1
|
Ibrahim EA. Review: Trehalose and its role in plant adaptation to salinity stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112533. [PMID: 40312014 DOI: 10.1016/j.plantsci.2025.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Salinity stress is an important abiotic stress that negatively affects plant growth and yield as it causes oxidative damage, osmotic stress, and ionic balance disturbances. To overcome these problems, the naturally occurring disaccharide trehalose has received increasing attention due to its multiple roles in functions essential in enhancing plant tolerance to salt. This review examines the current information on how trehalose enhances salinity tolerance, highlighting its biochemical, physiological, and signaling functions. Trehalose scavenges reactive oxygen species and activates important antioxidant enzymes to stabilize cellular structures, maintain osmotic equilibrium, and reduce oxidative damage. Furthermore, it boosts photosynthetic efficiency by maintaining chloroplast integrity and stabilizing photosystems and metabolic enzymes under saline conditions. As climate change increases the severity of salt stress, incorporating trehalose into crop management practices has promising potential to advance sustainable agriculture and ensure global food security. Despite significant progress, the specific mechanisms of trehalose's action, especially its role in signaling pathways and its interactions with other metabolites, remain active research areas. This review explores the potential applications of trehalose in sustainable agriculture while providing a foundation for further research into its mechanisms in regulating plant growth, development, and stress resistance.
Collapse
Affiliation(s)
- Ehab A Ibrahim
- Cross Pollinated Vegetable Crops Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt.
| |
Collapse
|
2
|
Zhang C, Cao Y, Lin H, Wang Y, Wan X, Feng L, Lyu C, Zhang Y, Wang S, Guo L. Identification of candidate genes in sesquiterpenoid biosynthesis of Atractylodes lancea through combined metabolomic and transcriptomic analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109822. [PMID: 40239246 DOI: 10.1016/j.plaphy.2025.109822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Atractylodes lancea is a type of traditional Chinese medicine whose rhizome is rich in sesquiterpenoids. However, the mechanisms underlying the synthesis and metabolism of sesquiterpenoids in A. lancea remain poorly discovered. In the present research, the organs of A. lancea in different growth and development stages served as test materials. Initially, widely targeted metabolomic and transcriptomic analyses were integrated to elucidate sesquiterpenoid biosynthesis in A. lancea. Up to 177 differentially expressed sesquiterpene metabolites and 80 genes associated with the synthesis pathway of sesquiterpenes were identified. Of these, 13 terpene synthases (TPSs), including AlTPS17, AlTPS20, and AlTPS13, appeared to be directly involved in the synthesis of sesquiterpenes accumulated in the rhizomes. Both AlTPS13 and AlTPS20 used farnesyl diphosphate as a substrate to generate sesquiterpenoids, while AlTPS13 catalyzed the biosynthesis of γ-elemene. This study analyzed the quality-generation pattern of A. lancea under seasonal variations and thereby laid a strong foundation to further elucidate the mechanism of sesquiterpenoid biosynthesis.
Collapse
Affiliation(s)
- Chengcai Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Dexing Research and Training Center of Chinese Medical Sciences, Dexing 334220, PR China; Institute for Ecology of Chinese Materia Medica Resources, Deqing, 313200, PR China.
| | - Ye Cao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, PR China
| | - Huaibin Lin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yiheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lingfang Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Chaogeng Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Dexing Research and Training Center of Chinese Medical Sciences, Dexing 334220, PR China; Institute for Ecology of Chinese Materia Medica Resources, Deqing, 313200, PR China.
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
3
|
Basso MF, Iovieno P, Capuana M, Contaldi F, Ieri F, Menicucci F, Celso FL, Barone G, Martinelli F. Identification and expression of the AREB/ABF/ABI5 subfamily genes in chickpea and lentil reveal major players involved in ABA-mediated defense response to drought stress. PLANTA 2025; 262:22. [PMID: 40493071 DOI: 10.1007/s00425-025-04740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/29/2025] [Indexed: 06/12/2025]
Abstract
MAIN CONCLUSION This study identified and evaluated the expression of the AREB/ABF/ABI5 subfamily genes in chickpea and lentil, and revealed the major players involved in defense response to PEG-induced drought stress. Abscisic acid (ABA)-responsive element-binding protein/ABRE-binding factor/ABA-INSENSITIVE 5 (AREB/ABF/ABI5) subfamily proteins are major players in the ABA-mediated signaling pathway triggered by multiple stresses. AREB/ABF/ABI5 subfamily proteins belong to the basic-leucine zipper transcription factors that regulate the expression of several downstream defense genes to abiotic and biotic stresses. This protein set is highly targeted when trying to understand plant defense against abiotic stress or to improve plant tolerance to drought, cold, and salinity stresses. However, there is still very little information available about the genes of the AREB/ABF/ABI5 subfamily in chickpea and lentil. Herein, 8 chickpea and 9 lentil genes of the AREB/ABF/ABI5 subfamily were identified based on sequence analysis, and their expression levels were tested in a polyethylene glycol-induced drought experiment (20% PEG in Hoagland solution) using real-time RT-PCR and metadata analysis. Sequence analysis showed that members of this subfamily are highly conserved among themselves and with their orthologous genes in other closely related plant species. Overall, sequence data suggested that these genes may possess close or overlapping biological roles in regulating the transcription of abiotic stress-related defense genes. The meta-analysis from RNA-Seq datasets of unstressed plants showed that some members of this gene subfamily have a tissue-specific expression in both chickpea and lentil. Drought-contrasting chickpea and lentil cultivars showed that most AREB/ABF/ABI5 genes are modulated by PEG-induced drought. Furthermore, AREB/ABF/ABI5 genes had also a tendency for higher expression as cultivar tolerance increases. Therefore, this study identified the AREB/ABF/ABI5 subfamily genes in chickpea and lentil, and provides a comprehensive characterization of these members to support further focused research.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Department of Biology, University of Florence, Sesto Fiorentino, Via Madonna del Piano, 50019, Florence, Sesto Fiorentino, Italy
| | - Paolo Iovieno
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019, Florence, Sesto Fiorentino, Italy
| | - Maurizio Capuana
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019, Florence, Sesto Fiorentino, Italy
| | - Felice Contaldi
- Department of Biology, University of Florence, Sesto Fiorentino, Via Madonna del Piano, 50019, Florence, Sesto Fiorentino, Italy
| | - Francesca Ieri
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019, Florence, Sesto Fiorentino, Italy
| | - Felicia Menicucci
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019, Florence, Sesto Fiorentino, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemical, University of Palermo, Viale Delle Scienze, Edificio 17, 90128, Palermo, Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale Delle Scienze, Edificio 17, 90128, Palermo, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, Via Madonna del Piano, 50019, Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Yadav S, Kalwan G, Gill SS, Jain PK. The ABC transporters and their epigenetic regulation under drought stress in chickpea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109903. [PMID: 40215731 DOI: 10.1016/j.plaphy.2025.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 05/21/2025]
Abstract
Chickpea (Cicer arietinum L.) is a globally essential pulse crop, providing dietary protein for millions. However, it suffers significant yield losses due to drought stress, therefore, identification of genes that confer drought tolerance is crucial. The ATP-binding cassette (ABC) transporters are vital proteins in plant growth and development, facilitating the transport of phytohormones like abscisic acid (ABA) that helps plants adapt to drought conditions. In this study, we identified 121 ABC transporter genes in chickpea, categorized into eight subfamilies. Consistent with other crops, the CaABCG family was the largest, with 48 members, while the CaABCE family had only one protein. Structural analysis revealed a conserved domain organization, including Walker A and B motifs and the ABC signature motif. Both segmental and tandem duplications were observed, with the highest duplication in the CaABCG and CaABCC subfamilies. Using RNA-seq and Whole Genome Bisulfite Sequencing (WGBS) data from the root tissues of two chickpea genotypes contrasting in drought tolerance, we found that DNA methylation at cytosine residues might regulate these genes under drought stress. Notably, the CaABCG41 gene was identified as drought-responsive, showing significant upregulation (p < 0.05) and hypermethylation (q < 0.01) in the drought tolerant genotype compared to the drought sensitive genotype under drought stress. CaABCG41 thus holds potential for developing drought-tolerant chickpea cultivars.
Collapse
Affiliation(s)
- Sheel Yadav
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India; Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Gopal Kalwan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Sarvajeet Singh Gill
- Stress Physiology & Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - P K Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
5
|
Yan G, Ma X, Huang W, Wang C, Han Y, Wang S, Liu H, Zhang M. Decoding the complexity of coding and non-coding RNAs across maize anther development at the isoform level. J Genet Genomics 2025:S1673-8527(25)00149-3. [PMID: 40383373 DOI: 10.1016/j.jgg.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2025] [Revised: 05/10/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Anther is a key male reproductive organ that is essential for the plant life cycle, from the sporophyte to the gametophyte generation. To explore isoform-level transcriptional landscape of developing anthers in maize (Zea mays L.), we analyzed Iso-Seq data from anthers collected at 10 developmental stages, together with strand-specific RNA-seq, CAGE-seq, and PAS-seq data. Of the 152,026 high-confidence full-length isoforms identified, 68.8% have not been described; these include 22,365 isoforms that originate from previously unannotated loci and 82,167 novel isoforms that originate from annotated protein-coding genes. Using our newly developed strategy to detect dynamic expression patterns of isoforms, we identified 13,899 differentially variable regions (DVRs); surprisingly, 1,275 genes contain more than two DVRs, revealing highly efficient utilization of limited genic regions. We identified 7,876 long non-coding RNAs (lncRNAs) from 4,098 loci, most of which were preferentially expressed during cell differentiation and meiosis. We also detected 371 long-range interactions involving intergenic lncRNAs (lincRNAs); interestingly, 243 were lincRNA-gene ones, and the interacting genes were highly expressed in anthers, suggesting that many potential lncRNA regulators of key genes are required for anther development. This study provides valuable resources and fundamental information for studying the essential transcripts of key genes during anther development.
Collapse
Affiliation(s)
- Ge Yan
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuxu Ma
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Chunyu Wang
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjia Han
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Shufang Wang
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Han Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Mei Zhang
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Moezzi SA, Rastgar S, Faghani M, Ghiasvand Z, Javanshir Khoei A. Optimization of carbon membrane performance in reverse osmosis systems for reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. CHEMOSPHERE 2025; 376:144304. [PMID: 40090114 DOI: 10.1016/j.chemosphere.2025.144304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
This study investigates the performance of various types of carbon membranes in reverse osmosis systems aimed at reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. As sustainable aquaculture practices become increasingly essential, effective treatment solutions are needed to mitigate pollution from nutrient-rich effluents. The research highlights several carbon membranes types, including carbon molecular sieves, activated carbon membranes, carbon nanotube membranes, and graphene oxide membranes, all of which demonstrate exceptional filtration capabilities due to their unique structural properties. Findings reveal that these carbon membranes can achieve removal efficiencies exceeding 90 % for critical pollutants, thereby significantly improving water quality and supporting environmental sustainability. The study also explores the development of hybrid membranes and nanocomposites, which enhance performance by combining the strengths of different materials, allowing for customized solutions tailored to the specific requirements of aquaculture wastewater treatment. Additionally, operational parameters such as pH, temperature, and feed water characteristics are crucial for maximizing membrane efficiency. The integration of real-time monitoring technologies is proposed to enable prompt adjustments to treatment processes, thereby improving system performance and reliability. Overall, this research emphasizes the importance of interdisciplinary collaboration among researchers and industry stakeholders to drive innovation in advanced filtration technologies. The findings underscore the substantial potential of carbon membranes in tackling the pressing water quality challenges faced by the aquaculture sector, ultimately contributing to the sustainability of aquatic ecosystems and ensuring compliance with environmental standards for future generations.
