1
|
Sun L, Xing J, Zhou X, Song X, Gao S. Wnt/β-catenin signalling, epithelial-mesenchymal transition and crosslink signalling in colorectal cancer cells. Biomed Pharmacother 2024; 175:116685. [PMID: 38710151 DOI: 10.1016/j.biopha.2024.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Colorectal cancer (CRC), with its significant incidence and metastatic rates, profoundly affects human health. A common oncogenic event in CRC is the aberrant activation of the Wnt/β-catenin signalling pathway, which drives both the initiation and progression of the disease. Persistent Wnt/β-catenin signalling facilitates the epithelial-mesenchymal transition (EMT), which accelerates CRC invasion and metastasis. This review provides a summary of recent molecular studies on the role of the Wnt/β-catenin signalling axis in regulating EMT in CRC cells, which triggers metastatic pathogenesis. We present a comprehensive examination of the EMT process and its transcriptional controllers, with an emphasis on the crucial functions of β-catenin, EMT transcription factors (EMT-TFs). We also review recent evidences showing that hyperactive Wnt/β-catenin signalling triggers EMT and metastatic phenotypes in CRC via "Destruction complex" of β-catenin mechanisms. Potential therapeutic and challenges approache to suppress EMT and prevent CRC cells metastasis by targeting Wnt/β-catenin signalling are also discussed. These include direct β-catenin inhibitors and novel targets of the Wnt pathway, and finally highlight novel potential combinational treatment options based on the inhibition of the Wnt pathway.
Collapse
Affiliation(s)
- Luanbiao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Jianpeng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xuanpeng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xinyuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong Special Administrative Region of China
| | - Shuohui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
2
|
Luo NF, Li JL, Lv J, Chen FK, Li YN, Tang M, Liu PJ. Role of sodium/iodide symporter overexpression in inhibiting thyroid cancer cell invasion and stem cell maintenance by inhibiting the β-catenin/LEF-1 pathway. Heliyon 2024; 10:e27840. [PMID: 38545139 PMCID: PMC10965522 DOI: 10.1016/j.heliyon.2024.e27840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
Background In thyroid cancers, a reduction in the expression of the sodium/iodide symporter (NIS) is observed concomitant with a diminution in cancer cell differentiation. The β-catenin/LEF-1 pathway emerges as a crucial regulatory pathway influencing the functional expression of NIS in human thyroid cancer cells. Further research is required to comprehensively elucidate the role of NIS overexpression in impeding the progression of thyroid cancer cells. Methods Human papillary thyroid carcinoma (PTC) cell lines, specifically PTC-1 and KTC-1, were subjected to Scratch and Transwell assays, colony formation, and tumor sphere formation tests to investigate invasion and migration, focusing on the impact of NIS overexpression. The assessment involved the use of western blot to analyze the expression levels of β-catenin, NIS, CD133, SRY-related HMG box2 (Sox2), lymphoid enhancer-binding factor 1 (LEF-1), NANOG, octamer-binding transcription factor 4 (Oct4), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), and epithelial cellular adhesion molecule (EpCAM). Statistical analysis was conducted using SPSS version 20.0, and the graphs were developed using GraphPad Prism 7 (GraphPad Software, Inc.). Results Our observations revealed that Nthy-ori-3-1 cell lines exhibited notably higher average expression levels of NIS, yet significantly lower levels of LEF-1 and β-catenin compared to PTC-1 and KTC-1 cell lines. Furthermore, the overexpression of β-catenin resulted in reduced binding of LEF-1 to NIF promotion but concurrently increased the expression of NIS. The downregulation of NIS markedly enhanced the expression of ALDH1A1, CD133, OCT4, Nanog, SOX2, and EpCam-all of which are targets within the Wnt/β-catenin signaling pathway. Conversely, the upregulation of NIS suppressed the expression of these proteins. Moreover, cells treated with β-catenin activators demonstrated an increased capability to form more spheroids and displayed heightened aggressiveness. Conversely, the NIS overexpression (OE) group exhibited suppressed abilities in invasion and colony formation. Conclusion Thyroid cancer cells exhibit diminished expression of NIS, and the invasion and maintenance of stem cells in thyroid cancer cells were hindered by NIS OE through the inhibition of the β-catenin/LEF-1 pathway. Further research is warranted to comprehensively assess this outcome, which holds promise as a potential targeted treatment for thyroid cancer.
Collapse
Affiliation(s)
- Nan-Fang Luo
- Department of Cardiac Function, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Jia-Li Li
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Juan Lv
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Fu-Kun Chen
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Ya-Nan Li
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Ming Tang
- Department of Pathology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Peng-Jie Liu
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| |
Collapse
|
3
|
Linkova N, Khavinson V, Diatlova A, Myakisheva S, Ryzhak G. Peptide Regulation of Chondrogenic Stem Cell Differentiation. Int J Mol Sci 2023; 24:ijms24098415. [PMID: 37176122 PMCID: PMC10179481 DOI: 10.3390/ijms24098415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The search for innovative ways to treat osteoarthritis (OA) is an urgent task for molecular medicine and biogerontology. OA leads to disability in persons of middle and older age, while safe and effective methods of treating OA have not yet been discovered. The directed differentiation of mesenchymal stem cells (MSCs) into chondrocytes is considered one of the possible methods to treat OA. This review describes the main molecules involved in the chondrogenic differentiation of MSCs. The peptides synthesized on the basis of growth factors' structures (SK2.1, BMP, B2A, and SSPEPS) and components of the extracellular matrix of cartilage tissue (LPP, CFOGER, CMP, RDG, and N-cadherin mimetic peptide) offer the greatest promise for the regulation of the chondrogenic differentiation of MSCs. These peptides regulate the WNT, ERK-p38, and Smad 1/5/8 signaling pathways, gene expression, and the synthesis of chondrogenic differentiation proteins such as COL2, SOX9, ACAN, etc.
Collapse
Affiliation(s)
- Natalia Linkova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Vladimir Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
- Pavlov Institute of Physiology of Russia Academy of Sciences, Makarova emb. 6, 199034 Saint Petersburg, Russia
| | - Anastasiia Diatlova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Svetlana Myakisheva
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Galina Ryzhak
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| |
Collapse
|
4
|
González-Cruz AO, Hernández-Juárez J, Ramírez-Cabrera MA, Balderas-Rentería I, Arredondo-Espinoza E. Peptide-based drug-delivery systems: A new hope for improving cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Cascallar M, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers (Basel) 2022; 14:cancers14092238. [PMID: 35565373 PMCID: PMC9099873 DOI: 10.3390/cancers14092238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an “avatar” model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-704
| |
Collapse
|
6
|
Shi C, Yang EJ, Tao S, Ren G, Mou PK, Shim JS. Natural products targeting cancer cell dependency. J Antibiot (Tokyo) 2021; 74:677-686. [PMID: 34163025 DOI: 10.1038/s41429-021-00438-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Precision cancer medicine is a tailored treatment approach for individual cancer patients with different genomic characteristics. Mutated or hyperactive oncogenes have served as main drug targets in current precision cancer medicine, while defective or inactivated tumor suppressors in general have not been considered as druggable targets. Synthetic lethality is one of very few approaches that enable to target defective tumor suppressors with pharmacological agents. Synthetic lethality exploits cancer cell dependency on a protein or pathway, which arises when the function of a tumor suppressor is defective. This approach has been proven to be effective in clinical settings since the successful clinical introduction of BRCA-PARP synthetic lethality for the treatment of breast and ovarian cancer with defective BRCA. Subsequently, large-scale screenings with RNAi, CRISPR/Cas9-sgRNAs, and chemical libraries have been applied to identify synthetic lethal partners of tumor suppressors. Natural products are an important source for the discovery of pharmacologically active small molecules. However, little effort has been made in the discovery of synthetic lethal small molecules from natural products. This review introduces recent advances in the discovery of natural products targeting cancer cell dependency and discusses potentials of natural products in the precision cancer medicine.
