongfang Guo
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Baoyu Li
- Department of General Surgery, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
10
|
Zhang L, Song J, Xin X, Sun D, Huang H, Chen Y, Zhang T, Zhang Y. Hypoxia stimulates the migration and invasion of osteosarcoma via up-regulating the NUSAP1 expression. Open Med (Wars) 2021; 16:1083-1089. [PMID: 34322597 PMCID: PMC8299310 DOI: 10.1515/med-2020-0180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 03/17/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a highly aggressive malignant tumor, which most commonly occurs in children and adolescents. This study aims to reveal that hypoxia promotes the invasion of osteosarcoma cells by up-regulating the expression of NUSAP1. The expression of HIF-1α and NUSAP1 was significantly up-regulated in MG63 cells cultured in hypoxia for 6–36 h. Furthermore, hypoxia induced the migration and invasion of MG63 cells and regulated the level of E-cad, N-cad, Vimentin, Snail, Slug, MMP2, and MMP9 proteins. Importantly, knockdown of NUSAP1 inhibited hypoxia-induced cell migration and invasion. In the hypoxia microenvironment, the addition of HIF-1α inhibitor or the transfection of siRNA specifically targeting HIF-1α significantly reduced the expression of HIF-1α and NUSAP1 and markedly inhibited the migration and invasion of MG63 cells under the hypoxia microenvironment. In conclusion, hypoxia induced the expression of NUSAP1 in a HIF-1α-dependent manner, stimulating the migration and invasion of MG63 cells.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Jingtao Song
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Xu Xin
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Donghong Sun
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Huiting Huang
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Yang Chen
- Department of Orthopedics, Huabei Petroleum General Hospital, Huizhan Road, Renqiu 062552, Hebei, China
| | - Tao Zhang
- Department of Orthopedics, Tianjin Beichen District Chinese Medicine Hospital, Tianjin 300400, China
| | - Yiming Zhang
- Department of Clinical Medicine, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
11
|
Saldivia M, Wollman AJM, Carnielli JBT, Jones NG, Leake MC, Bower-Lepts C, Rao SPS, Mottram JC. A CLK1-KKT2 Signaling Pathway Regulating Kinetochore Assembly in Trypanosoma brucei. mBio 2021; 12:e0068721. [PMID: 34128702 PMCID: PMC8262961 DOI: 10.1128/mbio.00687-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 01/17/2023] Open
Abstract
During mitosis, eukaryotic cells must duplicate and separate their chromosomes in a precise and timely manner. The apparatus responsible for this is the kinetochore, which is a large protein structure that links chromosomal DNA and spindle microtubules to facilitate chromosome alignment and segregation. The proteins that comprise the kinetochore in the protozoan parasite Trypanosoma brucei are divergent from yeast and mammals and comprise an inner kinetochore complex composed of 24 distinct proteins (KKT1 to KKT23, KKT25) that include four protein kinases, CLK1 (KKT10), CLK2 (KKT19), KKT2, and KKT3. We recently reported the identification of a specific trypanocidal inhibitor of T. brucei CLK1, an amidobenzimidazole, AB1. We now show that chemical inhibition of CLK1 with AB1 impairs inner kinetochore recruitment and compromises cell cycle progression, leading to cell death. Here, we show that KKT2 is a substrate for CLK1 and identify phosphorylation of S508 by CLK1 to be essential for KKT2 function and for kinetochore assembly. Additionally, KKT2 protein kinase activity is required for parasite proliferation but not for assembly of the inner kinetochore complex. We also show that chemical inhibition of the aurora kinase AUK1 does not affect CLK1 phosphorylation of KKT2, indicating that AUK1 and CLK1 are in separate regulatory pathways. We propose that CLK1 is part of a divergent signaling cascade that controls kinetochore function via phosphorylation of the inner kinetochore protein kinase KKT2. IMPORTANCE In eukaryotic cells, kinetochores are large protein complexes that link chromosomes to dynamic microtubule tips, ensuring proper segregation and genomic stability during cell division. Several proteins tightly coordinate kinetochore functions, including the protein kinase aurora kinase B. The kinetochore has diverse evolutionary roots. For example, trypanosomatids, single-cell parasitic protozoa that cause several neglected tropical diseases, possess a unique repertoire of kinetochore components whose regulation during the cell cycle remains unclear. Here, we shed light on trypanosomatid kinetochore biology by showing that the protein kinase CLK1 coordinates the assembly of the inner kinetochore by phosphorylating one of its components, KKT2, allowing the timely spatial recruitment of the rest of the kinetochore proteins and posterior attachment to microtubules in a process that is aurora kinase B independent.