Collapse
Affiliation(s)
- Sayyed Ali Moezzi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Monireh Faghani
- Water Science and Engineering-Irrigation and Drainage, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Zahra Ghiasvand
- Faculty of Agriculture, Department of Animal Sciences and Aquaculture, Dalhousie University, Halifax, Canada
| | - Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
7
|
Altaf MT, Liaqat W, Ali A, Jamil A, Fahad M, Rahman MAU, Baloch FS, Mohamed HI. Advancing Chickpea Breeding: Omics Insights for Targeted Abiotic Stress Mitigation and Genetic Enhancement. Biochem Genet 2025; 63:1063-1115. [PMID: 39532827 DOI: 10.1007/s10528-024-10954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chickpea is a major source of proteins and is considered the most economically vital food legume. Chickpea production is threatened by several abiotic and biotic factors worldwide. The main constraints limiting worldwide chickpea production are abiotic conditions such as drought, heat, salinity, and cold. It is clear that chickpea is treasured for its nutritive value, in particular its high protein content, and hence study of problems like drought, cold and salinity stresses are very important concerning chickpeas. In this regard, several physiological, biochemical, and molecular mechanisms are reviewed to confer tolerance to abiotic stress. The most crippling economic losses in agriculture occur due to these abiotic stressors, which affect plants in many ways. All these abiotic stresses affect the water relations of the plant, both at the cellular level as well as the whole-plant level, causing both specific and non-specific reactions, damage and adaptation reactions. These stresses share common features. Breeding programs use a huge collection of over 100,000 chickpea accessions as their foundation. Significant advancements in conventional breeding, including mutagenesis, gene/allele introgression, and germplasm introduction, have been made through this method. Abiotic tolerance and yield component selection are made easier by creating unique DNA markers for the genus Cicer, which has been made possible by developments in high-throughput sequencing and molecular biology. Transcriptomics, proteomics, and metabolomics have also made it possible to identify particular genes, proteins, and metabolites linked to chickpea tolerance to abiotic stress. Chickpea abiotic stress tolerance has been directly and potentially improved by biotechnological applications, which are covered by all 'Omics' approaches. It requires information on the abiotic stress response at the different molecular levels, which comprises gene expression analysis for metabolites or proteins and its impact on phenotype. Studies on chickpea genome-wide expression profiling have been conducted to determine important candidate genes and their regulatory networks for abiotic stress response. This study aimed to offer a detailed overview of the diverse 'Omics' approaches for resilience's to abiotic stresses on chickpea plants.
Collapse
Affiliation(s)
- Muhammad Tanveer Altaf
- Department of Field Crops, Faculty of Agriculture, Recep Tayyip Erdoğan University, Rize/Pazar, Türkiye.
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Türkiye
| | - Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Türkiye
| | - Amna Jamil
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Fahad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Aneeq Ur Rahman
- Biotechnology Research Institute, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Faheem Shehzad Baloch
- Department of biotechnology, faculty of science, Mersin University, Mersin, Türkiye
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Korea
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
8
|
Naveed M, Aslam M, Ahmed SR, Tan DKY, De Mastro F, Tariq MS, Sakhawat A, Asad MA, Liu Y. An overview of heat stress in Chickpea ( Cicer arietinum L.): effects, mechanisms and diverse molecular breeding approaches for enhancing resilience and productivity. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:18. [PMID: 39850651 PMCID: PMC11751345 DOI: 10.1007/s11032-025-01538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Chickpea (Cicer arietinum. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production. This legume is sensitive to heat stress at its reproductive stage leading to reduced flowering, flower abortion, and lack of pod formation, therefore emerging as a major limiting factor for yield. Chickpea, predominantly cultivated in semi-arid regions, is frequently subjected to high-temperature stress, which adversely affects its growth and yield. Given the escalating impacts of climate change, the development of heat-tolerant chickpea genotypes is imperative and can be achieved through the integration of advanced biotechnological approaches. The appropriate solution devised by some researchers is the modification of genetic architecture by targeting specific genes associated with tolerance to heat stress and harnessing them in the development of more robust chickpea varieties. Besides this, multi-omics strategies (Genomics, Transcriptomics, Proteomics, and Metabolomics) have made it easier to reveal the distinct genes / quantitative trait loci (QTLs) / markers, proteins, and metabolites correlated with heat tolerance. This review compiles noteworthy revelations and different tactics to boost chickpea tolerance under heat temperatures. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01538-4.
Collapse
Affiliation(s)
- Mahak Naveed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Mariyah Aslam
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Horticulture Research Institute (HRI), Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Daniel K. Y. Tan
- School of Life and Environmental Sciences, Plant Breeding Institute, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW 2006 Australia
| | - Francesco De Mastro
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Muhammad Sayyam Tariq
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Ammara Sakhawat
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Azeem Asad
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024 China
| |
Collapse
|
9
|
Ruffatto K, da Silva LCO, Neves CDO, Kuntzler SG, de Lima JC, Almeida FA, Silveira V, Corrêa FM, Minello LVP, Johann L, Sperotto RA. Unravelling soybean responses to early and late Tetranychus urticae (Acari: Tetranychidae) infestation. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1223-1239. [PMID: 39250320 DOI: 10.1111/plb.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024]
Abstract
Soybean is a crucial source of food, protein, and oil worldwide that is facing challenges from biotic stresses. Infestation of Tetranychus urticae Koch (Acari: Tetranychidae) stands out as detrimentally affecting plant growth and grain production. Understanding soybean responses to T. urticae infestation is pivotal for unravelling the dynamics of mite-plant interactions. We evaluated the physiological and molecular responses of soybean plants to mite infestation after 5 and 21 days. We employed visual/microscopy observations of leaf damage, H2O2 accumulation, and lipid peroxidation. Additionally, the impact of mite infestation on shoot length/dry weight, chlorophyll concentration, and development stages was analysed. Proteomic analysis identified differentially abundant proteins (DAPs) after early (5 days) and late (21 days) infestation. Furthermore, GO, KEGG, and protein-protein interaction analyses were performed to understand effects on metabolic pathways. Throughout the analysed period, symptoms of leaf damage, H2O2 accumulation, and lipid peroxidation consistently increased. Mite infestation reduced shoot length/dry weight, chlorophyll concentration, and development stage duration. Proteomics revealed 185 and 266 DAPs after early and late mite infestation, respectively, indicating a complex remodelling of metabolic pathways. Photorespiration, chlorophyll synthesis, amino acid metabolism, and Krebs cycle/energy production were impacted after both early and late infestation. Additionally, specific metabolic pathways were modified only after early or late infestation. This study underscores the detrimental effects of mite infestation on soybean physiology and metabolism. DAPs offer potential in breeding programs for enhanced resistance. Overall, this research highlights the complex nature of soybean response to mite infestation, providing insights for intervention and breeding strategies.
Collapse
Affiliation(s)
- K Ruffatto
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - L C O da Silva
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - C D O Neves
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - S G Kuntzler
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - J C de Lima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - F A Almeida
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - V Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - F M Corrêa
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L V P Minello
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L Johann
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - R A Sperotto
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
10
|
Ali F, Zhao Y, Ali A, Waseem M, Arif MAR, Shah OU, Liao L, Wang Z. Omics-Driven Strategies for Developing Saline-Smart Lentils: A Comprehensive Review. Int J Mol Sci 2024; 25:11360. [PMID: 39518913 PMCID: PMC11546581 DOI: 10.3390/ijms252111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
A number of consequences of climate change, notably salinity, put global food security at risk by impacting the development and production of lentils. Salinity-induced stress alters lentil genetics, resulting in severe developmental issues and eventual phenotypic damage. Lentils have evolved sophisticated signaling networks to combat salinity stress. Lentil genomics and transcriptomics have discovered key genes and pathways that play an important role in mitigating salinity stress. The development of saline-smart cultivars can be further revolutionized by implementing proteomics, metabolomics, miRNAomics, epigenomics, phenomics, ionomics, machine learning, and speed breeding approaches. All these cutting-edge approaches represent a viable path toward creating saline-tolerant lentil cultivars that can withstand climate change and meet the growing demand for high-quality food worldwide. The review emphasizes the gaps that must be filled for future food security in a changing climate while also highlighting the significant discoveries and insights made possible by omics and other state-of-the-art biotechnological techniques.
Collapse
Affiliation(s)
- Fawad Ali
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Yiren Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Arif Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Mian A. R. Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
| | - Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Li Liao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Zhiyong Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| |
Collapse
|
11
|
An L, Wang Z, Cui Y, Bai Y, Yao Y, Yao X, Wu K. Comparative Analysis of Hulless Barley Transcriptomes to Regulatory Effects of Phosphorous Deficiency. Life (Basel) 2024; 14:904. [PMID: 39063656 PMCID: PMC11278117 DOI: 10.3390/life14070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hulless barley is a cold-resistant crop widely planted in the northwest plateau of China. It is also the main food crop in this region. Phosphorus (P), as one of the important essential nutrient elements, regulates plant growth and defense. This study aimed to analyze the development and related molecular mechanisms of hulless barley under P deficiency and explore the regulatory genes so as to provide a basis for subsequent molecular breeding research. Transcriptome analysis was performed on the root and leaf samples of hulless barley cultured with different concentrations of KH2PO4 (1 mM and 10 μM) Hoagland solution. A total of 46,439 genes were finally obtained by the combined analysis of leaf and root samples. Among them, 325 and 453 genes had more than twofold differences in expression. These differentially expressed genes (DEGs) mainly participated in the abiotic stress biosynthetic process through Gene Ontology prediction. Moreover, the Kyoto Encyclopedia of Genes and Genomes showed that DEGs were mainly involved in photosynthesis, plant hormone signal transduction, glycolysis, phenylpropanoid biosynthesis, and synthesis of metabolites. These pathways also appeared in other abiotic stresses. Plants initiated multiple hormone synergistic regulatory mechanisms to maintain growth under P-deficient conditions. Transcription factors (TFs) also proved these predictions. The enrichment of ARR-B TFs, which positively regulated the phosphorelay-mediated cytokinin signal transduction, and some other TFs (AP2, GRAS, and ARF) was related to plant hormone regulation. Some DEGs showed different values in their FPKM (fragment per kilobase of transcript per million mapped reads), but the expression trends of genes responding to stress and phosphorylation remained highly consistent. Therefore, in the case of P deficiency, the first response of plants was the expression of stress-related genes. The effects of this stress on plant metabolites need to be further studied to improve the relevant regulatory mechanisms so as to further understand the importance of P in the development and stress resistance of hulless barley.
Collapse
Affiliation(s)
- Likun An
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Ziao Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Yongmei Cui
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Yixiong Bai
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Youhua Yao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Xiaohua Yao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Kunlun Wu
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| |
Collapse
|
12
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
13
|
Yadav S, Yadava YK, Meena S, Kalwan G, Bharadwaj C, Paul V, Kansal R, Gaikwad K, Jain PK. Novel insights into drought-induced regulation of ribosomal genes through DNA methylation in chickpea. Int J Biol Macromol 2024; 266:131380. [PMID: 38580022 DOI: 10.1016/j.ijbiomac.2024.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Modifications within the epigenome of an organism in response to external environmental conditions allow it to withstand the hostile stress factors. Drought in chickpea is a severely limiting abiotic stress factor which is known to cause huge yield loss. To analyse the methylome of chickpea in response to drought stress conditions and how it affects gene expression, we performed whole-genome bisulfite sequencing (WGBS) and RNA-seq of two chickpea genotypes which contrast for drought tolerance. It was observed that the mCHH was most variable under drought stress and the drought tolerant (DT) genotype exhibited substantial genome-wide hypomethylation as compared to the drought sensitive (DS) genotype. Specifically, there was substantial difference in gene expression and methylation for the ribosomal genes for the tolerant and sensitive genotypes. The differential expression of these genes was in complete agreement with earlier reported transcriptomes in chickpea. Many of these genes were hypomethylated (q < 0.01) and downregulated under drought stress (p < 0.01) in the sensitive genotype. The gene RPS6 (ribosomal protein small subunit) was found to be downregulated and hypomethylated in the drought sensitive genotype which could possibly lead to reduced ribosomal biosynthesis. This study provides novel insights into regulation of drought-responsive genes in chickpea.
