1
|
Yesilcimen A, Gandhesiri S, Travaline TL, Callahan AJ, Tokareva OS, Loas A, McGee JH, Pentelute BL. Chemical Synthesis, Refolding, and Characterization of Mirror-Image Cyclophilin A. J Org Chem 2025; 90:3365-3372. [PMID: 40008609 DOI: 10.1021/acs.joc.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The chemical synthesis of proteins (CSP) has been an essential tool in studying and understanding the role of these biological polymers and in enabling the discovery of novel classes of inhibitors. However, CSP with commercially available synthesizers is typically limited to producing polypeptides of about 50 to 70 amino acids in length. Consequently, a wide range of protein targets have been inaccessible using these technologies, or they require cumbersome synthesis and purification of multiple peptide fragments. In this report, we employed a powerful combination of automated fast-flow peptide synthesis (AFPS), native chemical ligation (NCL), and high-throughput evaluation of refolding conditions to achieve the first chemical synthesis of both the wild-type and mirror-image forms of functional full-length cyclophilin A, which plays a vital role in proline cis-trans isomerization and other important processes. Functional assays confirmed that the chemically synthesized proteins retained their biological properties.
Collapse
Affiliation(s)
- Ahmet Yesilcimen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Satish Gandhesiri
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tara L Travaline
- Parabilis Medicines, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Alex J Callahan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Olena S Tokareva
- Parabilis Medicines, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John H McGee
- Parabilis Medicines, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Wu T, Yu JC, Suresh A, Gale-Day ZJ, Alteen MG, Woo AS, Millbern Z, Johnson OT, Carroll EC, Partch CL, Fourches D, Vinueza NR, Vocadlo DJ, Gestwicki JE. Protein-adaptive differential scanning fluorimetry using conformationally responsive dyes. Nat Biotechnol 2025; 43:106-113. [PMID: 38744946 DOI: 10.1038/s41587-024-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/31/2024] [Indexed: 05/16/2024]
Abstract
Differential scanning fluorimetry (DSF) is a technique that reports protein thermal stability via the selective recognition of unfolded states by fluorogenic dyes. However, DSF applications remain limited by protein incompatibilities with existing DSF dyes. Here we overcome this obstacle with the development of a protein-adaptive DSF platform (paDSF) that combines a dye library 'Aurora' with a streamlined procedure to identify protein-dye pairs on demand. paDSF was successfully applied to 94% (66 of 70) of proteins, tripling the previous compatibility and delivering assays for 66 functionally and biochemically diverse proteins, including 10 from severe acute respiratory syndrome coronavirus 2. We find that paDSF can be used to monitor biological processes that were previously inaccessible, demonstrated for the interdomain allostery of O-GlcNAc transferase. The chemical diversity and varied selectivities of Aurora dyes suggest that paDSF functionality may be readily extended. paDSF is a generalizable tool to interrogate protein stability, dynamics and ligand binding.
Collapse
Affiliation(s)
- Taiasean Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Joshua C Yu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Arundhati Suresh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Zachary J Gale-Day
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amanda S Woo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Zoe Millbern
- Department of Textile Engineering, North Carolina State University, Raleigh, NC, USA
| | - Oleta T Johnson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Emma C Carroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Carrie L Partch
- Department of Chemistry, University of California, Santa Cruz, CA, USA
| | - Denis Fourches
- Department of Textile Engineering, North Carolina State University, Raleigh, NC, USA
| | - Nelson R Vinueza
- Department of Textile Engineering, North Carolina State University, Raleigh, NC, USA
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Yang R, Zhang Y, Geng B, Tian Y, Tian W, Zou Y, Chen H, Chen J. Fluorescence labeling-based differential scanning fluorimetry, an effective method for protein thermal stability and protein-compound binding analysis. Int J Biol Macromol 2024; 281:136043. [PMID: 39362428 DOI: 10.1016/j.ijbiomac.2024.136043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Differential scanning fluorimetry (DSF) is widely used to assess protein thermal stability and protein-ligand interaction. However, its utility is often limited by the presence of detergents, which can affect hydrophobic binding. To tackle this issue, we developed an effective fluorescence-labeled DSF (FL-DSF) technique that tracks protein denaturation by monitoring the labeling fluorescence decrease, thus overcoming challenges typically encountered with traditional DSF methods. In this research, FL-DSF was first validated using Peroxisome Proliferators-Activated Receptor γ (PPARγ), Retinoid X Receptor α (RXRα), and Lysozyme, confirming its accuracy in determining melting curves. Expectedly, FL-DSF also exhibited strong compatibility with detergents in our investigations. Besides this, a new calculation method was proposed to characterize the protein denaturation process and evaluate protein-ligand binding. This mathematical model goes beyond traditional approaches, which simply treated the melting temperature (TM) shift as a concentration-dependent variable. Instead, it comprehensively incorporates the influence of irreversible denaturation-induced native protein loss on the equilibrium of protein-ligand binding. This methodology was successfully applied into the evaluation of binding affinity for 2 classical binding systems of PPARγ-Rosiglitazone and RXRα-CD3254. It was also utilized for the following binding screening studies, leading to the discovery of promising ligands for PPARγ, RXRα, and Lysozyme.
