1
|
Zhang X, Shi L, Li Q, Song C, Han N, Yan T, Zhang L, Ren D, Zhao Y, Yang X. Caloric Restriction, Friend or Foe: Effects on Metabolic Status in Association with the Intestinal Microbiome and Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14061-14072. [PMID: 36263977 DOI: 10.1021/acs.jafc.2c06162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Daily calorie restriction (CR) has shown benefits on weight loss and alleviation of metabolic disorders. We investigated the effects of three CR regimens, i.e., 20% (CR-20), 40% (CR-40), and 60% (CR-60) less than the average daily calorie intake, respectively, on the metabolic parameters, gut microbiome composition, and its related metabolites in healthy mice. Compared with mice fed ad libitum (AL), CR dose-dependently reduced the body weight, and weights of liver and epididymal adipose tissues, and enhanced the insulin sensitivity, glucose tolerance, and lipid homeostasis. Moreover, expression levels of intestinal tight junction proteins (i.e., ZO-1, claudin, and occludin) were significantly promoted by CR than those of AL mice, demonstrating the CR-induced improvement of the intestinal barrier integrity. CR contributed to the enrichment of beneficial microbiota (e.g., Lactobacillus, Bacteroides, and Akkermansia) and increased propionic acid levels. Notably, CR-60 deleteriously caused liver injury, and enhanced hepatic inflammatory cytokines (i.e., IL-1, IL-6, and TNF-α) and lipopolysaccharides, which were accompanied by high levels of trimethylamine (TMA) and trimethylamine oxide (TMAO) in relation to CR-60-altered gut microbiota structure and fecal metabolome. Additionally, we found differential impacts of CR-20, -40, or -60 on amino acid absorption and metabolism. Our findings support the health-promoting benefits of 60-80% daily calorie intake on the metabolic status by regulating the gut microbiota in healthy mice. However, excessive CR caused liver injury and gut microbiota-dependent elevation of TMAO. The differential effects of CR regimens on the intestinal microbiome and fecal metabolome provide novel insights into the dietary pattern-gut microbiome interactions linked with host metabolism.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lin Shi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Qiannan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chaofan Song
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ning Han
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Yan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Liansheng Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Chatelaine HA, Ramazani CA, Spencer K, Olivo‐Marston S, Bailey MT, McElroy J, Hatzakis E, Mathé EA, Kopec RE. Dietary Energy Intake and Presence of Aberrant Crypt Foci Are Associated with Phospholipid, Purine, and Taurine Metabolite Abundances in C57BL/6N Mouse Colon. Mol Nutr Food Res 2022; 66:e2200180. [PMID: 35969485 PMCID: PMC9787839 DOI: 10.1002/mnfr.202200180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/12/2022] [Indexed: 12/31/2022]
Abstract
SCOPE Colon metabolomes associated with high-fat (H) versus energy-restricted (E) diets in early colorectal cancer (CRC) models have never been directly compared. The objectives of this study are to elucidate metabolites associated with diet, aberrant crypt foci (ACF), and diet:ACF interaction, using a lifetime murine model. METHODS AND RESULTS Three-week-old mice consumed control (C), E, or H initiation diets for 18 weeks. ACF formation is initiated weeks 16-21 with azoxymethane injections, followed by progression diet crossover (to C, E, or H) through week 60. Colon extracts are analyzed using ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Metabolites associated with diet, ACF, or diet:ACF are determined using regression models (FDR-adjusted p-value <0.05). No metabolites are significantly associated with initiation diets, but concentrations of acylcarnitines and phospholipids are associated with C, E, and H progression diets. Purines, taurine, and phospholipids are associated with ACF presence. No significant associations between metabolites and diet:ACF interaction are observed. CONCLUSIONS These results suggest that recent, rather than early-life, diet is more closely associated with the colon metabolome, particularly lipid metabolism. Results from this study also provide candidate biomarkers of early CRC development and provide support for the importance of early diet on influencing pre-CRC risk.