Collapse
Affiliation(s)
- Sheel Yadav
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Yashwant K Yadava
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Shashi Meena
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gopal Kalwan
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - C Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vijay Paul
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - P K Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
14
|
Ma X, Wang J, Su Z, Ma H. Developmentally dependent reprogramming of the Arabidopsis floral transcriptome under sufficient and limited water availability. BMC PLANT BIOLOGY 2024; 24:273. [PMID: 38605371 PMCID: PMC11007919 DOI: 10.1186/s12870-024-04916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Environmental stresses negatively impact reproductive development and yield. Drought stress, in particular, has been examined during Arabidopsis reproductive development at morphological and transcriptomic levels. However, drought-responsive transcriptomic changes at different points in reproductive development remain unclear. Additionally, an investigation of the entire transcriptome at various stages during flower development is of great interest. RESULTS Here, we treat Arabidopsis plants with well-watered and moderately and severely limiting water amounts when the first flowers reach maturity and generate RNA-seq datasets for early, middle, and late phases during flower development at 5, 6, and 7 days following treatment. Under different drought conditions, flowers in different developmental phases display differential sets of drought-responsive genes (DTGs), including those that are enriched in different GO functional categories, such as transcriptional regulation and response to stresses (early phase), lipid storage (middle phase), and pollen and seed development and metabolic processes (late phase). Some gene families have different members induced at different floral phases, suggesting that similar biochemical functions are carried out by distinct members. Developmentally-regulated genes (DVGs) with differential expression among the three floral phases belong to GO terms that are similar between water conditions, such as development and reproduction, metabolism and transport, and signaling and stress response. However, for different water conditions, such similar GO terms correspond to either distinct gene families or different members of a gene family, suggesting that drought affects the expression of distinct families or family members during reproductive development. A further comparison among transcriptomes of tissues collected on different days after treatment identifies differential gene expression, suggesting age-related genes (ARGs) might reflect the changes in the overall plant physiology in addition to drought response and development. CONCLUSION Together, our study provides new insights into global transcriptome reprogramming and candidate genes for drought response, flower development, aging and coordination among these complex biological processes.
Collapse
Affiliation(s)
- Xinwei Ma
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jun Wang
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhao Su
- Laboratory of Plant Stress and Development, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hong Ma
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
15
|
Kudapa H, Ghatak A, Barmukh R, Chaturvedi P, Khan A, Kale S, Fragner L, Chitikineni A, Weckwerth W, Varshney RK. Integrated multi-omics analysis reveals drought stress response mechanism in chickpea (Cicer arietinum L.). THE PLANT GENOME 2024; 17:e20337. [PMID: 37165696 DOI: 10.1002/tpg2.20337] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 05/12/2023]
Abstract
Drought is one of the major constraints limiting chickpea productivity. To unravel complex mechanisms regulating drought response in chickpea, we generated transcriptomics, proteomics, and metabolomics datasets from root tissues of four contrasting drought-responsive chickpea genotypes: ICC 4958, JG 11, and JG 11+ (drought-tolerant), and ICC 1882 (drought-sensitive) under control and drought stress conditions. Integration of transcriptomics and proteomics data identified enriched hub proteins encoding isoflavone 4'-O-methyltransferase, UDP-d-glucose/UDP-d-galactose 4-epimerase, and delta-1-pyrroline-5-carboxylate synthetase. These proteins highlighted the involvement of pathways such as antibiotic biosynthesis, galactose metabolism, and isoflavonoid biosynthesis in activating drought stress response mechanisms. Subsequently, the integration of metabolomics data identified six metabolites (fructose, galactose, glucose, myoinositol, galactinol, and raffinose) that showed a significant correlation with galactose metabolism. Integration of root-omics data also revealed some key candidate genes underlying the drought-responsive "QTL-hotspot" region. These results provided key insights into complex molecular mechanisms underlying drought stress response in chickpea.
Collapse
Affiliation(s)
- Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Aamir Khan
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sandip Kale
- The Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Lena Fragner
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Centre (VIME), University of Vienna, Vienna, Austria
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
16
|
Hu F, Zhang Y, Guo J. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. PLANT SIGNALING & BEHAVIOR 2023; 18:2215025. [PMID: 37243677 DOI: 10.1080/15592324.2023.2215025] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Yellow horn grows in northern China and has a high tolerance to drought and poor soil. Improving photosynthetic efficiency and increasing plant growth and yield under drought conditions have become important research content for researchers worldwide. Our study goal is to provide comprehensive information on photosynthesis and some candidate genes breeding of yellow horn under drought stress. In this study, seedlings' stomatal conductance, chlorophyll content, and fluorescence parameters decreased under drought stress, but non-photochemical quenching increased. The leaf microstructure showed that stomata underwent a process from opening to closing, guard cells from complete to dry, and surrounding leaf cells from smooth to severe shrinkage. The chloroplast ultrastructure showed that the changes of starch granules were different under different drought stress, while plastoglobules increased and expanded continuously. In addition, we found some differentially expressed genes related to photosystem, electron transport component, oxidative phosphate ATPase, stomatal closure, and chloroplast ultrastructure. These results laid a foundation for further genetic improvement and deficit resistance breeding of yellow horn under drought stress.
Collapse
Affiliation(s)
- Fang Hu
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
17
|
Afzal M, Alghamdi SS, Khan MA, Al-Faifi SA, Rahman MHU. Transcriptomic analysis reveals candidate genes associated with salinity stress tolerance during the early vegetative stage in fababean genotype, Hassawi-2. Sci Rep 2023; 13:21223. [PMID: 38040745 PMCID: PMC10692206 DOI: 10.1038/s41598-023-48118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Abiotic stresses are a significant constraint to plant production globally. Identifying stress-related genes can aid in the development of stress-tolerant elite genotypes and facilitate trait and crop manipulation. The primary aim of this study was to conduct whole transcriptome analyses of the salt-tolerant faba bean genotype, Hassawi-2, under different durations of salt stress (6 h, 12 h, 24 h, 48 h, and 72 h) at the early vegetative stage, to better understand the molecular basis of salt tolerance. After de novo assembly, a total of 140,308 unigenes were obtained. The up-regulated differentially expressed genes (DEGs) were 2380, 2863, 3057, 3484, and 4820 at 6 h, 12 h, 24 h, 48 h, and 72 h of salt stress, respectively. Meanwhile, 1974, 3436, 2371, 3502, and 5958 genes were downregulated at 6 h, 12 h, 24 h, 48 h, and 72 h of salt stress, respectively. These DEGs encoded various regulatory and functional proteins, including kinases, plant hormone proteins, transcriptional factors (TFs) basic helix-loop-helix (bHLH), Myeloblastosis (MYB), and (WRKY), heat shock proteins (HSPs), late embryogenesis abundant (LEA) proteins, dehydrin, antioxidant enzymes, and aquaporin proteins. This suggests that the faba bean genome possesses an abundance of salinity resistance genes, which trigger different adaptive mechanisms under salt stress. Some selected DEGs validated the RNA sequencing results, thus confirming similar gene expression levels. This study represents the first transcriptome analysis of faba bean leaves subjected to salinity stress offering valuable insights into the mechanisms governing salt tolerance in faba bean during the vegetative stage. This comprehensive investigation enhances our understanding of precise gene regulatory mechanisms and holds promise for the development of novel salt-tolerant faba bean salt-tolerant cultivars.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Salem S Alghamdi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Altaf Khan
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Sulieman A Al-Faifi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Habib Ur Rahman
- INRES Institute of Crop Science and Resources Conservation INRES University of Bonn, Bonn, Germany.
- Seed Science and Technology, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan.
| |
Collapse
|
18
|
Sarita, Mehrotra S, Dimkpa CO, Goyal V. Survival mechanisms of chickpea (Cicer arietinum) under saline conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108168. [PMID: 38008005 DOI: 10.1016/j.plaphy.2023.108168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 11/28/2023]
Abstract
Salinity is a significant abiotic stress that is steadily increasing in intensity globally. Salinity is caused by various factors such as use of poor-quality water for irrigation, poor drainage systems, and increasing spate of drought that concentrates salt solutions in the soil; salinity is responsible for substantial agricultural losses worldwide. Chickpea (Cicer arietinum) is one of the crops most sensitive to salinity stress. Salinity restricts chickpea growth and production by interfering with various physiological and metabolic processes, downregulating genes linked to growth, and upregulating genes encoding intermediates of the tolerance and avoidance mechanisms. Salinity, which also leads to osmotic stress, disturbs the ionic equilibrium of plants. Survival under salinity stress is a primary concern for the plant. Therefore, plants adopt tolerance strategies such as the SOS pathway, antioxidative defense mechanisms, and several other biochemical mechanisms. Simultaneously, affected plants exhibit mechanisms like ion compartmentalization and salt exclusion. In this review, we highlight the impact of salinity in chickpea, strategies employed by the plant to tolerate and avoid salinity, and agricultural strategies for dealing with salinity. With the increasing spate of salinity spurred by natural events and anthropogenic agricultural activities, it is pertinent to explore and exploit the underpinning mechanisms for salinity tolerance to develop mitigation and adaptation strategies in globally important food crops such as chickpea.
Collapse
Affiliation(s)
- Sarita
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Shweta Mehrotra
- Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States.
| | - Vinod Goyal
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India.