Collapse
Affiliation(s)
- Renjing Yang
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Yaya Zhang
- Department of Oncology, the First Affiliated Hospital of Xiamen University, PR China
| | - Bingjie Geng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Yingpu Tian
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Yanhong Zou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Haifeng Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China.
| |
Collapse
|
4
|
Kobayashi K, Yamamura M, Mikami B, Shiraishi A, Kumatani M, Satake H, Ono E, Umezawa T. Anthriscus sylvestris Deoxypodophyllotoxin Synthase Involved in the Podophyllotoxin Biosynthesis. PLANT & CELL PHYSIOLOGY 2023; 64:1436-1448. [PMID: 37948767 DOI: 10.1093/pcp/pcad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Tetrahydrofuran ring formation from dibenzylbutyrolactone lignans is a key step in the biosynthesis of aryltetralin lignans including deoxypodophyllotoxin and podophyllotoxin. Previously, Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2-ODD) from Podophyllum hexandrum (Himalayan mayapple, Berberidaceae) was found to catalyze the cyclization of a dibenzylbutyrolactone lignan, yatein, to give deoxypodophyllotoxin and designated as deoxypodophyllotoxin synthase (DPS). Recently, we reported that the biosynthesis of deoxypodophyllotoxin and podophyllotoxin evolved in a lineage-specific manner in phylogenetically unrelated plant species such as P. hexandrum and Anthriscus sylvestris (cow parsley, Apiaceae). Therefore, a comprehensive understanding of the characteristics of DPSs that catalyze the cyclization of yatein to deoxypodophyllotoxin in various plant species is important. However, for plant species other than P. hexandrum, the isolation of the DPS enzyme gene and the type of the enzyme, e.g. whether it is 2-ODD or another type of enzyme such as cytochrome P-450, have not been reported. In this study, we report the identification and characterization of A. sylvestris DPS (AsDPS). Phylogenetic analysis showed that AsDPS belonged to the 2-ODD superfamily and shared moderate amino acid sequence identity (40.8%) with P. hexandrum deoxypodophyllotoxin synthase (PhDPS). Recombinant protein assay indicated that AsDPS and PhDPS differ in terms of the selectivity of substrate enantiomers. Protein modeling using AlphaFold2 and site-directed mutagenesis indicated that the Tyr305 residue of AsDPS probably contributes to substrate recognition. This study advances our understanding of the podophyllotoxin biosynthetic pathway in A. sylvestris and provides new insight into 2-ODD involved in plant secondary (specialized) metabolism.
Collapse
Affiliation(s)
- Keisuke Kobayashi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, 2-1, Minami-josanjima-cho, Tokushima, 770-8502 Japan
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Masato Kumatani
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| |
Collapse
|
5
|
Gao X, McFadden WM, Wen X, Emanuelli A, Lorson ZC, Zheng H, Kirby KA, Sarafianos SG. Use of TSAR, Thermal Shift Analysis in R, to identify Folic Acid as a Molecule that Interacts with HIV-1 Capsid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569293. [PMID: 38076946 PMCID: PMC10705415 DOI: 10.1101/2023.11.29.569293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Thermal shift assay (TSA) is a versatile biophysical technique for studying protein interactions. Here, we report a free, open-source software tool TSAR (Thermal Shift Analysis in R) to expedite and automate the analysis of thermal shift data derived either from individual experiments or large screens of chemical libraries. The TSAR package incorporates multiple, dynamic workflows to facilitate the analysis of TSA data and returns publication-ready graphics or processed results. Further, the package includes a graphic user interface (GUI) that enables easy use by non-programmers, aiming to simplify TSA analysis while diversifying visualization. To exemplify the utility of TSAR we screened a chemical library of vitamins to identify molecules that interact with the capsid protein (CA) of human immunodeficiency virus type 1 (HIV-1). Our data show that hexameric CA interacts with folic acid in vitro.
