1
|
Ruan C, Xie Y, Ye H, Zhang Y, Zhang R, Li Y. Role of fragile sites FATS and FMR1 in tumor progression and their potential clinical significance. Int J Cancer 2025; 157:207-217. [PMID: 40202510 DOI: 10.1002/ijc.35417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 04/10/2025]
Abstract
The fragile sites are defined as specific segments of genes that are particularly susceptible to breakage under conditions of accelerated replication stress or certain external influences. It has been demonstrated that fragile sites can influence the progression of various tumors. However, the majority of existing studies have focused on the functions of well-characterized common fragile sites, such as FHIT, WWOX, and PARK2, in different oncogenic processes, with insufficient attention directed towards other fragile sites. This article presents an analysis of recent investigations into the fragile sites, fragile site-associated tumor suppressor (FATS) and fragile X mental retardation 1 (FMR1), across various tumor types. The article discusses the mechanisms and signaling pathways regulated by these sites in a range of cancers, as well as their clinical implications for tumor treatment. The review highlights the significance of the fragile sites FATS and FMR1 in various cancers and their clinical relevance.
Collapse
Affiliation(s)
- Chuangdong Ruan
- Department of Neurology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yichun Xie
- Department of Neurology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huabin Ye
- Department of Neurology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuqin Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical Medical School of Guangdong Pharmaceutical University(Guangdong Second Provincial General Hospital), Guangzhou, China
| | - Yan Li
- Department of Neurology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Mohammad F, Pandith AA, Rasool SUA, Guru FR, Qasim I, Geelani S, Nisar S, Baba SM, Ganie FA, Kouser S, Rasool J. Significance and implications of FHIT gene expression and promoter hypermethylation in acute lymphoblastic leukemia (ALL). Discov Oncol 2024; 15:108. [PMID: 38587694 PMCID: PMC11001825 DOI: 10.1007/s12672-024-00971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Fragile histidine triad (FHIT) has been documented to play a vital role in various cancers including acute lymphoblastic leukemia (ALL). Keeping in view the plausible role of FHIT gene, we aimed to examine DNA promoter hypermethylation and mRNA expression in ALL cases in Kashmir (North India). METHODS A total of 66 cases of ALL were analyzed for FHIT mRNA expression and promoter methylation by qRT-PCR and Methylation Specific-PCR (MS-PCR) respectively. RESULTS FHIT mRNA expression showed significantly decreased expression in ALL cases with mean fold change of 9.24 ± 5.44 as compared to healthy controls (p = 0.01). The pattern of FHIT deregulation in ALL cases differed significantly between decreased and increased expression (p < 0.0001). A threefold decreased expression was observed in 75% of ALL cases than healthy controls (- 3.58 ± 2.32). ALL patients with FHIT gene promoter hypermethylation presented significantly higher in 80% (53/66) of cases (p = 0.0005). The association of FHIT gene hypermethylation and its subsequent expression showed FHIT mRNA expression as significantly lower in ALL cases with hypermethylation (p = 0.0008). B-ALL cases exhibited a highly significant association between the methylation pattern and its mRNA expression (p = 0.000). In low range WBC group, a significant association was found between increased expression (26%) of the cases and methylated (4%)/unmethylated group 86% (p = 0.0006). CONCLUSION The present study conclude that FHIT gene hypermethylation and its altered expression may be linked in the pathogenesis of ALL and provide an evidence for the role of FHIT in the development of ALL.
Collapse
Affiliation(s)
- Fozia Mohammad
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India.