| |
Collapse
|
19
|
Malik N, Basu U, Srivastava R, Daware A, Ranjan R, Sharma A, Thakro V, Mohanty JK, Jha UC, Tripathi S, Tyagi AK, Parida SK. Natural alleles of Mediator subunit genes modulate plant height in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1271-1292. [PMID: 37671896 DOI: 10.1111/tpj.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023]
Abstract
SUMMARYPlant height (PH) is an important plant architectural trait targeted during Green Revolution to enhance crop yields. Identification of genes and natural alleles governing plant height without compromising agronomic performance can fill the lacuna of knowledge connecting ideal plant architecture with maximum achievable yield in chickpea. Through coherent strategy involving genome‐wide association study, QTL/fine mapping, map‐based cloning, molecular haplotyping, and downstream functional genomics, the current study identified two Mediator subunit genes namely, CaMED23 and CaMED5b and their derived natural alleles/haplotypes underlying the major QTLs and trans‐acting eQTLs regulating plant height in chickpea. Differential accumulation of haplotype‐specific transcripts of these two Mediator genes in corresponding haplotype‐introgressed near‐isogenic lines (NILs) correlates negatively with the plant height trait. Quantitative as well as qualitative estimation based on histology, scanning electron microscopy, and histochemical assay unraveled the reduced lengths and cell sizes of internodes along with compromised lignin levels in dwarf/semi‐dwarf chickpea NILs introgressed with superior CaMED23 and CaMED5b gene haplotypes. This observation, supported by global transcriptome profiling‐based diminished expression of various phenylpropanoid pathway genes upstream of lignin biosynthesis in dwarf/semi‐dwarf NILs, essentially links plant height with lignin accumulation. The identified molecular signatures in the Mediator subunit genes can be efficiently utilized to develop desirable dwarf/semi‐dwarf‐type chickpea cultivars without affecting their yield per plant via modulating lignin/phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Naveen Malik
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Udita Basu
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rishi Srivastava
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Daware
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajeev Ranjan
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akash Sharma
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Mohanty
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | | | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
20
|
Basso MF, Contaldi F, Lo Celso F, Baratto CM, Grossi-de-Sa MF, Barone G, Ferrante A, Martinelli F. Identification and expression profile of the SMAX/SMXL family genes in chickpea and lentil provide important players of biotechnological interest involved in plant branching. PLANTA 2023; 259:1. [PMID: 37966555 PMCID: PMC10651550 DOI: 10.1007/s00425-023-04277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
MAIN CONCLUSION SMAX/SMXL family genes were successfully identified and characterized in the chickpea and lentil and gene expression data revealed several genes associated with the modulation of plant branching and powerful targets for use in transgenesis and genome editing. Strigolactones (SL) play essential roles in plant growth, rooting, development, and branching, and are associated with plant resilience to abiotic and biotic stress conditions. Likewise, karrikins (KAR) are "plant smoke-derived molecules" that act in a hormonal signaling pathway similar to SL playing an important role in seed germination and hairy root elongation. The SMAX/SMXL family genes are part of these two signaling pathways, in addition to some of these members acting in a still little known SL- and KAR-independent signaling pathway. To date, the identification and functional characterization of the SMAX/SMXL family genes has not been performed in the chickpea and lentil. In this study, nine SMAX/SMXL genes were systematically identified and characterized in the chickpea and lentil, and their expression profiles were explored under different unstressless or different stress conditions. After a comprehensive in silico characterization of the genes, promoters, proteins, and protein-protein interaction network, the expression profile for each gene was determined using a meta-analysis from the RNAseq datasets and complemented with real-time PCR analysis. The expression profiles of the SMAX/SMXL family genes were very dynamic in different chickpea and lentil organs, with some genes assuming a tissue-specific expression pattern. In addition, these genes were significantly modulated by different stress conditions, indicating that SMAX/SMXL genes, although working in three distinct signaling pathways, can act to modulate plant resilience. Most CaSMAX/SMXL and partner genes such as CaTiE1 and CaLAP1, have a positive correlation with the plant branching level, while most LcSMAX/SMXL genes were less correlated with the plant branching level. The SMXL6, SMXL7, SMXL8, TiE1, LAP1, BES1, and BRC1 genes were highlighted as powerful targets for use in transgenesis and genome editing aiming to develop chickpea and lentil cultivars with improved architecture. Therefore, this study presented a detailed characterization of the SMAX/SMXL genes in the chickpea and lentil, and provided new insights for further studies focused on each SMAX/SMXL gene.
Collapse
Affiliation(s)
| | - Felice Contaldi
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemical, University of Palermo, Viale Delle Scienze, Edificio 17, 90128, Palermo, Italy
| | - César Milton Baratto
- University of Western Santa Catarina, Biotechnological Center, UNOESC, Videira, SC, 89566-252, Brazil
| | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale Delle Scienze, Edificio 17, 90128, Palermo, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, University of Milan, Via Festa del Perdono, 20122, Milan, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
21
|
Basso MF, Contaldi F, Celso FL, Karalija E, Paz-Carrasco LC, Barone G, Ferrante A, Martinelli F. Expression profile of the NCED/CCD genes in chickpea and lentil during abiotic stress reveals a positive correlation with increased plant tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111817. [PMID: 37562731 DOI: 10.1016/j.plantsci.2023.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Carotenoid cleavage dioxygenase (CCD) gene family is organized in two subfamilies: (i) 9-cis epoxycarotenoid dioxygenase (NCED) genes and (ii) CCD genes. NCED genes are essential for catalyzing the first step of the abscisic-acid (ABA) biosynthesis, while CCD genes produce precursors of the strigolactones hormone. The functional characterization of these gene subfamilies has not been yet performed in chickpea and lentil. Herein, were identified and systematically characterized two NCED and five CCD genes in the chickpea and two NCED and six CCD genes in lentil. After in silico sequence analysis and phylogeny, the expression profile of the NCED/CCD genes was determined by meta-analysis and real-time PCR in plants under different stress conditions. Sequence data revealed that NCED/CCD genes are highly conserved between chickpea and lentil. This conservation was observed both at gene and protein sequence levels and phylogenetic relationships. Analysis of the promoter sequences revealed that all NCED/CCD genes have a considerable number of cis-regulatory elements responsive to biotic and abiotic stress. Protein sequence analysis evidenced that NCED/CCD genes share several conserved motifs and that they have a highly interconnected interaction network. Furthermore, the three-dimensional structure of these proteins was determined and indicated that some proteins have structures with considerable similarity. The meta-analysis revealed that NCED/CCD genes are dynamically modulated in different organs and under different stress conditions, but they have a positive correlation with plant tolerance. In accordance, real-time PCR data showed that both NCED and CCD genes are differentially modulated in plants under drought stress. In particular, CaNCED2, CaCCD5, LcNCED2, LcCCD1, and LcCCD2 genes have a positive correlation with improved plant tolerance to drought stress. Therefore, this study presented a detailed characterization of the chickpea and lentil NCED/CCD genes and provided new insights to improve abiotic stress tolerance in these two important crops.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Florence, Italy; University of Western Santa Catarina, Biotechnological Center, UNOESC, Videira, SC 89566-252, Brazil
| | - Felice Contaldi
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Florence, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemical, University of Palermo, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Erna Karalija
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Florence, Italy; Department of Biology, Faculty of science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Lenin Celiano Paz-Carrasco
- National Institute of Agricultural Research (INIAP), Plant Pathology Department and Rice Breeding Program, Km 26 vía Duran-Tambo, Yaguachi, Guayas, Ecuador
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Florence, Italy.
| |
Collapse
|
22
|
Yadava YK, Chaudhary P, Yadav S, Rizvi AH, Kumar T, Srivastava R, Soren KR, Bharadwaj C, Srinivasan R, Singh NK, Jain PK. Genetic mapping of quantitative trait loci associated with drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 2023; 13:17623. [PMID: 37848483 PMCID: PMC10582051 DOI: 10.1038/s41598-023-44990-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Elucidation of the genetic basis of drought tolerance is vital for genomics-assisted breeding of drought tolerant crop varieties. Here, we used genotyping-by-sequencing (GBS) to identify single nucleotide polymorphisms (SNPs) in recombinant inbred lines (RILs) derived from a cross between a drought tolerant chickpea variety, Pusa 362 and a drought sensitive variety, SBD 377. The GBS identified a total of 35,502 SNPs and subsequent filtering of these resulted in 3237 high-quality SNPs included in the eight linkage groups. Fifty-one percent of these SNPs were located in the genic regions distributed throughout the genome. The high density linkage map has total map length of 1069 cm with an average marker interval of 0.33 cm. The linkage map was used to identify 9 robust and consistent QTLs for four drought related traits viz. membrane stability index, relative water content, seed weight and yield under drought, with percent variance explained within the range of 6.29%-90.68% and LOD scores of 2.64 to 6.38, which were located on five of the eight linkage groups. A genomic region on LG 7 harbors quantitative trait loci (QTLs) explaining > 90% phenotypic variance for membrane stability index, and > 10% PVE for yield. This study also provides the first report of major QTLs for physiological traits such as membrane stability index and relative water content for drought stress in chickpea. A total of 369 putative candidate genes were identified in the 6.6 Mb genomic region spanning these QTLs. In-silico expression profiling based on the available transcriptome data revealed that 326 of these genes were differentially expressed under drought stress. KEGG analysis resulted in reduction of candidate genes from 369 to 99, revealing enrichment in various signaling pathways. Haplotype analysis confirmed 5 QTLs among the initially identified 9 QTLs. Two QTLs, qRWC1.1 and qYLD7.1, were chosen based on high SNP density. Candidate gene-based analysis revealed distinct haplotypes in qYLD7.1 associated with significant phenotypic differences, potentially linked to pathways for secondary metabolite biosynthesis. These identified candidate genes bolster defenses through flavonoids and phenylalanine-derived compounds, aiding UV protection, pathogen resistance, and plant structure.The study provides novel genomic regions and candidate genes which can be utilized in genomics-assisted breeding of superior drought tolerant chickpea cultivars.
Collapse
Affiliation(s)
- Yashwant K Yadava
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - Pooja Chaudhary
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - Sheel Yadav
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - Aqeel Hasan Rizvi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Tapan Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rachna Srivastava
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - K R Soren
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | - C Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - R Srinivasan
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - P K Jain
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India.
| |
Collapse
|
23
|
Chen M, Zhang Y, Du Z, Kong X, Zhu X. Integrative Metabolic and Transcriptomic Profiling in Camellia oleifera and Camellia meiocarpa Uncover Potential Mechanisms That Govern Triacylglycerol Degradation during Seed Desiccation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2591. [PMID: 37514206 PMCID: PMC10385360 DOI: 10.3390/plants12142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Camellia seed oil is a top-end quality of cooking oil in China. The oil quality and quantity are formed during seed maturation and desiccation. So far, it remains largely unresolved whether lipid degradation occurs and contributes to Camellia oil traits. In this study, three different Camellia germplasms, C. oleifera cv. Min 43 (M43), C. meiocarpa var. Qingguo (QG), and C. meiocarpa cv Hongguo (HG) were selected, their seed oil contents and compositions were quantified across different stages of seed desiccation. We found that at the late stage of desiccation, M43 and QG lost a significant portion of seed oil, while such an event was not observed in HG. To explore the molecular bases for the oil loss In M43, the transcriptomic profiling of M43 and HG was performed at the early and the late seed desiccation, respectively, and differentially expressed genes (DEGs) from the lipid metabolic pathway were identified and analyzed. Our data demonstrated that different Camellia species have diverse mechanisms to regulate seed oil accumulation and degradation, and that triacylglycerol-to-terpenoid conversion could account for the oil loss in M43 during late seed desiccation.
Collapse
Affiliation(s)
- Mingjie Chen
- International Joint Laboratory of Biology and High Value Utilization of Camellia oleifera in Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhenghua Du
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Xiaofang Zhu
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
| |
Collapse
|
24
|
Khan HA, Sharma N, Siddique KH, Colmer TD, Sutton T, Baumann U. Comparative transcriptome analysis reveals molecular regulation of salt tolerance in two contrasting chickpea genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1191457. [PMID: 37360702 PMCID: PMC10289292 DOI: 10.3389/fpls.2023.1191457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/28/2023]
Abstract
Salinity is a major abiotic stress that causes substantial agricultural losses worldwide. Chickpea (Cicer arietinum L.) is an important legume crop but is salt-sensitive. Previous physiological and genetic studies revealed the contrasting response of two desi chickpea varieties, salt-sensitive Rupali and salt-tolerant Genesis836, to salt stress. To understand the complex molecular regulation of salt tolerance mechanisms in these two chickpea genotypes, we examined the leaf transcriptome repertoire of Rupali and Genesis836 in control and salt-stressed conditions. Using linear models, we identified categories of differentially expressed genes (DEGs) describing the genotypic differences: salt-responsive DEGs in Rupali (1,604) and Genesis836 (1,751) with 907 and 1,054 DEGs unique to Rupali and Genesis836, respectively, salt responsive DEGs (3,376), genotype-dependent DEGs (4,170), and genotype-dependent salt-responsive DEGs (122). Functional DEG annotation revealed that the salt treatment affected genes involved in ion transport, osmotic adjustment, photosynthesis, energy generation, stress and hormone signalling, and regulatory pathways. Our results showed that while Genesis836 and Rupali have similar primary salt response mechanisms (common salt-responsive DEGs), their contrasting salt response is attributed to the differential expression of genes primarily involved in ion transport and photosynthesis. Interestingly, variant calling between the two genotypes identified SNPs/InDels in 768 Genesis836 and 701 Rupali salt-responsive DEGs with 1,741 variants identified in Genesis836 and 1,449 variants identified in Rupali. In addition, the presence of premature stop codons was detected in 35 genes in Rupali. This study provides valuable insights into the molecular regulation underpinning the physiological basis of salt tolerance in two chickpea genotypes and offers potential candidate genes for the improvement of salt tolerance in chickpeas.