Collapse
Affiliation(s)
- X. Gao
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - W. M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - X. Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - A. Emanuelli
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - Z. C. Lorson
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - H. Zheng
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - K. A. Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - S. G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
6
|
Beygmoradi A, Homaei A, Hemmati R, Fernandes P. Recombinant protein expression: Challenges in production and folding related matters. Int J Biol Macromol 2023; 233:123407. [PMID: 36708896 DOI: 10.1016/j.ijbiomac.2023.123407] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Protein folding is a biophysical process by which proteins reach a specific three-dimensional structure. The amino acid sequence of a polypeptide chain contains all the information needed to determine the final three-dimensional structure of a protein. When producing a recombinant protein, several problems can occur, including proteolysis, incorrect folding, formation of inclusion bodies, or protein aggregation, whereby the protein loses its natural structure. To overcome such limitations, several strategies have been developed to address each specific issue. Identification of proper protein refolding conditions can be challenging, and to tackle this high throughput screening for different recombinant protein folding conditions can prove a sound solution. Different approaches have emerged to tackle refolding issues. One particular approach to address folding issues involves molecular chaperones, highly conserved proteins that contribute to proper folding by shielding folding proteins from other proteins that could hinder the process. Proper protein folding is one of the main prerequisites for post-translational modifications. Incorrect folding, if not dealt with, can lead to a buildup of protein misfoldings that damage cells and cause widespread abnormalities. Said post-translational modifications, widespread in eukaryotes, are critical for protein structure, function and biological activity. Incorrect post-translational protein modifications may lead to individual consequences or aggregation of therapeutic proteins. In this review article, we have tried to examine some key aspects of recombinant protein expression. Accordingly, the relevance of these proteins is highlighted, major problems related to the production of recombinant protein and to refolding issues are pinpointed and suggested solutions are presented. An overview of post-translational modification, their biological significance and methods of identification are also provided. Overall, the work is expected to illustrate challenges in recombinant protein expression.
Collapse
Affiliation(s)
- Azadeh Beygmoradi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Pedro Fernandes
- DREAMS and Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Ronzetti M, Baljinnyam B, Jalal I, Pal U, Simeonov A. Application of biophysical methods for improved protein production and characterization: A case study on an high-temperature requirement A-family bacterial protease. Protein Sci 2022; 31:e4498. [PMID: 36334045 PMCID: PMC9679970 DOI: 10.1002/pro.4498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
The high-temperature requirement A (HtrA) serine protease family presents an attractive target class for antibacterial therapeutics development. These proteins possess dual protease and chaperone functions and contain numerous binding sites and regulatory loops, displaying diverse oligomerization patterns dependent on substrate type and occupancy. HtrA proteins that are natively purified coelute with contaminating peptides and activating species, shifting oligomerization and protein structure to differently activated populations. Here, a redesigned HtrA production results in cleaner preparations with high yields by overexpressing and purifying target protein from inclusion bodies under denaturing conditions, followed by a high-throughput screen for optimal refolding buffer composition using function-agnostic biophysical techniques that do not rely on target-specific measurements. We use Borrelia burgdorferi HtrA to demonstrate the effectiveness of our function-agnostic approach, while characterization with both new and established biophysical methods shows the retention of proteolytic and chaperone activity of the refolded protein. This systematic workflow and toolset will translate to the production of HtrA-family proteins in higher quantities of pure and monodisperse composition than the current literature standard, with applicability to a broad array of protein purification strategies.
Collapse
Affiliation(s)
- Michael Ronzetti
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
- Department of Veterinary Medicine, College of Agriculture & Natural ResourcesUniversity of MarylandCollege ParkMarylandUSA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | | | - Utpal Pal
- Department of Veterinary Medicine, College of Agriculture & Natural ResourcesUniversity of MarylandCollege ParkMarylandUSA
| | - Anton Simeonov
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| |
Collapse
|
8
|
Buscajoni L, Martinetz MC, Berkemeyer M, Brocard C. Refolding in the modern biopharmaceutical industry. Biotechnol Adv 2022; 61:108050. [PMID: 36252795 DOI: 10.1016/j.biotechadv.2022.108050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
Inclusion bodies (IBs) often emerge upon overexpression of recombinant proteins in E. coli. From IBs, refolding is necessary to generate the native protein that can be further purified to obtain pure and active biologicals. This work focusses on refolding as a significant process step during biopharmaceutical manufacturing with an industrial perspective. A theoretical and historical background on protein refolding gives the reader a starting point for further insights into industrial process development. Quality requirements on IBs as starting material for refolding are discussed and further economic and ecological aspects are considered with regards to buffer systems and refolding conditions. A process development roadmap shows the development of a refolding process starting from first exploratory screening rounds to scale-up and implementation in manufacturing plant. Different aspects, with a direct influence on yield, such as the selection of chemicals including pH, ionic strength, additives, etc., and other often neglected aspects, important during scale-up, such as mixing, and gas-fluid interaction, are highlighted with the use of a quality by design (QbD) approach. The benefits of simulation sciences (process simulation and computer fluid dynamics) and process analytical technology (PAT) for seamless process development are emphasized. The work concludes with an outlook on future applications of refolding and highlights open research inquiries.