Collapse
Affiliation(s)
- Manuel Saldivia
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- Novartis Institute for Tropical Diseases, Emeryville, California, USA
| | - Adam J. M. Wollman
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, Department of Physics, University of York, Heslington, United Kingdom
| | - Juliana B. T. Carnielli
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | - Nathaniel G. Jones
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | - Mark C. Leake
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, Department of Physics, University of York, Heslington, United Kingdom
| | - Christopher Bower-Lepts
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | | | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| |
Collapse
|
12
|
Ling B, Wei P, Xiao J, Cen B, Wei H, Feng X, Ye G, Li S, Zhang Z, Liang W, Huang S, Huang W. Nucleolar and spindle‑associated protein 1 promotes non‑small cell lung cancer progression and serves as an effector of myocyte enhancer factor 2D. Oncol Rep 2021; 45:1044-1058. [PMID: 33650655 PMCID: PMC7859992 DOI: 10.3892/or.2020.7918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
As a potential oncogene, nucleolar and spindle‑associated protein 1 (NUSAP1) is involved in the regulation of tumor cell proliferation, metastasis and drug resistance. However, the role of NUSAP1 in non‑small cell lung cancer (NSCLC) remains unclear. The present study aimed to investigate the biological function and underlying molecular mechanisms of NUSAP1 in NSCLC. NUSAP1 expression was measured in NSCLC tissues and cell lines via immunohistochemistry and western blotting, respectively. NSCLC cell lines stably inhibiting NUSAP1 were established to investigate its effects on cell proliferation, colony formation and invasion, and on in vivo tumorigenicity. Additionally, the upstream and downstream mechanisms of NUSAP1 in regulating NSCLC progression were investigated. The results indicated that NUSAP1 expression was upregulated in NSCLC tissues and cell lines. High NUSAP1 expression was associated with tumor size, TNM stage, lymph node metastasis and poor patient survival, whereas knockdown of NUSAP1 inhibited NSCLC cell proliferation, colony formation and invasion. Furthermore, downregulation of NUSAP1 decreased the growth of NSCLC xenografts in vivo. In addition, myocyte enhancer factor 2D (MEF2D) directly targeted the NUSAP1 promoter, thereby enhancing the mRNA and protein expression levels of NUSAP1. Moreover, the results demonstrated that MEF2D expression was upregulated in NSCLC tissues and was positively correlated with NUSAP1 expression. MEF2D‑knockdown decreased NSCLC cell proliferation, colony formation and invasion. NUSAP1 upregulation reversed the effects of MEF2D‑knockdown on NSCLC progression. Furthermore, it was observed that MEF2D‑knockdown inhibited the accumulation and nuclear translocation of β‑catenin, thereby repressing the activation of the Wnt/β‑catenin signaling pathway in NSCLC cells, whereas NUSAP1 upregulation rescued the effects of MEF2D‑knockdown on the activation of the Wnt/β‑catenin signaling pathway. In conclusion, the findings of the present study indicated that the MEF2D/NUSAP1 signaling pathway promoted NSCLC progression by inducing the activation of Wnt/β‑catenin signaling, and this novel mechanism may represent a potential treatment target for patients with NSCLC.