Collapse
Affiliation(s)
- Hammad Aziz Khan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Niharika Sharma
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, Australia
| | - Kadambot H.M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Timothy David Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- Department of Primary Industries and Regions, South Australian Research and Development Institute (SARDI), Adelaide, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
25
|
Singh V, Gupta K, Singh S, Jain M, Garg R. Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1156606. [PMID: 37287713 PMCID: PMC10242046 DOI: 10.3389/fpls.2023.1156606] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023]
Abstract
Drought stress affects growth and productivity significantly in chickpea. An integrated multi-omics analysis can provide a better molecular-level understanding of drought stress tolerance. In the present study, comparative transcriptome, proteome and metabolome analyses of two chickpea genotypes with contrasting responses to drought stress, ICC 4958 (drought-tolerant, DT) and ICC 1882 (drought-sensitive, DS), was performed to gain insights into the molecular mechanisms underlying drought stress response/tolerance. Pathway enrichment analysis of differentially abundant transcripts and proteins suggested the involvement of glycolysis/gluconeogenesis, galactose metabolism, and starch and sucrose metabolism in the DT genotype. An integrated multi-omics analysis of transcriptome, proteome and metabolome data revealed co-expressed genes, proteins and metabolites involved in phosphatidylinositol signaling, glutathione metabolism and glycolysis/gluconeogenesis pathways, specifically in the DT genotype under drought. These stress-responsive pathways were coordinately regulated by the differentially abundant transcripts, proteins and metabolites to circumvent the drought stress response/tolerance in the DT genotype. The QTL-hotspot associated genes, proteins and transcription factors may further contribute to improved drought tolerance in the DT genotype. Altogether, the multi-omics approach provided an in-depth understanding of stress-responsive pathways and candidate genes involved in drought tolerance in chickpea.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khushboo Gupta
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Shubhangi Singh
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
26
|
Akbari A, Ismaili A, Amirbakhtiar N, Pouresmael M, Shobbar ZS. Genome-wide transcriptional profiling provides clues to molecular mechanisms underlying cold tolerance in chickpea. Sci Rep 2023; 13:6279. [PMID: 37072529 PMCID: PMC10113226 DOI: 10.1038/s41598-023-33398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Chickpea is an important food legume cultivated in several countries. A sudden drop in autumn temperature, freezing winter temperature, and late spring cold events result in significant losses in chickpea production. The current study used RNA sequencing of two cold tolerant (Saral) and sensitive (ILC533) Kabuli chickpea genotypes to identify cold tolerance-associated genes/pathways. A total of 200.85 million raw reads were acquired from the leaf samples by Illumina sequencing, and around 86% of the clean reads (199 million) were mapped to the chickpea reference genome. The results indicated that 3710 (1980 up- and 1730 down-regulated) and 3473 (1972 up- and 1501 down-regulated) genes were expressed differentially under cold stress in the tolerant and sensitive genotypes, respectively. According to the GO enrichment analysis of uniquely down-regulated genes under cold stress in ILC533, photosynthetic membrane, photosystem II, chloroplast part, and photosystem processes were enriched, revealing that the photosynthesis is severely sensitive to cold stress in this sensitive genotype. Many remarkable transcription factors (CaDREB1E, CaMYB4, CaNAC47, CaTCP4, and CaWRKY33), signaling/regulatory genes (CaCDPK4, CaPP2C6, CaMKK2, and CaHSFA3), and protective genes (CaCOR47, CaLEA3, and CaGST) were identified among the cold-responsive genes of the tolerant genotype. These findings would help improve cold tolerance across chickpea genotypes by molecular breeding or genetic engineering.
Collapse
Affiliation(s)
- Alireza Akbari
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Nazanin Amirbakhtiar
- Genetic Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Masoumeh Pouresmael
- Genetic Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization, Karaj, Iran.
| |
Collapse
|
27
|
Vineeth T, Krishna G, Pandesha P, Sathee L, Thomas S, James D, Ravikiran K, Taria S, John C, Vinaykumar N, Lokeshkumar B, Jat H, Bose J, Camus D, Rathor S, Krishnamurthy S, Sharma P. Photosynthetic machinery under salinity stress: Trepidations and adaptive mechanisms. PHOTOSYNTHETICA 2023; 61:73-93. [PMID: 39650121 PMCID: PMC11515832 DOI: 10.32615/ps.2023.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/06/2023] [Indexed: 12/11/2024]
Abstract
Chloroplasts and photosynthesis are the physiologically fateful arenas of salinity stress. Morphological and anatomical alterations in the leaf tissue, ultrastructural changes in the chloroplast, compromise in the integrity of the three-layered chloroplast membrane system, and defects in the light and dark reactions during the osmotic, ionic, and oxidative phases of salt stress are conversed in detail to bring the salinity-mediated physiological alterations in the chloroplast on to a single platform. Chloroplasts of salt-tolerant plants have evolved highly regulated salt-responsive pathways. Thylakoid membrane remodeling, ion homeostasis, osmoprotection, upregulation of chloroplast membrane and stromal proteins, chloroplast ROS scavenging, efficient retrograde signalling, and differential gene and metabolite abundance are the key attributes of optimal photosynthesis in tolerant species. This review throws light into the comparative mechanism of chloroplast and photosynthetic response to salinity in sensitive and tolerant plant species.
Collapse
Affiliation(s)
- T.V. Vineeth
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
| | - G.K. Krishna
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
| | - P.H. Pandesha
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
| | - L. Sathee
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
| | - S. Thomas
- Department of Plant Physiology, Kerala Agricultural University-Regional Agricultural Research Station, 686 563 Kumarakom, Kerala, India
| | - D. James
- Forest Genetics and Biotechnology Division, KSCSTE-Kerala Forest Research Institute, Peechi, 680 653 Thrissur, Kerala, India
| | - K.T. Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 226 002 Lucknow, Uttar Pradesh, India
| | - S. Taria
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
- Indian Council of Agricultural Research-Central Agroforestry Research Institute (ICAR-CAFRI), 284 003 Jhansi, Uttar Pradesh, India
| | - C. John
- School of Natural Resource Management, Central Agricultural University-College of Post Graduate Studies in Agricultural Sciences (CAU), 793 103 Umiam, Meghalaya, India
| | - N.M. Vinaykumar
- Department of Biotechnology, Kuvempu University, Shankaraghatta, 577 451 Shivamogga, Karnataka, India
| | - B.M. Lokeshkumar
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - H.S. Jat
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - J. Bose
- School of Science, Western Sydney University, Penrith NSW, 275 1, Australia
| | - D. Camus
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - S. Rathor
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - S.L. Krishnamurthy
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - P.C. Sharma
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| |
Collapse
|
28
|
Ya R, Li J, Zhang N, Yu Q, Xu W. Phenotypically abnormal cotyledonary Vitis vinifera embryos differ in anatomy, endogenous hormone levels and transcriptome profiles. TREE PHYSIOLOGY 2023; 43:467-485. [PMID: 36331330 DOI: 10.1093/treephys/tpac129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 05/03/2023]
Abstract
In many perennial fruit species, including grapevine (Vitis vinifera L.), the highly complex process of somatic embryogenesis (SE) can result in the formation of a deformed embryo, although the underlying reasons are still poorly understood. Here, V. vinifera cv. 'Chardonnay' cotyledonary embryos with distinct morphologies were used to address this issue. Normal cotyledonary embryos (NCEs) and elongated cotyledonary embryos (ECEs) were observed to have better-developed vasculature and shoot meristems than the vitrified cotyledonary embryos (VCEs) and fused cotyledonary embryos (FCEs), but ECEs were less developed. We determined that the morphological differences in these phenotypically abnormal embryos were likely associated with endogenous hormone levels, since concentrations of the phytohormones indoleacetic acid (IAA) and abscisic acid (ABA) in NCEs were higher than in the other three types. Comparative transcriptome analysis revealed large differences in gene expression of the hormone signaling pathways in normal and abnormal cotyledonary embryos. Weighted gene co-expression network analysis of the different cotyledonary types allowed the identification of co-regulated gene modules associated with SE, suggesting a role for ERF family genes and other transcription factors (TFs) in regulating morphology. Moreover, an analysis of morphology-specific gene expression indicated that the activation of a specific protein kinase, small heat shock proteins (sHSPs) and certain TFs was closely associated with the formation of normal cotyledonary embryos. Our comparative analyses provide insights into the gene networks regulating somatic cotyledon development and open new avenues for research into plant regeneration and functional genomic studies of malformed embryos.
Collapse
Affiliation(s)
- Rong Ya
- School of Agronomy, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No. 489 Helanshan West Road,Yinchuan, Ningxia 750021, China
| | - Junduo Li
- School of Agronomy, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No. 489 Helanshan West Road,Yinchuan, Ningxia 750021, China
| | - Ningbo Zhang
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No. 489 Helanshan West Road,Yinchuan, Ningxia 750021, China
- School of Food & Wine, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
| | - Qinhan Yu
- School of Agronomy, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No. 489 Helanshan West Road,Yinchuan, Ningxia 750021, China
| | - Weirong Xu
- School of Agronomy, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No. 489 Helanshan West Road,Yinchuan, Ningxia 750021, China
- School of Food & Wine, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
| |
Collapse
|
29
|
Malambane G, Madumane K, Sewelo LT, Batlang U. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1074395. [PMID: 36815012 PMCID: PMC9939662 DOI: 10.3389/fpls.2022.1074395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
Collapse
|
30
|
Wu C, Wang Y, Sun H. Targeted and untargeted metabolomics reveals deep analysis of drought stress responses in needles and roots of Pinus taeda seedlings. FRONTIERS IN PLANT SCIENCE 2023; 13:1031466. [PMID: 36798806 PMCID: PMC9927248 DOI: 10.3389/fpls.2022.1031466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Drought stress is one of major environmental stresses affecting plant growth and yield. Although Pinus taeda trees are planted in rainy southern China, local drought sometime occurs and can last several months, further affecting their growth and resin production. In this study, P. taeda seedlings were treated with long-term drought (42 d), and then targeted and untargeted metabolomics analysis were carried out to evaluate drought tolerance of P. taeda. Targeted metabolomics analysis showed that levels of some sugars, phytohormones, and amino acids significantly increased in the roots and needles of water-stressed (WS) P. taeda seedlings, compared with well-watered (WW) pine seedlings. These metabolites included sucrose in pine roots, the phytohormones abscisic acid and sacylic acid in pine needles, the phytohormone gibberellin (GA4) and the two amino acids, glycine and asparagine, in WS pine roots. Compared with WW pine seedlings, the neurotransmitter acetylcholine significantly increased in needles of WS pine seedlings, but significantly reduced in their roots. The neurotransmitters L-glutamine and hydroxytyramine significantly increased in roots and needles of WS pine seedlings, respectively, compared with WW pine seedlings, but the neurotransmitter noradrenaline significantly reduced in needles of WS pine seedlings. Levels of some unsaturated fatty acids significantly reduced in roots or needles of WS pine seedlings, compared with WW pine seedlings, such as linoleic acid, oleic acid, myristelaidic acid, myristoleic acid in WS pine roots, and palmitelaidic acid, erucic acid, and alpha-linolenic acid in WS pine needles. However, three saturated fatty acids significantly increased in WS pine seedlings, i.e., dodecanoic acid in WS pine needles, tricosanoic acid and heptadecanoic acid in WS pine roots. Untargeted metabolomics analysis showed that levels of some metabolites increased in WS pine seedlings, especially sugars, long-chain lipids, flavonoids, and terpenoids. A few of specific metabolites increased greatly, such as androsin, piceatanol, and panaxatriol in roots and needles of WS pine seedlings. Comparing with WW pine seedlings, it was found that the most enriched pathways in WS pine needles included flavone and flavonol biosynthesis, ABC transporters, diterpenoid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis; in WS pine roots, the most enriched pathways included tryptophan metabolism, caffeine metabolism, sesquiterpenoid and triterpenoid biosynthesis, plant hormone signal transduction, biosynthesis of phenylalanine, tyrosine, and tryptophan. Under long-term drought stress, P. taeda seedlings showed their own metabolomics characteristics, and some new metabolites and biosynthesis pathways were found, providing a guideline for breeding drought-tolerant cultivars of P. taeda.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Institute of Subtropic Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| |
Collapse
|
31
|
Gupta K, Garg R. Unravelling Differential DNA Methylation Patterns in Genotype Dependent Manner under Salinity Stress Response in Chickpea. Int J Mol Sci 2023; 24:ijms24031863. [PMID: 36768187 PMCID: PMC9915442 DOI: 10.3390/ijms24031863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
DNA methylation is one of the epigenetic mechanisms that govern gene regulation in response to abiotic stress in plants. Here, we analyzed the role of epigenetic variations by exploring global DNA methylation and integrating it with differential gene expression in response to salinity stress in tolerant and sensitive chickpea genotypes. Genome-wide DNA methylation profiles showed higher CG methylation in the gene body regions and higher CHH methylation in the TE body regions. The analysis of differentially methylated regions (DMRs) suggested more hyper-methylation in response to stress in the tolerant genotype compared to the sensitive genotype. We observed higher enrichment of CG DMRs in genes and CHH DMRs in transposable elements (TEs). A positive correlation of gene expression with CG gene body methylation was observed. The enrichment analysis of DMR-associated differentially expressed genes revealed they are involved in biological processes, such as lateral root development, transmembrane transporter activity, GTPase activity, and regulation of gene expression. Further, a high correlation of CG methylation with CHG and CHH methylation under salinity stress was revealed, suggesting crosstalk among the methylation contexts. Further, we observed small RNA-mediated CHH hypermethylation in TEs. Overall, the interplay between DNA methylation, small RNAs, and gene expression provides new insights into the regulatory mechanism underlying salinity stress response in chickpeas.
