1
|
Chang CF, Chen LC, Chen YT, Huang CY, Yu CC, Lin VC, Lu TL, Huang SP, Bao BY. Unveiling DENND2D as a Novel Prognostic Biomarker for Prostate Cancer Recurrence: From Gene to Prognosis. Biomedicines 2024; 13:25. [PMID: 39857609 PMCID: PMC11760481 DOI: 10.3390/biomedicines13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Prostate cancer is a major global health burden, with biochemical recurrence (BCR) following radical prostatectomy affecting 20-40% of patients and posing significant challenges to prognosis and treatment. Emerging evidence suggests a critical role for differentially expressed in normal and neoplastic cell (DENN) domain-containing genes in oncogenesis; however, their implications in prostate cancer and BCR risk remain underexplored. Methods: This study systematically evaluated 151 single-nucleotide polymorphisms in DENN domain-containing genes in 458 patients with prostate cancer and BCR, followed by validation in an independent cohort of 185 patients. Results: Multivariate Cox regression analyses identified DENND2D rs610261 G>A as significantly associated with improved BCR-free survival in both cohorts (adjusted hazard ratio = 0.39, 95% confidence interval = 0.23-0.66, p = 0.001). Functional analysis revealed rs610261's regulatory potential, with the protective A allele correlating with increased DENND2D expression in various human tissues. Compared to normal prostate tissues, DENND2D expression was reduced in prostate cancer, with higher expression being linked to favorable patient prognosis (p = 0.03). Gene set enrichment analysis revealed an association between DENND2D expression and the negative regulation of MYC target genes, including MAD2L1, ERH, and CLNS1A, which are overexpressed in prostate cancer and associated with poor survival. Furthermore, the elevated DENND2D expression promotes immune infiltration in prostate cancer, supporting its role in immune modulation. Conclusions:DENND2D is a prognostic biomarker for BCR in prostate cancer and offers new avenues for personalized treatment strategies.
Collapse
Affiliation(s)
- Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 406, Taiwan;
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Yei-Tsung Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Urology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan
| | - Victor C. Lin
- Department of Urology, E-Da Hospital, Kaohsiung 824, Taiwan;
- School of Medicine for International Students, I-Shou University, Kaohsiung 840, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Shu-Pin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
| |
Collapse
|
2
|
Qin C, Zhang J, Ma L. EMCMDA: predicting miRNA-disease associations via efficient matrix completion. Sci Rep 2024; 14:12761. [PMID: 38834687 DOI: 10.1038/s41598-024-63582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Abundant researches have consistently illustrated the crucial role of microRNAs (miRNAs) in a wide array of essential biological processes. Furthermore, miRNAs have been validated as promising therapeutic targets for addressing complex diseases. Given the costly and time-consuming nature of traditional biological experimental validation methods, it is imperative to develop computational methods. In the work, we developed a novel approach named efficient matrix completion (EMCMDA) for predicting miRNA-disease associations. First, we calculated the similarities across multiple sources for miRNA/disease pairs and combined this information to create a holistic miRNA/disease similarity measure. Second, we utilized this biological information to create a heterogeneous network and established a target matrix derived from this network. Lastly, we framed the miRNA-disease association prediction issue as a low-rank matrix-complete issue that was addressed via minimizing matrix truncated schatten p-norm. Notably, we improved the conventional singular value contraction algorithm through using a weighted singular value contraction technique. This technique dynamically adjusts the degree of contraction based on the significance of each singular value, ensuring that the physical meaning of these singular values is fully considered. We evaluated the performance of EMCMDA by applying two distinct cross-validation experiments on two diverse databases, and the outcomes were statistically significant. In addition, we executed comprehensive case studies on two prevalent human diseases, namely lung cancer and breast cancer. Following prediction and multiple validations, it was evident that EMCMDA proficiently forecasts previously undisclosed disease-related miRNAs. These results underscore the robustness and efficacy of EMCMDA in miRNA-disease association prediction.
Collapse
Affiliation(s)
- Chao Qin
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Jiancheng Zhang
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China
| | - Lingyu Ma
- School of Control Science and Engineering, Harbin Institute of Technology, Weihai, 250200, China
| |
Collapse
|
3
|
Shah JA, Miao Y, Chu J, Chen W, Zhao Q, Cai C, Khattak S, Wang F, Jin J. Feedback Modulation between Human INO80 Chromatin Remodeling Complex and miR-372 in HCT116 Cells. Int J Mol Sci 2023; 24:10685. [PMID: 37445863 DOI: 10.3390/ijms241310685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Human INO80 chromatin remodeling complex (INO80 complex) as a transcription cofactor is widely involved in gene transcription regulation and is frequently highly expressed in tumor cells. However, few reports exist on the mutual regulatory mechanism between INO80 complex and non-coding microRNAs. Herein, we showed evidence that the INO80 complex transcriptionally controls microRNA-372 (miR-372) expression through RNA-Seq analysis and a series of biological experiments. Knocking down multiple subunits in the INO80 complex, including the INO80 catalytic subunit, YY1, Ies2, and Arp8, can significantly increase the expression level of miR-372. Interestingly, mimicking miR-372 expression in HCT116 cells, in turn, post-transcriptionally suppressed INO80 and Arp8 expression at both mRNA and protein levels, indicating the existence of a mutual regulatory mechanism between the INO80 complex and miR-372. The target relationship between miR-372 and INO80 complex was verified using luciferase assays in HCT116 colon cancer cells. As expected, miR-372 mimics significantly suppressed the luciferase activity of pMIR-luc/INO80 and pMIR-luc/Arp8 3'-UTR in cells. In contrast, the miR-372 target sites in the 3'-UTRs linked to the luciferase reporter were mutagenized, and both mutant sites lost their response to miR-372. Furthermore, the mutual modulation between the INO80 complex and miR-372 was involved in cell proliferation and the p53/p21 signaling pathway, suggesting the synergistic anti-tumor role of the INO80 complex and miR372. Our results will provide a solid theoretical basis for exploring miR-372 as a biological marker of tumorigenesis.
Collapse
Affiliation(s)
- Junaid Ali Shah
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yujuan Miao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jinmeng Chu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqi Chen
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qingzhi Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chengyu Cai
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fei Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Holjencin C, Jakymiw A. MicroRNAs and Their Big Therapeutic Impacts: Delivery Strategies for Cancer Intervention. Cells 2022; 11:cells11152332. [PMID: 35954176 PMCID: PMC9367537 DOI: 10.3390/cells11152332] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Three decades have passed from the initial discovery of a microRNA (miRNA) in Caenorhabditis elegans to our current understanding that miRNAs play essential roles in regulating fundamental physiological processes and that their dysregulation can lead to many human pathologies, including cancer. In effect, restoration of miRNA expression or downregulation of aberrantly expressed miRNAs using miRNA mimics or anti-miRNA inhibitors (anti-miRs/antimiRs), respectively, continues to show therapeutic potential for the treatment of cancer. Although the manipulation of miRNA expression presents a promising therapeutic strategy for cancer treatment, it is predominantly reliant on nucleic acid-based molecules for their application, which introduces an array of hurdles, with respect to in vivo delivery. Because naked nucleic acids are quickly degraded and/or removed from the body, they require delivery vectors that can help overcome the many barriers presented upon their administration into the bloodstream. As such, in this review, we discuss the strengths and weaknesses of the current state-of-the-art delivery systems, encompassing viral- and nonviral-based systems, with a specific focus on nonviral nanotechnology-based miRNA delivery platforms, including lipid-, polymer-, inorganic-, and extracellular vesicle-based delivery strategies. Moreover, we also shed light on peptide carriers as an emerging technology that shows great promise in being a highly efficacious delivery platform for miRNA-based cancer therapeutics.
Collapse
Affiliation(s)
- Charles Holjencin
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
| | - Andrew Jakymiw
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
- Department of Biochemistry & Molecular Biology, College of Medicine, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
- Correspondence: ; Tel.: +1-843-792-2551
| |
Collapse
|
6
|
Joshi S, Garlapati C, Aneja R. Epigenetic Determinants of Racial Disparity in Breast Cancer: Looking beyond Genetic Alterations. Cancers (Basel) 2022; 14:cancers14081903. [PMID: 35454810 PMCID: PMC9025441 DOI: 10.3390/cancers14081903] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary A substantial disparity in breast cancer incidence and mortality exists between African American (AA) and European American (EA) women. However, the basis for these disparities is poorly understood. In this article, we describe that gene–environment interactions mediated through epigenetic modifications may play a significant role in racial disparities in BC incidence and outcomes. Our in silico analyses and an in-depth literature survey suggest that there exists a significant difference in epigenetic patterns between AA and EA women with breast cancer. Herein, we describe the environmental factors that contribute to these epigenetic changes, which may underlie the disparate racial burden in patients with breast cancer. We suggest that AA women with higher basal epigenetic changes, may have higher pre-disposition to cancer onset, and an aggressive disease course. Pre-existing racial differences in epigenetic profiles of breast tissues raises the possibility of examining these profiles for early diagnosis. Abstract Breast cancer (BC) is the most commonly diagnosed cancer in women. Despite advancements in BC screening, prevention, and treatment, BC incidence and mortality remain high among African American (AA) women. Compared with European American (EA) women, AA women tend to be diagnosed with more advanced and aggressive tumors and exhibit worse survival outcomes. Most studies investigating the determinants of racial disparities in BC have focused on genetic factors associated with African ancestry. However, various environmental and social stressors over an individual’s life course can also shape racial stratification in BC. These social and environmental exposures result in long-term changes in gene expression mediated by epigenetic mechanisms. Epigenetics is often portrayed as an intersection of socially patterned stress and genetic expression. The enduring nature of epigenetic changes makes them suitable for studying the effects of different environmental exposures over an individual’s life course on gene expression. The role of differential social and environmental exposures in racial disparities in BC suggests varied epigenetic profiles or signatures associated with specific BC subtypes in AA and EA women. These epigenetic profiles in EA and AA women could be used as biomarkers for early BC diagnosis and disease prognosis and may prove valuable for the development of targeted therapies for BC. This review article discusses the current state of knowledge regarding epigenetic differences between AA and EA women with BC. We also discuss the role of socio-environmental factors, including psychosocial stress, environmental toxicants, and dietary factors, in delineating the different epigenetic profiles in AA and EA patients with BC.