Collapse
Affiliation(s)
- Haley A. Chatelaine
- OSU Interdisciplinary Nutrition PhD Program (OSUN)Department of Human SciencesThe Ohio State University1787 Neil AveColumbusOH43210United States
- Division of Preclinical Innovation Informatics CoreNational Center for Advancing Translational Sciences9800 Medical Center DriveRockvilleMD20850USA
| | - Cynthia A. Ramazani
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
- Big Data for Indiana State UniversityIndiana State UniversityTerre HauteIN47807USA
| | - Kyle Spencer
- Division of Preclinical Innovation Informatics CoreNational Center for Advancing Translational Sciences9800 Medical Center DriveRockvilleMD20850USA
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
- Nationwide Children's HospitalColumbusOH43205USA
| | - Susan Olivo‐Marston
- Division of EpidemiologyCollege of Public HealthThe Ohio State UniversityColumbusOH43210USA
- Southern Illinois University School of MedicineSpringfieldIL62794USA
| | - Michael T. Bailey
- Nationwide Children's HospitalColumbusOH43205USA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOH43210USA
- Center for Microbial PathogenesisNationwide Children's HospitalColumbusOH43205USA
- Oral and GI Research Affinity GroupNationwide Children's HospitalColumbusOH43205USA
| | - Joseph McElroy
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
| | - Emmanuel Hatzakis
- Department of Food Science and TechnologyThe Ohio State UniversityColumbusOH43210USA
- Foods for Health Discovery ThemeThe Ohio State UniversityColumbusOH43210USA
| | - Ewy A. Mathé
- Division of Preclinical Innovation Informatics CoreNational Center for Advancing Translational Sciences9800 Medical Center DriveRockvilleMD20850USA
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOH43210USA
- Translational Data Analytics InstituteThe Ohio State UniversityColumbusOH43210USA
| | - Rachel E. Kopec
- OSU Interdisciplinary Nutrition PhD Program (OSUN)Department of Human SciencesThe Ohio State University1787 Neil AveColumbusOH43210United States
- Foods for Health Discovery ThemeThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
3
|
Cantoni C, Dorsett Y, Fontana L, Zhou Y, Piccio L. Effects of dietary restriction on gut microbiota and CNS autoimmunity. Clin Immunol 2022; 235:108575. [PMID: 32822833 PMCID: PMC7889763 DOI: 10.1016/j.clim.2020.108575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/12/2020] [Accepted: 08/14/2020] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is the most common central nervous system (CNS) autoimmune disease. It is due to the interplay of genetic and environmental factors. Current opinion is that diet could play a pathogenic role in disease onset and development. Dietary restriction (DR) without malnutrition markedly improves health and increases lifespan in multiple model organisms. DR regimens that utilize continuous or intermittent food restriction can induce anti-inflammatory, immuno-modulatory and neuroendocrine adaptations promoting health. These adaptations exert neuroprotective effects in the main MS animal model, experimental autoimmune encephalomyelitis (EAE). This review summarizes the current knowledge on DR-induced changes in gut microbial composition and metabolite production and its impact on underlying functional mechanisms. Studies demonstrating the protective effects of DR regimens on EAE and people with MS are also presented. This is a rapidly developing research field with important clinical implications for personalized dietary interventions in MS prevention and treatment.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yair Dorsett
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2006, Australia,Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia.,Corresponding author: Laura Piccio, MD PhD, 1) Brain and Mind Centre, University of Sydney, 94 Mallett St Camperdown, NSW, 2050, Australia, , 2) Washington University School of Medicine, Dept. of Neurology, Campus Box 8111; 660 S. Euclid Avenue, St. Louis, MO 63110; USA, Phone: (314) 747-4591; Fax: (314) 747-1345;
| |
Collapse
|
4
|
Viennois E, Gewirtz AT, Chassaing B. Connecting the Dots: Dietary Fat, Microbiota Dysbiosis, Altered Metabolome, and Colon Cancer. Gastroenterology 2022; 162:38-39. [PMID: 34687737 DOI: 10.1053/j.gastro.2021.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Emilie Viennois
- INSERM, Unité 1149, Center for Research on Inflammation, Université de Paris, Paris, France
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, Georgia.