Collapse
|
32
|
Garg R, Subudhi PK, Varshney RK, Jain M. Editorial: Abiotic stress: Molecular genetics and genomics, volume II. FRONTIERS IN PLANT SCIENCE 2023; 13:1101139. [PMID: 36743575 PMCID: PMC9890159 DOI: 10.3389/fpls.2022.1101139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Affiliation(s)
- Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddh Nagar, India
| | - Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Rajeev K. Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Perth, WA, Australia
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
33
|
Kumar B, Singh AK, Bahuguna RN, Pareek A, Singla‐Pareek SL. Orphan crops: A genetic treasure trove for hunting stress tolerance genes. Food Energy Secur 2022. [DOI: 10.1002/fes3.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Brijesh Kumar
- Plant Stress Biology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Anil Kumar Singh
- ICAR‐National Institute for Plant Biotechnology LBS Centre New Delhi India
| | - Rajeev Nayan Bahuguna
- Center for Advanced Studies on Climate Change Dr. Rajendra Prasad Central Agricultural University Bihar Pusa, Samastipur India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Sneh L. Singla‐Pareek
- Plant Stress Biology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
| |
Collapse
|
34
|
Integrative Proteomics and Transcriptomics Profiles of the Oviduct Reveal the Prolificacy-Related Candidate Biomarkers of Goats ( Capra hircus) in Estrous Periods. Int J Mol Sci 2022; 23:ijms232314888. [PMID: 36499219 PMCID: PMC9737051 DOI: 10.3390/ijms232314888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The oviduct is a dynamic reproductive organ for mammalian reproduction and is required for gamete storage, maturation, fertilization, and early embryonic development, and it directly affects fecundity. However, the molecular regulation of prolificacy occurring in estrous periods remain poorly understood. This study aims to gain a better understanding of the genes involved in regulating goat fecundity in the proteome and transcriptome levels of the oviducts. Twenty female Yunshang black goats (between 2 and 3 years old, weight 52.22 ± 0.43 kg) were divided into high- and low-fecundity groups in the follicular (FH and FL, five individuals per group) and luteal (LH and LL, five individuals per group) phases, respectively. The DIA-based high-resolution mass spectrometry (MS) method was used to quantify proteins in twenty oviducts. A total of 5409 proteins were quantified, and Weighted gene co-expression network analysis (WGCNA) determined that the tan module was highly associated with the high-fecundity trait in the luteal phase, and identified NUP107, ANXA11, COX2, AKP13, and ITF140 as hub proteins. Subsequently, 98 and 167 differentially abundant proteins (DAPs) were identified in the FH vs. FL and LH vs. LL comparison groups, respectively. Parallel reaction monitoring (PRM) was used to validate the results of the proteomics data, and the hub proteins were analyzed with Western blot (WB). In addition, biological adhesion and transporter activity processes were associated with oviductal function, and several proteins that play roles in oviductal communication with gametes or embryos were identified, including CAMSAP3, ITGAM, SYVN1, EMG1, ND5, RING1, CBS, PES1, ELP3, SEC24C, SPP1, and HSPA8. Correlation analysis of proteomics and transcriptomic revealed that the DAPs and differentially expressed genes (DEGs) are commonly involved in the metabolic processes at the follicular phase; they may prepare the oviductal microenvironment for gamete reception; and the MAP kinase activity, estrogen receptor binding, and angiotensin receptor binding terms were enriched in the luteal phase, which may be actively involved in reproductive processes. By generating the proteome data of the oviduct at two critical phases and integrating transcriptome analysis, we uncovered novel aspects of oviductal gene regulation of fecundity and provided a reference for other mammals.
Collapse
|
35
|
Mu H, Wang B, Yuan F. Bioinformatics in Plant Breeding and Research on Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 11:3118. [PMID: 36432847 PMCID: PMC9696050 DOI: 10.3390/plants11223118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In the context of plant breeding, bioinformatics can empower genetic and genomic selection to determine the optimal combination of genotypes that will produce a desired phenotype and help expedite the isolation of these new varieties. Bioinformatics is also instrumental in collecting and processing plant phenotypes, which facilitates plant breeding. Robots that use automated and digital technologies to collect and analyze different types of information to monitor the environment in which plants grow, analyze the environmental stresses they face, and promptly optimize suboptimal and adverse growth conditions accordingly, have helped plant research and saved human resources. In this paper, we describe the use of various bioinformatics databases and algorithms and explore their potential applications in plant breeding and for research on plant disease resistance.
Collapse
Affiliation(s)
| | | | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
36
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
37
|
An integrated transcriptome mapping the regulatory network of coding and long non-coding RNAs provides a genomics resource in chickpea. Commun Biol 2022; 5:1106. [PMID: 36261617 PMCID: PMC9581958 DOI: 10.1038/s42003-022-04083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Large-scale transcriptome analysis can provide a systems-level understanding of biological processes. To accelerate functional genomic studies in chickpea, we perform a comprehensive transcriptome analysis to generate full-length transcriptome and expression atlas of protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs) from 32 different tissues/organs via deep sequencing. The high-depth RNA-seq dataset reveal expression dynamics and tissue-specificity along with associated biological functions of PCGs and lncRNAs during development. The coexpression network analysis reveal modules associated with a particular tissue or a set of related tissues. The components of transcriptional regulatory networks (TRNs), including transcription factors, their cognate cis-regulatory motifs, and target PCGs/lncRNAs that determine developmental programs of different tissues/organs, are identified. Several candidate tissue-specific and abiotic stress-responsive transcripts associated with quantitative trait loci that determine important agronomic traits are also identified. These results provide an important resource to advance functional/translational genomic and genetic studies during chickpea development and environmental conditions. A full-length transcriptome and expression atlas of protein-coding genes and long non-coding RNAs is generated in chickpea. Components of transcriptional regulatory networks and candidate tissue-specific transcripts associated with quantitative trait loci are identified.
Collapse
|
38
|
Qin T, Ali K, Wang Y, Dormatey R, Yao P, Bi Z, Liu Y, Sun C, Bai J. Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with different rooting depth responses to drought stress in potato. FRONTIERS IN PLANT SCIENCE 2022; 13:1007866. [PMID: 36340359 PMCID: PMC9629812 DOI: 10.3389/fpls.2022.1007866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Potato is one of the most important vegetable crops worldwide. Its growth, development and ultimately yield is hindered by drought stress condition. Breeding and selection of deep-rooted and drought-tolerant potato varieties has become a prime approach for improving the yield and quality of potato (Solanum tuberosum L.) in arid and semiarid areas. A comprehensive understanding of root development-related genes has enabled scientists to formulate strategies to incorporate them into breeding to improve complex agronomic traits and provide opportunities for the development of stress tolerant germplasm. Root response to drought stress is an intricate process regulated through complex transcriptional regulatory network. To understand the rooting depth and molecular mechanism, regulating root response to drought stress in potato, transcriptome dynamics of roots at different stages of drought stress were analyzed in deep (C119) and shallow-rooted (C16) cultivars. Stage-specific expression was observed for a significant proportion of genes in each cultivar and it was inferred that as compared to C16 (shallow-rooted), approximately half of the genes were differentially expressed in deep-rooted cultivar (C119). In C16 and C119, 11 and 14 coexpressed gene modules, respectively, were significantly associated with physiological traits under drought stress. In a comparative analysis, some modules were different between the two cultivars and were associated with differential response to specific drought stress stage. Transcriptional regulatory networks were constructed, and key components determining rooting depth were identified. Through the results, we found that rooting depth (shallow vs deep) was largely determined by plant-type, cell wall organization or biogenesis, hemicellulose metabolic process, and polysaccharide metabolic process. In addition, candidate genes responding to drought stress were identified in deep (C119) and shallow (C16) rooted potato varieties. The results of this study will be a valuable source for further investigations on the role of candidate gene(s) that affect rooting depth and drought tolerance mechanisms in potato.
Collapse
Affiliation(s)
- Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Kazim Ali
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Richard Dormatey
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
39
|
Wang Y, Zhu W, Ren F, Zhao N, Xu S, Sun P. Transcriptional Memory in Taraxacum mongolicum in Response to Long-Term Different Grazing Intensities. PLANTS 2022; 11:plants11172251. [PMID: 36079633 PMCID: PMC9460496 DOI: 10.3390/plants11172251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022]
Abstract
Grazing, as an important land use method in grassland, has a significant impact on the morphological and physiological traits of plants. However, little is known about how the molecular mechanism of plant responds to different grazing intensities. Here, we investigated the response of Taraxacum mongolicum to light grazing and heavy grazing intensities in comparison with a non-grazing control. Using de novo transcriptome assembly, T. mongolicum leaves were compared for the expression of the different genes under different grazing intensities in natural grassland. In total, 194,253 transcripts were de novo assembled and comprised in nine leaf tissues. Among them, 11,134 and 9058 genes were differentially expressed in light grazing and heavy grazing grassland separately, with 5867 genes that were identified as co-expression genes in two grazing treatments. The Nr, SwissProt, String, GO, KEGG, and COG analyses by BLASTx searches were performed to determine and further understand the biological functions of those differentially expressed genes (DEGs). Analysis of the expression patterns of 10 DEGs by quantitative real-time RT-PCR (qRT-PCR) confirmed the accuracy of the RNA-Seq results. Based on a comparative transcriptome analysis, the most significant transcriptomic changes that were observed under grazing intensity were related to plant hormone and signal transduction pathways, carbohydrate and secondary metabolism, and photosynthesis. In addition, heavy grazing resulted in a stronger transcriptomic response compared with light grazing through increasing the of the secondary metabolism- and photosynthesis-related genes. These changes in key pathways and related genes suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of T. mongolicum. Our findings provide important clues for improving grassland use and protection and understanding the molecular mechanisms of plant response to grazing.