Collapse
Affiliation(s)
- Shriya Joshi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.J.); (C.G.)
| | | | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.J.); (C.G.)
- Department of Clinical and Diagnostics Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: or
| |
Collapse
|
7
|
Qian HG, Wu Q, Wu JH, Tian XY, Xu W, Hao CY. Long non‑coding RNA LINC00238 suppresses the malignant phenotype of liver cancer by sponging miR‑522. Mol Med Rep 2022; 25:71. [PMID: 35014686 PMCID: PMC8767542 DOI: 10.3892/mmr.2022.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/05/2022] Open
Abstract
Long non‑coding RNAs can regulate the malignant tumor phenotype either as tumor suppressors or oncogenes. The present study investigated the underlying mechanism of LINC00238 in liver cancer. LINC00238 was identified as a downregulated molecule in The Cancer Genome Atlas liver hepatocellular carcinoma dataset through Gene Expression Profiling Interactive Analysis software. Through gain‑ and loss‑of‑function experiments, LINC00238 was confirmed as a tumor suppressor that could not only decrease cell viability, migration and invasion in vitro, but also tumorigenesis and tumor metastasis in vivo. By cytoplasmic and nuclear RNA isolation, LINC00238 was confirmed to be predominantly cytoplasmic. Mechanistically, RNA pull‑down assays showed that LINC00238 sponged microRNA (miR)‑522 and then reversed the inhibitory effects on two downstream targets, secreted frizzled related protein 2 and dickkopf1. Collectively, LINC00238 was identified as a tumor suppressor that acts via sponging miR‑522 followed by silencing of downstream targets, suggesting that LINC00238 may have a key role in suppressing the malignant phenotype of liver cancer cells.
Collapse
Affiliation(s)
- Hong-Gang Qian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Qiong Wu
- MOE Key Lab, Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China
| | - Jian-Hui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiu-Yun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Wei Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Chun-Yi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
8
|
Mohammadi M, Salehzadeh A, Talesh Sasani S, Tarang A. rs6426881 in the 3'-UTR of PBX1 is involved in breast and gastric cancers via altering the binding potential of miR-522-3p. Mol Biol Rep 2021; 48:7405-7414. [PMID: 34655407 DOI: 10.1007/s11033-021-06756-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast and gastric cancers are the most important diseases that lead to cancer death and social healthcare challenge. Overexpression of PBX1, a proto-oncogene, is correlated with the progression and metastasis of various cancers. For the first time, in this study the researchers evaluated the relationship between rs6426881, affecting miR-522-3p binding to the PBX1, with breast and gastric cancers. METHODS AND RESULTS The Microarray analysis was performed for finding the relative expression level of PBX1 and hsa-miR-522-3p, based on high throughput experiments. The GSE54397, GSE112369, GSE10810, GSE241585.ER, GSE24185.PR, GSE68373, and GSE38167 datasets were analyzed. A case-control study was carried out in 123 Iranian suffering from breast cancer and 132 participants as control samples as well as 130 people suffering from gastric cancer and 54 people as control group members. SNP rs6426881 in the 3'-UTR of PBX1 was genotyped by the High-Resolution Melting (HRM) method. Association analysis revealed that rs6426881 is correlated with Estrogen and Progesterone receptors, grade, and stage of breast cancer. Furthermore, a significant relationship was observed between the genotypes and blood groups in gastric cancer, while the distribution of alleles was significantly related to smoking, status of the primary tumor, and metastasis (Chi-Square P < 0.05). Finally, Bioinformatics analyses suggested that rs6426881 contains binding sites for miR-522-3p in the 3'-UTR of PBX1 transcript. The finding suggested that TT genotype is associated with poor prognosis in breast and gastric cancer. CONCLUSIONS The rs6426881 T allele at PBX1 3'-UT is significantly related to breast and gastric cancers by altering the regulatory affinity of miR-522-3p to PBX1 3'-UTR and may be suggested as a novel prognostic biomarker for the diseases.
Collapse
Affiliation(s)
- Maryam Mohammadi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | | | - Alireza Tarang
- Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| |
Collapse
|
9
|
He Y, Wu Y, Liu Z, Li B, Jiang N, Xu P, Xu A. Identification of Signature Genes Associated With Invasiveness and the Construction of a Prognostic Model That Predicts the Overall Survival of Bladder Cancer. Front Genet 2021; 12:694777. [PMID: 34589112 PMCID: PMC8473900 DOI: 10.3389/fgene.2021.694777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Bladder cancer has become the tenth most diagnosed cancer worldwide. The prognosis has been shown to differ between non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). We aimed to identify signature genes that are associated with the invasiveness and survival of bladder cancer and to identify potential treatments. Methods: We downloaded gene expression profiles of bladder cancer from the Gene Expression Omnibus database to identify differentially expressed genes and perform weighted gene co-expression network analysis. Functional enrichment was analyzed by GO and KEGG analyses. Hub genes were identified from the significant module. Another dataset was also acquired to verify the expression of hub genes. Univariate and multivariate Cox regression analyses were applied to the dataset downloaded from The Cancer Genome Atlas database. Risk scores were calculated and the effect was evaluated by Kaplan-Meier survival analysis. A nomogram was constructed and validated using training and testing samples, respectively. Analysis of the tumor immune microenvironment was conducted with the CIBERSORT algorithm. Results: In total, 1,245 differentially expressed genes (DEGs) were identified. A distinct module was identified that was significantly correlated to invasiveness. The genes within this module were found to be significantly associated with extracellular exosomes, GTPase activity, metabolic pathways, etc. Three hub genes (VSIG2, PPFIBP2, and DENND2D) were identified as biomarkers of invasiveness; two of these (PPFIBP2 and DENND2D) were closely associated with prognosis. The risk score was regarded as an independent prognostic factor. The nomogram was associated with acceptable accuracy for predicting 1- and 5-year overall survival. The infiltrating levels of resting NK cells, activated natural killer (NK) cells, CD8+ T cells, activated memory CD4+ T cells, and T follicular helper cells, were significantly higher in the group with lower risk scores. The group with higher risk scores showed predominant infiltration by regulatory T cells (Tregs). Conclusion: We successfully identified three signature genes related to invasiveness and constructed a nomogram of bladder cancer with acceptable performance. Differences suggested by risk scores between groups of patients showing diverse patterns of immune cell infiltration may be beneficial for selecting therapeutic approaches and predicting prognosis.