Collapse
Affiliation(s)
- Bo Ling
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
- Key Laboratory of Guangxi's College for The Study of Characteristic Medicine in Youjiang River Basin, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Pengya Wei
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Juan Xiao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Bingkui Cen
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Hong Wei
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Xueping Feng
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Guangbin Ye
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
- Key Laboratory of Guangxi's College for The Study of Characteristic Medicine in Youjiang River Basin, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Songbo Li
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zhongwei Zhang
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
- Key Laboratory of Guangxi's College for The Study of Characteristic Medicine in Youjiang River Basin, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Wei Liang
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
- Key Laboratory of Guangxi's College for The Study of Characteristic Medicine in Youjiang River Basin, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Suoyi Huang
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
- Key Laboratory of Guangxi's College for The Study of Characteristic Medicine in Youjiang River Basin, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Wei Huang
- Department of Thoracic Surgery, Chongqing General Hospital, Chongqing 400013, P.R. China
| |
Collapse
|
13
|
Li X, Huang W, Huang W, Wei T, Zhu W, Chen G, Zhang J. Kinesin family members KIF2C/4A/10/11/14/18B/20A/23 predict poor prognosis and promote cell proliferation in hepatocellular carcinoma. Am J Transl Res 2020; 12:1614-1639. [PMID: 32509165 PMCID: PMC7270015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Kinesin superfamily proteins (KIFs) comprise a family of molecular motors that transport membranous organelles and protein complexes in a microtubule- and ATP-dependent manner, with multiple roles in cancers. Little is known about the function of KIFs in hepatocellular carcinoma (HCC). Here, we investigate the roles of KIFs in the prognosis and progression of HCC. Upregulation of eight KIFs (KIF2C, KIF4A, KIF10, KIF11, KIF14, KIF18B, KIF20A, and KIF23) was found to be significantly associated with the tumor stage and pathological tumor grade of HCC patients. Additionally, a high expression of these eight KIFs was significantly associated with shorter overall survival (OS) and disease-free survival (DFS) in patients with HCC. Cox regression analysis showed the mRNA expression levels of these eight KIF members to be independent prognostic factors for worse outcomes in HCC. Moreover, a risk score model based on the mRNA levels of the eight KIF members effectively predicted the OS rate of patients with HCC. Additional experiments revealed that downregulation of each of the eight KIFs effectively decreased the proliferation and increased the G1 arrest of liver cancer cells in vitro. Taken together, these results indicate that KIF2C/4A/10/11/14/18B/20A/23 may serve as prognostic biomarkers for survival and potential therapeutic targets in HCC patients.
Collapse
Affiliation(s)
- Xishan Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University253 Industrial Avenue, Guangzhou 510282, China
- Department of Interventional Radiology, Guangzhou First People’s Hospital, The Second Affiliated Hospital of South China University of TechnologyNo. 1 Panfu Road, Guangzhou 510180, China
| | - Weimei Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University253 Industrial Avenue, Guangzhou 510282, China
| | - Wenbin Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University253 Industrial Avenue, Guangzhou 510282, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University253 Industrial Avenue, Guangzhou 510282, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University253 Industrial Avenue, Guangzhou 510282, China
| | - Guodong Chen
- Department of Interventional Radiology, Guangzhou First People’s Hospital, The Second Affiliated Hospital of South China University of TechnologyNo. 1 Panfu Road, Guangzhou 510180, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University253 Industrial Avenue, Guangzhou 510282, China
| |
Collapse
|
14
|
Zhao Y, He J, Li Y, Lv S, Cui H. NUSAP1 potentiates chemoresistance in glioblastoma through its SAP domain to stabilize ATR. Signal Transduct Target Ther 2020; 5:44. [PMID: 32317623 PMCID: PMC7174393 DOI: 10.1038/s41392-020-0137-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
NUSAP1, which is a microtubule-associated protein involved in mitosis, plays essential roles in diverse biological processes, especially in cancer biology. In this study, NUSAP1 was found to be overexpressed in GBM tissues in a grade-dependent manner compared with normal brain tissues. NUSAP1 was also highly expressed in GBM patients, dead patients, and GBM cells. In addition, NUSAP1 was found to participate in cell proliferation, apoptosis, and DNA damage in GBM cells. Ataxia telangiectasia and Rad3-related protein (ATR) are a primary sensor of DNA damage, and ATR is also a promising target in cancer therapy. Here, we found that NUSAP1 positively regulated the expression of ATR. Mechanistically, NUSAP1 suppressed the ubiquitin-dependent proteolysis of ATR. The SAP (SAF-A/B, Acinus, and PIAS) domain is a common motif of many SUMO (small ubiquitin-like modifier) E3 ligases, and this domain is involved in substrate recognition and ligase activity. This study further demonstrated that the SAP domain of NUSAP1 promoted the sumoylation of ATR, and thereby antagonized the ubiquitination of ATR. These results suggest that NUSAP1 stabilizes ATR by sumoylation. Moreover, NUSAP1 potentiated chemotherapeutic resistance to temozolomide (TMZ) and doxorubicin (DOX) through its SAP domain. Overall, this study indicates that NUSAP1 is a promising therapeutic target in GBM.