Collapse
Affiliation(s)
- Luisa Buscajoni
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Michael C Martinetz
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Matthias Berkemeyer
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Cécile Brocard
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| |
Collapse
|
9
|
Ronzetti MH, Baljinnyam B, Itkin Z, Jain S, Rai G, Zakharov AV, Pal U, Simeonov A. Application of temperature-responsive HIS-tag fluorophores to differential scanning fluorimetry screening of small molecule libraries. Front Pharmacol 2022; 13:1040039. [PMID: 36506591 PMCID: PMC9729254 DOI: 10.3389/fphar.2022.1040039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Differential scanning fluorimetry is a rapid and economical biophysical technique used to monitor perturbations to protein structure during a thermal gradient, most often by detecting protein unfolding events through an environment-sensitive fluorophore. By employing an NTA-complexed fluorophore that is sensitive to nearby structural changes in histidine-tagged protein, a robust and sensitive differential scanning fluorimetry (DSF) assay is established with the specificity of an affinity tag-based system. We developed, optimized, and miniaturized this HIS-tag DSF assay (HIS-DSF) into a 1536-well high-throughput biophysical platform using the Borrelial high temperature requirement A protease (BbHtrA) as a proof of concept for the workflow. A production run of the BbHtrA HIS-DSF assay showed a tight negative control group distribution of Tm values with an average coefficient of variation of 0.51% and median coefficient of variation of compound Tm of 0.26%. The HIS-DSF platform will provide an additional assay platform for future drug discovery campaigns with applications in buffer screening and optimization, target engagement screening, and other biophysical assay efforts.
Collapse
Affiliation(s)
- Michael H. Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,*Correspondence: Bolormaa Baljinnyam, ; Anton Simeonov,
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Sankalp Jain
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,*Correspondence: Bolormaa Baljinnyam, ; Anton Simeonov,
| |
Collapse
|
10
|
Kwan TOC, Kolek SA, Danson AE, Reis RI, Camacho IS, Shaw Stewart PD, Moraes I. Measuring Protein Aggregation and Stability Using High-Throughput Biophysical Approaches. Front Mol Biosci 2022; 9:890862. [PMID: 35651816 PMCID: PMC9149252 DOI: 10.3389/fmolb.2022.890862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Structure-function relationships of biological macromolecules, in particular proteins, provide crucial insights for fundamental biochemistry, medical research and early drug discovery. However, production of recombinant proteins, either for structure determination, functional studies, or to be used as biopharmaceutical products, is often hampered by their instability and propensity to aggregate in solution in vitro. Protein samples of poor quality are often associated with reduced reproducibility as well as high research and production expenses. Several biophysical methods are available for measuring protein aggregation and stability. Yet, discovering and developing means to improve protein behaviour and structure-function integrity remains a demanding task. Here, we discuss workflows that are made possible by adapting established biophysical methods to high-throughput screening approaches. Rapid identification and optimisation of conditions that promote protein stability and reduce aggregation will support researchers and industry to maximise sample quality, stability and reproducibility, thereby reducing research and development time and costs.
Collapse
Affiliation(s)
| | | | - Amy E. Danson
- National Physical Laboratory, Teddington, United Kingdom
| | - Rosana I. Reis
- National Physical Laboratory, Teddington, United Kingdom
| | | | - Patrick D. Shaw Stewart
- Douglas Instruments Ltd., Hungerford, United Kingdom
- *Correspondence: Patrick D. Shaw Stewart, ; Isabel Moraes,
| | - Isabel Moraes
- National Physical Laboratory, Teddington, United Kingdom
- *Correspondence: Patrick D. Shaw Stewart, ; Isabel Moraes,
| |
Collapse
|
11
|
Yang XQ, Bai LW, Chen Y, Lin YX, Xiang H, Xiang TT, Zhu SX, Zhou L, Li K, Lei X. Peptide probes with high affinity to target protein selection by phage display and characterization using biophysical approaches. NEW J CHEM 2022. [DOI: 10.1039/d2nj00621a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, phage display was utilized to screen the affinity of peptides against dihydrofolate reductase and a positive peptide was obtained, and the verification of the affinity was tested by multiple in vitro biophysical methods.
Collapse
Affiliation(s)
- Xiao-Qin Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Li-Wen Bai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Yu Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Yue-Xiao Lin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Hua Xiang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Ting-Ting Xiang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Shuang-Xing Zhu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Li Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Kai Li
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
12
|
Ramos J, Laux V, Haertlein M, Boeri Erba E, McAuley KE, Forsyth VT, Mossou E, Larsen S, Langkilde AE. Structural insights into protein folding, stability and activity using in vivo perdeuteration of hen egg-white lysozyme. IUCRJ 2021; 8:372-386. [PMID: 33953924 PMCID: PMC8086161 DOI: 10.1107/s2052252521001299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
This structural and biophysical study exploited a method of perdeuterating hen egg-white lysozyme based on the expression of insoluble protein in Escherichia coli followed by in-column chemical refolding. This allowed detailed comparisons with perdeuterated lysozyme produced in the yeast Pichia pastoris, as well as with unlabelled lysozyme. Both perdeuterated variants exhibit reduced thermal stability and enzymatic activity in comparison with hydrogenated lysozyme. The thermal stability of refolded perdeuterated lysozyme is 4.9°C lower than that of the perdeuterated variant expressed and secreted in yeast and 6.8°C lower than that of the hydrogenated Gallus gallus protein. However, both perdeuterated variants exhibit a comparable activity. Atomic resolution X-ray crystallographic analyses show that the differences in thermal stability and enzymatic function are correlated with refolding and deuteration effects. The hydrogen/deuterium isotope effect causes a decrease in the stability and activity of the perdeuterated analogues; this is believed to occur through a combination of changes to hydrophobicity and protein dynamics. The lower level of thermal stability of the refolded perdeuterated lysozyme is caused by the unrestrained Asn103 peptide-plane flip during the unfolded state, leading to a significant increase in disorder of the Lys97-Gly104 region following subsequent refolding. An ancillary outcome of this study has been the development of an efficient and financially viable protocol that allows stable and active perdeuterated lysozyme to be more easily available for scientific applications.