Collapse
Affiliation(s)
- Yang He
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongxin Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Boping Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Jiang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, The First People's Hospital of Kashgar Prefecture, Kashgar, China
| |
Collapse
|
10
|
Shah JA, Khattak S, Rauf MA, Cai Y, Jin J. Potential Biomarkers of miR-371-373 Gene Cluster in Tumorigenesis. Life (Basel) 2021; 11:life11090984. [PMID: 34575133 PMCID: PMC8465240 DOI: 10.3390/life11090984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA transcripts (20–24 nucleotides) that bind to their complementary sequences in the 3′-untranslated regions (3′-UTR) of targeted genes to negatively or positively regulate their expression. miRNAs affect the expression of genes in cells, thereby contributing to several important biological processes, including tumorigenesis. Identifying the miRNA cluster as a human embryonic stem cell (hESC)-specific miRNAs initially led to the identification of miR-371, miR-372, miR-373, and miR-373*, which can ultimately be translated into mature miRNAs. Recent evidence suggests that miR-371–373 genes are abnormally expressed in various cancers and act either as oncogenes or tumor suppressors, indicating they may be suitable as molecular biomarkers for cancer diagnosis and prevention. In this article, we summarize recent studies linking miR-371–373 functions to tumorigenesis and speculate on the potential applications of miR-371–373 as biomarkers for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Junaid Ali Shah
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; or
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence:
| |
Collapse
|
11
|
miR-522 regulates cell proliferation, migration, invasion capacities and acts as a potential biomarker to predict prognosis in triple-negative breast cancer. Clin Exp Med 2021; 22:385-392. [PMID: 34518949 DOI: 10.1007/s10238-021-00757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
This study was designed to explore the cell functions and prognostic significance of miR-522 in triple-negative breast cancer. The expression levels of miR-522 in triple-negative breast cancer tissues and cell lines were detected by quantitative real-time PCR analysis. Kaplan-Meier curve and Cox regression analysis were used to investigate the relationship between miR-522 expression and prognosis of patients, and to evaluate the possibility of miR-522 as a potential indicator for predicting the prognosis of triple-negative breast cancer. The CCK-8 and transwell assays were used to assess cell proliferation, migration, and invasion abilities. The expression of miR-522 in triple-negative breast cancer tissues was significantly higher than that in adjacent tissues and its high expression was closely associated with the high incidence of lymph node metastasis, advanced TNM stage, and BRCA1/2 mutation status. High expression of miR-522 is correlated with poor overall survival in patients with triple-negative breast cancer. Besides, functional studies in two triple-negative breast cancer cell lines showed that overexpression of miR-522 significantly promoted cell proliferation, migration, and invasion in vitro. BRCA1 was a potential direct target of miR-522. Our findings indicated that miR-522 was highly expressed in triple-negative breast cancer and was associated with poor prognosis of patients. The upregulation of miR-522 accelerated the progression of triple-negative breast cancer by targeting BRCA1. Therefore, miR-522 provides valuable information for the development of prevention and treatment strategies.
Collapse
|
12
|
Liu Y, Chen Q, Zhu Y, Wang T, Ye L, Han L, Yao Z, Yang Z. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Cell Death Discov 2021; 7:210. [PMID: 34381023 PMCID: PMC8358062 DOI: 10.1038/s41420-021-00596-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Distant metastasis is the main cause of death for cancer patients. Recently, the newly discovered programmed cell death includes necroptosis, pyroptosis, and ferroptosis, which possesses an important role in the process of tumor metastasis. At the same time, it is widely reported that non-coding RNA precisely regulates programmed death and tumor metastasis. In the present review, we summarize the function and role of necroptosis, pyrolysis, and ferroptosis involving in cancer metastasis, as well as the regulatory factors, including non-coding RNAs, of necroptosis, pyroptosis, and ferroptosis in the process of tumor metastasis.
Collapse
Affiliation(s)
- Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Qiuyun Chen
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yanan Zhu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Tiying Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lijuan Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China.
| |
Collapse
|
13
|
Liu D, Qiu M. Immune and Metabolic Dysregulated Coding and Non-coding RNAs Reveal Survival Association in Uterine Corpus Endometrial Carcinoma. Front Genet 2021; 12:673192. [PMID: 34249094 PMCID: PMC8264798 DOI: 10.3389/fgene.2021.673192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecologic malignancies, but only a few biomarkers have been proven to be effective in clinical practice. Previous studies have demonstrated the important roles of non-coding RNAs (ncRNAs) in diagnosis, prognosis, and therapy selection in UCEC and suggested the significance of integrating molecules at different levels for interpreting the underlying molecular mechanism. In this study, we collected transcriptome data, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs), of 570 samples, which were comprised of 537 UCEC samples and 33 normal samples. First, differentially expressed lncRNAs, miRNAs, and mRNAs, which distinguished invasive carcinoma samples from normal samples, were identified, and further analysis showed that cancer- and metabolism-related functions were enriched by these RNAs. Next, an integrated, dysregulated, and scale-free biological network consisting of differentially expressed lncRNAs, miRNAs, and mRNAs was constructed. Protein-coding and ncRNA genes in this network showed potential immune and metabolic functions. A further analysis revealed two clinic-related modules that showed a close correlation with metabolic and immune functions. RNAs in the two modules were functionally validated to be associated with UCEC. The findings of this study demonstrate an important clinical application for improving outcome prediction for UCEC.
Collapse
Affiliation(s)
- Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Lu H, Wang H, Sun P, Wang J, Li S, Xu T. MiR-522-3p inhibits proliferation and activation by regulating the expression of SLC31A1 in T cells. Cytotechnology 2021; 73:483-496. [PMID: 34149179 PMCID: PMC8167029 DOI: 10.1007/s10616-021-00472-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the role of miR-522-3p in thymoma-associated myasthenia gravis (TAMG), and the mechanism of action in T cells. The miR-522-3p expression in normal serum, non-thymoma MG patient serum and TAMG patient serum and tissues was detected by quantitative real-time PCR (qRT-PCR), respectively. We assessed miR-522-3p expression in Jurkat cells and human CD4+ T cells after activation by anti-CD3 and anti-CD28 using qRT-PCR. The viability, proliferation, cycle distribution and the levels of CD25, CD69, interleukin-2 (IL-2) and IL-10 in transfected Jurkat cells were detected by Cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, qRT-PCR, respectively. Targeting relationships of miR-522-3p and SLC31A1 were predicted and validated by bioinformatics analysis and dual-luciferase reporter. The viability, proliferation, cycle distribution and the levels of SLC31A1, CD25, CD69, IL-2 and IL-10 in transfected Jurkat cells were detected by above methods and western blot. The miR-522-3p expression was declined in TAMG and activated T cells. MiR-522-3p inhibitor promoted cell viability, EdU positive cells, cycle progression, and the level of CD25, CD69, IL-2 and IL-10 in Jurkat cells, while the effect of miR-522-3p mimic was the opposite. SLC31A1 was targeted by miR-522-3p, and miR-522-3p inhibited SLC31A1 expression. Overexpressed SLC31A1 reversed the inhibitory effects of miR-522-3p mimic on cell viability, EdU positive cell, cycle progression, and the levels of IL-2 and IL-10 in transfected Jurkat cells. MiR-522-3p expression was down-regulated in TAMG, and miR-522-3p inhibited proliferation and activation by regulating SLC31A1 expression in T cells.
Collapse
Affiliation(s)
- Hengxiao Lu
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Hao Wang
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Peidao Sun
- Department of Thoracic Surgery, Changle People’s Hospital, Weifang, China
| | - Jiang Wang
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Jinan, China
| | - Tongzhen Xu
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| |
Collapse
|
15
|
Dong Y, Long J, Luo X, Xie G, Xiao ZJ, Tong Y. Targeting of ΔNp63α by miR-522 promotes the migration of breast epithelial cells. FEBS Open Bio 2021; 11:468-481. [PMID: 33369228 PMCID: PMC7876488 DOI: 10.1002/2211-5463.13072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
The TP63 gene, which encodes the p63 protein, is involved in multiple biological processes, including embryonic development and tumorigenesis. ΔNp63α, the predominant isoform of p63 in epithelial cells, acts as an oncogene in early-stage tumors, but paradoxically acts as a potent antimetastatic factor in advanced cancers. Here, we report that ΔNp63α is a direct target of hsa-miR-522 (miR-522). Induced expression of miR-522 reduced the levels of ΔNp63α, predisposing breast epithelial cells to a loss of epithelial and acquisition of mesenchymal morphology, resulting in accelerated collective and single-cell migration. Restoration of ΔNp63α repressed miR-522-induced migration. Interestingly, overexpression of miR-522 did not affect breast epithelial cell proliferation, suggesting that miR-522 acts specifically through ΔNp63α in this context. Furthermore, expression of miR-522-3p and p63 was negatively correlated in human cancer samples. Thus, miR-522 might be a causative factor for breast tumorigenesis and cancer metastasis. In summary, our results reveal a novel miR-522/p63 axis in cell migration and thus suggest a potential strategy for therapeutic treatment of cancer metastasis.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Center of Growth, Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Juan Long
- Center of Growth, Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Xingyong Luo
- Center of Growth, Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Gang Xie
- Sichuan Integrative Medicine HospitalChengduChina
| | - Zhi‐Xiong Jim Xiao
- Center of Growth, Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Ying Tong
- Center of Growth, Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
16
|
Hashemi A, Gorji-Bahri G. MicroRNA: Promising Roles in Cancer Therapy. Curr Pharm Biotechnol 2020; 21:1186-1203. [PMID: 32310047 DOI: 10.2174/1389201021666200420101613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that act as one of the main regulators of gene expression. They are involved in maintaining a proper balance of diverse processes, including differentiation, proliferation, and cell death in normal cells. Cancer biology can also be affected by these molecules by modulating the expression of oncogenes or tumor suppressor genes. Thus, miRNA based anticancer therapy is currently being developed either alone or in combination with chemotherapy agents used in cancer management, aiming at promoting tumor regression and increasing cure rate. Access to large quantities of RNA agents can facilitate RNA research and development. In addition to currently used in vitro methods, fermentation-based approaches have recently been developed, which can cost-effectively produce biological RNA agents with proper folding needed for the development of RNA-based therapeutics. Nevertheless, a major challenge in translating preclinical studies to clinical for miRNA-based cancer therapy is the efficient delivery of these agents to target cells. Targeting miRNAs/anti-miRNAs using antibodies and/or peptides can minimize cellular and systemic toxicity. Here, we provide a brief review of miRNA in the following aspects: biogenesis and mechanism of action of miRNAs, the role of miRNAs in cancer as tumor suppressors or oncogenes, the potential of using miRNAs as novel and promising therapeutics, miRNA-mediated chemo-sensitization, and currently utilized methods for the in vitro and in vivo production of RNA agents. Finally, an update on the viral and non-viral delivery systems is addressed.