Collapse
Affiliation(s)
- Changxiang Shi
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Shishi Tao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guowen Ren
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Pui Kei Mou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China. .,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
7
|
Jensen-Cody CW, Crooke AK, Rotti PG, Ievlev V, Shahin W, Park SY, Lynch TJ, Engelhardt JF. Lef-1 controls cell cycle progression in airway basal cells to regulate proliferation and differentiation. Stem Cells 2021; 39:1221-1235. [PMID: 33932322 PMCID: PMC8785221 DOI: 10.1002/stem.3386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 11/10/2022]
Abstract
The mammalian airways are lined by a continuous epithelial layer that is maintained by diverse populations of resident multipotent stem cells. These stem cells are responsible for replenishing the epithelium both at homeostasis and following injury, making them promising targets for stem cell and genetic-based therapies for a variety of respiratory diseases. However, the mechanisms that regulate when and how these stem cells proliferate, migrate, and differentiate remains incompletely understood. Here, we find that the high mobility group (HMG) domain transcription factor Lef-1 regulates proliferation and differentiation of mouse tracheal basal cells. We demonstrate that conditional deletion of Lef-1 stalls basal cell proliferation at the G1/S transition of the cell cycle, and that Lef-1 knockout cells are unable to maintain luminal tracheal cell types in long-term air-liquid interface culture. RNA sequencing analysis revealed that Lef-1 knockout (Lef-1KO) results in downregulation of key DNA damage response and cell cycle progression genes, including the kinase Chek1. Furthermore, chemical inhibition of Chek1 is sufficient to stall basal cell self-renewal in a similar fashion as Lef-1 deletion. Notably, the cell cycle block imposed by Lef-1KO in vitro is transient and basal cells eventually compensate to proliferate normally in a Chek1-independent manner. Finally, Lef-1KO cells were unable to fully regenerate tracheal epithelium following injury in vivo. These findings reveal that Lef-1 is essential for proper basal cell function. Thus, modulating Lef-1 function in airway basal cells may have applications in regenerative medicine.
Collapse
Affiliation(s)
- Chandler W Jensen-Cody
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Adrianne K Crooke
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Pavana G Rotti
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Vitaly Ievlev
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Weam Shahin
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo-Yeun Park
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas J Lynch
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - John F Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Bakare OO, Gokul A, Wu R, Niekerk LA, Klein A, Keyster M. Biomedical Relevance of Novel Anticancer Peptides in the Sensitive Treatment of Cancer. Biomolecules 2021; 11:1120. [PMID: 34439786 PMCID: PMC8394746 DOI: 10.3390/biom11081120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
The global increase in cancer mortality and economic losses necessitates the cautious quest for therapeutic agents with compensatory advantages over conventional therapies. Anticancer peptides (ACPs) are a subset of host defense peptides, also known as antimicrobial peptides, which have emerged as therapeutic and diagnostic candidates due to several compensatory advantages over the non-specificity of the current treatment regimens. This review aimed to highlight the ravaging incidence of cancer, the use of ACPs in cancer treatment with their mechanisms, ACP discovery and delivery methods, and the limitations for their use. This would create awareness for identifying more ACPs with better specificity, accuracy and sensitivity towards the disease. It would also promote their efficacious utilization in biotechnology, medical sciences and molecular biology to ease the severity of the disease and enable the patients living with these conditions to develop an accommodating lifestyle.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthaditjhaba 9866, South Africa;
| | - Ruomou Wu
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| |
Collapse
|
9
|
Wendt M, Bellavita R, Gerber A, Efrém NL, van Ramshorst T, Pearce NM, Davey PRJ, Everard I, Vazquez-Chantada M, Chiarparin E, Grieco P, Hennig S, Grossmann TN. Bicyclic β-Sheet Mimetics that Target the Transcriptional Coactivator β-Catenin and Inhibit Wnt Signaling. Angew Chem Int Ed Engl 2021; 60:13937-13944. [PMID: 33783110 PMCID: PMC8252567 DOI: 10.1002/anie.202102082] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Protein complexes are defined by the three-dimensional structure of participating binding partners. Knowledge about these structures can facilitate the design of peptidomimetics which have been applied for example, as inhibitors of protein-protein interactions (PPIs). Even though β-sheets participate widely in PPIs, they have only rarely served as the basis for peptidomimetic PPI inhibitors, in particular when addressing intracellular targets. Here, we present the structure-based design of β-sheet mimetics targeting the intracellular protein β-catenin, a central component of the Wnt signaling pathway. Based on a protein binding partner of β-catenin, a macrocyclic peptide was designed and its crystal structure in complex with β-catenin obtained. Using this structure, we designed a library of bicyclic β-sheet mimetics employing a late-stage diversification strategy. Several mimetics were identified that compete with transcription factor binding to β-catenin and inhibit Wnt signaling in cells. The presented design strategy can support the development of inhibitors for other β-sheet-mediated PPIs.
Collapse
Affiliation(s)
- Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rosa Bellavita
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alan Gerber
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nina-Louisa Efrém
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Thirza van Ramshorst
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nicholas M Pearce
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Paul R J Davey
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Isabel Everard
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Wendt M, Bellavita R, Gerber A, Efrém N, Ramshorst T, Pearce NM, Davey PRJ, Everard I, Vazquez‐Chantada M, Chiarparin E, Grieco P, Hennig S, Grossmann TN. Bicyclic β‐Sheet Mimetics that Target the Transcriptional Coactivator β‐Catenin and Inhibit Wnt Signaling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Rosa Bellavita
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Alan Gerber
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Nina‐Louisa Efrém
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Thirza Ramshorst
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Nicholas M. Pearce
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | | | - Isabel Everard
- Mechanistic Biology and Profiling Discovery Sciences, R&D AstraZeneca Cambridge UK
| | | | | | - Paolo Grieco
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| |
Collapse
|
11
|
Pasvenskaite A, Liutkeviciene R, Gedvilaite G, Vilkeviciute A, Liutkevicius V, Uloza V. The Role of IL-9 Polymorphisms and Serum IL-9 Levels in Carcinogenesis and Survival Rate for Laryngeal Squamous Cell Carcinoma. Cells 2021; 10:cells10030601. [PMID: 33803218 PMCID: PMC8001846 DOI: 10.3390/cells10030601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have described the dichotomous function of IL-9 in various cancer diseases. However, its function has still not been analysed in laryngeal squamous cell carcinoma (LSCC). In the present study, we evaluated five single nucleotide polymorphisms (SNPs) of IL-9 (rs1859430, rs2069870, rs11741137, rs2069885, and rs2069884) and determined their associations with the patients' five-year survival rate. Additionally, we analysed serum IL-9 levels using an enzyme-linked immunosorbent assay. Three hundred LSCC patients and 533 control subjects were included in this study. A significant association between the patients' survival rate and distribution of IL-9 rs1859430 variants was revealed: patients carrying AA genotype had a higher risk of dying (p = 0.005). Haplotypes A-G-C-G-G of IL-9 (rs1859430, rs2069870, rs11741137, rs2069885, and rs2069884) were associated with 47% lower odds of LSCC occurrence (p = 0.035). Serum IL-9 levels were found detectable in three control group subjects (8.99 ± 12.03 pg/mL). In summary, these findings indicate that the genotypic distribution of IL-9 rs1859430 negatively influences the five-year survival rate of LSCC patients. The haplotypes A-G-C-G-G of IL-9 (rs1859430, rs2069870, rs11741137, rs2069885, and rs2069884) are associated with the lower odds of LSCC development.