| | - Shayaq Ul Abeer Rasool
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Faisal R Guru
- Department of Medical Oncology, SKIMS, Srinagar, J&K,, 190011, India
| | - Iqbal Qasim
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Sajad Geelani
- Department of Hematology, SKIMS, Srinagar, 190011, J&K, India
| | - Syed Nisar
- Department of Medical Oncology, SKIMS, Srinagar, J&K,, 190011, India
| | - Shahid M Baba
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
- Department of Urology, SKIMS, Srinagar, 190011, J&K, India
| | | | - Safiya Kouser
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Javid Rasool
- Department of Hematology, SKIMS, Srinagar, 190011, J&K, India
| |
Collapse
|
3
|
Song L, Qian G, Huang J, Chen T, Yang Y. AZD9291-resistant non-small cell lung cancer cell-derived exosomal lnc-MZT2A-5:1 induces the activation of fibroblasts. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1593. [PMID: 34790799 PMCID: PMC8576687 DOI: 10.21037/atm-21-5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/22/2021] [Indexed: 11/06/2022]
Abstract
Background AZD9291 resistance is still a challenge in the treatment of non-small cell lung cancer (NSCLC) and fibroblasts in the tumor microenvironment (TME) play a key role in the malignant phenotype of NSCLC. The study aimed to investigate the role of exosomes derived from AZD9291-resistant cells on the phenotypes of lung fibroblasts and the underlying mechanism. Methods The supernatants and exosomes of wild type and AZD9291-resistant NSCLC (H1975/PC9) cells were collected, and co-cultured with lung fibroblasts (MRC-5 cells) respectively. Transwell and quantitative real-time PCR (qRT-PCR) assays were used to evaluate migration and inflammation levels. Exosomes were collected by ultracentrifugation, and identified by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and western blots. Microarray was used to screen dysregulated exosomal lncRNAs from the resistant cells. Candidate lncRNAs were selected by bioinformatical annotation of their target genes and verified by qRT-PCR. The target lncRNA was then selected for further confirmation. Results Both the supernatant and exosomes from resistant cells significantly promoted the migration of MRC-5 cells, and the exosomes also upregulated mRNA levels of inflammation cytokines. Microarray identified 159 dysregulated exosomal lncRNAs. Fifteen candidate lncRNAs were selected following the biological roles of their target genes. qRT-PCR validation indicated that lnc-MZT2A-5:1 had the highest fold change. Finally, we found that lnc-MZT2A-5:1 could promote the migration ability and inflammation cytokines expression level of MRC-5 cells. Conclusions Our study clarified that lnc-MZT2A-5:1 from AZD9291-resistant NSCLC cell lines could promote the activation of MRC-5 cells, thus to uncover a new mechanism for AZD9291 resistance and provide new potential targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Liwei Song
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai, China
| | - Gang Qian
- Department of Thoracic Surgery, Zhangjiagang Third People's Hospital, Suzhou, China
| | - Jia Huang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai, China
| | - Tianxiang Chen
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai, China
| | - Yunhai Yang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai, China
| |
Collapse
|
4
|
Zheng D, Xia K, Yu L, Gong C, Shi Y, Li W, Qiu Y, Yang J, Guo W. A Novel Six Metastasis-Related Prognostic Gene Signature for Patients With Osteosarcoma. Front Cell Dev Biol 2021; 9:699212. [PMID: 34368151 PMCID: PMC8343004 DOI: 10.3389/fcell.2021.699212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor, and although there has been significant progress in its management, metastases often herald incurable disease. Here we defined genes differentially expressed between primary and metastatic osteosarcoma as metastasis-related genes (MRGs) and used them to construct a novel six-MRG prognostic signature for overall survival of patients with osteosarcoma. Validation in internal and external datasets confirmed satisfactory accuracy and generalizability of the prognostic model, and a nomogram based on the signature and clinical variables was constructed to aid clinical decision-making. Of the six MRGs, FHIT is a well-documented tumor suppressor gene that is poorly defined in osteosarcoma. Consistent with tumor suppressor function, FHIT was downregulated in osteosarcoma cells and human osteosarcoma samples. FHIT overexpression inhibited osteosarcoma proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, FHIT overexpression upregulate the epithelial marker E-cadherin while repressing the mesenchymal markers N-cadherin and vimentin. Our six-MRG signature represents a novel and clinically useful prognostic biomarker for patients with osteosarcoma, and FHIT might represent a therapeutic target by reversing epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kezhou Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changtian Gong
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yubo Shi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonglong Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Construction and Validation of a Lung Cancer Diagnostic Model Based on 6-Gene Methylation Frequency in Blood, Clinical Features, and Serum Tumor Markers. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9987067. [PMID: 34257703 PMCID: PMC8257360 DOI: 10.1155/2021/9987067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer has a high mortality rate. Promoting early diagnosis and screening of lung cancer is the most effective way to enhance the survival rate of lung cancer patients. Through computer technology, a comprehensive evaluation of genetic testing results and basic clinical information of lung cancer patients could effectively diagnose early lung cancer and indicate cancer risks. This study retrospectively collected 70 pairs of lung cancer tissue samples and normal human tissue samples. The methylation frequencies of 6 genes (FHIT, p16, MGMT, RASSF1A, APC, DAPK) in lung cancer patients, the basic clinical information, and tumor marker levels of these patients were analyzed. Then, the python package "sklearn" was employed to build a support vector machine (SVM) classifier which performed 10-fold cross-validation to construct diagnostic models that could identify lung cancer risk of suspected cases. Receiver operation characteristic (ROC) curves were drawn, and the performance of the combined diagnostic model based on several factors (clinical information, tumor marker level, and methylation frequency of 6 genes in blood) was shown to be better than that of models with only one pathological feature. The AUC value of the combined model was 0.963, and the sensitivity, specificity, and accuracy were 0.900, 0.971, and 0.936, respectively. The above results revealed that the diagnostic model based on these features was highly reliable, which could screen and diagnose suspected early lung cancer patients, contributing to increasing diagnosis rate and survival rate of lung cancer patients.