Collapse
Affiliation(s)
- Yalin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Wenyan Zhu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471003, China
| | - Fei Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Na Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471003, China
| | - Shixiao Xu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471003, China
- Correspondence: (S.X.); (P.S.); Tel.: +86-13997163501 (S.X.); +86-13525415882 (P.S.)
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: (S.X.); (P.S.); Tel.: +86-13997163501 (S.X.); +86-13525415882 (P.S.)
| |
Collapse
|
40
|
Comparative Transcriptome Profiling Reveals Potential Candidate Genes, Transcription Factors, and Biosynthetic Pathways for Phosphite Response in Potato (Solanum tuberosum L.). Genes (Basel) 2022; 13:genes13081379. [PMID: 36011289 PMCID: PMC9407107 DOI: 10.3390/genes13081379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
The study was conducted with C31 and C80 genotypes of the potato (Solanum tuberosum L.), which are tolerant and susceptible to phosphite (Phi, H2PO3), respectively. To decipher the molecular mechanisms underlying tolerance and susceptibility to Phi in the potato, RNA sequencing was used to study the global transcriptional patterns of the two genotypes. Media were prepared with 0.25 and 0.50 mM Phi, No-phosphorus (P), and 1.25 mM (phosphate, Pi as control). The values of fragments per kilobase of exon per million mapped fragments of the samples were also subjected to a principal component analysis, grouping the biological replicates of each sample. Using stringent criteria, a minimum of 819 differential (DEGs) were detected in both C80-Phi-0.25_vs_C80-Phi-0.50 (comprising 517 upregulated and 302 downregulated) and C80-Phi-0.50_vs_C80-Phi-0.25 (comprising 302 upregulated and 517 downregulated) and a maximum of 5214 DEGs in both C31-Con_vs_C31-Phi-0.25 (comprising 1947 upregulated and 3267 downregulated) and C31-Phi-0.25_vs_C31-Con (comprising 3267 upregulated and 1947 downregulated). DEGs related to the ribosome, plant hormone signal transduction, photosynthesis, and plant–pathogen interaction performed important functions under Phi stress, as shown by the Kyoto Encyclopedia of Genes and Genomes annotation. The expressions of transcription factors increased significantly in C31 compared with C80. For example, the expressions of Soltu.DM.01G047240, Soltu.DM.08G015900, Soltu.DM.06G012130, and Soltu.DM.08G012710 increased under P deficiency conditions (Phi-0.25, Phi-0.50, and No-P) relative to the control (P sufficiency) in C31. This study adds to the growing body of transcriptome data on Phi stress and provides important clues to the Phi tolerance response of the C31 genotype.
Collapse
|
41
|
Chandana BS, Mahto RK, Singh RK, Ford R, Vaghefi N, Gupta SK, Yadav HK, Manohar M, Kumar R. Epigenomics as Potential Tools for Enhancing Magnitude of Breeding Approaches for Developing Climate Resilient Chickpea. Front Genet 2022; 13:900253. [PMID: 35937986 PMCID: PMC9355295 DOI: 10.3389/fgene.2022.900253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenomics has become a significant research interest at a time when rapid environmental changes are occurring. Epigenetic mechanisms mainly result from systems like DNA methylation, histone modification, and RNA interference. Epigenetic mechanisms are gaining importance in classical genetics, developmental biology, molecular biology, cancer biology, epidemiology, and evolution. Epigenetic mechanisms play important role in the action and interaction of plant genes during development, and also have an impact on classical plant breeding programs, inclusive of novel variation, single plant heritability, hybrid vigor, plant-environment interactions, stress tolerance, and performance stability. The epigenetics and epigenomics may be significant for crop adaptability and pliability to ambient alterations, directing to the creation of stout climate-resilient elegant crop cultivars. In this review, we have summarized recent progress made in understanding the epigenetic mechanisms in plant responses to biotic and abiotic stresses and have also tried to provide the ways for the efficient utilization of epigenomic mechanisms in developing climate-resilient crop cultivars, especially in chickpea, and other legume crops.
Collapse
Affiliation(s)
- B. S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | | | - Rebecca Ford
- Center for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Niloofar Vaghefi
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | | | | | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
42
|
Sánchez-Bermúdez M, del Pozo JC, Pernas M. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:918537. [PMID: 35845642 PMCID: PMC9284278 DOI: 10.3389/fpls.2022.918537] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Climate change is a major threat to crop productivity that negatively affects food security worldwide. Increase in global temperatures are usually accompanied by drought, flooding and changes in soil nutrients composition that dramatically reduced crop yields. Against the backdrop of climate change, human population increase and subsequent rise in food demand, finding new solutions for crop adaptation to environmental stresses is essential. The effects of single abiotic stress on crops have been widely studied, but in the field abiotic stresses tend to occur in combination rather than individually. Physiological, metabolic and molecular responses of crops to combined abiotic stresses seem to be significantly different to individual stresses. Although in recent years an increasing number of studies have addressed the effects of abiotic stress combinations, the information related to the root system response is still scarce. Roots are the underground organs that directly contact with the soil and sense many of these abiotic stresses. Understanding the effects of abiotic stress combinations in the root system would help to find new breeding tools to develop more resilient crops. This review will summarize the current knowledge regarding the effects of combined abiotic stress in the root system in crops. First, we will provide a general overview of root responses to particular abiotic stresses. Then, we will describe how these root responses are integrated when crops are challenged to the combination of different abiotic stress. We will focus on the main changes on root system architecture (RSA) and physiology influencing crop productivity and yield and convey the latest information on the key molecular, hormonal and genetic regulatory pathways underlying root responses to these combinatorial stresses. Finally, we will discuss possible directions for future research and the main challenges needed to be tackled to translate this knowledge into useful tools to enhance crop tolerance.
Collapse
|
43
|
Zheng J, Zhang Z, Liang Y, Gong Z, Zhang N, Ditta A, Sang Z, Wang J, Li X. Whole Transcriptome Sequencing Reveals Drought Resistance-Related Genes in Upland Cotton. Genes (Basel) 2022; 13:genes13071159. [PMID: 35885942 PMCID: PMC9318479 DOI: 10.3390/genes13071159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
China, particularly the cotton-growing province of Xinjiang, is experiencing acute agricultural water shortages, stifling the expansion of the cotton sector. Discovering drought resistance genes in cotton and generating high-quality, drought-resistant cotton varieties through molecular breeding procedures are therefore critical to the cotton industry’s success. The drought-resistant cotton variety Xinluzhong No. 82 and the drought-sensitive cotton variety Kexin No. 1 were utilised in this study to uncover a batch of drought-resistant candidate genes using whole transcriptome sequencing. The following are the key research findings: A competing endogenous RNA network (ceRNA) was built using complete transcriptional sequencing to screen the core genes in the core pathway, and two drought-related candidate genes were discovered. It was found that γ-aminobutyric acid aminotransferase (GhGABA-T, Gohir.A11G156000) was upregulated at 0 h vs. 12 h and downregulated at 12 h vs. 24 h. L-Aspartate oxidase (GhAO, Gohir.A07G220600) was downregulated at 0 h vs. 12 h and upregulated at 12 h vs. 24 h. GABA-T is analogous to a pyridoxal phosphate-dependent transferase superfamily protein (POP2) in Arabidopsis thaliana and influences plant drought resistance by controlling γ-aminobutyric acid (GABA) concentration. The analogue of GhAO in A. thaliana is involved in the early steps of nicotinamide adenine dinucleotide (NAD) production as well as in plant antioxidant responses. This study revealed that gene expression regulatory networks can be used for rapid screening of reliable drought resistance genes and then utilised to validate gene function.
Collapse
Affiliation(s)
- Juyun Zheng
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
| | - Zeliang Zhang
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (N.Z.); (Z.S.)
| | - Yajun Liang
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
| | - Zhaolong Gong
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
| | - Nala Zhang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (N.Z.); (Z.S.)
| | - Allah Ditta
- Cotton Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan;
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Zhiwei Sang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (N.Z.); (Z.S.)
| | - Junduo Wang
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
| | - Xueyuan Li
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
- Correspondence:
| |
Collapse
|
44
|
Arriagada O, Cacciuttolo F, Cabeza RA, Carrasco B, Schwember AR. A Comprehensive Review on Chickpea ( Cicer arietinum L.) Breeding for Abiotic Stress Tolerance and Climate Change Resilience. Int J Mol Sci 2022; 23:ijms23126794. [PMID: 35743237 PMCID: PMC9223724 DOI: 10.3390/ijms23126794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Chickpea is one of the most important pulse crops worldwide, being an excellent source of protein. It is grown under rain-fed conditions averaging yields of 1 t/ha, far from its potential of 6 t/ha under optimum conditions. The combined effects of heat, cold, drought, and salinity affect species productivity. In this regard, several physiological, biochemical, and molecular mechanisms are reviewed to confer tolerance to abiotic stress. A large collection of nearly 100,000 chickpea accessions is the basis of breeding programs, and important advances have been achieved through conventional breeding, such as germplasm introduction, gene/allele introgression, and mutagenesis. In parallel, advances in molecular biology and high-throughput sequencing have allowed the development of specific molecular markers for the genus Cicer, facilitating marker-assisted selection for yield components and abiotic tolerance. Further, transcriptomics, proteomics, and metabolomics have permitted the identification of specific genes, proteins, and metabolites associated with tolerance to abiotic stress of chickpea. Furthermore, some promising results have been obtained in studies with transgenic plants and with the use of gene editing to obtain drought-tolerant chickpea. Finally, we propose some future lines of research that may be useful to obtain chickpea genotypes tolerant to abiotic stress in a scenario of climate change.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (O.A.); (F.C.)
| | - Felipe Cacciuttolo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (O.A.); (F.C.)
| | - Ricardo A. Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile;
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados (CEAP), Av. Lircay s/n, Talca 3480094, Chile;
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (O.A.); (F.C.)
- Correspondence:
| |
Collapse
|
45
|
Yadav S, Yadava YK, Kohli D, Meena S, Kalwan G, Bharadwaj C, Gaikwad K, Arora A, Jain PK. Genome-wide identification, in silico characterization and expression analysis of the RNA helicase gene family in chickpea (C. arietinum L.). Sci Rep 2022; 12:9778. [PMID: 35697711 PMCID: PMC9192698 DOI: 10.1038/s41598-022-13823-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
The RNA helicases are an important class of enzymes which are known to influence almost every aspect of RNA metabolism. The majority of RNA helicases belong to the SF2 (superfamily 2) superfamily, members of which are further categorized into three separate subfamilies i.e., the DEAD, DEAH and DExD/H-box subfamilies. In chickpea, these RNA helicases have not been characterized until now. A genome-wide analysis across the chickpea genome led to the identification of a total of 150 RNA helicase genes which included 50 DEAD, 33 DEAH and 67 DExD/H-box genes. These were distributed across all the eight chromosomes, with highest number on chromosome 4 (26) and least on chromosome 8 (8). Gene duplication analysis resulted in identification of 15 paralogous gene pairs with Ka/Ks values < 1, indicating towards the genes being under purifying selection during the course of evolution. The promoter regions of the RNA helicase genes were enriched in cis-acting elements like the light and ABA-responsive elements. The drought responsiveness of the genes was analysed by studying the expression profiles of few of these genes, in two different genotypes, the cultivated variety ICC 8261 (kabuli, C. arietinum) and the wild accession ILWC 292 (C. reticulatum), through qRT-PCR. These genotypes were selected based on their drought responsiveness in a field experiment, where it was observed that the percentage (%) reduction in relative water content (RWC) and membrane stability index (MSI) for the drought stressed plants after withholding water for 24 days, over the control or well-watered plants, was least for both the genotypes. The genes CaDEAD50 and CaDExD/H66 were identified as drought-responsive RNA helicase genes in chickpea. The protein encoded by the CaDExD/H66 gene shares a high degree of homology with one of the CLSY (CLASSY) proteins of A. thaliana. We hypothesize that this gene could possibly be involved in regulation of DNA methylation levels in chickpea by regulating siRNA production, in conjunction with other proteins like the Argonaute, RNA dependent RNA polymerases and Dicer-like proteins.