Collapse
Affiliation(s)
- Joao Ramos
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valerie Laux
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Elisabetta Boeri Erba
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Institut de Biologie Structurale, Université de Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Katherine E. McAuley
- Diamond Light Source, Didcot OX11 0DE, United Kingdom
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - V. Trevor Forsyth
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, United Kingdom
| | - Estelle Mossou
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, United Kingdom
| | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Kazlauskas E, Petrauskas V, Paketurytė V, Matulis D. Standard operating procedure for fluorescent thermal shift assay (FTSA) for determination of protein-ligand binding and protein stability. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:373-379. [PMID: 33914114 DOI: 10.1007/s00249-021-01537-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 01/29/2023]
Abstract
A standard operating procedure for a fluorescence-based thermal shift assay (FTSA) is provided describing its typical applications, advantages and limitations. FTSA is a simple, robust, universal and quick assay to determine protein-ligand binding affinities and protein stabilities in the presence of various excipients and solution conditions. Therefore, the assay is very useful for the straightforward characterization of new recombinantly produced proteins. The assay has a wide dynamic range enabling simultaneous determination of affinities in the milimolar to picomolar range. The assay could be used for essentially any protein that is sufficiently soluble and stable in the studied aqueous solution. Here we provide examples and typical experimental protocols for both affinity and stability determinations.
Collapse
Affiliation(s)
- Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Vaida Paketurytė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
14
|
Joseph TP, Zhao Q, Chanda W, Kanwal S, Fang Y, Zhong M, Huang M. Expression and in vitro anticancer activity of Lp16-PSP, a member of the YjgF/YER057c/UK114 protein family from the mushroom Lentinula edodes C 91-3. Arch Microbiol 2021; 203:1047-1060. [PMID: 33136174 DOI: 10.1007/s00203-020-02099-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023]
Abstract
Latcripin-16 (Lp16-PSP) is a gene that was extracted as a result of de novo characterization of the Lentinula edodes strain C91-3 transcriptome. The aim of the present study was to clone, express, and investigate the selective in vitro anticancer potential of Lp16-PSP in human cell lines. Lp16-PSP was analyzed using bioinformatics tools, cloned in a prokaryotic expression vector pET32a (+) and transformed into E. coli Rosetta gami. It was expressed and solubilized under optimized conditions. The differential scanning fluorometry (DSF)-guided refolding method was used with modifications to identify the proper refolding conditions for the Lp16-PSP protein. To determine the selective anticancer potential of Lp16-PSP, a panel of human cancerous and non-cancerous cell lines was used. Lp16-PSP protein was identified as endoribonuclease L-PSP protein and a member of the highly conserved YjgF/YER057c/UK114 protein superfamily. Lp16-PSP was expressed under optimized conditions (37 °C for 4 h following induction with 0.5 mM isopropyl β-D-1-thiogalactopyranoside). Solubilization was achieved with mild solubilization buffer containing 2 M urea using the freeze-thaw method. The DSF guided refolding method identified the proper refolding conditions (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, 400 mM Arginine, 0.2 mM GSH and 2 mM GSSG; pH 8.0) for Lp16-PSP, with a melting transition of ~ 58 °C. A final yield of ~ 16 mg of purified Lp16-PSP from 1 L of culture was obtained following dialysis and concentration by PEG 20,000. A Cell Counting Kit-8 assay revealed the selective cytotoxic effect of Lp16-PSP. The HL-60 cell line was demonstrated to be most sensitive to Lp16-PSP, with an IC50 value of 74.4 ± 1.07 µg/ml. The results of the present study suggest that Lp16-PSP may serve as a potential anticancer agent; however, further investigation is required to characterize this anticancer effect and to elucidate the molecular mechanism underlying the action of Lp16-PSP.