Collapse
|
6
|
Dannewitz Prosseda S, Tian X, Kuramoto K, Boehm M, Sudheendra D, Miyagawa K, Zhang F, Solow-Cordero D, Saldivar JC, Austin ED, Loyd JE, Wheeler L, Andruska A, Donato M, Wang L, Huebner K, Metzger RJ, Khatri P, Spiekerkoetter E. FHIT, a Novel Modifier Gene in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2019; 199:83-98. [PMID: 30107138 PMCID: PMC6353016 DOI: 10.1164/rccm.201712-2553oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/14/2018] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is characterized by progressive narrowing of pulmonary arteries, resulting in right heart failure and death. BMPR2 (bone morphogenetic protein receptor type 2) mutations account for most familial PAH forms whereas reduced BMPR2 is present in many idiopathic PAH forms, suggesting dysfunctional BMPR2 signaling to be a key feature of PAH. Modulating BMPR2 signaling is therapeutically promising, yet how BMPR2 is downregulated in PAH is unclear. OBJECTIVES We intended to identify and pharmaceutically target BMPR2 modifier genes to improve PAH. METHODS We combined siRNA high-throughput screening of >20,000 genes with a multicohort analysis of publicly available PAH RNA expression data to identify clinically relevant BMPR2 modifiers. After confirming gene dysregulation in tissue from patients with PAH, we determined the functional roles of BMPR2 modifiers in vitro and tested the repurposed drug enzastaurin for its propensity to improve experimental pulmonary hypertension (PH). MEASUREMENTS AND MAIN RESULTS We discovered FHIT (fragile histidine triad) as a novel BMPR2 modifier. BMPR2 and FHIT expression were reduced in patients with PAH. FHIT reductions were associated with endothelial and smooth muscle cell dysfunction, rescued by enzastaurin through a dual mechanism: upregulation of FHIT as well as miR17-5 repression. Fhit-/- mice had exaggerated hypoxic PH and failed to recover in normoxia. Enzastaurin reversed PH in the Sugen5416/hypoxia/normoxia rat model, by improving right ventricular systolic pressure, right ventricular hypertrophy, cardiac fibrosis, and vascular remodeling. CONCLUSIONS This study highlights the importance of the novel BMPR2 modifier FHIT in PH and the clinical value of the repurposed drug enzastaurin as a potential novel therapeutic strategy to improve PAH.
Collapse
Affiliation(s)
- Svenja Dannewitz Prosseda
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Xuefei Tian
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Kazuya Kuramoto
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Mario Boehm
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | | | - Kazuya Miyagawa
- Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute
- Department of Pediatrics
| | - Fan Zhang
- Wall Center for Pulmonary Vascular Disease
| | | | | | - Eric D. Austin
- Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - James E. Loyd
- Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Lisa Wheeler
- Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Adam Andruska
- Division of Pulmonary and Critical Care, Department of Medicine
| | - Michele Donato
- Biomedical Informatics Research–Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Lingli Wang
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Kay Huebner
- Molecular Genetics and Cancer Biology Program, Ohio State University, Columbus, Ohio
| | | | - Purvesh Khatri
- Biomedical Informatics Research–Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute
| |
Collapse
|
7
|
Gene methylation as a powerful biomarker for detection and screening of non-small cell lung cancer in blood. Oncotarget 2018; 8:31692-31704. [PMID: 28404957 PMCID: PMC5458240 DOI: 10.18632/oncotarget.15919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/10/2017] [Indexed: 11/25/2022] Open
Abstract
DNA methylation has been reported to become a potential powerful tool for cancer detection and diagnosis. However, the possibilities for the application of blood-based gene methylation as a biomarker for non-small cell lung cancer (NSCLC) detection and screening remain unclear. Hence, we performed this meta-analysis to evaluate the value of gene methylation detected in blood samples as a noninvasive biomarker in NSCLC. A total of 28 genes were analyzed from 37 case-control studies. In the genes with more than three studies, we found that the methylation of P16, RASSF1A, APC, RARβ, DAPK, CDH13, and MGMT was significantly associated with risks of NSCLC. The methylation statuses of P16, RASSF1A, APC, RARβ, DAPK, CDH13, and MGMT were not linked to age, gender, smoking behavior, and tumor stage and histology in NSCLC. Therefore, the use of the methylation status of P16, RASSF1A, APC, RARβ, DAPK, CDH13, and MGMT could become a promising and powerful biomarker for the detection and screening of NSCLC in blood in clinical settings. Further large-scale studies with large sample sizes are necessary to confirm our findings in the future.