| | - Benoit Chassaing
- INSERM, Unité 1016, Team "Mucosal microbiota in chronic inflammatory diseases", Université de Paris, Paris, France
| |
Collapse
|
5
|
Lin D, Zheng X, Sanogo B, Ding T, Sun X, Wu Z. Bacterial composition of midgut and entire body of laboratory colonies of Aedes aegypti and Aedes albopictus from Southern China. Parasit Vectors 2021; 14:586. [PMID: 34838108 PMCID: PMC8626967 DOI: 10.1186/s13071-021-05050-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/01/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Aedes aegypti and Aedes albopictus are invasive mosquito species and significantly impact human health in southern China. Microbiota are confirmed to affect the development and immunity of mosquitoes. However, scientists have focused more on midgut microbiota of female mosquitoes and bacterial differences between female and male Aedes mosquitoes. The relationship between the midgut and entire body microbiota of Aedes is unclear. In this study, we collected mosquito samples reared under the same laboratory conditions and compared the microbial composition of midgut and entire bodies of Aedes aegypti and Aedes albopictus using 16S rRNA gene sequencing. METHODS In this study, we collected mosquito samples reared under the same laboratory conditions and compared the microbial composition of midgut and entire bodies of Aedes aegypti and Aedes albopictus using 16S rRNA gene sequencing. RESULTS A total of 341 OTUs were identified, showing that Proteobacteria was the dominant phylum and Methylobacterium the dominant genus in both Aedes aegypti and Aedes albopictus. The bacterial diversity and community structures of the entire bodies were similar between males and females in both Aedes aegypti and Aedes albopictus. Conversely, the bacterial compositions of male and female Aedes aegypti and Aedes albopictus were significantly different. NMDS analysis, UPGMA analysis, diversity indices and OTU distribution demonstrated that compositions and structures in midgut microbiota were similar but significantly different in the entire bodies of Aedes aegypti and Aedes albopictus. Functional prediction analysis showed that metabolism and environmental information processing were the dominant KEGG pathways at level 1. Our study showed that there were significantly different level 2 and 3 KEGG pathways in the midgut microbiota (16 level 2 and 24 level 3) and the entire bodies (33 level 2 and 248 level 3) between female Aedes albopictus and Aedes Aegypti. CONCLUSIONS Our findings that Aedes aegypti and Aedes albopictus reared in the same laboratory harbor a similar gut bacterial microbiome but different entire body microbiota imply that the gut microbiota of adult mosquitoes is environmentally determined regardless of the host genotype, but the entire body microbiota is more genetically determined. Our findings improved the understanding of the microbiota in the entire and partial tissues of Aedes mosquitoes.
Collapse
Affiliation(s)
- Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Zheng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Benjamin Sanogo
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong China
| | - Tao Ding
- Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, Guangdong China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Rubio CA. Two intertwined compartments coexisting in sporadic conventional colon adenomas. Intest Res 2021; 19:12-20. [PMID: 32079382 PMCID: PMC7873396 DOI: 10.5217/ir.2019.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/27/2019] [Indexed: 11/14/2022] Open
Abstract
Sporadic conventional colon adenomas are microscopically built of 2 intertwined compartments: one on top, harboring the dysplastic tissue that defines their histo-biomolecular attributes, and the other below, composed of non-dysplastic crypts with corrupted shapes (CCS). The CCS of 306 colon adenomas revealed asymmetric, haphazardly-distributed proliferating cell-domains (PC). In contrast, the PC-domains in normal controls were symmetric, being limited to the lower thirds of the crypts. In 28% out of 501 sporadic conventional adenomas, foci of p53-upregulated dysplastic tissue were found. The CCS in 30% of 108 sporadic adenomas showed p53-upregulated single cells, suggesting mounting somatic mutations. No p53-upregulated cells were found in the crypts of controls. In polypoid adenomas, the mucosa of the stalk without dysplastic tissue on top disclosed CCS with asymmetrical PC-domains and single p53-upregulated cells. The latter observations suggested that CCS had developed prior to and not after the growth of the dysplastic tissue on top. CCS were also found below colon adenomas in carcinogen-treated rats. It is concluded that the 2 intertwined histo-biological compartments of sporadic conventional colon adenomas are probably interdependent components. These findings may open new directions aimed to uncover the link between the normal colonic mucosa and the histogenesis of, conventional adenomas.