Collapse
Affiliation(s)
- Sheel Yadav
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Yashwant K Yadava
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Deshika Kohli
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Shashi Meena
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gopal Kalwan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - C Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - P K Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
46
|
Lee JS, Jahani M, Huang K, Mandel JR, Marek LF, Burke JM, Langlade NB, Owens GL, Rieseberg LH. Expression complementation of gene presence/absence polymorphisms in hybrids contributes importantly to heterosis in sunflower. J Adv Res 2022; 42:83-98. [PMID: 36513422 PMCID: PMC9788961 DOI: 10.1016/j.jare.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/16/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Numerous crops have transitioned to hybrid seed production to increase yields and yield stability through heterosis. However, the molecular mechanisms underlying heterosis and its stability across environments are not yet fully understood. OBJECTIVES This study aimed to (1) elucidate the genetic and molecular mechanisms underlying heterosis in sunflower, and (2) determine how heterosis is maintained under different environments. METHODS Genome-wide association (GWA) analyses were employed to assess the effects of presence/absence variants (PAVs) and stop codons on 16 traits phenotyped in the sunflower association mapping population at three locations. To link the GWA results to transcriptomic variation, we sequenced the transcriptomes of two sunflower cultivars and their F1 hybrid (INEDI) under both control and drought conditions and analyzed patterns of gene expression and alternative splicing. RESULTS Thousands of PAVs were found to affect phenotypic variation using a relaxed significance threshold, and at most such loci the "absence" allele reduced values of heterotic traits, but not those of non-heterotic traits. This pattern was strengthened for PAVs that showed expression complementation in INEDI. Stop codons were much rarer than PAVs and less likely to reduce heterotic trait values. Hybrid expression patterns were enriched for the GO category, sensitivity to stimulus, but all genotypes responded to drought similarily - by up-regulating water stress response pathways and down-regulating metabolic pathways. Changes in alternative splicing were strongly negatively correlated with expression variation, implying that alternative splicing in this system largely acts to reinforce expression responses. CONCLUSION Our results imply that complementation of expression of PAVs in hybrids is a major contributor to heterosis in sunflower, consistent with the dominance model of heterosis. This mechanism can account for yield stability across different environments. Moreover, given the much larger numbers of PAVs in plant vs. animal genomes, it also offers an explanation for the stronger heterotic responses seen in the former.
Collapse
Affiliation(s)
- Joon Seon Lee
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mojtaba Jahani
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer R. Mandel
- Department of Biological Sciences and Center for Biodiversity, University of Memphis, Memphis, TN 38152, USA
| | - Laura F. Marek
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - John M. Burke
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens 30602, Georgia
| | | | - Gregory L. Owens
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada,Corresponding author.
| |
Collapse
|
47
|
La HV, Chu HD, Tran CD, Nguyen KH, Le QTN, Hoang CM, Cao BP, Pham ATC, Nguyen BD, Nguyen TQ, Van Nguyen L, Ha CV, Le HT, Le HH, Le TD, Tran LSP. Insights into the gene and protein structures of the CaSWEET family members in chickpea (Cicer arietinum), and their gene expression patterns in different organs under various stress and abscisic acid treatments. Gene 2022; 819:146210. [PMID: 35104577 DOI: 10.1016/j.gene.2022.146210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
'Sugars Will Eventually be Exported Transporters' (SWEETs) are a group of sugar transporters that play crucial roles in various biological processes, particularly plant stress responses. However, no information is available yet for the CaSWEET family in chickpea. Here, we identified all putative CaSWEET members in chickpea, and obtained their major characteristics, including physicochemical patterns, chromosomal distribution, subcellular localization, gene organization, conserved motifs and three-dimensional protein structures. Subsequently, we explored available transcriptome data to compare spatiotemporal transcript abundance of CaSWEET genes in various major organs. Finally, we studied the changes in their transcript levels in leaves and/or roots following dehydration and exogenous abscisic acid treatments using RT-qPCR to obtain valuable information underlying their potential roles in chickpea responses to water-stress conditions. Our results provide the first insights into the characteristics of the CaSWEET family members and a foundation for further functional characterizations of selected candidate genes for genetic engineering of chickpea.
Collapse
Affiliation(s)
- Hong Viet La
- Faculty of Biology and Agricultural Technology, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province 280000, Viet Nam
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City 122300, Viet Nam.
| | - Cuong Duy Tran
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam
| | - Quynh Thi Ngoc Le
- Faculty of Chemistry and Environment, Thuy loi University, Dong Da District, Hanoi City 122300, Viet Nam
| | - Chinh Minh Hoang
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Bang Phi Cao
- Hung Vuong University, Phu Tho Province 35000, Viet Nam
| | - Anh Tuyen Cong Pham
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Bach Duc Nguyen
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Trung Quoc Nguyen
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Loc Van Nguyen
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Hien Thi Le
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City 122300, Viet Nam
| | - Ham Huy Le
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City 122300, Viet Nam; Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam
| | - Thao Duc Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam.
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam.
| |
Collapse
|
48
|
Genome-wide identification and expression analysis of the GRAS gene family in response to drought stress in chickpea ( Cicer arietinum L.). 3 Biotech 2022; 12:64. [PMID: 35186661 PMCID: PMC8828820 DOI: 10.1007/s13205-021-03104-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Abstract
The GRAS (gibberellic acid insensitive, repressor of GAI and scarecrow) transcription factors (TFs) regulate diverse biological processes involved in plant growth and development. These TFs are also known to regulate gene expression in response to various abiotic stress factors like cold, drought, etc. In chickpea one of the most devastating abiotic stress factors is terminal drought. The GRAS TF family has not been characterized in chickpea (Cicer arietinum L.) until now. In this study, we report 46 GRAS TF genes (CaGRAS genes) in the chickpea genome. The CaGRAS proteins were categorized into nine subfamilies based on their phylogenetic relationship with known GRAS members of Arabidopsis and soybean. The PAT subfamily was the largest consisting of ten CaGRAS members whereas the LAS subfamily was the smallest with only one member. Gene duplication analysis revealed that segmental duplication was the primary reason for the expansion of this gene family within the chickpea genome. The gene expression levels of CaGRAS genes were analysed using two different chickpea varieties contrasting for drought tolerance trait, i.e., ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive). On exposure to drought stress, the two chickpea genotypes, exhibited differential drought response, which was quantified and estimated in terms of differences in leaf relative water content (RWC). The well-watered or control plants of the drought tolerant variety were able to maintain a higher leaf RWC by the end of the drought stress period, whereas the control plants of the drought sensitive variety continued to show a decline in leaf RWC. The two genotypes also differed in their root morphologies, under well-watered and drought stress conditions. The gene expression analysis revealed a potential role of PAT, SCR, SCL3 and SHR GRAS members in the regulation of differential response to drought, in the root tissues, for both the genotypes. CaGRAS 12 (SCR) was identified as a drought-responsive GRAS TF gene, which could serve as a potential candidate gene for utilization in developing chickpea varieties with improved drought tolerance. This study demonstrates the drought-responsive expression of CaGRAS genes in chickpea and also describes the morpho-physiological response of chickpea plants to drought stress conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03104-z.
Collapse
|
49
|
Kaashyap M, Ford R, Mann A, Varshney RK, Siddique KHM, Mantri N. Comparative Flower Transcriptome Network Analysis Reveals DEGs Involved in Chickpea Reproductive Success during Salinity. PLANTS (BASEL, SWITZERLAND) 2022; 11:434. [PMID: 35161414 PMCID: PMC8838858 DOI: 10.3390/plants11030434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 05/27/2023]
Abstract
Salinity is increasingly becoming a significant problem for the most important yet intrinsically salt-sensitive grain legume chickpea. Chickpea is extremely sensitive to salinity during the reproductive phase. Therefore, it is essential to understand the molecular mechanisms by comparing the transcriptomic dynamics between the two contrasting genotypes in response to salt stress. Chickpea exhibits considerable genetic variation amongst improved cultivars, which show better yields in saline conditions but still need to be enhanced for sustainable crop production. Based on previous extensive multi-location physiological screening, two identified genotypes, JG11 (salt-tolerant) and ICCV2 (salt-sensitive), were subjected to salt stress to evaluate their phenological and transcriptional responses. RNA-Sequencing is a revolutionary tool that allows for comprehensive transcriptome profiling to identify genes and alleles associated with stress tolerance and sensitivity. After the first flowering, the whole flower from stress-tolerant and sensitive genotypes was collected. A total of ~300 million RNA-Seq reads were sequenced, resulting in 2022 differentially expressed genes (DEGs) in response to salt stress. Genes involved in flowering time such as FLOWERING LOCUS T (FT) and pollen development such as ABORTED MICROSPORES (AMS), rho-GTPase, and pollen-receptor kinase were significantly differentially regulated, suggesting their role in salt tolerance. In addition to this, we identify a suite of essential genes such as MYB proteins, MADS-box, and chloride ion channel genes, which are crucial regulators of transcriptional responses to salinity tolerance. The gene set enrichment analysis and functional annotation of these genes in flower development suggest that they can be potential candidates for chickpea crop improvement for salt tolerance.
Collapse
Affiliation(s)
- Mayank Kaashyap
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
| | - Rebecca Ford
- School of Environment and Science, Griffith University, Nathan 4111, Australia;
| | - Anita Mann
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute (CSSRI), Zarifa Farm, Karnal 132001, India;
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India; or
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia;
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia;
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia;
| |
Collapse
|
50
|
Wang Y, Yang Z, Shi L, Yang R, Guo H, Zhang S, Geng G. Transcriptome analysis of Auricularia fibrillifera fruit-body responses to drought stress and rehydration. BMC Genomics 2022; 23:58. [PMID: 35033026 PMCID: PMC8760723 DOI: 10.1186/s12864-021-08284-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Drought stress severely restricts edible fungus production. The genus Auricularia has a rare drought tolerance, a rehydration capability, and is nutrient rich. RESULTS The key genes and metabolic pathways involved in drought-stress and rehydration were investigated using a transcriptome analysis to clarify the relevant molecular mechanisms. In total, 173.93 Mb clean reads, 26.09 Gb of data bulk, and 52,954 unigenes were obtained. Under drought-stress and rehydration conditions, 14,235 and 8539 differentially expressed genes, respectively, were detected. 'Tyrosine metabolic', 'caffeine metabolism', 'ribosome', 'phagosome', and 'proline and arginine metabolism', as well as 'peroxisome' and 'mitogen-activated protein kinase signaling' pathways, had major roles in A. fibrillifera responses to drought stress. 'Tyrosine' and 'caffeine metabolism' might reveal unknown mechanisms for the antioxidation of A. fibrillifera under drought-stress conditions. During the rehydration process, 'diterpenoid biosynthesis', 'butanoate metabolism', 'C5-branched dibasic acid', and 'aflatoxin biosynthesis' pathways were significantly enriched. Gibberellins and γ-aminobutyric acid were important in the recovery of A. fibrillifera growth after rehydration. Many genes related to antibiotics, vitamins, and other health-related ingredients were found in A. fibrillifera. CONCLUSION These findings suggested that the candidate genes and metabolites involved in crucial biological pathways might regulate the drought tolerance or rehydration of Auricularia, shedding light on the corresponding mechanisms and providing new potential targets for the breeding and cultivation of drought-tolerant fungi.
Collapse
Affiliation(s)
- Yiqin Wang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zhifen Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Luxi Shi
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Rui Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Hao Guo
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Suqin Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| | - Guangdong Geng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|