Collapse
Affiliation(s)
- Yuzu Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yongsen Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Shengqing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
15
|
Króliczewski J, Bartoszewska S, Dudkowska M, Janiszewska D, Biernatowska A, Crossman DK, Krzymiński K, Wysocka M, Romanowska A, Baginski M, Markuszewski M, Ochocka RJ, Collawn JF, Sikorski AF, Sikora E, Bartoszewski R. Utilizing Genome-Wide mRNA Profiling to Identify the Cytotoxic Chemotherapeutic Mechanism of Triazoloacridone C-1305 as Direct Microtubule Stabilization. Cancers (Basel) 2020; 12:cancers12040864. [PMID: 32252403 PMCID: PMC7226417 DOI: 10.3390/cancers12040864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Rational drug design and in vitro pharmacology profiling constitute the gold standard in drug development pipelines. Problems arise, however, because this process is often difficult due to limited information regarding the complete identification of a molecule’s biological activities. The increasing affordability of genome-wide next-generation technologies now provides an excellent opportunity to understand a compound’s diverse effects on gene regulation. Here, we used an unbiased approach in lung and colon cancer cell lines to identify the early transcriptomic signatures of C-1305 cytotoxicity that highlight the novel pathways responsible for its biological activity. Our results demonstrate that C-1305 promotes direct microtubule stabilization as a part of its mechanism of action that leads to apoptosis. Furthermore, we show that C-1305 promotes G2 cell cycle arrest by modulating gene expression. The results indicate that C-1305 is the first microtubule stabilizing agent that also is a topoisomerase II inhibitor. This study provides a novel approach and methodology for delineating the antitumor mechanisms of other putative anticancer drug candidates.
Collapse
Affiliation(s)
- Jarosław Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, 80-416 Gdansk, Poland; (J.K.); (R.J.O.)
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | - Magdalena Dudkowska
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland (D.J.); (E.S.)
| | - Dorota Janiszewska
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland (D.J.); (E.S.)
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw Poland;
| | - David K. Crossman
- Department of Genetics, UAB Genomics Core Facility, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Karol Krzymiński
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (K.K.); (M.W.); (A.R.)
| | - Małgorzata Wysocka
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (K.K.); (M.W.); (A.R.)
| | - Anna Romanowska
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (K.K.); (M.W.); (A.R.)
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland;
| | - Michal Markuszewski
- Department of Biopharmacy and Pharmacodynamics, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | - Renata J. Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, 80-416 Gdansk, Poland; (J.K.); (R.J.O.)
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland (D.J.); (E.S.)
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, 80-416 Gdansk, Poland; (J.K.); (R.J.O.)