Collapse
Affiliation(s)
- Carlos A. Rubio
- Gastrointestinal Research Laboratory, Department of Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
The effect of energy restriction on development and progression of chronic kidney disease: review of the current evidence. Br J Nutr 2020; 125:1201-1214. [PMID: 32921320 DOI: 10.1017/s000711452000358x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Energy restriction (ER) has anti-ageing effects and probably protects from a range of chronic diseases including cancer, diabetes and chronic kidney disease (CKD). Specifically, ER has a positive impact on experimental kidney ageing, CKD (diabetic nephropathy, polycystic kidney disease) and acute kidney injury (nephrotoxic, ischaemia-reperfusion injury) through such mechanisms as increased autophagy, mitochondrial biogenesis and DNA repair, and decreased inflammation and oxidative stress. Key molecules contributing to ER-mediated kidney protection include adenosine monophosphate-activated protein kinase, sirtuin-1 and PPAR-γ coactivator 1α. However, CKD is a complex condition, and ER may potentially worsen CKD complications such as protein-energy wasting, bone-mineral disorders and impaired wound healing. ER mimetics are drugs, such as metformin and Na-glucose co-transporter-2 which mimic the action of ER. This review aims to provide comprehensive data regarding the effect of ER on CKD progression and outcomes.
Collapse
|
8
|
Hussan H, Drosdak A, Le Roux M, Patel K, Porter K, Clinton SK, Focht B, Noria S. The Long-term Impact of Roux-en-Y Gastric Bypass on Colorectal Polyp Formation and Relation to Weight Loss Outcomes. Obes Surg 2019; 30:407-415. [DOI: 10.1007/s11695-019-04176-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Dong HS, Chen P, Yu YB, Zang P, Wei Z. Simulated manned Mars exploration: effects of dietary and diurnal cycle variations on the gut microbiome of crew members in a controlled ecological life support system. PeerJ 2019; 7:e7762. [PMID: 31579622 PMCID: PMC6766369 DOI: 10.7717/peerj.7762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Changes in gut microbiome are closely related to dietary and environment variations, and diurnal circle interventions impact on human metabolism and the microbiome. Changes in human gut microbiome and serum biochemical parameters during long-term isolation in a controlled ecological life support system (CELSS) are of great significance for maintaining the health of crewmembers. The Green Star 180 project performed an integrated study involving a four-person, 180-day duration assessment in a CELSS, during which variations in gut microbiome and the concentration of serum 25-hydroxyvitamin D, α-tocopherol, retinol and folic acid from the crewmembers were determined. RESULTS Energy intake and body mass index decreased during the experiment. A trade-off between Firmicutes and Bacteroidetes during the study period was observed. Dynamic variations in the two dominant genus Bacteroides and Prevotella indicated a variation of enterotypes. Both the evenness and richness of the fecal microbiome decreased during the isolation in the CELSS. Transition of diurnal circle from Earth to Mars increased the abundance of Fusobacteria phylum and decreased alpha diversity of the fecal microbiome. The levels of serum 25-hydroxyvitamin D in the CELSS were significantly lower than those outside the CELSS. CONCLUSIONS The unique isolation process in the CELSS led to a loss of alpha diversity and a transition of enterotypes between Bacteroides and Prevotella. Attention should therefore be paid to the transition of the diurnal circle and its effects on the gut microbiome during manned Mars explorations. In particular, serum 25-hydroxyvitamin D levels require monitoring under artificial light environments and during long-term space flight. Large-scale studies are required to further consolidate our findings.