Collapse
|
8
|
Geng X, Pu W, Tan Y, Lu Z, Wang A, Tan L, Chen S, Guo S, Wang J, Chen X. Quantitative assessment of the diagnostic role of FHIT promoter methylation in non-small cell lung cancer. Oncotarget 2018; 8:6845-6856. [PMID: 28036263 PMCID: PMC5351674 DOI: 10.18632/oncotarget.14256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 12/12/2016] [Indexed: 01/28/2023] Open
Abstract
Aberrant methylation of CpG islands acquired in promoter regions plays an important role in carcinogenesis. Accumulated evidence demonstrates FHIT gene promoter hyper-methylation is involved in non-small cell lung cancer (NSCLC). To test the diagnostic ability of FHIT methylation status on NSCLC, thirteen studies, including 2,119 samples were included in our meta-analysis. Simultaneously, four independent DNA methylation datasets from TCGA and GEO database were analyzed for validation. The pooled odds ratio of FHIT promoter methylation in cancer samples was 3.43 (95% CI: 1.85 to 6.36) compared with that in controls. In subgroup analysis, significant difference of FHIT gene promoter methylation status in NSCLC and controls was found in Asians but not in Caucasian population. In validation stage, 950 Caucasian samples, including 126 paired samples from TCGA, 568 cancer tissues and 256 normal controls from GEO database were analyzed, and all 8 CpG sites near the promoter region of FHIT gene were not significantly differentially methylated. Thus the diagnostic role of FHIT gene in the lung cancer may be relatively limited in the Caucasian population but useful in the Asians.
Collapse
Affiliation(s)
- Xin Geng
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yulong Tan
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zhouyi Lu
- Department of Chest Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, China
| | - An Wang
- Department of Chest Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, China
| | - Lixing Tan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Sidi Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Shicheng Guo
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiaofeng Chen
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Anjanappa M, Hao Y, Simpson ER, Bhat-Nakshatri P, Nelson JB, Tersey SA, Mirmira RG, Cohen-Gadol AA, Saadatzadeh MR, Li L, Fang F, Nephew KP, Miller KD, Liu Y, Nakshatri H. A system for detecting high impact-low frequency mutations in primary tumors and metastases. Oncogene 2017; 37:185-196. [PMID: 28892047 DOI: 10.1038/onc.2017.322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022]
Abstract
Tumor complexity and intratumor heterogeneity contribute to subclonal diversity. Despite advances in next-generation sequencing (NGS) and bioinformatics, detecting rare mutations in primary tumors and metastases contributing to subclonal diversity is a challenge for precision genomics. Here, in order to identify rare mutations, we adapted a recently described epithelial reprograming assay for short-term propagation of epithelial cells from primary and metastatic tumors. Using this approach, we expanded minor clones and obtained epithelial cell-specific DNA/RNA for quantitative NGS analysis. Comparative Ampliseq Comprehensive Cancer Panel sequence analyses were performed on DNA from unprocessed breast tumor and tumor cells propagated from the same tumor. We identified previously uncharacterized mutations present only in the cultured tumor cells, a subset of which has been reported in brain metastatic but not primary breast tumors. In addition, whole-genome sequencing identified mutations enriched in liver metastases of various cancers, including Notch pathway mutations/chromosomal inversions in 5/5 liver metastases, irrespective of cancer types. Mutations/rearrangements in FHIT, involved in purine metabolism, were detected in 4/5 liver metastases, and the same four liver metastases shared mutations in 32 genes, including mutations of different HLA-DR family members affecting OX40 signaling pathway, which could impact the immune response to metastatic cells. Pathway analyses of all mutated genes in liver metastases showed aberrant tumor necrosis factor and transforming growth factor signaling in metastatic cells. Epigenetic regulators including KMT2C/MLL3 and ARID1B, which are mutated in >50% of hepatocellular carcinomas, were also mutated in liver metastases. Thus, irrespective of cancer types, organ-specific metastases may share common genomic aberrations. Since recent studies show independent evolution of primary tumors and metastases and in most cases mutation burden is higher in metastases than primary tumors, the method described here may allow early detection of subclonal somatic alterations associated with metastatic progression and potentially identify therapeutically actionable, metastasis-specific genomic aberrations.