Collapse
Affiliation(s)
- Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets. Cancers (Basel) 2020; 12:cancers12102922. [PMID: 33050637 PMCID: PMC7600069 DOI: 10.3390/cancers12102922] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary By the virtue of targeting multiple genes, a microRNA (miRNA) can infer variable consequences on tumorigenesis by appearing as both a tumour suppressor and oncogene. miRNAs can regulate gene expression by modulating genome-wide epigenetic status of genes that are involved in various cancers. These miRNAs perform direct inhibition of key mediators of the epigenetic machinery, such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) genes. Along with miRNAs gene expression, similar to other protein-coding genes, miRNAs are also controlled by epigenetic mechanisms. Overall, this reciprocal interaction between the miRNAs and the epigenetic architecture is significantly implicated in the aberrant expression of miRNAs detected in various human cancers. Comprehensive knowledge of the miRNA-epigenetic dynamics in cancer is essential for the discovery of novel anticancer therapeutics. Abstract Initiation and progression of cancer are under both genetic and epigenetic regulation. Epigenetic modifications including alterations in DNA methylation, RNA and histone modifications can lead to microRNA (miRNA) gene dysregulation and malignant cellular transformation and are hereditary and reversible. miRNAs are small non-coding RNAs which regulate the expression of specific target genes through degradation or inhibition of translation of the target mRNA. miRNAs can target epigenetic modifier enzymes involved in epigenetic modulation, establishing a trilateral regulatory “epi–miR–epi” feedback circuit. The intricate association between miRNAs and the epigenetic architecture is an important feature through which to monitor gene expression profiles in cancer. This review summarises the involvement of epigenetically regulated miRNAs and miRNA-mediated epigenetic modulations in various cancers. In addition, the application of bioinformatics tools to study these networks and the use of therapeutic miRNAs for the treatment of cancer are also reviewed. A comprehensive interpretation of these mechanisms and the interwoven bond between miRNAs and epigenetics is crucial for understanding how the human epigenome is maintained, how aberrant miRNA expression can contribute to tumorigenesis and how knowledge of these factors can be translated into diagnostic and therapeutic tool development.
Collapse
|
18
|
Miyamoto M, Sawada K, Nakamura K, Yoshimura A, Ishida K, Kobayashi M, Shimizu A, Yamamoto M, Kodama M, Hashimoto K, Kimura T. Paclitaxel exposure downregulates miR-522 expression and its downregulation induces paclitaxel resistance in ovarian cancer cells. Sci Rep 2020; 10:16755. [PMID: 33028939 PMCID: PMC7542453 DOI: 10.1038/s41598-020-73785-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Paclitaxel resistance is a critical challenge in ovarian cancer treatment. This study aimed to identify microRNAs (miRNAs) that modulate paclitaxel resistance for use as potential therapeutic targets in such settings. Paclitaxel-resistant cell lines were established using two ovarian cancer cell lines: SKOV3ip1 and HeyA8. The evaluation of miRNA polymerase chain reaction (PCR) arrays indicated that the expression of miR-522-3p was downregulated in paclitaxel-resistant cells. The restoration of miR-522-3p sensitized the resistant cells to paclitaxel, and its downregulation desensitized the parental cells. Using PCR arrays, we focused on E2F2, with the luciferase reporter assay revealing that it was a direct target for miR-522-3p. The paclitaxel-resistant cells showed stronger E2F2 expression than the parental cells, while E2F2 inhibition sensitized the resistant cells to paclitaxel. Forced E2F2 expression in the parental cells led to the acquisition of paclitaxel resistance, while miR-522-3p inhibited E2F2 expression and was associated with retinoblastoma protein phosphorylation attenuation, which resulted in G0/G1 arrest. The effects of miR-522-3p and E2F2 in ovarian cancer were examined using public databases, revealing that low miR-522-3p expression and high E2F2 expression were associated with significantly poorer overall survival. In conclusion, miR-522-3p attenuated the degree of paclitaxel resistance in vitro through the downregulation of E2F2; miR-522-3p supplementation may be a therapeutic target for paclitaxel-resistant ovarian cancer.
Collapse
Affiliation(s)
- Mayuko Miyamoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan.
| | - Koji Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Akihiko Yoshimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kyoso Ishida
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Masaki Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Aasa Shimizu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Misa Yamamoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
19
|
Fan G, Jiao J, Shen F, Ren Q, Wang Q, Chu F. Long non-coding RNA HCG11 sponging miR-522-3p inhibits the tumorigenesis of non-small cell lung cancer by upregulating SOCS5. Thorac Cancer 2020; 11:2877-2886. [PMID: 32844573 PMCID: PMC7529553 DOI: 10.1111/1759-7714.13624] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Numerous studies have shown that long non-coding RNA (lncRNA) is involved in various human diseases including non-small cell lung cancer (NSCLC). The aim of this study was to explore the potential role of lncRNA HCG11 in the pathogenesis of NSCLC. METHODS The mRNA expression of HCG11, miR-522-3p and SOCS5 was detected by RT-qPCR. The regulatory mechanism of lncRNA HCG11 was investigated by CCK-8, transwell and dual luciferase reporter assays. RESULTS Downregulation of lncRNA HCG11 and upregulation of miR-522-3p were found in NSCLC tissues and cells, and abnormal expressions of lncRNA HCG11 and miR-522-3p were related to adverse clinical outcomes of NSCLC patients. LncRNA HCG11 acted as a molecular sponge for miR-522-3p. Functionally, lncRNA HCG11 inhibited cell viability, migration and invasion in NSCLC by downregulating miR-522-3p. Further, miR-522-3p directly targeted SOCS5. lncRNA HCG11 could positively regulate SOCS5 expression in NSCLC. In addition, HCG11 downregulation or miR-522-3p overexpression abolished the inhibitory effect of SOCS5 on cell viability, migration and invasion in NSCLC. CONCLUSIONS LncRNA HCG11 inhibits cell viability, migration and invasion in NSCLC by functioning as a ceRNA of miR-522-3p to upregulate SOCS5.
Collapse
Affiliation(s)
- Gang Fan
- Department of Clinical LaboratoryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Jin Jiao
- Department of Clinical LaboratoryShandong Maternal and Child Health Care HospitalJinanChina
| | - Feng Shen
- Department of Clinical LaboratoryShandong Maternal and Child Health Care HospitalJinanChina
| | - Qingxia Ren
- Department of Clinical LaboratoryPeople's Hospital of RizhaoRizhaoChina
| | - Qing Wang
- Department of ImagingThe People's Hospital of Zhangqiu AreaJinanChina
| | - Fulu Chu
- Department of Clinical LaboratoryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
20
|
Rovira P, Sánchez-Mora C, Pagerols M, Richarte V, Corrales M, Fadeuilhe C, Vilar-Ribó L, Arribas L, Shireby G, Hannon E, Mill J, Casas M, Ramos-Quiroga JA, Soler Artigas M, Ribasés M. Epigenome-wide association study of attention-deficit/hyperactivity disorder in adults. Transl Psychiatry 2020; 10:199. [PMID: 32561708 PMCID: PMC7305172 DOI: 10.1038/s41398-020-0860-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that often persists into adulthood. There is growing evidence that epigenetic dysregulation participates in ADHD. Given that only a limited number of epigenome-wide association studies (EWASs) of ADHD have been conducted so far and they have mainly focused on pediatric and population-based samples, we performed an EWAS in a clinical sample of adults with ADHD. We report one CpG site and four regions differentially methylated between patients and controls, which are located in or near genes previously involved in autoimmune diseases, cancer or neuroticism. Our sensitivity analyses indicate that smoking status is not responsible for these results and that polygenic risk burden for ADHD does not greatly impact the signatures identified. Additionally, we show an overlap of our EWAS findings with genetic signatures previously described for ADHD and with epigenetic signatures for smoking behavior and maternal smoking. These findings support a role of DNA methylation in ADHD and emphasize the need for additional efforts in larger samples to clarify the role of epigenetic mechanisms on ADHD across the lifespan.