Collapse
Affiliation(s)
- Hai-Sheng Dong
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
- State Key Lab of Space Medicine Fundamentals and Application, Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Pu Chen
- State Key Lab of Space Medicine Fundamentals and Application, Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Yan-Bo Yu
- SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Peng Zang
- State Key Lab of Space Medicine Fundamentals and Application, Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Zhao Wei
- State Key Lab of Space Medicine Fundamentals and Application, Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
10
|
Hernández-Arriaga A, Baumann A, Witte OW, Frahm C, Bergheim I, Camarinha-Silva A. Changes in Oral Microbial Ecology of C57BL/6 Mice at Different Ages Associated with Sampling Methodology. Microorganisms 2019; 7:microorganisms7090283. [PMID: 31443509 PMCID: PMC6780121 DOI: 10.3390/microorganisms7090283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
The mouth is an important niche for bacterial colonization. Previous research used mouth microbiota to predict diseases like colon cancer and inflammatory bowel disease (IBD). It is still unclear how the sampling methodology influences microbial characterization. Our aim was to determine if the sampling methods, e.g., cotton swab or tissue biopsy, and the age influence the oral microbial composition of mice. Microbial DNA was extracted using a commercial kit and characterized targeting the 16s rRNA gene from mouth swabs and tissue biopsies from 2 and 15 months old C57BL/6 male mice kept in the same SPF facility. Our results show statistical different microbial community of the different ages, type of sampling, and the two fixed factors age x type of sample (p-value < 0.05). At the genus level, we identified that the genera Actinobacillus, Neisseria, Staphylococcus, and Streptococcus either increase or decrease in abundance depending on sampling and age. Additionally, the abundance of Streptococcus danieliae, Moraxella osloensis, and some unclassified Streptococcus was affected by the sampling method. While swab and tissue biopsies both identified the common colonizers of oral microbiota, cotton swabbing is a low-cost and practical method, validating the use of the swab as the preferred oral sampling approach.
Collapse
Affiliation(s)
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University Vienna, 1090 Vienna, Austria
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University Vienna, 1090 Vienna, Austria
| | | |
Collapse
|
11
|
Gu J, Thomas-Ahner JM, Riedl KM, Bailey MT, Vodovotz Y, Schwartz SJ, Clinton SK. Dietary Black Raspberries Impact the Colonic Microbiome and Phytochemical Metabolites in Mice. Mol Nutr Food Res 2019; 63:e1800636. [PMID: 30763455 DOI: 10.1002/mnfr.201800636] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/26/2018] [Indexed: 12/11/2022]
Abstract
SCOPE Black raspberries (BRB) are a rich source of bioactive phytochemicals, including anthocyanins and ellagitannins. These phytochemicals are poorly absorbed and may be transformed by gut microbiota into various metabolites that may impact the colonic mucosa or upon absorption have systemic bioactivity. The objective of this study is to define the impact of a BRB-containing diet on the colon microbiome in mice and quantify the phytochemical metabolites in the colon contents and circulation. METHODS AND RESULTS Male mice were fed 10% w/w freeze-dried BRB powder for 6 weeks. The colonic microbiota was evaluated by 16S rRNA gene sequencing. Anthocyanin and ellagitannin metabolites, protocatechuic acid, and urolithins were analyzed by HPLC-MS/MS. The BRB diet impacted colon mucosal microbial composition with a more robust effect observed on the luminal microflora. BRB-derived protocatechuic acid and urolithins were quantified in the colon, luminal contents, plasma, liver, and prostate with protocatechuic acid present in higher concentrations compared to urolithins. CONCLUSION This study highlights the complex interactions between dietary phytochemicals, the host microbiome, and metabolism. It is demonstrated that microbially produced phytochemical metabolites are present in the colon and systemic circulation where they may exert biological activity.