Collapse
Affiliation(s)
- Thomson Patrick Joseph
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
- Center for Neuroscience, Shantou University Medical College, Shantou, People's Republic of China
| | - Qianqian Zhao
- Computational System Biology Laboratory, Department of Bioinformatics, Shantou University Medical College, Shantou, People's Republic of China
| | - Warren Chanda
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
| | - Sadia Kanwal
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yukun Fang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
| | - MinTao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
15
|
Saikia C, Ben-Nissan G, Reuveny E, Karbat I. Production of recombinant venom peptides as tools for ion channel research. Methods Enzymol 2021; 654:169-201. [PMID: 34120712 DOI: 10.1016/bs.mie.2021.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Animal venom is a rich source for peptide toxins that bind and modulate the function of ion channels. Owing to their ability to bind receptor sites on the channel protein with high affinity and specificity, peptide neurotoxins have become an indispensable tool for ion channel research. Recent breakthroughs in structural biology and advances in computer simulations of biomolecules have sparked a new interest in animal toxins as probes of channel protein structure and function. Here, we focus on methods used to produce animal toxins for research purposes using recombinant expression. The specific challenges associated with heterologous production of venom peptides are discussed, and several methods targeting these issues are presented with an emphasis on E. coli based systems. An efficient protocol for the bacterial expression, folding, and purification of recombinant venom peptides is described.
Collapse
Affiliation(s)
- Chandamita Saikia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Seraj Z, Ahmadian S, Groves MR, Seyedarabi A. The aroma of TEMED as an activation and stabilizing signal for the antibacterial enzyme HEWL. PLoS One 2020; 15:e0232953. [PMID: 32428017 PMCID: PMC7236982 DOI: 10.1371/journal.pone.0232953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/25/2020] [Indexed: 11/18/2022] Open
Abstract
The unpleasant smell released from dead bodies, may serve as an alarm for avoiding certain behaviour or as feeding or oviposition attractants for animals. However, little is known about their effect on the structure and function of proteins. Previously, we reported that using the aroma form of TEMED (a diamine), representative of the "smell of death", could completely inhibit the fibril formation of HEWL, as an antibacterial enzyme, and a model protein for fibrillation studies. To take this further, in this study we investigated the kinetics of TEMED using a number of techniques and in particular X-ray crystallography to identify the binding site(s) of TEMED and search for hotspot(s) necessary to inhibit fibril formation of HEWL. Structural data, coupled with other experimental data reported in this study, revealed that TEMED completely inhibited fibril formation and stabilized the structure of HEWL through enhancement of the CH-Π interaction and binding to an inhibitor hotspot comprised of residues Lys33, Phe34, Glu35 and Asn37 of HEWL. Additionally, results from this study showed that the binding of TEMED increased the activity and thermal stability of HEWL, helping to improve the function of this antibacterial enzyme. In conclusion, the role of the "smell of death”, as an important signal molecule affecting the activity and stability of HEWL was greatly highlighted, suggesting that aroma producing small molecules can be signals for structural and functional changes in proteins.
Collapse
Affiliation(s)
- Zahra Seraj
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Matthew R. Groves
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
- * E-mail: (AS); (MRG)
| | - Arefeh Seyedarabi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- * E-mail: (AS); (MRG)
| |
Collapse
|
17
|
Bacterial Inclusion Bodies: A Treasure Trove of Bioactive Proteins. Trends Biotechnol 2020; 38:474-486. [DOI: 10.1016/j.tibtech.2019.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
|
18
|
Gao K, Oerlemans R, Groves MR. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys Rev 2020; 12:85-104. [PMID: 32006251 PMCID: PMC7040159 DOI: 10.1007/s12551-020-00619-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Differential scanning fluorimetry (DSF) is an accessible, rapid, and economical biophysical technique that has seen many applications over the years, ranging from protein folding state detection to the identification of ligands that bind to the target protein. In this review, we discuss the theory, applications, and limitations of DSF, including the latest applications of DSF by ourselves and other researchers. We show that DSF is a powerful high-throughput tool in early drug discovery efforts. We place DSF in the context of other biophysical methods frequently used in drug discovery and highlight their benefits and downsides. We illustrate the uses of DSF in protein buffer optimization for stability, refolding, and crystallization purposes and provide several examples of each. We also show the use of DSF in a more downstream application, where it is used as an in vivo validation tool of ligand-target interaction in cell assays. Although DSF is a potent tool in buffer optimization and large chemical library screens when it comes to ligand-binding validation and optimization, orthogonal techniques are recommended as DSF is prone to false positives and negatives.
Collapse
Affiliation(s)
- Kai Gao
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rick Oerlemans
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Matthew R Groves
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Cinnamaldehyde and Phenyl Ethyl Alcohol promote the entrapment of intermediate species of HEWL, as revealed by structural, kinetics and thermal stability studies. Sci Rep 2019; 9:18615. [PMID: 31819148 PMCID: PMC6901479 DOI: 10.1038/s41598-019-55082-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous efforts have been directed towards investigating the different stages leading to the fibrillation process in neurodegenerative diseases and finding the factors modulating it. In this study, using a wide range of molecular techniques as well as fibrillation kinetics coupled with differential scanning fluorimetry (DSF) and crystal structure determination of HEWL treated with cinnamaldehyde (Cin) and Phenyl ethyl alcohol (PEA) in their aroma form during fibrillation, we were able to identify the binding positions of Cin and PEA in HEWL. Additionally, crystal structures were used to suggest residues Thr43, Asn44, Arg45 and Arg68 as a plausible ‘hotspot’ promoting entrapment of intermediate species in the process of fibril formation in HEWL. We were also able to use DSF to show that Cin can significantly decrease the thermal stability of HEWL, promoting the formation of partially unfolded intermediate species. In conclusion, our data led us to emphasize that compounds in their ‘aroma form’ can influence the structure and stability of protein molecules and suggest reconsideration of HEWL as a model protein for fibrillation studies related to neurodegenerative diseases based on the initial structure of the proteins, whether globular (HEWL) or intrinsically disordered.