Collapse
Affiliation(s)
- Agne Pasvenskaite
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (V.L.); (V.U.)
- Correspondence: ; Tel.: +370-6532-3034
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (R.L.); (G.G.); (A.V.)
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (R.L.); (G.G.); (A.V.)
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (R.L.); (G.G.); (A.V.)
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (V.L.); (V.U.)
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (V.L.); (V.U.)
| |
Collapse
|
12
|
Yadav V, Jobe N, Mehdawi L, Andersson T. Targeting Oncogenic WNT Signalling with WNT Signalling-Derived Peptides. Handb Exp Pharmacol 2021; 269:279-303. [PMID: 34455485 DOI: 10.1007/164_2021_528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
WNT signalling is known to be a crucial regulator of embryonic development and tissue homeostasis. Aberrant expression of WNT signalling elements or their mutations has been implicated in carcinogenesis and/or the progression of several different cancer types. Investigations of how WNT signalling affects carcinogenesis and cancer progression have revealed that it has essential roles in the regulation of proliferation, apoptosis, and cancer stemness and in angiogenesis and metastasis. Consequently, WNT-targeted therapy has gained much attention and has resulted in the development of several small molecules, the majority of which act as inhibitors of different WNT signalling events. However, although numerous inhibitory WNT signalling drug candidates have been included in clinical trials, no significant breakthroughs have been made. This could possibly be due to problems with inefficient binding to the target, compensatory signalling mechanisms and toxicity towards normal cells. Therapeutic peptides targeting WNT signalling in cancer cells have been developed as an alternative approach, with the hope that they might overcome the limitations reported for small WNT inhibitory molecules. In this chapter, we describe recent developments made in the design and characterization of WNT signalling-derived peptides aiming at their use as alternative cancer therapeutics and/or combined adjuvant therapy to conventional therapies.
Collapse
Affiliation(s)
- Vikas Yadav
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Njainday Jobe
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lubna Mehdawi
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tommy Andersson
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
13
|
Fang H, Li R, Gu Y, Fei Y, Jin K, Chen Y, Cao Y, Liu X, Lv K, Wang J, Yu K, Lin C, Liu H, Li H, He H, Zhang W, Zhang H, Shen Z. Intratumoral interleukin-9 delineates a distinct immunogenic class of gastric cancer patients with better prognosis and adjuvant chemotherapeutic response. Oncoimmunology 2020; 9:1856468. [PMID: 33354409 PMCID: PMC7738302 DOI: 10.1080/2162402x.2020.1856468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interleukin-9 (IL-9) is a T cell cytokine that is associated with inflammation and allergy, but the expression level of IL-9 in gastric cancer and its clinical significance are less well established. Our study aims to uncover the critical role of IL-9 in the progression of gastric cancer. Here, a total of 453 patients with gastric cancer undergoing curative resection were enrolled for immunohistochemical analyses, and Kaplan-Meier analysis was conducted to compare overall survival of patients in different subgroups. We further investigated the correlation between IL-9 expression and functional status of intratumoral CD8+ T cells by means of Flow cytometry. Moreover, in vitro study was preformed to further explore the influence of IL-9 on anti-tumor immunity. Results indicated that gastric cancer patients with high IL-9 expression showed improved overall survival and gained more benefit from 5-fluorouracil-based adjuvant chemotherapy (ACT). High IL-9 expression was associated with increased numbers and elevated function of intratumoral CD8+ T cells. In vitro study revealed that recombinant human IL-9 (rhIL-9) exhibit anti-tumor activity via enhancing the function of intratumoral CD8+ T cells. Moreover, we found rhIL-9 could augment the efficacy of Pembrolizumab in gastric cancer. In summary, these results suggest that IL-9 expression could act as an independent predictor for overall survival and ACT response and enhancing IL-9 signaling might represent an important therapeutic strategy in gastric cancer.
Collapse
Affiliation(s)
- H Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - R Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Gu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuchao Fei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yifan Cao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kunpeng Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Gastric Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Kuan Yu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenbin Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Yu SL, Koo H, Lee SI, Kang J, Han YH, Yeom YI, Lee DC. A Synthetic CPP33-Conjugated HOXA9 Active Domain Peptide Inhibits Invasion Ability of Non-Small Lung Cancer Cells. Biomolecules 2020; 10:biom10111589. [PMID: 33238593 PMCID: PMC7700116 DOI: 10.3390/biom10111589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Homeobox A9 (HOXA9) expression is associated with the aggressive growth of cancer cells and poor prognosis in lung cancer. Previously, we showed that HOXA9 can serve as a potential therapeutic target for the treatment of metastatic non-small cell lung cancer (NSCLC). In the present study, we have carried out additional studies toward the development of a peptide-based therapeutic agent. Vectors expressing partial DNA fragments of HOXA9 were used to identify a unique domain involved in the inhibition of NSCLC cell invasion. Next, we performed in vitro invasion assays and examined the expression of EMT-related genes in transfected NSCLC cells. The C-terminal fragment (HOXA9-C) of HOXA9 inhibited cell invasion and led to upregulation of CDH1 and downregulation of SNAI2 in A549 and NCI-H1299 cells. Reduced SNAI2 expression was consistent with the decreased binding of transcription factor NF-kB to the SNAI2 promoter region in HOXA9-C overexpressing cells. Based on the above results, we synthesized a cell-permeable peptide, CPP33-HADP (HOXA9 active domain peptide), for lung-specific delivery and tested its therapeutic efficiency. CPP33-HADP effectively reduced the invasion ability of NSCLC cells in both in vitro and in vivo mouse models. Our results suggest that CPP33-HADP has significant potential for therapeutic applications in metastatic NSCLC.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.-I.L.); (J.K.); (Y.-H.H.)
- Correspondence: (S.-L.Y.); (D.C.L.)
| | - Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (Y.I.Y.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Se-In Lee
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.-I.L.); (J.K.); (Y.-H.H.)
| | - JaeKu Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.-I.L.); (J.K.); (Y.-H.H.)
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Young-Hyun Han
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.-I.L.); (J.K.); (Y.-H.H.)
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (Y.I.Y.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (Y.I.Y.)