Collapse
Affiliation(s)
- Junnan Gu
- Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, 43210, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | | | - Kenneth M Riedl
- Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA.,Department of Food Science and Technology, The Ohio State University, Columbus, 43210, OH, USA.,Nutrient & Phytochemical Analytic Shared Resource, The Ohio State University, Columbus, 43210, OH, USA
| | - Michael T Bailey
- Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA.,Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, 43205, OH, USA.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, 43210, OH, USA
| | - Yael Vodovotz
- Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA.,Department of Food Science and Technology, The Ohio State University, Columbus, 43210, OH, USA
| | - Steven J Schwartz
- Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA.,Department of Food Science and Technology, The Ohio State University, Columbus, 43210, OH, USA.,Nutrient & Phytochemical Analytic Shared Resource, The Ohio State University, Columbus, 43210, OH, USA
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, 43210, OH, USA
| |
Collapse
|
12
|
Ostermann AL, Wunderlich CM, Schneiders L, Vogt MC, Woeste MA, Belgardt BF, Niessen CM, Martiny B, Schauss AC, Frommolt P, Nikolaev A, Hövelmeyer N, Sears RC, Koch PJ, Günzel D, Brüning JC, Wunderlich FT. Intestinal insulin/IGF1 signalling through FoxO1 regulates epithelial integrity and susceptibility to colon cancer. Nat Metab 2019; 1:371-389. [PMID: 32694718 DOI: 10.1038/s42255-019-0037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/24/2019] [Indexed: 12/30/2022]
Abstract
Obesity promotes the development of insulin resistance and increases the incidence of colitis-associated cancer (CAC), but whether a blunted insulin action specifically in intestinal epithelial cells (IECs) affects CAC is unknown. Here, we show that obesity impairs insulin sensitivity in IECs and that mice with IEC-specific inactivation of the insulin and IGF1 receptors exhibit enhanced CAC development as a consequence of impaired restoration of gut barrier function. Blunted insulin signalling retains the transcription factor FOXO1 in the nucleus to inhibit expression of Dsc3, thereby impairing desmosome formation and epithelial integrity. Both IEC-specific nuclear FoxO1ADA expression and IEC-specific Dsc3 inactivation recapitulate the impaired intestinal integrity and increased CAC burden. Spontaneous colonic tumour formation and compromised intestinal integrity are also observed upon IEC-specific coexpression of FoxO1ADA and a stable Myc variant, thus suggesting a molecular mechanism through which impaired insulin action and nuclear FOXO1 in IECs promotes CAC.
Collapse
Affiliation(s)
- A L Ostermann
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
| | - C M Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - L Schneiders
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - M C Vogt
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - M A Woeste
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - B F Belgardt
- Max Planck Institute for Metabolism Research, Cologne, Germany
- German Diabetes Center (DDZ), Düsseldorf, Germany
| | - C M Niessen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - B Martiny
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - A C Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - P Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - A Nikolaev
- Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany
| | - N Hövelmeyer
- Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany
| | - R C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR, USA
| | - P J Koch
- Department of Dermatology, Charles C. Gates Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver, Aurora, CO, USA
| | - D Günzel
- Institute for Clinical Physiology, Charité, Berlin, Germany
| | - J C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - F T Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany.
| |
Collapse
|
13
|
Tanca A, Abbondio M, Palomba A, Fraumene C, Marongiu F, Serra M, Pagnozzi D, Laconi E, Uzzau S. Caloric restriction promotes functional changes involving short-chain fatty acid biosynthesis in the rat gut microbiota. Sci Rep 2018; 8:14778. [PMID: 30283130 PMCID: PMC6170429 DOI: 10.1038/s41598-018-33100-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction (CR) is known to promote health and longevity, likely via modification of the gut microbiota (GM). However, functional and metabolic changes induced in the GM during CR are still unidentified. Here, we investigated the short- and long-term effects of CR on the rat GM using a metaproteogenomic approach. We show that a switch from ad libitum (AL) low fat diet to CR in young rats is able to induce rapid and deep changes in their GM metaproteomic profile, related to a reduction of the Firmicutes/Bacteroidetes ratio and an expansion of lactobacilli. Specifically, we observed a significant change in the expression of the microbial enzymes responsible for short-chain fatty acid biosynthesis, with CR boosting propionogenesis and limiting butyrogenesis and acetogenesis. Furthermore, these CR-induced effects were maintained up to adulthood and started to be reversed after a short-term diet change. We also found that CR alters the abundance of an array of host proteins released in stool, mainly related to epithelial barrier integrity and inflammation. Hence, our results provide thorough information about CR-induced modifications to GM and host functional activity, and might constitute the basis for novel GM-based approaches aimed at monitoring the effectiveness of dietary interventions.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Monica Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy.