Collapse
|
20
|
Biter AB, Pollet J, Chen WH, Strych U, Hotez PJ, Bottazzi ME. A method to probe protein structure from UV absorbance spectra. Anal Biochem 2019; 587:113450. [DOI: 10.1016/j.ab.2019.113450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/15/2023]
|
21
|
Lee ME, Dou X, Zhu Y, Phillips KJ. Refolding Proteins from Inclusion Bodies using Differential Scanning Fluorimetry Guided (DGR) Protein Refolding and MeltTraceur Web. ACTA ACUST UNITED AC 2018; 125:e78. [DOI: 10.1002/cpmb.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mark E. Lee
- Baylor College of Medicine, Department of Molecular and Cellular Biology; Houston Texas
| | - Xiaoyi Dou
- Baylor College of Medicine, Department of Molecular and Cellular Biology; Houston Texas
- Vanderbilt University, Department of Computer Science; Nashville Tennessee
| | - Yingmin Zhu
- Baylor College of Medicine, Department of Molecular and Cellular Biology; Houston Texas
- Baylor College of Medicine, Protein and Monoclonal Antibody Production Core; Houston Texas
| | - Kevin J. Phillips
- Baylor College of Medicine, Department of Molecular and Cellular Biology; Houston Texas
- Baylor College of Medicine, Protein and Monoclonal Antibody Production Core; Houston Texas
| |
Collapse
|
22
|
Lunev S, Butzloff S, Romero AR, Linzke M, Batista FA, Meissner KA, Müller IB, Adawy A, Wrenger C, Groves MR. Oligomeric interfaces as a tool in drug discovery: Specific interference with activity of malate dehydrogenase of Plasmodium falciparum in vitro. PLoS One 2018; 13:e0195011. [PMID: 29694407 PMCID: PMC5919072 DOI: 10.1371/journal.pone.0195011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 01/29/2023] Open
Abstract
Malaria remains a major threat to human health, as strains resistant to current therapeutics are discovered. Efforts in finding new drug targets are hampered by the lack of sufficiently specific tools to provide target validation prior to initiating expensive drug discovery projects. Thus, new approaches that can rapidly enable drug target validation are of significant interest. In this manuscript we present the crystal structure of malate dehydrogenase from Plasmodium falciparum (PfMDH) at 2.4 Å resolution and structure-based mutagenic experiments interfering with the inter-oligomeric interactions of the enzyme. We report decreased thermal stability, significantly decreased specific activity and kinetic parameters of PfMDH mutants upon mutagenic disruption of either oligomeric interface. In contrast, stabilization of one of the interfaces resulted in increased thermal stability, increased substrate/cofactor affinity and hyperactivity of the enzyme towards malate production at sub-millimolar substrate concentrations. Furthermore, the presented data show that our designed PfMDH mutant could be used as specific inhibitor of the wild type PfMDH activity, as mutated PfMDH copies were shown to be able to self-incorporate into the native assembly upon introduction in vitro, yielding deactivated mutant:wild-type species. These data provide an insight into the role of oligomeric assembly in regulation of PfMDH activity and reveal that recombinant mutants could be used as probe tool for specific modification of the wild type PfMDH activity, thus offering the potential to validate its druggability in vivo without recourse to complex genetics or initial tool compounds. Such tool compounds often lack specificity between host or pathogen proteins (or are toxic in in vivo trials) and result in difficulties in assessing cause and effect-particularly in cases when the enzymes of interest possess close homologs within the human host. Furthermore, our oligomeric interference approach could be used in the future in order to assess druggability of other challenging human pathogen drug targets.