- Correspondence: (S.-L.Y.); (D.C.L.)
| |
Collapse
|
15
|
Chen Y, Fu Z, Li D, Yue Y, Liu X. Optimizations of a novel fluorescence polarization-based high-throughput screening assay for β-catenin/LEF1 interaction inhibitors. Anal Biochem 2020; 612:113966. [PMID: 32956692 DOI: 10.1016/j.ab.2020.113966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 01/20/2023]
Abstract
Aberrant activation of the Wnt/β-catenin signaling pathway is prominent in the development and metastasis of non-small cell lung cancer (NSCLC). Highly effective inhibition of this pathway highlights a therapeutic avenue against NSCLC. Moreover, β-catenin/LEF1 interaction regulates β-catenin nuclear transport as well as the transcriptions of the key oncogenes in Wnt/β-catenin signaling pathway. Therefore, interruption of this interaction would be a promising therapeutic strategy for NSCLC metastasis. To date, no economical and rapid high-throughput screening (HTS) assay has been reported for the discovery of β-catenin/LEF1 interaction inhibitors. In this study, we developed a novel fluorescence polarization (FP)-based HTS assay to identify β-catenin/LEF1 interaction inhibitors. The FITC-LEF1 sequence, incubation time, temperature, and DMSO resistance were optimized, and then a high Z' factor of 0.77 was achieved. A pilot screening of a natural product library via this established FP screening assay identified sanguinarine analogues as potential β-catenin/LEF1 interaction inhibitors. GST pull-down and surface plasmon resonance (SPR) assay demonstrated that β-catenin/LEF1 interaction is a potential anticancer target of sanguinarine in vitro. This newly developed FP screening assay will be vital for the rapid discovery of novel Wnt inhibitors targeting β-catenin/LEF1 interaction.
Collapse
Affiliation(s)
- Yunyu Chen
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, 241002, China
| | - Zhenghao Fu
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, 241002, China
| | - Dongsheng Li
- Department of Medicinal Chemistry, Shanghai Synergy Pharmaceutical Sciences Co., Ltd., Shanghai, 201203, China
| | - Yuhuan Yue
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, China.
| | - Xiaoping Liu
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
16
|
Park SM, Do-Thi VA, Lee JO, Lee H, Kim YS. Interleukin-9 Inhibits Lung Metastasis of Melanoma through Stimulating Anti-Tumor M1 Macrophages. Mol Cells 2020; 43:479-490. [PMID: 32326670 PMCID: PMC7264476 DOI: 10.14348/molcells.2020.0047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Interleukin-9 (IL-9) is well known for its role in allergic inflammation. For cancer, both pro- and anti-tumor effects of IL-9 were controversially reported, but the impact of IL-9 on tumor metastasis has not yet been clarified. In this study, IL-9 was expressed as a secretory form (sIL-9) and a membrane-bound form (mbIL-9) on B16F10 melanoma cells. The mbIL-9 was engineered as a chimeric protein with the transmembrane and cytoplasmic region of TNF-α. The effect of either mbIL-9 or sIL-9 expressing cells were analyzed on the metastasis capability of the cancer cells. After three weeks of tumor implantation into C57BL/6 mice through the tail vein, the number of tumor modules in lungs injected with IL-9 expressing B16F10 was 5-fold less than that of control groups. The percentages of CD4+ T cells, CD8+ T cells, NK cells, and M1 macrophages considerably increased in the lungs of the mice injected with IL-9 expressing cells. Among them, the M1 macrophage subset was the most significantly enhanced. Furthermore, peritoneal macrophages, which were stimulated with either sIL-9 or mbIL-9 expressing transfectant, exerted higher anti-tumor cytotoxicity compared with that of the mock control. The IL-9-stimulated peritoneal macrophages were highly polarized to M1 phenotype. Stimulation of RAW264.7 macrophages with sIL-9 or mbIL-9 expressing cells also significantly increased the cytotoxicity of those macrophages against wild-type B16F10 cells. These results clearly demonstrate that IL-9 can induce an anti-metastasis effect by enhancing the polarization and proliferation of M1 macrophages.
Collapse
Affiliation(s)
- Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 3434, Korea
| | - Van Anh Do-Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 3434, Korea
| | - Jie-Oh Lee
- Department of Life Sciences, POSTECH, Pohang 37673, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 414, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 3434, Korea
| |
Collapse
|
17
|
Xiao J, Glasgow E, Agarwal S. Zebrafish Xenografts for Drug Discovery and Personalized Medicine. Trends Cancer 2020; 6:569-579. [PMID: 32312681 DOI: 10.1016/j.trecan.2020.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Cancer is the second leading cause of death in the world. Given that cancer is a highly individualized disease, predicting the best chemotherapeutic treatment for individual patients can be difficult. Ex vivo models such as mouse patient-derived xenografts (PDX) and organoids are being developed to predict patient-specific chemosensitivity profiles before treatment in the clinic. Although promising, these models have significant disadvantages including long growth times that introduce genetic and epigenetic changes to the tumor. The zebrafish xenograft assay is ideal for personalized medicine. Imaging of the small, transparent fry is unparalleled among vertebrate organisms. In addition, the speed (5-7 days) and small patient tissue requirements (100-200 cells per animal) are unique features of the zebrafish xenograft model that enable patient-specific chemosensitivity analyses.
Collapse
Affiliation(s)
- Jerry Xiao
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
18
|
Affiliation(s)
- John Howl
- Research Institute in Healthcare Science, University of Wolverhampton Wolverhampton UK
| | - Sarah Jones
- Research Institute in Healthcare Science, University of Wolverhampton Wolverhampton UK
| |
Collapse
|
19
|
Carradori D, Labrak Y, Miron VE, Saulnier P, Eyer J, Préat V, des Rieux A. Retinoic acid-loaded NFL-lipid nanocapsules promote oligodendrogenesis in focal white matter lesion. Biomaterials 2020; 230:119653. [DOI: 10.1016/j.biomaterials.2019.119653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 02/08/2023]
|
20
|
Kumar S, Dhamija B, Marathe S, Ghosh S, Dwivedi A, Karulkar A, Sharma N, Sengar M, Sridhar E, Bonda A, Thorat J, Tembhare P, Shet T, Gujral S, Bagal B, Laskar S, Jain H, Purwar R. The Th9 Axis Reduces the Oxidative Stress and Promotes the Survival of Malignant T Cells in Cutaneous T-Cell Lymphoma Patients. Mol Cancer Res 2020; 18:657-668. [PMID: 31996468 DOI: 10.1158/1541-7786.mcr-19-0894] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/09/2019] [Accepted: 01/24/2020] [Indexed: 11/16/2022]
Abstract
Immune dysfunction is critical in pathogenesis of cutaneous T-cell lymphoma (CTCL). Few studies have reported abnormal cytokine profile and dysregulated T-cell functions during the onset and progression of certain types of lymphoma. However, the presence of IL9-producing Th9 cells and their role in tumor cell metabolism and survival remain unexplored. With this clinical study, we performed multidimensional blood endotyping of CTCL patients before and after standard photo/chemotherapy and revealed distinct immune hallmarks of the disease. Importantly, there was a higher frequency of "skin homing" Th9 cells in CTCL patients with early (T1 and T2) and advanced-stage disease (T3 and T4). However, advanced-stage CTCL patients had severely impaired frequency of skin-homing Th1 and Th17 cells, indicating attenuated immunity. Treatment of CTCL patients with standard photo/chemotherapy decreased the skin-homing Th9 cells and increased the Th1 and Th17 cells. Interestingly, T cells of CTCL patients express IL9 receptor (IL9R), and there was negligible IL9R expression on T cells of healthy donors. Mechanistically, IL9/IL9R interaction on CD3+ T cells of CTCL patients and Jurkat cells reduced oxidative stress, lactic acidosis, and apoptosis and ultimately increased their survival. In conclusion, coexpression of IL9 and IL9R on T cells in CTCL patients indicates the autocrine-positive feedback loop of Th9 axis in promoting the survival of malignant T cells by reducing the oxidative stress. IMPLICATIONS: The critical role of Th9 axis in CTCL pathogenesis indicates that strategies targeting Th9 cells might harbor significant potential in developing robust CTCL therapy.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Bhavuk Dhamija