Collapse
Affiliation(s)
- Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain
| | - Mireia Pagerols
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Fadeuilhe
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gemma Shireby
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Miquel Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| |
Collapse
|
21
|
Ren T, Fan XX, Wang MF, Duan FG, Wei CL, Li RZ, Jiang ZB, Wang YW, Yao XJ, Chen MW, Tang YJ, Leung ELH. miR‑20b promotes growth of non‑small cell lung cancer through a positive feedback loop of the Wnt/β‑catenin signaling pathway. Int J Oncol 2020; 56:470-479. [PMID: 31894264 PMCID: PMC6959373 DOI: 10.3892/ijo.2019.4940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs or miRs) are endogenous noncoding single‑stranded RNA molecules that can regulate gene expression by targeting the 3'‑untranslated region and play an important role in many biological and pathological processes, such as inflammation and cancer. In this study, we found that miR‑20b was significantly increased in human non‑small cell lung cancer (NSCLC) cell lines and patient tissues, suggesting that it may possess a carcinogenic role in lung cancer. This miRNA promoted the proliferation, migration and invasion of NSCLC cells by targeting and downregulating the expression of adenomatous polyposis coli (APC), which is a negative regulator of the canonical Wnt signaling pathway. Wnt signaling activation may increase transcription of miR‑20b. Therefore, miR‑20b and canonical Wnt signaling were coupled through a feed‑forward positive feedback loop, forming a biological regulatory circuit. Finally, an in vivo investigation further demonstrated that an increase in miR‑20b promoted the growth of cancer cells. Overall, our findings offer evidence that miR‑20b may contribute to the development of NSCLC by inhibiting APC via the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Tao Ren
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078
| | - Mei-Fang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000
| | - Fu-Gang Duan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078
| | - Chun-Li Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078
| | - Ze-Bo Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078
| | - Ming-Wei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061
| | - Yi-Jun Tang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000
| | - Elaine Lai-Han Leung
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
22
|
Liu X, Jiang T, Li X, Zhao C, Li J, Zhou F, Zhang L, Zhao S, Jia Y, Shi J, Gao G, Li W, Zhao J, Chen X, Su C, Ren S, Zhou C. Exosomes transmit T790M mutation-induced resistance in EGFR-mutant NSCLC by activating PI3K/AKT signalling pathway. J Cell Mol Med 2020; 24:1529-1540. [PMID: 31894895 PMCID: PMC6991626 DOI: 10.1111/jcmm.14838] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/14/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence has shown that exosomes derived from drug‐resistant tumour cells are able to horizontally transmit drug‐resistant phenotype to sensitive cells. However, whether exosomes shed by EGFR T790M‐mutant–resistant NSCLC cells could transfer drug resistance to sensitive cells has not been investigated. We isolated exosomes from the conditioned medium (CM) of T790M‐mutant NSCLC cell line H1975 and sensitive cell line PC9. The role and mechanism of exosomes in regulating gefitinib resistance was investigated both in vitro and in vivo. Exosome‐derived miRNA expression profiles from PC9 and H1975 were analysed by small RNA sequencing and confirmed by qRT‐PCR. We found that exosomes shed by H1975 could transfer gefitinib resistance to PC9 both in vitro and in vivo through activating PI3K/AKT signalling pathway. Small RNA sequencing and RT‐PCR confirmed that miR‐3648 and miR‐522‐3p were the two most differentially expressed miRNAs and functional study showed that up‐regulation of miR‐522‐3p could induce gefitinib resistance in PC9 cell. The findings of our study reveal an important mechanism of acquired resistance to EGFR‐TKIs in NSCLC.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiayu Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Limin Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
To KKW, Fong W, Tong CWS, Wu M, Yan W, Cho WCS. Advances in the discovery of microRNA-based anticancer therapeutics: latest tools and developments. Expert Opin Drug Discov 2020; 15:63-83. [PMID: 31739699 DOI: 10.1080/17460441.2020.1690449] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Introduction: MicroRNAs (miRNAs) are small endogenous non-coding RNAs that repress the expression of their target genes by reducing mRNA stability and/or inhibiting translation. miRNAs are known to be aberrantly regulated in cancers. Modulators of miRNA (mimics and antagonists) have emerged as novel therapeutic tools for cancer treatment.Areas covered: This review summarizes the various strategies that have been applied to correct the dysregulated miRNA in cancer cells. The authors also discuss the recent advances in the technical development and preclinical/clinical evaluation of miRNA-based therapeutic agents.Expert opinion: Application of miRNA-based therapeutics for cancer treatment is appealing because they are able to modulate multiple dysregulated genes and/or signaling pathways in cancer cells. Major obstacles hindering their clinical development include drug delivery, off-target effects, efficacious dose determination, and safety. Tumor site-specific delivery of novel miRNA therapeutics may help to minimize off-target effects and toxicity. Combination of miRNA therapeutics with other anticancer treatment modalities could provide a synergistic effect, thus allowing the use of lower dose, minimizing off-target effects, and improving the overall safety profile in cancer patients. It is critical to identify individual miRNAs with cancer type-specific and context-specific regulation of oncogenes and tumor-suppressor genes in order to facilitate the precise use of miRNA anticancer therapeutics.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Fong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
24
|
Zhou X, Shan L, Na J, Li Y, Wang J. The SNP rs4846048 of MTHFR enhances the cervical cancer risk through association with miR-522: A preliminary report. Mol Genet Genomic Med 2020; 8:e1055. [PMID: 31750632 PMCID: PMC6978235 DOI: 10.1002/mgg3.1055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The present research was designed to explore the association between single nucleotide polymorphisms (SNPs) at the 3'-untranslated region (3'-UTR) of methylenetetrahydrofolate reductase (MTHFR) and the risk of cervical cancer (CC). METHODS From May 2015 to October 2016, a total of 197 patients (diagnosed with CC and precancerous lesions, and underwent surgical treatments) were enrolled in the study. Meanwhile, a total of 80 healthy cases were used as the controls. PCR-DNA analysis was used to explore the genotype of the SNPs (rs4846048 and rs55763075) of the MTHFR 3'-UTR as well as the association between allelic frequencies and the CC risk. Then, the role of rs4846048 SNPs in the association of microRNA-522 (miR-522) and MTHFR was evaluated through luciferase reporter assay. Meanwhile, the modulatory influence of miR-522 on cell apoptosis and viability of Hela cells was also detected by flow cytometry and MTT assay. RESULTS The rs4846048 AG and G allele frequencies were significantly higher in CC subgroup compared with the control group. Methylenetetrahydrofolate reductase rs4846048 A/G alleles contributed to miR-522 binding, and miR-522 negatively modulated the expressions of MTHFR. Furthermore, miR-522 overexpression increased cell viability but decreased apoptotic cells in Hela cells. CONCLUSION The preliminary report revealed that the SNP rs4846048 of MTHFR enhanced the risk of CC through association with miR-522, which further regulated cell viability and apoptosis in Hela cells.
Collapse
Affiliation(s)
- Xinyue Zhou
- Department of Obstetrics and GynecologyThe General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Lili Shan
- Department of Obstetrics and GynecologyThe General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Jing Na
- Department of Obstetrics and GynecologyThe General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Ya Li
- Department of Obstetrics and GynecologyThe General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Jun Wang
- Department of Obstetrics and GynecologyThe General Hospital of Northern Theater CommandShenyangLiaoningChina
| |
Collapse
|
25
|
Hu Y, Wang J, Zhou Y, Xie H, Yan X, Chu X, Chen W, Liu Y, Wang X, Wang J, Zhang A, Han S. Peptidomics analysis of umbilical cord blood reveals potential preclinical biomarkers for neonatal respiratory distress syndrome. Life Sci 2019; 236:116737. [PMID: 31505194 DOI: 10.1016/j.lfs.2019.116737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 02/04/2023]
Abstract
AIMS The purpose of this study was to investigate the pathophysiology and discover novel predictors of neonatal respiratory distress syndrome (NRDS) from a peptidomics perspective. MAIN METHODS Comparative profiling of umbilical cord blood from NRDS and control patients was performed by liquid chromatography tandem mass spectrometry technology. The underlying biological functions of the differentially expressed peptides (DEPs) were predicted by Gene Ontology (GO) and KEGG pathway analyses. The interactions of DEPs and their precursor proteins were explored by ingenuity pathway analysis (IPA). The sources and stability of DEPs were determined by online databases, including UniProt, SMART and ProtParam tool. KEY FINDINGS A total of 251 DEPs were identified, of which 139 peptides were upregulated, and 112 peptides were downregulated (fold change ≥2.0, P < 0.05). These DEPs were predicted to be associated with respiratory failure, atelectasis, and morphogenesis of endothelial cells. These processes indicated that DEPs may play a role in NRDS. Among them, eleven stable DEPs might be used as preclinical biomarkers. SIGNIFICANCE Our findings improve our understanding of NRDS and facilitate the discovery of candidate diagnostic biomarkers for NRDS from the perspective of peptidomics.