- Correspondence: ; Tel.: +48-58-349-32-14; Fax: +48-58-349-32-11
| |
Collapse
|
16
|
Xie Q, Ou-Yang W, Zhang M, Wang H, Yue Q. Decreased Expression of NUSAP1 Predicts Poor Overall Survival in Cervical Cancer. J Cancer 2020; 11:2852-2863. [PMID: 32226503 PMCID: PMC7086256 DOI: 10.7150/jca.34640] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/04/2020] [Indexed: 02/01/2023] Open
Abstract
Background: Nucleolar and spindle-associated protein 1 (NUSAP1) was previously reported to be associated with poor prognosis in multiple cancers. In the present study, we comprehensively investigated the clinicopathological features and potential prognostic value of NUSAP1 in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Methods: The expression profiles of the genes were extracted from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), Cancer Cell Line Encyclopedia (CCLE), Gene Expression Profiling Interactive Analysis (GEPIA), and The Human Protein Atlas databases. The association between clinicopathological characteristics and NUSAP1 was analyzed using logistic regression in TCGA patients and receiver operating characteristic (ROC) curve analysis for GSE7803, GSE9750, and GSE63514 datasets. The prognostic value of NUSAP1 in TCGA patients was evaluated using the Kaplan-Meier method and Cox regression. Gene set enrichment analysis (GSEA) was conducted using TCGA dataset. Results: A total of 68 differentially expressed genes (DEGs) were identified in CESC. ROC analysis of NUSAP1 suggested that the area under the ROC curve was 0.968. Kaplan-Meier survival analysis indicated that CESC with low expression of NUSAP1 has a worse prognosis than CESC with high NUSAP1 expression (P = 0.005). The logistic regression revealed that low NUSAP1 expression in CESC was related to advanced tumor stage in TCGA database. Moreover, Cox regression analysis showed that NUSAP1 expression correlated significantly with prognosis in the case of patients in TCGA database. GSEA demonstrated that CESC patients with high expression of NUSAP1 were enriched in the G2M checkpoint, MYC targets, and breast cancer ZNF217. Conclusion: The results suggest that identification of DEGs might enhance our understanding of the causes and molecular mechanisms underlying the development of CESC. Moreover, NUSAP1 may play an important role in CESC progression and prognosis and may serve as a valuable indicator of poor survival in CESC.
Collapse
Affiliation(s)
- Qiqi Xie
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, People's Republic of China.,Morning Star Academic Cooperation, Shanghai
| | - Wen Ou-Yang
- The Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China.,Morning Star Academic Cooperation, Shanghai
| | - Mingwei Zhang
- Department of Radiation Oncology, First Affiliated Hospital of Fujian Medical University Chazhong Road No. 20, Fuzhou, Fujian 350005, People's Republic of China.,Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.,Fujian Medical University Union Hospital, Fuzhou, Fujian 350004, People's Republic of China.,Morning Star Academic Cooperation, Shanghai
| | - Huimei Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Morning Star Academic Cooperation, Shanghai
| | - Qiuyuan Yue
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, People's Republic of China
| |
Collapse
|
17
|
Belsham HR, Friel CT. Identification of key residues that regulate the interaction of kinesins with microtubule ends. Cytoskeleton (Hoboken) 2019; 76:440-446. [PMID: 31574569 PMCID: PMC6899999 DOI: 10.1002/cm.21568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Kinesins are molecular motors that use energy derived from ATP turnover to walk along microtubules, or when at the microtubule end, regulate growth or shrinkage. All kinesins that regulate microtubule dynamics have long residence times at microtubule ends, whereas those that only walk have short end‐residence times. Here, we identify key amino acids involved in end binding by showing that when critical residues from Kinesin‐13, which depolymerises microtubules, are introduced into Kinesin‐1, a walking kinesin with no effect on microtubule dynamics, the end‐residence time is increased up to several‐fold. This indicates that the interface between the kinesin motor domain and the microtubule is malleable and can be tuned to favour either lattice or end binding.