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Soumitra Marathe
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sarbari Ghosh
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Alka Dwivedi
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Neha Sharma
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Manju Sengar
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Epari Sridhar
- Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Avinash Bonda
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Jayashree Thorat
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | | | - Tanuja Shet
- Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sumeet Gujral
- Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Bhausaheb Bagal
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Siddhartha Laskar
- Radiation Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Hasmukh Jain
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
21
|
Laroui N, Cubedo N, Rossel M, Bettache N. Improvement of Cell Penetrating Peptide for Efficient siRNA Targeting of Tumor Xenografts in Zebrafish Embryos. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max MousseronUMR 5247University of MontpellierCNRSENSCM 15, avenue Charles Flahault, BP14491 F‐34093 Montpellier cedex 5 France
| | - Nicolas Cubedo
- INSERMU1198University of Montpellier F‐34095, Montpellier France
- EPHE 4 rue Ferrus Paris F‐75014 France
| | - Mireille Rossel
- INSERMU1198University of Montpellier F‐34095, Montpellier France
- EPHE 4 rue Ferrus Paris F‐75014 France
| | - Nadir Bettache
- Institut des Biomolécules Max MousseronUMR 5247University of MontpellierCNRSENSCM 15, avenue Charles Flahault, BP14491 F‐34093 Montpellier cedex 5 France
| |
Collapse
|
22
|
Pan X, Xu J, Jia X. Research Progress Evaluating the Function and Mechanism of Anti-Tumor Peptides. Cancer Manag Res 2020; 12:397-409. [PMID: 32021452 PMCID: PMC6970611 DOI: 10.2147/cmar.s232708] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors cause a high mortality rate worldwide, and they severely threaten human health and negatively affect the economy. Despite the advancements in tumor-related molecular genetics and effective new processes in anti-tumor drug development, the anti-tumor drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side effects. Therefore, developing new safe and efficient drugs is a top priority for curing cancer. The peptide has become a suitable agent due to its exact molecular weight between whole protein and small molecule, and it has high targeting ability, high penetrability, low immunogenicity, and is convenient to synthesize and easy to modify. Because of these advantages, peptides have excellent prospect for application as anti-tumor agents. This article reviews the recent research progress evaluating anti-tumor peptides and their anti-tumor mechanisms, and may act as a reference for the future development and clinical application of anti-tumor peptides. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/snZy3e6sVio
Collapse
Affiliation(s)
- Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
23
|
IL-9 and Th9 Cells in Tumor Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:35-46. [DOI: 10.1007/978-3-030-38315-2_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Yoo J, Rejinold NS, Lee D, Noh I, Koh WG, Jon S, Kim YC. CD44-Mediated Methotrexate Delivery by Hyaluronan-Coated Nanoparticles Composed of a Branched Cell-Penetrating Peptide. ACS Biomater Sci Eng 2019; 6:494-504. [DOI: 10.1021/acsbiomaterials.9b01724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | | | | |
Collapse
|
25
|
Miller MS, Douglass J, Hwang MS, Skora AD, Murphy M, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S, Gabelli SB. An engineered antibody fragment targeting mutant β-catenin via major histocompatibility complex I neoantigen presentation. J Biol Chem 2019; 294:19322-19334. [PMID: 31690625 PMCID: PMC6916501 DOI: 10.1074/jbc.ra119.010251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Mutations in CTNNB1, the gene encoding β-catenin, are common in colon and liver cancers, the most frequent mutation affecting Ser-45 in β-catenin. Peptides derived from WT β-catenin have previously been shown to be presented on the cell surface as part of major histocompatibility complex (MHC) class I, suggesting an opportunity for targeting this common driver gene mutation with antibody-based therapies. Here, crystal structures of both the WT and S45F mutant peptide bound to HLA-A*03:01 at 2.20 and 2.45 Å resolutions, respectively, confirmed the accessibility of the phenylalanine residue for antibody recognition. Phage display was then used to identify single-chain variable fragment clones that selectively bind the S45F mutant peptide presented in HLA-A*03:01 and have minimal WT or other off-target binding. Following the initial characterization of five clones, we selected a single clone, E10, for further investigation. We developed a computational model of the binding of E10 to the mutant peptide-bound HLA-A3, incorporating data from affinity maturation as initial validation. In the future, our model may be used to design clones with maintained specificity and higher affinity. Such derivatives could be adapted into either cell-based (CAR-T) or protein-based (bispecific T-cell engagers) therapies to target cancer cells harboring the S45F mutation in CTNNB1.
Collapse
Affiliation(s)
- Michelle S Miller
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Andrew D Skora
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Michael Murphy
- GE Healthcare Life Sciences, Marlborough, Massachusetts 01752
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
26
|
Feder K, Edmaier-Schröger K, Rawat VPS, Kirsten N, Metzeler K, Kraus JM, Döhner K, Döhner H, Kestler HA, Feuring-Buske M, Buske C. Differences in expression and function of LEF1 isoforms in normal versus leukemic hematopoiesis. Leukemia 2019; 34:1027-1037. [DOI: 10.1038/s41375-019-0635-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
|
27
|
Morales-Cruz M, Delgado Y, Castillo B, Figueroa CM, Molina AM, Torres A, Milián M, Griebenow K. Smart Targeting To Improve Cancer Therapeutics. Drug Des Devel Ther 2019; 13:3753-3772. [PMID: 31802849 PMCID: PMC6826196 DOI: 10.2147/dddt.s219489] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second largest cause of death worldwide with the number of new cancer cases predicted to grow significantly in the next decades. Biotechnology and medicine can and should work hand-in-hand to improve cancer diagnosis and treatment efficacy. However, success has been frequently limited, in particular when treating late-stage solid tumors. There still is the need to develop smart and synergistic therapeutic approaches to achieve the synthesis of strong and effective drugs and delivery systems. Much interest has been paid to the development of smart drug delivery systems (drug-loaded particles) that utilize passive targeting, active targeting, and/or stimulus responsiveness strategies. This review will summarize some main ideas about the effect of each strategy and how the combination of some or all of them has shown to be effective. After a brief introduction of current cancer therapies and their limitations, we describe the biological barriers that nanoparticles need to overcome, followed by presenting different types of drug delivery systems to improve drug accumulation in tumors. Then, we describe cancer cell membrane targets that increase cellular drug uptake through active targeting mechanisms. Stimulus-responsive targeting is also discussed by looking at the intra- and extracellular conditions for specific drug release. We include a significant amount of information summarized in tables and figures on nanoparticle-based therapeutics, PEGylated drugs, different ligands for the design of active-targeted systems, and targeting of different organs. We also discuss some still prevailing fundamental limitations of these approaches, eg, by occlusion of targeting ligands.