Collapse
Affiliation(s)
- Yin Hu
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Juan Wang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yahui Zhou
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Hanying Xie
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiangyun Yan
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Xue Chu
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Wenjuan Chen
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yiwen Liu
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xingyun Wang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Jun Wang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Aiqing Zhang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, Jiangsu 210003, China.
| | - Shuping Han
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
26
|
Zhang HC, Han YY, Zhang XM, Xiao N, Jiang T, Zhu S, Wang EP, Chen CB. miR-522 facilitates the prosperities of endometrial carcinoma cells by directly binding to monoamine oxidase B. Kaohsiung J Med Sci 2019; 35:598-606. [PMID: 31271496 DOI: 10.1002/kjm2.12107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
It is well known that microRNAs (miRNAs) are crucial regulatory factors in tumorigenesis, as tumor suppressors or cancer-promoting factors. However, the study of endometrial carcinoma relevance in miR-522 is rare, indicating an undefined molecular mechanism for its role. Therefore, we performed this study to examine the role of miR-522 on the biological behaviors of endometrial carcinoma. In this work, we found that miR-522 was highly expressed in endometrial carcinoma and negatively regulated monoamine oxidase B (MAOB) expression. They also have the opposite effect on prognosis of endometrial carcinoma patients. More importantly, miR-522 could decreased MAOB expression by binding to MAOB with a putative site, thereby promoting cell proliferation, migration, and invasion through in vitro functional analyses, including MTT assay, wound-healing and transwell invasion experiments. Upregulation of MAOB rescued the impacts of miR-522 mimic on cell behaviors. In conclusion, our observations demonstrated that miR-522 accelerated the progression of endometrial carcinoma by inhibiting MAOB, which might lead to a novel therapeutic therapy for endometrial carcinoma.
Collapse
Affiliation(s)
- Hong-Chang Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yan-Yan Han
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xin-Min Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Nan Xiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Tao Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - En-Peng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Chang-Bao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
27
|
Miroshnichenko S, Patutina O. Enhanced Inhibition of Tumorigenesis Using Combinations of miRNA-Targeted Therapeutics. Front Pharmacol 2019; 10:488. [PMID: 31156429 PMCID: PMC6531850 DOI: 10.3389/fphar.2019.00488] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
The search for effective strategies to inhibit tumorigenesis remains one of the most relevant scientific challenges. Among the most promising approaches is the direct modulation of the function of short non-coding RNAs, particularly miRNAs. These molecules are propitious targets for anticancer therapy, since they perform key regulatory roles in a variety of signaling cascades related to cell proliferation, apoptosis, migration, and invasion. The development of pathological states is often associated with deregulation of miRNA expression. The present review describes in detail the strategies aimed at modulating miRNA activity that invoke antisense oligonucleotide construction, such as small RNA zippers, miRNases (miRNA-targeted artificial ribonucleases), miRNA sponges, miRNA masks, anti-miRNA oligonucleotides, and synthetic miRNA mimics. The broad impact of developed miRNA-based therapeutics on the various events of tumorigenesis is also discussed. Above all, the focus of this review is to evaluate the results of the combined application of different miRNA-based agents and chemotherapeutic drugs for the inhibition of tumor development. Many studies indicate a considerable increase in the efficacy of anticancer therapy as a result of additive or synergistic effects of simultaneously applied therapies. Different drug combinations, such as a cocktail of antisense oligonucleotides or multipotent miRNA sponges directed at several oncogenic microRNAs belonging to the same/different miRNA families, a mixture of anti-miRNA oligonucleotides and cytostatic drugs, and a combination of synthetic miRNA mimics, have a more complex and profound effect on the various events of tumorigenesis as compared with treatment with a single miRNA-based agent or chemotherapeutic drug. These data provide strong evidence that the simultaneous application of several distinct strategies aimed at suppressing different cellular processes linked to tumorigenesis is a promising approach for cancer therapy.
Collapse
Affiliation(s)
- Svetlana Miroshnichenko
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Olga Patutina
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
28
|
Li Q, Li Z, Lin Y, Che H, Hu Y, Kang X, Zhang Y, Wang L, Zhang Y. High glucose promotes hepatic fibrosis via miR‑32/MTA3‑mediated epithelial‑to‑mesenchymal transition. Mol Med Rep 2019; 19:3190-3200. [PMID: 30816482 PMCID: PMC6423609 DOI: 10.3892/mmr.2019.9986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic fibrosis is characterized by the aberrant production and deposition of extracellular matrix (ECM) proteins. Growing evidence indicates that the epithelial‑mesenchymal transition serves a crucial role in the progression of liver fibrogenesis. Although a subset of microRNAs (miRNAs or miRs) has recently been identified as essential regulators of the EMT gene expression, studies of the EMT in hyperglycemic‑induced liver fibrosis are limited. In the current study, it was observed that high glucose‑treated AML12 cells occurred EMT process, and miR‑32 expression was markedly increased in the liver tissue of streptozotocin‑induced diabetic rats and in high glucose‑treated AML12 cells. Additionally, the contribution of the EMT to liver fibrosis by targeting metastasis‑associated gene 3 (MTA3) under hyperglycemic conditions was suppressed by AMO‑32. The results indicated that miR‑32 and MTA3 may be considered as novel drug targets in the prevention and treatment of liver fibrosis under hyperglycemic conditions. These finding improves the understanding of the progression of liver fibrogenesis.
Collapse
Affiliation(s)
- Qiang Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150030, P.R. China
| | - Zhange Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuan Lin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hui Che
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xujuan Kang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lihong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yong Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
29
|
Ren C, Chen X, Du N, Geng S, Hu Y, Liu X, Wu X, Lin Y, Bai X, Yin W, Cheng S, Yang L, Zhang Y. Low-intensity pulsed ultrasound promotes Schwann cell viability and proliferation via the GSK-3β/β-catenin signaling pathway. Int J Biol Sci 2018; 14:497-507. [PMID: 29805301 PMCID: PMC5968842 DOI: 10.7150/ijbs.22409] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background: It has been reported that ultrasound enhances peripheral nerve regeneration, but the mechanism remains elusive. Low-intensity pulsed ultrasound (LIPUS) has been reported to enhance proliferation and alter protein production in various types of cells. In this study, we detected the effects of LIPUS on Schwann cells. Material and methods: Schwann cells were separated from new natal Sprague-Dawley rat sciatic nerves and were cultured and purified. The Schwann cells were treated by LIPUS for 10 minutes every day, with an intensity of 27.37 mW/cm2. After treatment for 5 days, MTT, EdU staining, and flow cytometry were performed to examine cell viability and proliferation. Neurotrophic factors, including FGF, NGF, BDNF, and GDNF, were measured by western blot and real-time PCR. GSK-3β, p-GSK-3β, β-catenin and Cyclin D1 protein levels were detected using a western blot analysis. The expression of Cyclin D1 was also detected by immunofluorescence. Results: MTT and EdU staining showed that LIPUS increased the Schwann cells viability and proliferation. Compared to the control group, LIPUS increased the expression of growth factors and neurotrophic factors, including FGF, NGF, BDNF, GDNF, and Cyclin D1. Meanwhile, GSK-3β activity was inhibited in the LIPUS group as demonstrated by the increased level of p-GSK-3β and the ratio of the p-GSK-3β/GSK-3β level. The mRNA and protein expressions of β-catenin were increased in the LIPUS group. However, SB216763, a GSK-3β inhibitor, reversed the effects of LIPUS on Schwann cells. Conclusion: LIPUS promotes Schwann cell viability and proliferation by increasing Cyclin D1 expression via enhancing the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cong Ren
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiaohui Chen
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Ning Du
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Shuo Geng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Liu
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Xianxian Wu
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Yuan Lin
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Xue Bai
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Wenzhe Yin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Shi Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yong Zhang
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, Heilongjiang Province 150086, China
| |
Collapse
|
30
|
PIM1 mediates epithelial-mesenchymal transition by targeting Smads and c-Myc in the nucleus and potentiates clear-cell renal-cell carcinoma oncogenesis. Cell Death Dis 2018; 9:307. [PMID: 29472550 PMCID: PMC5833424 DOI: 10.1038/s41419-018-0348-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/16/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023]
Abstract
Emerging evidence has shown that the PIM serine/threonine kinase family, including PIM1, PIM2 and PIM3, is associated with tumour progression towards metastasis. PIM1, an attractive molecular target, has been identified as a potential prognostic biomarker for haematological and epithelial malignancies. However, to date, the potential regulatory roles and molecular mechanisms by which PIM1 affects the development and progression of cancers, including clear-cell renal-cell carcinoma (ccRCC), remain largely unknown. Herein, we present the first evidence that PIM1 is aberrantly overexpressed in human ccRCC tissues and cell lines and positively correlated with human ccRCC progression. In our study, depletion of PIM1 attenuated ccRCC cell proliferation, colony formation, migration, invasion and angiogenesis, suggesting that PIM1 expression may be a cancer-promoting event in ccRCC. Mechanistically, we observed that PIM1 could interact with Smad2 or Smad3 in the nucleus and subsequently phosphorylate Smad2 and Smad3 to induce the expression of transcription factors, including ZEB1, ZEB2, Snail1, Snail2 and Twist, to promote epithelial-mesenchymal transition (EMT). In addition, PIM1-mediated phosphorylation of c-Myc activates the expression of the above transcription factors to synergistically promote EMT but does not activate Smads. Collectively, our results demonstrate that aberrant expression of PIM1 contributes to ccRCC development and progression. Moreover, our data reveal a potential molecular mechanism in which PIM1 mediates crosstalk between signalling pathways, including different Smad proteins and c-Myc, which target downstream transcription factors (ZEB1, ZEB2, Snail1, Snail2 and Twist) to trigger EMT. Together, our data suggest that PIM1 may be a potential therapeutic target for ccRCC patients.