Collapse
Affiliation(s)
- Hannah R Belsham
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham, NG7 2UH, United Kingdom
| | - Claire T Friel
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham, NG7 2UH, United Kingdom
| |
Collapse
|
18
|
Wang Y, Ju L, Xiao F, Liu H, Luo X, Chen L, Lu Z, Bian Z. Downregulation of nucleolar and spindle-associated protein 1 expression suppresses liver cancer cell function. Exp Ther Med 2019; 17:2969-2978. [PMID: 30936967 PMCID: PMC6434240 DOI: 10.3892/etm.2019.7314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to determine the role of nucleolar and spindle-associated protein 1 (NuSAP1) in human liver cancer. NuSAP1 expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunohistochemistry in hepatocellular carcinoma (HCC) and adjacent tissues. The expression of NuSAP1 gene was detected by RT-qPCR in liver cancer cell lines. Expression information for NuSAP1 was determined using the UALCAN and Oncomine databases. The Kaplan-Meier plotter and The Cancer Genome Atlas databases were used to obtain overall survival data for liver cancer. Liver cancer cell lines HepG2 and Huh-7 were transfected with lentiviral particles to silence the endogenous NuSAP1 gene expression. RT-qPCR and western blotting were performed to confirm the silencing efficiency. Cell Counting Kit-8 was used to estimate the effects of NuSAP1 silencing on HepG2 and Huh-7 cell proliferation. Cell cycle and apoptosis analyses were performed using flow cytometry. Cell invasion was assessed using the Transwell assay with microscopy imaging. The results revealed that the NuSAP1 expression levels in HCC tissues were significantly increased compared with the adjacent tissues. The survival time of patients with HCC with a high NuSAP1 expression was markedly decreased compared with that of patients with HCC with a low expression level of NuSAP1. Functional studies revealed that NuSAP1 silencing significantly reduced HepG2 and Huh-7 cell proliferation and invasion. Increased apoptosis and cell cycle arrest at the G1 phase were observed following NuSAP1 knockdown. NuSAP1 silencing significantly inhibited the mRNA expression of DNA methyltransferase but not glioma-associated oncogene. NuSAP1 contributed to liver cancer development by reducing apoptosis and promoting cell cycle progression. The abnormal expression level of NuSAP1 may serve a role in promoting liver cancer progression.
Collapse
Affiliation(s)
- Yifan Wang
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Linling Ju
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Feng Xiao
- Department of Pathology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Hui Liu
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Lin Chen
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Zhonghua Lu
- Department of Liver Disease, Wuxi Fifth People's Hospital, Jiangnan University, Wuxi, Jiangsu 214013, P.R. China
| | - Zhaolian Bian
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| |
Collapse
|
19
|
Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 2018; 234:7923-7937. [PMID: 30536951 DOI: 10.1002/jcp.27978] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Microtubules (MT) and actin microfilaments are dynamic cytoskeleton components involved in a range of intracellular processes. MTs play a role in cell division, beating of cilia and flagella, and intracellular transport. Over the past decades, much knowledge has been gained regarding MT function and structure, and its role in underlying disease progression. This makes MT potential therapeutic targets for various disorders. Disturbances in MT and their associated proteins are the underlying cause of diseases such as Alzheimer's disease, cancer, and several genetic diseases. Some of the advances in the field of MT research, as well as the potenti G beta gamma, is needed al uses of MT-targeting agents in various conditions have been reviewed here.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
20
|
Zhang Y, Tan L, Yang Q, Li C, Liou YC. The microtubule-associated protein HURP recruits the centrosomal protein TACC3 to regulate K-fiber formation and support chromosome congression. J Biol Chem 2018; 293:15733-15747. [PMID: 30054275 DOI: 10.1074/jbc.ra118.003676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/19/2018] [Indexed: 11/06/2022] Open
Abstract
Kinetochore fibers (K-fibers) are microtubule bundles attached to chromosomes. Efficient K-fiber formation is required for chromosome congression, crucial for faithful chromosome segregation in cells. However, the mechanisms underlying K-fiber formation before chromosome biorientation remain unclear. Depletion of hepatoma up-regulated protein (HURP), a RanGTP-dependent microtubule-associated protein localized on K-fibers, has been shown to result in low-efficiency K-fiber formation. Therefore, here we sought to identify critical interaction partners of HURP that may modulate this function. Using co-immunoprecipitation and bimolecular fluorescence complementation assays, we determined that HURP interacts directly with the centrosomal protein transforming acidic coiled coil-containing protein 3 (TACC3), a centrosomal protein, both in vivo and in vitro through the HURP1-625 region. We found that HURP is important for TACC3 function during kinetochore microtubule assembly at the chromosome region in prometaphase. Moreover, HURP regulates stable lateral kinetochore attachment and chromosome congression in early mitosis by modulation of TACC3. These findings provide new insight into the coordinated regulation of K-fiber formation and chromosome congression in prometaphase by microtubule-associated proteins.