Collapse
Affiliation(s)
- Moraima Morales-Cruz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Yamixa Delgado
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Betzaida Castillo
- Department of Chemistry, University of Puerto Rico, Humacao Campus, Humacao, PR, USA
| | - Cindy M Figueroa
- Department of Math and Sciences, Polytechnic University of Puerto Rico, San Juan, PR, USA
| | - Anna M Molina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Anamaris Torres
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Melissa Milián
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| |
Collapse
|
28
|
Su H, Xue Z, Feng Y, Xie Y, Deng B, Yao Y, Tian X, An Q, Yang L, Yao Q, Xue J, Chen G, Hao C, Zhou T. N-arylpiperazine-containing compound (C2): An enhancer of sunitinib in the treatment of pancreatic cancer, involving D1DR activation. Toxicol Appl Pharmacol 2019; 384:114789. [PMID: 31669811 DOI: 10.1016/j.taap.2019.114789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Previous studies showed that dopamine (DA) significantly reduces the frequency of cancer stem-like cells (CSC) and enhances the efficacy of sunitinib (SUN) in the treatment of breast cancer and non-small cell lung cancer (NSCLC). To overcome the shortcomings of DA in clinical practice, the purpose of this study was to investigate the efficacy as well as the underlying mechanism of an orally available, N-arylpiperazine-containing compound C2, in the treatment of pancreatic cancer when used alone or in combination with SUN. Our results showed that C2 and SUN exerted synergistic effects on inhibiting the growth of SW1990 and PANC-1 pancreatic cancer cells. C2 significantly inhibited colony formation and migration of both cells. SW1990 xenograft and patient-derived xenograft (PDX) models were utilized for pharmacodynamic investigation in vivo. C2 alone showed little inhibition effect on tumor growth but increased the anti-tumor efficacy of SUN in both xenografts. Moreover, C2 down-regulated CSC markers (CD133 and ALDH) of both cancer cells and up-regulated the expression of dopamine receptor D1 (D1DR) in tumor. Besides, the SW1990 tumor growth was dose-dependently inhibited when the cells were pretreated with C2 before implantation. C2 increased intratumoral cAMP level, and the combination with D1DR specific antagonist SCH23390 reversed the above-mentioned effects of C2 both in vitro and in vivo, indicating the activation of D1DR may be involved in the underlying mechanism of C2 action. In summary, C2 could reduce the CSC frequency and enhance the anti-cancer effect of SUN in the treatment of pancreatic cancer, demonstrating its potential in cancer therapy.
Collapse
Affiliation(s)
- Hong Su
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zixi Xue
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yaoyao Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Xie
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ye Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qiming An
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Liang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingyu Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junsheng Xue
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guoshu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Tianyan Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
29
|
The dichotomous function of interleukin-9 in cancer diseases. J Mol Med (Berl) 2019; 97:1377-1383. [PMID: 31396657 DOI: 10.1007/s00109-019-01826-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
The pleiotropic function of the cytokine IL-9 is so far described in many inflammation processes and autoimmune diseases. But its role in cancer immunology is rather diverse as it can have a pro-tumorigenic function as well as anti-tumorigenic characteristics. In various disease models of cancer, this cytokine is involved in different signaling pathways triggering the expression of proteins involved in cell growth, migration, and transformation or repressing cells from the adaptive immune system to reject tumor growth. Additionally, there are even therapeutic approaches for IL-9 in cancer development. This review will give an overview of the various roles of IL-9 in different immune organs and cells and provide an insight in the current state of research in the IL-9-dependent cancer area.
Collapse
|
30
|
Zhang Z, Bu H, Yu J, Chen Y, Pei C, Yu L, Huang X, Tan G, Tan Y. The cell-penetrating FOXM1 N-terminus (M1-138) demonstrates potent inhibitory effects on cancer cells by targeting FOXM1 and FOXM1-interacting factor SMAD3. Am J Cancer Res 2019; 9:2882-2896. [PMID: 31244930 PMCID: PMC6568178 DOI: 10.7150/thno.32693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
Transcription factor FOXM1 is involved in stimulating cell proliferation, enhancing DNA damage repair, promoting metastasis of cancer cells, and the inhibition of FOXM1 has been shown to prevent the initiation and progression of multiple cancers and FOXM1 is considered to be an effective target for tumor therapeutic drug development. The N-terminus of FOXM1 has been found to prevent transcriptional activities of FOXM1 and to mediate the interaction between FOXM1 and SMAD3. Methods: A recombinant FOXM1 N-terminal domain (1-138aa) fused with a nine arginine cell-penetrating peptide is produced with an E. coli expression system and named as M1-138. The effects of M1-138 on the proliferation, migration, and tumorigenic ability of cancer cells are analyzed in vitro with cell counting, transwell assays, and colony formation assays. Electrophoretic mobility shift assays (EMSAs) and Luciferase activity assays are used to test the DNA binding ability and transcriptional activity of transcription factors. The levels of mRNAs and proteins are measured by quantitative-PCR, Western blotting or Immunohistochemistry. The interactions among proteins are analyzed with Pull-down and Co-immunoprecipitation (Co-IP) assays. The nude mouse engrafted tumor models are used to test the inhibitory effects of M1-138 in vivo. Results: M1-138 diminishes the proliferation and migration abilities of cancer cells through binding to FOXM1 and FOXM1-interacting factor SMAD3, and consequently attenuating FOXM1 transcriptional activities from both direct and indirect FOXM1-promoter binding mechanisms and interfering with the interaction between FOXM1 and SMAD3. Treatment of M1-138 prevents tumorigenicity of cancer cells and inhibits tumor growth in nude mouse xenograft models with no obvious signs of toxicity. Conclusion: M1-138 is a promising drug candidate for the development of anti-cancer therapeutics targeting FOXM1 and SMAD3.
Collapse
|
31
|
Wang Z, Zhang M, Wang J, Ji H. Optimization of Peptidomimetics as Selective Inhibitors for the β-Catenin/T-Cell Factor Protein-Protein Interaction. J Med Chem 2019; 62:3617-3635. [PMID: 30856332 DOI: 10.1021/acs.jmedchem.9b00147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The β-catenin/T-cell factor (Tcf) protein-protein interaction (PPI) plays a critical role in the β-catenin signaling pathway which is hyperactivated in many cancers and fibroses. Based on compound 1, which was designed to target the Tcf4 G13ANDE17 binding site of β-catenin, extensive structure-activity relationship studies have been conducted. As a result, compounds 53 and 57 were found to disrupt the β-catenin/Tcf PPI with the Ki values of 0.64 and 0.44 μM, respectively, and exhibit good selectivity for β-catenin/Tcf over β-catenin/E-cadherin and β-catenin/adenomatous polyposis coli (APC) PPIs. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) cell viability assays revealed that 56, the ethyl ester of 53, was more potent than 53 in inhibiting viability of most of the Wnt/β-catenin hyperactive cancer cells. Further cell-based studies indicated that 56 disrupted the β-catenin/Tcf PPI without affecting the β-catenin/E-cadherin and β-catenin/APC PPIs, suppressed transactivation of Wnt/β-catenin signaling in dose-dependent manners, and inhibited migration and invasiveness of Wnt/β-catenin-dependent cancer cells.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , Florida 33612-9497 , United States
| | - Min Zhang
- Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , Florida 33612-9497 , United States
| | - Jin Wang
- Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , Florida 33612-9497 , United States
| | - Haitao Ji
- Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , Florida 33612-9497 , United States.,Departments of Oncologic Sciences and Chemistry , University of South Florida , Tampa , Florida 33620-9497 , United States
| |
Collapse
|
32
|
Dong C, Cui D, Liu G, Xu H, Peng X, Duan J, Liu L. Cancer stem cell associated eight gene-based signature predicts clinical outcomes of colorectal cancer. Oncol Lett 2018; 17:442-449. [PMID: 30655785 DOI: 10.3892/ol.2018.9533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Previous studies have suggested that cancer stem cells serve crucial functions in tumorigenesis, metastasis and therapy failure. Stem cell signaling transduction pathways are frequently dysregulated in cancer and associated with tumorigenesis, metastasis and the cell cycle, which are necessary for cancer proliferation. However, cancer stem cell-associated gene signatures have not been established for predicting patient outcomes in colorectal cancer. Using a gene-mining approach, the present study performed mRNA expression profiling in large colorectal cancer cohorts from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, including a TCGA colorectal cancer cohort (n=383) and three independent validation series GSE39582 (n=582), GSE17536 (n=177) and GSE17537 (n=55). The present study identified that an eight-gene signature in cancer stem cell signaling was associated with the overall survival and disease/recurrence-free survival of patients with colorectal. On the basis of this signature, patients in the TCGA training sets were divided into high-risk and low-risk subgroups with a significantly different overall survival rate (hazard ratio, 2.38; P=0.0005). The prognostic value of this signature was confirmed using three independent GEO colorectal cancer sets. Identifying this prognostic stem cell signaling signature may provide an efficient classification tool for clinical prognosis evaluation, and facilitate cancer stem cell-targeted therapy.