Collapse
Affiliation(s)
- M Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Hao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA
| | - E R Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA
| | - P Bhat-Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J B Nelson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S A Tersey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A A Cohen-Gadol
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M R Saadatzadeh
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - F Fang
- Medical Science Program, Indiana University, Bloomington, IN, USA
| | - K P Nephew
- Medical Science Program, Indiana University, Bloomington, IN, USA
| | - K D Miller
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - H Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
10
|
Liu D, Peng H, Sun Q, Zhao Z, Yu X, Ge S, Wang H, Fang H, Gao Q, Liu J, Wu L, Song M, Wang Y. The Indirect Efficacy Comparison of DNA Methylation in Sputum for Early Screening and Auxiliary Detection of Lung Cancer: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017. [PMID: 28644424 PMCID: PMC5551117 DOI: 10.3390/ijerph14070679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: DNA methylation in sputum has been an attractive candidate biomarker for the non-invasive screening and detection of lung cancer. Materials and Methods: Databases including PubMed, Ovid, Cochrane library, Web of Science databases, Chinese Biological Medicine (CBM), Chinese National Knowledge Infrastructure (CNKI), Wanfang, Vip Databases and Google Scholar were searched to collect the diagnostic trials on aberrant DNA methylation in the screening and detection of lung cancer published until 1 December 2016. Indirect comparison meta-analysis was used to evaluate the diagnostic value of the included candidate genes. Results: The systematic literature search yielded a total of 33 studies including a total of 4801 subjects (2238 patients with lung cancer and 2563 controls) and covering 32 genes. We identified that methylated genes in sputum samples for the early screening and auxiliary detection of lung cancer yielded an overall sensitivity of 0.46 (0.41–0.50) and specificity of 0.83 (0.80–0.86). Combined indirect comparisons identified the superior gene of SOX17 (sensitivity: 0.84, specificity: 0.88), CDO1 (sensitivity: 0.78, specificity: 0.67), ZFP42 (sensitivity: 0.87, specificity: 0.63) and TAC1 (sensitivity: 0.86, specificity: 0.75). Conclusions: The present meta-analysis demonstrates that methylated SOX17, CDO1, ZFP42, TAC1, FAM19A4, FHIT, MGMT, p16, and RASSF1A are potential superior biomarkers for the screening and auxiliary detection of lung cancer.
Collapse
Affiliation(s)
- Di Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Hongli Peng
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Qi Sun
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Zhongyao Zhao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Xinwei Yu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia.
| | - Siqi Ge
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia.
| | - Hao Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Honghong Fang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Qing Gao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Jiaonan Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Lijuan Wu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Manshu Song
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Youxin Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia.
| |
Collapse
|
11
|
DNA methylation profiling identifies PTRF/Cavin-1 as a novel tumor suppressor in Ewing sarcoma when co-expressed with caveolin-1. Cancer Lett 2016; 386:196-207. [PMID: 27894957 DOI: 10.1016/j.canlet.2016.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/03/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022]
Abstract
Epigenetic modifications have been shown to be important in developmental tumors as Ewing sarcoma. We profiled the DNA methylation status of 15 primary tumors, 7 cell lines, 10 healthy tissues and 4 human mesenchymal stem cells lines samples using the Infinium Human Methylation 450K. Differential methylation analysis between Ewing sarcoma and reference samples revealed 1166 hypermethylated and 864 hypomethylated CpG sites (Bonferroni p < 0.05, δ-β-value with absolute difference of >0.20) corresponding to 392 and 470 genes respectively. Gene Ontology analysis of genes differentially methylated in Ewing sarcoma samples showed a significant enrichment of developmental genes. Membrane and cell signal genes were also enriched, among those, 11 were related to caveola formation. We identified differential hypermethylation of CpGs located in the body and S-Shore of the PTRF gene in Ewing sarcoma that correlated with its repressed transcriptional state. Reintroduction of PTRF/Cavin-1 in Ewing sarcoma cells revealed a role of this protein as a tumor suppressor. Restoration of caveolae in the membrane of Ewing sarcoma cells, by exogenously reintroducing PTRF, disrupts the MDM2/p53 complex, which consequently results in the activation of p53 and the induction of apoptosis.
Collapse
|