Collapse
Affiliation(s)
- Yajun Zhang
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Lora Tan
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Qiaoyun Yang
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Chenyu Li
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Yih-Cherng Liou
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and .,the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117573, Singapore
| |
Collapse
|
21
|
Liu Z, Guan C, Lu C, Liu Y, Ni R, Xiao M, Bian Z. High NUSAP1 expression predicts poor prognosis in colon cancer. Pathol Res Pract 2018; 214:968-973. [DOI: 10.1016/j.prp.2018.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
|
22
|
Gordon CA, Gong X, Ganesh D, Brooks JD. NUSAP1 promotes invasion and metastasis of prostate cancer. Oncotarget 2018; 8:29935-29950. [PMID: 28404898 PMCID: PMC5444715 DOI: 10.18632/oncotarget.15604] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/25/2017] [Indexed: 01/22/2023] Open
Abstract
We have previously identified nucleolar and spindle associated protein 1 (NUSAP1) as a prognostic biomarker in early stage prostate cancer. To better understand the role of NUSAP1 in prostate cancer progression, we tested the effects of increased and decreased NUSAP1 expression in cell lines, in vivo models, and patient samples. NUSAP1 promotes invasion, migration, and metastasis, possibly by modulating family with sequence similarity 101 member B (FAM101B), a transforming growth factor beta 1 (TGFβ1) signaling effector involved in the epithelial to mesenchymal transition. Our findings provide insights into the importance of NUSAP1 in prostate cancer progression and provide a rationale for further study of NUSAP1 function, regulation, and clinical utility.
Collapse
Affiliation(s)
- Catherine A Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xue Gong
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Durga Ganesh
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
23
|
Di Francesco L, Verrico A, Asteriti IA, Rovella P, Cirigliano P, Guarguaglini G, Schininà ME, Lavia P. Visualization of human karyopherin beta-1/importin beta-1 interactions with protein partners in mitotic cells by co-immunoprecipitation and proximity ligation assays. Sci Rep 2018; 8:1850. [PMID: 29382863 PMCID: PMC5789818 DOI: 10.1038/s41598-018-19351-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/29/2017] [Indexed: 12/29/2022] Open
Abstract
Karyopherin beta-1/Importin beta-1 is a conserved nuclear transport receptor, acting in protein nuclear import in interphase and as a global regulator of mitosis. These pleiotropic functions reflect its ability to interact with, and regulate, different pathways during the cell cycle, operating as a major effector of the GTPase RAN. Importin beta-1 is overexpressed in cancers characterized by high genetic instability, an observation that highlights the importance of identifying its partners in mitosis. Here we present the first comprehensive profile of importin beta-1 interactors from human mitotic cells. By combining co-immunoprecipitation and proteome-wide mass spectrometry analysis of synchronized cell extracts, we identified expected (e.g., RAN and SUMO pathway factors) and novel mitotic interactors of importin beta-1, many with RNA-binding ability, that had not been previously associated with importin beta-1. These data complement interactomic studies of interphase transport pathways. We further developed automated proximity ligation assay (PLA) protocols to validate selected interactors. We succeeded in obtaining spatial and temporal resolution of genuine importin beta-1 interactions, which were visualized and localized in situ in intact mitotic cells. Further developments of PLA protocols will be helpful to dissect importin beta-1-orchestrated pathways during mitosis.
Collapse
Affiliation(s)
- Laura Di Francesco
- Dipartimento di Scienze Biochimiche, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Unit of Human Microbiome, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Annalisa Verrico
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Paola Rovella
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Maria Eugenia Schininà
- Dipartimento di Scienze Biochimiche, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Via degli Apuli 4, 00185, Rome, Italy.
| |
Collapse
|
24
|
Abstract
Study reveals that protein regulates spindle microtubule dynamics by inhibiting microtubule depolymerase MCAK.