Collapse
Affiliation(s)
- Chuanpeng Dong
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Danni Cui
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Gang Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Huilin Xu
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Xueqing Peng
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Juan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China.,Translational Medicine Institute, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Lei Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
33
|
Cui C, Zhou X, Zhang W, Qu Y, Ke X. Is β-Catenin a Druggable Target for Cancer Therapy? Trends Biochem Sci 2018; 43:623-634. [DOI: 10.1016/j.tibs.2018.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 01/09/2023]
|
34
|
The anti-cancer activity of an andrographolide analogue functions through a GSK-3β-independent Wnt/β-catenin signaling pathway in colorectal cancer cells. Sci Rep 2018; 8:7924. [PMID: 29784906 PMCID: PMC5962551 DOI: 10.1038/s41598-018-26278-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
The Wnt/β-catenin signaling pathway plays a key role in the progression of human colorectal cancers (CRCs) and is one of the leading targets of chemotherapy agents developed for CRC. The present study aimed to investigate the anti-cancer effects and molecular mechanisms of 19-O-triphenylmethyl andrographolide (RS-PP-050), an andrographolide analogue and determine its activity in the Wnt/β-catenin pathway. RS-PP-050 was found to potently inhibit the proliferation and survival of HT-29 CRC cells. It induces cell cycle arrest and promotes apoptotic cell death which was associated with the activation of PARP-1 and p53. Furthermore, RS-PP-050 exerts inhibitory effects on β-catenin transcription by suppressing T-cell factor/lymphocyte enhancer factor (TCF/LEF) activity in cells overexpressing β-catenin and by down-regulating the endogenous expression of Wnt target genes. RS-PP-050 also decreased the protein expression of the active form of β-catenin but functions independently of GSK-3β, a negative regulator of Wnt. Interestingly, RS-PP-050 extensively blocks phosphorylation at Ser675 of β-catenin which links to interference of the nuclear translocation of β-catenin and might contribute to Wnt inactivation. Collectively, our findings reveal the underlying anti-cancer mechanism of an andrographolide analogue and provide useful insight for exploiting a newly chemotherapeutic agent in Wnt/β-catenin-overexpressing CRC cells.
Collapse
|
35
|
Kulkarni K, Watson GM, Sang J, Wilce JA. Preparation and cellular uptake of bicyclic-peptide cargo clicked to cell penetrating peptides. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ketav Kulkarni
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology; Monash University; Clayton VIC 3800 Australia
| | - Gabrielle M. Watson
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology; Monash University; Clayton VIC 3800 Australia
| | - Jianrong Sang
- Department of Physiology, School of Medicine; Jiangsu University; People's Republic of China
| | - Jacqueline A. Wilce
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology; Monash University; Clayton VIC 3800 Australia
| |
Collapse
|
36
|
Kebebe D, Liu Y, Wu Y, Vilakhamxay M, Liu Z, Li J. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. Int J Nanomedicine 2018; 13:1425-1442. [PMID: 29563797 PMCID: PMC5849936 DOI: 10.2147/ijn.s156616] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer has become one of the leading causes of mortality globally. The major challenges of conventional cancer therapy are the failure of most chemotherapeutic agents to accumulate selectively in tumor cells and their severe systemic side effects. In the past three decades, a number of drug delivery approaches have been discovered to overwhelm the obstacles. Among these, nanocarriers have gained much attention for their excellent and efficient drug delivery systems to improve specific tissue/organ/cell targeting. In order to enhance targeting efficiency further and reduce limitations of nanocarriers, nanoparticle surfaces are functionalized with different ligands. Several kinds of ligand-modified nanomedicines have been reported. Cell-penetrating peptides (CPPs) are promising ligands, attracting the attention of researchers due to their efficiency to transport bioactive molecules intracellularly. However, their lack of specificity and in vivo degradation led to the development of newer types of CPP. Currently, activable CPP and tumor-targeting peptide (TTP)-modified nanocarriers have shown dramatically superior cellular specific uptake, cytotoxicity, and tumor growth inhibition. In this review, we discuss recent advances in tumor-targeting strategies using CPPs and their limitations in tumor delivery systems. Special emphasis is given to activable CPPs and TTPs. Finally, we address the application of CPPs and/or TTPs in the delivery of plant-derived chemotherapeutic agents.
Collapse
Affiliation(s)
- Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Yuanyuan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yumei Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maikhone Vilakhamxay
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
37
|
Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents. Molecules 2018; 23:295. [PMID: 29385037 PMCID: PMC6017757 DOI: 10.3390/molecules23020295] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022] Open
Abstract
Cell membranes with their selective permeability play important functions in the tight control of molecular exchanges between the cytosol and the extracellular environment as the intracellular membranes do within the internal compartments. For this reason the plasma membranes often represent a challenging obstacle to the intracellular delivery of many anti-cancer molecules. The active transport of drugs through such barrier often requires specific carriers able to cross the lipid bilayer. Cell penetrating peptides (CPPs) are generally 5-30 amino acids long which, for their ability to cross cell membranes, are widely used to deliver proteins, plasmid DNA, RNA, oligonucleotides, liposomes and anti-cancer drugs inside the cells. In this review, we describe the several types of CPPs, the chemical modifications to improve their cellular uptake, the different mechanisms to cross cell membranes and their biological properties upon conjugation with specific molecules. Special emphasis has been given to those with promising application in cancer therapy.
Collapse
Affiliation(s)
- Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy.
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy.
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy.