Collapse
|
31
|
Dong L, Pu Y, Zhang L, Qi Q, Xu L, Li W, Wei C, Wang X, Zhou S, Zhu J, Wang X, Liu F, Chen X, Su C. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Dis 2018; 9:218. [PMID: 29440630 PMCID: PMC5833395 DOI: 10.1038/s41419-018-0323-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/31/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022]
Abstract
Although accumulating evidence has linked mesenchymal stem cells (MSCs) with tumor growth, the underlying mechanisms are poorly understood. Here, we demonstrated for the first time that human umbilical cord MSCs (hUCMSCs) dramatically increased the growth of lung adenocarcinoma (LUAD) cancer cells in a xenograft tumor model. Then, we observed that hUCMSC-derived extracellular vesicles (hUCMSC-EVs) contribute to the hUCMSC-promoted LUAD cell growth through a direct effect on LUAD cells. Furthermore, we showed that hUCMSC-EV-mediated LUAD growth is associated with increased proliferation and decreased apoptosis in LUAD cells, concomitant with reduced PTEN expression mediated by the hUCMSC-EV-transmitted miR-410. Our findings provide novel insights into the intercellular communications between cancer cells and MSCs through MSC-EV-miRNA and suggest that modification of hUCMSC-EVs might be an attractive therapeutic option for the clinical application of hUCMSC-EVs that would reduce unwanted side effects.
Collapse
Affiliation(s)
- Liyang Dong
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Yanan Pu
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Lina Zhang
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Qianqian Qi
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Lei Xu
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Wei Li
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Chuan Wei
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Xiaofan Wang
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Sha Zhou
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Jifeng Zhu
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Xuefeng Wang
- Central Laboratory, The Affiliated Hospital of Jiangsu University, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Feng Liu
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Xiaojun Chen
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China.
| | - Chuan Su
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China.
| |
Collapse
|
32
|
Chu C, Liu X, Bai X, Zhao T, Wang M, Xu R, Li M, Hu Y, Li W, Yang L, Qin Y, Yang M, Yan C, Zhang Y. MiR-519d suppresses breast cancer tumorigenesis and metastasis via targeting MMP3. Int J Biol Sci 2018; 14:228-236. [PMID: 29483840 PMCID: PMC5821043 DOI: 10.7150/ijbs.22849] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/28/2017] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most common cause of death in women throughout the world. Although microRNAs (miRNAs) have been identified as novel regulators in carcinogenesis, there are still abundant hidden treasure needed to be excavated. In the present study, we found that miR-519d expression was remarkably decreased in both human BC tissues and MCF-7 cells. CCK8 and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to evaluate cell proliferation. Wound-healing and transwell assays were performed for detection of cell migration and invasion. The results demonstrated miR-519d overexpression dramatically suppressed MCF-7 cells proliferation, migration and invasion. While downregulation of miR-519d by miR-519d inhibitor substantially increased MCF-7 cell carcinogenesis. Further analysis identified Matrix Metalloproteinase-3 (MMP3) as a direct target of miR-519d. QRT-PCR and western blot results indicated the correlative expression of miR-519d and MMP3 in BC tissues and MCF-7 cells. In summary, our data uncovered the novel molecular interaction between miR-519d and MMP3, indicating a therapeutic strategy of miR-519d for BC.
Collapse
Affiliation(s)
- Chengling Chu
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xue Bai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tong Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mengxue Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ranchen Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mingqi Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Weihua Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lida Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Youyou Qin
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Meng Yang
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chaoqi Yan
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin 150086, China
| |
Collapse
|
33
|
Shuai F, Wang B, Dong S. miR-522-3p Promotes Tumorigenesis in Human Colorectal Cancer via Targeting Bloom Syndrome Protein. Oncol Res 2018; 26:1113-1121. [PMID: 29386092 PMCID: PMC7844714 DOI: 10.3727/096504018x15166199939341] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
miR-522-3p is known to degrade bloom syndrome protein (BLM) and enhance expression of other proto-oncogenes, leading to tumorigenesis. This study aimed to investigate the molecular mechanisms of miR-522-3p in human colorectal cancer (CRC) cells. Expressions of miR-522-3p in CRC and adjacent tissues, as well as in normal human colon epithelial cell line (FHC) and five CRC cell lines, were detected. Human CRC cell lines, HCT-116 and HT29, were transfected with miR-522-3p mimic, inhibitor, or scrambled controls. Then cell viability, apoptosis, cell cycle progression, and the expressions of c-myc, cyclin E, CDK2, and BLM were assessed. It was found that miR-522-3p was highly expressed in CRC tissues when compared to adjacent nontumor tissues and was highly expressed in CRC cell lines when compared to FHC cells. miR-522-3p overexpression promoted cell viability, reduced apoptotic cell rate, arrested more cells in the S phase, and upregulated c-myc, cyclin E, and CDK2 expression. BLM was a target gene of miR-522-3p, and miR-522-3p suppression did not exert antiproliferative and proapoptotic activities when BLM was silenced. These findings demonstrate that miR-522-3p upregulation negatively regulates the expression of BLM, with upregulation of c-myc, CDK2, and cyclin E, and thereby promoting the proliferation of human CRC cells.
Collapse
Affiliation(s)
- Feng Shuai
- Department of Gastroenterology, Eastern District of Linyi People's Hospital, Linyi, Shandong, P.R. China
| | - Bo Wang
- Department of Pediatrics, Chinese Medicine Hospital in Linyi City, Linyi, Shandong, P.R. China
| | - Shuxiao Dong
- Department of Gastrointestinal Surgery, Linyi People's Hospital, Linyi, Shandong, P.R. China
| |
Collapse
|
34
|
Xu Y, Hou R, Lu Q, Zhang Y, Chen L, Zheng Y, Hu B. MiR-491-5p negatively regulates cell proliferation and motility by targeting PDGFRA in prostate cancer. Am J Cancer Res 2017; 7:2545-2553. [PMID: 29312807 PMCID: PMC5752694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023] Open
Abstract
MicroRNA-491-5p (miR-491-5p) has been implicated in several cancers; however, its role in human prostate cancer (PCa) remains unknown. In this study, we observed downregulation of miR-491-5p expression in PCa tissues and cell lines. CCK-8 and EdU assays showed that forced expression of miR-491-5p suppressed PCa cell proliferation, which was further confirmed in a cell cycle assay. Overexpression of miR-491-5p also reduced PCa cell migration and invasion abilities as indicated by Transwell assays. Additionally, miR-491-5p overexpression significantly inhibited PCa growth in a mouse xenograft model. Mechanistically, platelet-derived growth factor receptor α (PDGFRA) was found to be a novel target of miR-491-5p. Re-introduction of PDGFRA antagonized the inhibitory effects of miR-491-5p on the proliferation and motility abilities of PCa cells. In clinical samples of PCa, miR-491-5p was negatively correlated with PDGFRA expression, which was upregulated in PCa. Collectively, these results demonstrate that miR-491-5p acts as a tumor suppressor in PCa by directly targeting PDGFRA and may serve as a therapeutic biomarker for patients with PCa.
Collapse
Affiliation(s)
- Yanjun Xu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
| | - Rui Hou
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
| | - Qijie Lu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
| | - Yang Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
| | - Lei Chen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200233, China
| |
Collapse
|
35
|
Zhao YX, Liu HC, Ying WY, Wang CY, Yu YJ, Sun WJ, Liu JF. microRNA‑372 inhibits proliferation and induces apoptosis in human breast cancer cells by directly targeting E2F1. Mol Med Rep 2017; 16:8069-8075. [PMID: 28944922 PMCID: PMC5779890 DOI: 10.3892/mmr.2017.7591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/19/2017] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is the most prevalent cancer and the leading cause of cancer-associated mortalities among women worldwide today. Accumulating evidence suggested that miR-372 may serve important roles in the initiation and development of various human cancers. However, the role of miR-372 in breast cancer remains unknown. The present study demonstrated that the expression level of miR-372 in human breast cancer tissues and cell lines is significantly reduced compared with normal breast tissues cell lines. Furthermore, results of functional assays indicated that miR-372 inhibits cell proliferation and induces apoptosis in the MCF-7 human breast cancer cell line. E2F1 was identified as a direct functional target of miR-372 in breast cancer. In conclusion, the findings revealed that miR-372 may have the potential to act as a novel molecule for the diagnosis and therapy of patients with breast cancer.