Collapse
|
25
|
Bendre S, Rondelet A, Hall C, Schmidt N, Lin YC, Brouhard GJ, Bird AW. GTSE1 tunes microtubule stability for chromosome alignment and segregation by inhibiting the microtubule depolymerase MCAK. J Cell Biol 2016; 215:631-647. [PMID: 27881713 PMCID: PMC5147003 DOI: 10.1083/jcb.201606081] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/04/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
The microtubule depolymerase MCAK influences chromosomal instability (CIN), but what controls its activity remains unclear. Bendre et al. show that GTSE1, a protein found overexpressed in tumors, regulates microtubule stability and chromosome alignment during mitosis by inhibiting MCAK. High levels of GTSE1 are linked to chromosome missegregation and CIN. The dynamic regulation of microtubules (MTs) during mitosis is critical for accurate chromosome segregation and genome stability. Cancer cell lines with hyperstabilized kinetochore MTs have increased segregation errors and elevated chromosomal instability (CIN), but the genetic defects responsible remain largely unknown. The MT depolymerase MCAK (mitotic centromere-associated kinesin) can influence CIN through its impact on MT stability, but how its potent activity is controlled in cells remains unclear. In this study, we show that GTSE1, a protein found overexpressed in aneuploid cancer cell lines and tumors, regulates MT stability during mitosis by inhibiting MCAK MT depolymerase activity. Cells lacking GTSE1 have defects in chromosome alignment and spindle positioning as a result of MT instability caused by excess MCAK activity. Reducing GTSE1 levels in CIN cancer cell lines reduces chromosome missegregation defects, whereas artificially inducing GTSE1 levels in chromosomally stable cells elevates chromosome missegregation and CIN. Thus, GTSE1 inhibition of MCAK activity regulates the balance of MT stability that determines the fidelity of chromosome alignment, segregation, and chromosomal stability.
Collapse
Affiliation(s)
- Shweta Bendre
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Arnaud Rondelet
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Conrad Hall
- Department of Biology, McGill University, Montreal H3A 1B1, Quebec, Canada
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Yu-Chih Lin
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Gary J Brouhard
- Department of Biology, McGill University, Montreal H3A 1B1, Quebec, Canada
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
26
|
Mann BJ, Balchand SK, Wadsworth P. Regulation of Kif15 localization and motility by the C-terminus of TPX2 and microtubule dynamics. Mol Biol Cell 2016; 28:65-75. [PMID: 27852894 PMCID: PMC5221630 DOI: 10.1091/mbc.e16-06-0476] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Mitotic motor proteins generate force to establish and maintain spindle bipolarity, but how they are temporally and spatially regulated in vivo is unclear. Prior work demonstrated that a microtubule-associated protein, TPX2, targets kinesin-5 and kinesin-12 motors to spindle microtubules. The C-terminal domain of TPX2 contributes to the localization and motility of the kinesin-5, Eg5, but it is not known whether this domain regulates kinesin-12, Kif15. We found that the C-terminal domain of TPX2 contributes to the localization of Kif15 to spindle microtubules in cells and suppresses motor walking in vitro. Kif15 and Eg5 are partially redundant motors, and overexpressed Kif15 can drive spindle formation in the absence of Eg5 activity. Kif15-dependent bipolar spindle formation in vivo requires the C-terminal domain of TPX2. In the spindle, fluorescent puncta of GFP-Kif15 move toward the equatorial region at a rate equivalent to microtubule growth. Reduction of microtubule growth with paclitaxel suppresses GFP-Kif15 motility, demonstrating that dynamic microtubules contribute to Kif15 behavior. Our results show that the C-terminal region of TPX2 regulates Kif15 in vitro, contributes to motor localization in cells, and is required for Kif15 force generation in vivo and further reveal that dynamic microtubules contribute to Kif15 behavior in vivo.
Collapse
Affiliation(s)
- Barbara J Mann
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Sai K Balchand
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Patricia Wadsworth
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
27
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
28
|
Ritter A, Kreis NN, Louwen F, Wordeman L, Yuan J. Molecular insight into the regulation and function of MCAK. Crit Rev Biochem Mol Biol 2016; 51:228-45. [DOI: 10.1080/10409238.2016.1178705] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|