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
14
|
Yao AJ, Chen JH, Xu Y, Zhang ZW, Zou ZQ, Yang HT, Hua QH, Zhao JS, Kang JX, Zhang XH. Endogenous n-3 polyunsaturated fatty acids prevent azoxymethane-induced colon tumorigenesis in mice fed a high-fat diet. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Kok DEG, Rusli F, van der Lugt B, Lute C, Laghi L, Salvioli S, Picone G, Franceschi C, Smidt H, Vervoort J, Kampman E, Müller M, Steegenga WT. Lifelong calorie restriction affects indicators of colonic health in aging C57Bl/6J mice. J Nutr Biochem 2018; 56:152-164. [PMID: 29571009 DOI: 10.1016/j.jnutbio.2018.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/03/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022]
Abstract
Diminished colonic health is associated with various age-related pathologies. Calorie restriction (CR) is an effective strategy to increase healthy lifespan, although underlying mechanisms are not fully elucidated. Here, we report the effects of lifelong CR on indicators of colonic health in aging C57Bl/6J mice. Compared to an ad libitum control and moderate-fat diet, 30% energy reduction was associated with attenuated immune- and inflammation-related gene expression in the colon. Furthermore, expression of genes involved in lipid metabolism was higher upon CR, which may point towards efficient regulation of energy metabolism. The relative abundance of bacteria considered beneficial to colonic health, such as Bifidobacterium and Lactobacillus, increased in the mice exposed to CR for 28 months as compared to the other diet groups. We found lower plasma levels of interleukin-6 and lower levels of various metabolites, among which are bile acids, in the colonic luminal content of CR-exposed mice as compared to the other diet groups. Switching from CR to an ad libitum moderate-fat diet at old age (24 months) revealed remarkable phenotypic plasticity in terms of gene expression, microbiota composition and metabolite levels, although expression of a subset of genes remained CR-associated. This study demonstrated in a comprehensive way that CR affects indicators of colonic health in aging mice. Our findings provide unique leads for further studies that need to address optimal and feasible strategies for prolonged energy deprivation, which may contribute to healthy aging.
Collapse
Affiliation(s)
- Dieuwertje E G Kok
- Division of Human Nutrition, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
| | - Fenni Rusli
- Division of Human Nutrition, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
| | - Benthe van der Lugt
- Division of Human Nutrition, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
| | - Carolien Lute
- Division of Human Nutrition, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, 47521, Cesena, (FC), Italy.
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40126, Bologna, Italy.
| | - Gianfranco Picone
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, 47521, Cesena, (FC), Italy.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40126, Bologna, Italy.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
| | - Michael Müller
- Nutrigenomics and Systems Nutrition Group, Norwich Medical School, University of East Anglia, NR4 7UQ, Norwich, UK.
| | - Wilma T Steegenga
- Division of Human Nutrition, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
16
|
Abstract
The intestinal microbiota consists of a dynamic organization of bacteria, viruses, archaea, and fungal species essential for maintaining gut homeostasis and protecting the host against pathogenic invasion. When dysregulated, the intestinal microbiota can contribute to colorectal cancer development. Though the microbiota is multifaceted in its ability to induce colorectal cancer, this review will focus on the capability of the microbiota to induce colorectal cancer through the modulation of immune function and the production of microbial-derived metabolites. We will also explore an experimental technique that is revolutionizing intestinal research. By elucidating the interactions of microbial species with epithelial tissue, and allowing for drug screening of patients with colorectal cancers, organoid development is a novel culturing technique that is innovating intestinal research. As a cancer that remains one of the leading causes of cancer-related deaths worldwide, it is imperative that scientific findings are translated into the creation of effective therapeutics to treat colorectal cancer.
Collapse
Affiliation(s)
- Sofia Oke
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, 1 King’s College Cir, MSB 7302, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|