Collapse
Affiliation(s)
- Sergey Lunev
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Sabine Butzloff
- LG Müller, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Atilio R. Romero
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
| | - Fernando A. Batista
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kamila A. Meissner
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
| | - Ingrid B. Müller
- LG Müller, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alaa Adawy
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
- * E-mail: (MRG); (CW)
| | - Matthew R. Groves
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
- * E-mail: (MRG); (CW)
| |
Collapse
|
23
|
Booth W, Schlachter CR, Pote S, Ussin N, Mank NJ, Klapper V, Offermann LR, Tang C, Hurlburt BK, Chruszcz M. Impact of an N-terminal Polyhistidine Tag on Protein Thermal Stability. ACS OMEGA 2018; 3:760-768. [PMID: 29399652 PMCID: PMC5793033 DOI: 10.1021/acsomega.7b01598] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/05/2018] [Indexed: 05/15/2023]
Abstract
For years, the use of polyhistidine tags (His-tags) has been a staple in the isolation of recombinant proteins in immobilized metal affinity chromatography experiments. Their usage has been widely beneficial in increasing protein purity from crude cell lysates. For some recombinant proteins, a consequence of His-tag addition is that it can affect protein function and stability. Functional proteins are essential in the elucidation of their biological, kinetic, structural, and thermodynamic properties. In this study, we determine the effect of N-terminal His-tags on the thermal stability of select proteins using differential scanning fluorimetry and identify that the removal of the His-tag can have both beneficial and deleterious effects on their stability.
Collapse
Affiliation(s)
- William
T. Booth
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Caleb R. Schlachter
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Swanandi Pote
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Nikita Ussin
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Nicholas J. Mank
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Vincent Klapper
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Lesa R. Offermann
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
- Department
of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Chuanbing Tang
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Barry K. Hurlburt
- United
States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana 70124, United States
| | - Maksymilian Chruszcz
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
- E-mail: . Tel: (803) 777-7399. Fax: (803) 777-9521
| |
Collapse
|
24
|
A Systematic Protein Refolding Screen Method using the DGR Approach Reveals that Time and Secondary TSA are Essential Variables. Sci Rep 2017; 7:9355. [PMID: 28839267 PMCID: PMC5570958 DOI: 10.1038/s41598-017-09687-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023] Open
Abstract
Refolding of proteins derived from inclusion bodies is very promising as it can provide a reliable source of target proteins of high purity. However, inclusion body-based protein production is often limited by the lack of techniques for the detection of correctly refolded protein. Thus, the selection of the refolding conditions is mostly achieved using trial and error approaches and is thus a time-consuming process. In this study, we use the latest developments in the differential scanning fluorimetry guided refolding approach as an analytical method to detect correctly refolded protein. We describe a systematic buffer screen that contains a 96-well primary pH-refolding screen in conjunction with a secondary additive screen. Our research demonstrates that this approach could be applied for determining refolding conditions for several proteins. In addition, it revealed which “helper” molecules, such as arginine and additives are essential. Four different proteins: HA-RBD, MDM2, IL-17A and PD-L1 were used to validate our refolding approach. Our systematic protocol evaluates the impact of the “helper” molecules, the pH, buffer system and time on the protein refolding process in a high-throughput fashion. Finally, we demonstrate that refolding time and a secondary thermal shift assay buffer screen are critical factors for improving refolding efficiency.
Collapse
|
25
|
The yeast Hsp70 homolog Ssb: a chaperone for general de novo protein folding and a nanny for specific intrinsically disordered protein domains. Curr Genet 2016; 63:9-13. [PMID: 27230907 PMCID: PMC5274638 DOI: 10.1007/s00294-016-0610-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
Activation of the heterotrimeric kinase SNF1 via phosphorylation of a specific residue within the α subunit is essential for the release from glucose repression in the yeast Saccharomyces cerevisiae. When glucose is available, SNF1 is maintained in the dephosphorylated, inactive state by the phosphatase Glc7-Reg1. Recent findings suggest that Bmh and Ssb combine their unique client-binding properties to interact with the regulatory region of the SNF1 α subunit and by that stabilize a conformation of SNF1, which is accessible for Glc7-Reg1-dependent dephosphorylation. Together, the 14-3-3 protein Bmh and the Hsp70 homolog Ssb comprise a novel chaperone module, which is required to maintain proper glucose repression in the yeast S. cerevisiae.
Collapse
|
26
|
Zhai L, Wu L, Li F, Burnham RS, Pizarro JC, Xu B. A Rapid Method for Refolding Cell Surface Receptors and Ligands. Sci Rep 2016; 6:26482. [PMID: 27215173 PMCID: PMC4877712 DOI: 10.1038/srep26482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 05/03/2016] [Indexed: 01/08/2023] Open
Abstract
Production of membrane-associated cell surface receptors and their ligands is often a cumbersome, expensive, and time-consuming process that limits detailed structural and functional characterization of this important class of proteins. Here we report a rapid method for refolding inclusion-body-based, recombinant cell surface receptors and ligands in one day, a speed equivalent to that of soluble protein production. This method efficiently couples modular on-column immobilized metal ion affinity purification and solid-phase protein refolding. We demonstrated the general utility of this method for producing multiple functionally active immunoreceptors, ligands, and viral decoys, including challenging cell surface proteins that cannot be produced using typical dialysis- or dilution-based refolding approaches.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Interdepartmental Microbiology Graduate Program, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Feng Li
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Robert S. Burnham
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Juan C. Pizarro
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Interdepartmental Microbiology Graduate Program, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| |
Collapse
|