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy.
| |
Collapse
|
38
|
Wen YY, Liu WT, Sun HR, Ge X, Shi ZM, Wang M, Li W, Zhang JY, Liu LZ, Jiang BH. IGF-1-mediated PKM2/β-catenin/miR-152 regulatory circuit in breast cancer. Sci Rep 2017; 7:15897. [PMID: 29162853 PMCID: PMC5698474 DOI: 10.1038/s41598-017-15607-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/30/2017] [Indexed: 01/26/2023] Open
Abstract
Dysregulation of miRNAs is important in breast cancer initiation and malignant progression. Recently we showed that miR-152 downregulation is associated with breast cancer development, yet the underlying mechanism of miR-152 remains to be well elucidated. In this study, we identified β-catenin as a new direct target of miR-152. MiR-152 inhibited cell proliferation by targeting and inhibiting both β-catenin and PKM2 expression. We found that miR-152 expression sensitized the breast cancer cells to paclitaxel treatment by inhibiting β-catenin and PKM2 expression. Intriguingly, IGF-1 induced β-catenin and PKM2 expression and enhanced β-catenin and PKM2 interaction. Subsequently, IGF-1-induced β-catenin and PKM2 complex translocated into the nucleus, which in turn activated expression of miR-152. These results suggested a regulatory circuit between miR-152, β-catenin and PKM2 in breast cancer. By using human clinical specimens, we also showed that miR-152 expression levels were negatively correlated with β-catenin and PKM2 levels in breast cancer tissues. Our findings provide new insights into a mechanism of miR-152 involved in β-catenin and PKM2 inhibition which would have clinical implication for the cancer development and new treatment option in the future.
Collapse
Affiliation(s)
- Yi-Yang Wen
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei-Tao Liu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao-Ran Sun
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Ge
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhu-Mei Shi
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Li
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Jian-Ying Zhang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, United States of America
| | - Ling-Zhi Liu
- The Center for Molecular Carcinogenesis, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, United States of America
| | - Bing-Hua Jiang
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Center for Molecular Carcinogenesis, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, United States of America.
| |
Collapse
|
39
|
Kwon YJ, Leibovitch BA, Bansal N, Pereira L, Chung CY, Ariztia EV, Zelent A, Farias EF, Waxman S. Targeted interference of SIN3A-TGIF1 function by SID decoy treatment inhibits Wnt signaling and invasion in triple negative breast cancer cells. Oncotarget 2017; 8:88421-88436. [PMID: 29179446 PMCID: PMC5687616 DOI: 10.18632/oncotarget.11381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/23/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer cell invasion is an obligatory step for metastatic dissemination that contributes to rapid relapse and a poorer survival in triple negative breast cancer (TNBC) patients. Development of novel therapeutic strategies to block tumor invasion is an unmet need in the treatment of cancer. We reported that the selective inhibition of the PAH2 domain of SIN3A protein function markedly suppressed metastatic dissemination to the lungs in TNBC xenograft bearing mice. Here, we show that TNBC cell lines treated with Sin3 interaction domain (SID) decoy peptides that bind to PAH2 display a strong in vitro inhibition of transwell invasion. This is accompanied by actin cytoskeleton reorganization with increased cortical actin deposition and downregulation of known Wnt target genes that are associated with epithelial to mesenchymal transition (EMT) and cancer cell invasion. Wnt pathway inhibition by SID decoy peptide was confirmed by decreased Wnt reporter activity and altered cytoplasmic localization of nuclear β-catenin. TGIF1, a transcription factor that modulates Wnt signaling and known to interact with the PAH2 domain of SIN3A, can be dissociated from the SIN3A complex by SID decoys. TGIF1 knockdown inhibits WNT target genes and in vitro cell invasion suggesting that TGIF1 might be a key target of the SID decoys to block tumor invasion. Taken together, targeting SIN3 function using SID decoys is a novel strategy to reverse invasion and the EMT program in TNBC translating into the inhibition of metastasis dissemination and eradication of residual disease.
Collapse
Affiliation(s)
- Yeon-Jin Kwon
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Boris A. Leibovitch
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Nidhi Bansal
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Lutecia Pereira
- University of Miami, Sylvester Comprehensive Cancer Center, Florida MI, USA
| | - Chi-Yeh Chung
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Edgardo V. Ariztia
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Arthur Zelent
- University of Miami, Sylvester Comprehensive Cancer Center, Florida MI, USA
| | - Eduardo F. Farias
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Samuel Waxman
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
40
|
Dopamine D2 receptor antagonist sulpiride enhances dexamethasone responses in the treatment of drug-resistant and metastatic breast cancer. Acta Pharmacol Sin 2017. [PMID: 28649130 DOI: 10.1038/aps.2017.24] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent evidence shows that dopamine D2-like receptor (D2DR) antagonists, such as trifluoperazine and thioridazine, are effective for cancer therapy and inhibition of cancer stem-like cells (CSCs). In this study, we investigated the anti-cancer effects of combination therapy of dexamethasone (DEX) and sulpiride (SUL), an atypical antipsychotic, against drug-resistant and metastatic breast cancers and further explored the underlying mechanisms. Oral administration of SUL (25, 100 mg·kg-1·d-1) alone did not inhibit the tumor growth in human breast cancer MCF-7/Adr xenograft model, but dose-dependently decreased the proportion of CSCs in vitro and in vivo. In contrast, combination therapy of SUL (50 mg·kg-1·d-1) and DEX (8 mg·kg-1·d-1) markedly suppressed the tumor growth in MCF-7/Adr xenograft model with little systemic toxicity and lung metastasis in murine metastatic breast cancer 4T1 xenograft model. Among the metastasis-associated biomarkers analyzed, the combination therapy significantly decreased the levels of MMP-2, but increased E-cadherin levels in 4T1 xenograft tumors. Moreover, the combination therapy significantly inhibited the cell colony formation, migration and invasion of 4T1 and human breast cancer MDA-MB-231 cells in vitro. Addition of a specific D2DR agonist 7-OH-DPAT to the combination therapy reversed the enhanced anti-cancer effects in vivo and CSC population loss in tumor tissues. Our data demonstrate that SUL remarkably enhances the efficacy of DEX in the treatment of drug-resistant and metastatic breast cancer via the antagonism of D2DR, which might result from the eradication of CSCs.
Collapse
|
41
|
Liu W, Ding R, Zhang Y, Mao C, Kang R, Meng J, Huang Q, Xiong L, Guo Z. Transcriptome profiling analysis of differentially expressed mRNAs and lncRNAs in HepG2 cells treated with peptide 9R-P201. Biotechnol Lett 2017; 39:1639-1647. [DOI: 10.1007/s10529-017-2407-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/19/2017] [Indexed: 01/04/2023]
|
42
|
Zebrafish as a model to evaluate peptide-related cancer therapies. Amino Acids 2017; 49:1907-1913. [DOI: 10.1007/s00726-017-2388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 02/03/2023]
|
43
|
Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Regulation of CTNNB1 signaling in gastric cancer and stem cells. World J Gastrointest Oncol 2016; 8:592-598. [PMID: 27574551 PMCID: PMC4980649 DOI: 10.4251/wjgo.v8.i8.592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
Recent research has shown that the alteration of combinations in gene expression contributes to cellular phenotypic changes. Previously, it has been demonstrated that the combination of cadherin 1 and cadherin 2 expression can identify the diffuse-type and intestinal-type gastric cancers. Although the diffuse-type gastric cancer has been resistant to treatment, the precise mechanism and phenotypic involvement has not been revealed. It may be possible that stem cells transform into gastric cancer cells, possibly through the involvement of a molecule alteration and signaling mechanism. In this review article, we focus on the role of catenin beta 1 (CTNNB1 or β-catenin) and describe the regulation of CTNNB1 signaling in gastric cancer and stem cells.
Collapse
|