Collapse
Affiliation(s)
- Ya-Xin Zhao
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hua-Cheng Liu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wei-Yang Ying
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Cheng-Yu Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yao-Jun Yu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wei-Jian Sun
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jie-Fan Liu
- Department of General Practice, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
36
|
Ding D, Zhang Y, Wen L, Fu J, Bai X, Fan Y, Lin Y, Dai H, Li Q, Zhang Y, An R. MiR-367 regulates cell proliferation and metastasis by targeting metastasis-associated protein 3 (MTA3) in clear-cell renal cell carcinoma. Oncotarget 2017; 8:63084-63095. [PMID: 28968973 PMCID: PMC5609905 DOI: 10.18632/oncotarget.18647] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is an aggressive and malignant kidney cancer which has the worst prognosis. Although microRNAs (miRNAs) have recently been identified as a novel class of regulators in oncogenesis and metastasis, there are few studies on their participation in ccRCC. In the present study, we observed that miR-367 expression was increased in both human ccRCC tissues and cell lines. Cell proliferation was evaluated by MTT assay and 5-Ethynyl-2′-deoxyuridine (EdU) assay kit, which indicated that inhibition of miR-367 could suppress the ccRCC proliferation. Forced expression of miR-367 substantially induced cell migration and invasion evidenced by wound-healing and transwell assays, and this carcinogenesis could be abolished by miR-367 inhibitor treatment. Further analysis identified Metastasis-Associated Protein 3 (MTA3) as a direct target of miR-367. QRT-PCR and western blot results indicated the correlative expression of miR-367 and MTA3 in ccRCC tissue samples. Overexpression of MTA3 reversed miR-367-induced cell proliferation, migration and invasion. Our data uncovered a novel molecular interaction between miR-367 and MTA3, indicating a therapeutic strategy of miR-367 for ccRCC.
Collapse
Affiliation(s)
- Dexin Ding
- Department of Urology, The First Affiliated Hospital of The Harbin Medical University, Harbin 150001, China.,Department of Urology, The Affiliated Tumor Hospital of The Harbin Medical University, Harbin 150001, China
| | - Yue Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lin Wen
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiangbo Fu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xue Bai
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuhua Fan
- Department of Biotechnology and Pharmaceutics, College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yuan Lin
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hongshuang Dai
- Department of Urology, The Affiliated Tumor Hospital of The Harbin Medical University, Harbin 150001, China
| | - Qiang Li
- Department of Urology, The Affiliated Tumor Hospital of The Harbin Medical University, Harbin 150001, China
| | - Yong Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of The Harbin Medical University, Harbin 150001, China
| |
Collapse
|
37
|
Patutina OA, Bichenkova EV, Miroshnichenko SK, Mironova NL, Trivoluzzi LT, Burusco KK, Bryce RA, Vlassov VV, Zenkova MA. miRNases: Novel peptide-oligonucleotide bioconjugates that silence miR-21 in lymphosarcoma cells. Biomaterials 2017; 122:163-178. [PMID: 28126663 DOI: 10.1016/j.biomaterials.2017.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are active regulators in malignant growth and constitute potential targets for anticancer therapy. Consequently, considerable effort has focused on identifying effective ways to modulate aberrant miRNA expression. Here we introduce and assess a novel type of chemically engineered biomaterial capable of cleaving specific miRNA sequences, i.e. miRNA-specific artificial ribonucleases (hereafter 'miRNase'). The miRNase template presented here consists of the catalytic peptide Acetyl-[(LeuArg)2Gly]2 covalently attached to a miRNA-targeting oligonucleotide, which can be linear or hairpin. The peptide C-terminus is conjugated to an aminohexyl linker located at either the 3'- or 5'-end of the oligonucleotide. The cleavage efficacy, structural aspects of cleavage and biological relevance of a set of these designed miRNases was assayed with respect to highly oncogenic miR-21. Several miRNases demonstrated effective site-selective cleavage of miR-21 exclusively at G-X bonds. One of the most efficient miRNase was shown to specifically inhibit miR-21 in lymphosarcoma cells and lead to a reduction in their proliferative activity. This report provides the first experimental evidence that metallo-independent peptide-oligonucleotide chemical ribonucleases are able to effectively and selectively down-regulate oncogenic miRNA in tumour cells, thus suggesting their potential in development of novel therapeutics aimed at overcoming overexpression of disease-related miRNAs.
Collapse
Affiliation(s)
- Olga A Patutina
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Svetlana K Miroshnichenko
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Nadezhda L Mironova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Linda T Trivoluzzi
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kepa K Burusco
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Richard A Bryce
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Marina A Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia.
| |
Collapse
|
38
|
Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci Rep 2016; 6:38750. [PMID: 27929118 PMCID: PMC5144099 DOI: 10.1038/srep38750] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
Metastasis is associated with poor prognosis in cancers. Exosomes, which are packed with RNA and proteins and are released in all biological fluids, are emerging as an important mediator of intercellular communication. However, the function of exosomes remains poorly understood in cancer metastasis. Here, we demonstrate that exosomes isolated by size-exclusion chromatography from a highly metastatic human oral cancer cell line, HOC313-LM, induced cell growth through the activation of ERK and AKT as well as promoted cell motility of the poorly metastatic cancer cell line HOC313-P. MicroRNA (miRNA) array analysis identified two oncogenic miRNAs, miR-342–3p and miR-1246, that were highly expressed in exosomes. These miRNAs were transferred to poorly metastatic cells by exosomes, which resulted in increased cell motility and invasive ability. Moreover, miR-1246 increased cell motility by directly targeting DENN/MADD Domain Containing 2D (DENND2D). Taken together, our findings support the metastatic role of exosomes and exosomal miRNAs, which highlights their potential for applications in miRNA-based therapeutics.
Collapse
|
39
|
Xi Y, Wang L, Sun C, Yang C, Zhang F, Li D. The novel miR-9501 inhibits cell proliferation, migration and activates apoptosis in non-small cell lung cancer. Med Oncol 2016; 33:124. [PMID: 27734264 DOI: 10.1007/s12032-016-0837-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023]
Abstract
Accumulating evidences suggest that lots of microRNAs (miRNAs) play crucial roles in (patho-)physiological processes of lung cancer, including metastasis, drug-resistance or tumorigenesis. They mediate the progression of cell growth, migration and invasion by regulating the expression of special genes. MiRNA expression patterns could also serve as diagnostic/prognostic biomarkers. Cancer therapies mediated by miRNAs remain tremendous potential and challenges. Our previous small RNA-seq assay found that the novel miR-9501 was down-regulated in lung cancer tissues compared with adjacent non-cancer tissues. In this study, our results verified that miR-9501 was significantly down-regulated in lung cancer tissues and its expression levels were remarkably suppressed in non-small cell lung cancer cell lines. Then, we characterized and investigated the novel miR-9501 in A549 cells. Transient transfection of miR-9501 into cultured A549 cells led to remarkable decrease in cell proliferation, migration and increase apoptosis. These data demonstrated that miR-9501 might be a tumor suppressor for lung cancer therapy.
Collapse
Affiliation(s)
- Yongyong Xi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, NO. 115 on Donghu Road of Wuhan, Wuhan, Hubei, 430071, People's Republic of China
| | - Liang Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, NO. 115 on Donghu Road of Wuhan, Wuhan, Hubei, 430071, People's Republic of China
| | - Chengcao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, NO. 115 on Donghu Road of Wuhan, Wuhan, Hubei, 430071, People's Republic of China
| | - Cuili Yang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, NO. 115 on Donghu Road of Wuhan, Wuhan, Hubei, 430071, People's Republic of China
| | - Feng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, NO. 115 on Donghu Road of Wuhan, Wuhan, Hubei, 430071, People's Republic of China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, NO. 115 on Donghu Road of Wuhan, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
40
|
Zhang Y, Wu X, Li Y, Zhang H, Li Z, Zhang Y, Zhang L, Ju J, Liu X, Chen X, Glybochko PV, Nikolenko V, Kopylov P, Xu C, Yang B. Endothelial to mesenchymal transition contributes to arsenic-trioxide-induced cardiac fibrosis. Sci Rep 2016; 6:33787. [PMID: 27671604 PMCID: PMC5037371 DOI: 10.1038/srep33787] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence has suggested the critical role of endothelial to mesenchymal transition (EndMT) in fibrotic diseases. The present study was designed to examine whether EndMT is involved in arsenic trioxide (As2O3)-induced cardiac fibrosis and to explore the underlying mechanisms. Cardiac dysfunction was observed in rats after exposure to As2O3 for 15 days using echocardiography, and the deposition of collagen was detected by Masson’s trichrome staining and electron microscope. EndMT was indicated by the loss of endothelial cell markers (VE-cadherin and CD31) and the acquisition of mesenchymal cell markers (α-SMA and FSP1) determined by RT-PCR at the mRNA level and Western blot and immunofluorescence analysis at the protein level. In the in-vitro experiments, endothelial cells acquired a spindle-shaped morphology accompanying downregulation of the endothelial cell markers and upregulation of the mesenchymal cell markers when exposed to As2O3. As2O3 activated the AKT/GSK-3β/Snail signaling pathway, and blocking this pathway with PI3K inhibitor (LY294002) abolished EndMT in As2O3-treated endothelial cells. Our results highlight that As2O3 is an EndMT-promoting factor during cardiac fibrosis, suggesting that targeting EndMT is beneficial for preventing As2O3-induced cardiac toxicity.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, China
| | - Xianxian Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province &Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China
| | - Haiying Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhange Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Longyin Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaohui Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Peter V Glybochko
- The Research Center, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Vladimir Nikolenko
- The Research Center, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Philipp Kopylov
- Department of preventive and emergency cardiology, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Chaoqian Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, 3010, Australia
| |
Collapse
|