1
|
Rybarczyk A, Sultan T, Hussain N, Azam HMH, Rafique S, Zdarta J, Jesionowski T. Fusion of enzymatic proteins: Enhancing biological activities and facilitating biological modifications. Adv Colloid Interface Sci 2025; 340:103473. [PMID: 40086016 DOI: 10.1016/j.cis.2025.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
The fusion of enzymatic proteins represents a dynamic frontier in biotechnology and enzymatic engineering. This in-depth review looks at the many different ways that fusion proteins can be used, showing their importance in biosensing, gene therapy, targeted drug delivery, and biocatalysis. Fusion proteins have shown an astounding ability to improve and fine-tune biological functions by combining the most beneficial parts of different enzymes. Our first step is to explain how protein fusion increases biological functions. This will provide a broad picture of how this phenomenon has changed many fields. We dissect the intricate mechanisms through which fusion proteins orchestrate cellular processes, underscoring their potential to revolutionize the landscape of molecular biology. We also explore the complicated world of structural analysis and design strategies, stressing the importance of molecular insights for making the fusion protein approach work better. These insights broaden understanding of the underlying principles and illuminate the path toward unlocking untapped potential. The review also introduces cutting-edge techniques for constructing fusion protein libraries, such as DNA shuffling and phage display. These new methods allow scientists to build a molecular orchestra with an unprecedented level of accuracy, and thus use fusion proteins to their full potential in various situations. In conclusion, we provide a glimpse into the current challenges and prospects in fusion protein research, shedding light on recent advancements that promise to reshape the future of biotechnology. As we make this interesting journey through the field of enzymatic protein combination, it becomes clear that the fusion paradigm is about to start a new era of innovation that will push the limits of what is possible in biology and molecular engineering.
Collapse
Affiliation(s)
- Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Talha Sultan
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Safa Rafique
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
2
|
Tian C, Rehman A, Wang X, Wang Z, Li H, Ma J, Du X, Peng Z, He S. Late embryogenesis abundant gene GhLEA-5 of semi-wild cotton positively regulates salinity tolerance in upland cotton. Gene 2025; 949:149372. [PMID: 40023341 DOI: 10.1016/j.gene.2025.149372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The productivity and quality of cotton are significantly compromised by salt stress. In this study, the full length of encoding region and genomic DNA sequences of GhLEA_5A/D (Gh_A10G166600 and Gh_D10G188300), which belong to the late embryogenesis abundant gene family in allotetraploid upland cotton (Gossypium hirsutum L.) and semi-wild cotton (Gossypium purpurascens), were isolated and their salt tolerance was experimentally confirmed. Analysis of sequence alignments and phylogenetic trees indicated a significant level of homology between GhLEA-5A and GhLEA-5D. Additionally, a conserved protein motif was consistently identified across these sequences. The transcriptome data analysis showed that the expression level of GhLEA-5A/D was substantially enhanced in the leaves of salt-tolerant G. purpurascens accessions compared to salt-sensitive materials. In the real-time quantitative reverse transcription PCR (qRT-PCR) assays, notable expression levels of the GhLEA-5D gene were detected in salt-tolerant upland cotton materials following exposure to salt stress at 3 and 12-hour time points. The suppression of GhLEA-5A/D transcription via Virus-induced Gene Silencing (VIGS) technology significantly exacerbates salt sensitivity in cotton. This is evidenced by the nearly 50 % increase in malondialdehyde (MDA) content alongside a 60 % reduction in peroxidase (POD) levels in salt-treated plants when compared to the control group. The overexpression of the GhLEA-5A/D gene conferred enhanced salt tolerance in Arabidopsis, resulting in a 25 % increase in root length, a 30 % improvement in survival rate, a 15 % increase in water retention, and a 15 % boost in photosynthetic efficiency. The chlorophyll fluorescence parameters, enzyme activities, diaminobenzine, and nitroblue tetrazolium staining suggested that GhLEA-5A/D likely exhibited a positive regulatory role for cotton responding to salt stress. Furthermore, we identified 76 candidate proteins that potentially interact with GhLEA-5 in the yeast two-hybrid screening library. These results provide a theoretical basis for studying the mechanism of cotton salt tolerance and offer new resources for improving cotton salt tolerance genes.
Collapse
Affiliation(s)
- Chunyan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Zhenzhen Wang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Jun Ma
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
3
|
Liu J, Shi X, Zhang Z, Cen X, Lin L, Wang X, Chen Z, Zhang Y, Zheng X, Wu B, Miao Y. Deep Neural Network-Mining of Rice Drought-Responsive TF-TAG Modules by a Combinatorial Analysis of ATAC-Seq and RNA-Seq. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40165388 DOI: 10.1111/pce.15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Drought is a critical risk factor that impacts rice growth and yields. Previous studies have focused on the regulatory roles of individual transcription factors in response to drought stress. However, there is limited understanding of multi-factor stresses gene regulatory networks and their mechanisms of action. In this study, we utilised data from the JASPAR database to compile a comprehensive dataset of transcription factors and their binding sites in rice, Arabidopsis, and barley genomes. We employed the PyTorch framework for machine learning to develop a nine-layer convolutional deep neural network TFBind. Subsequently, we obtained rice RNA-seq and ATAC-seq data related to abiotic stress from the public database. Utilising integrative analysis of WGCNA and ATAC-seq, we effectively identified transcription factors associated with open chromatin regions in response to drought. Interestingly, only 81% of the transcription factors directly bound to the opened genes by testing with TFBind model. By this approach we identified 15 drought-responsive transcription factors corresponding to open chromatin regions of targets, which enriched in the terms related to protein transport, protein allocation, nitrogen compound transport. This approach provides a valuable tool for predicting TF-TAG-opened modules during biological processes.
Collapse
Affiliation(s)
- Jingpeng Liu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ximiao Shi
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitai Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuexiang Cen
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaowei Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxian Chen
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binghua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Li S, Meng H, Yang Y, Zhao J, Xia Y, Wang S, Wang F, Zheng G, Li J. Overexpression of AtruLEA1 from Acer truncatum Bunge Enhanced Arabidopsis Drought and Salt Tolerance by Improving ROS-Scavenging Capability. PLANTS (BASEL, SWITZERLAND) 2025; 14:117. [PMID: 39795377 PMCID: PMC11723042 DOI: 10.3390/plants14010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 01/13/2025]
Abstract
Late embryonic developmental abundant (LEA) genes play a crucial role in the response to abiotic stress and are important target genes for research on plant stress tolerance mechanisms. Acer truncatum Bunge is a promising candidate tree species for investigating the tolerance mechanism of woody plants against abiotic stress. In our previous study, AtruLEA1 was identified as being associated with seed drought tolerance. In this study, LEA1 was cloned from A. truncatum Bunge and functionally characterized. AtruLEA1 encodes an LEA protein and is located in the nucleus. Phylogenetic tree analysis revealed a recent affinity of the AtruLEA1 protein to AT3G15760.1. Overexpression of AtruLEA1 resulted in enhanced tolerance of Arabidopsis thaliana to drought and salt stress and heightened the ABA sensitivity. Compared to wild-type (WT) plants, plants with overexpressed AtruLEA1 exhibited increased activities of antioxidant enzymes under drought stress. Meanwhile, the ROS level of transgenic Arabidopsis was significantly less than that of the WT. Additionally, the stoma density and stoma openness of AtruLEA1 Arabidopsis were higher compared to those in the WT Arabidopsis under salt and drought stress conditions, which ensures that the biomass and relative water content of transgenic Arabidopsis are significantly better than those of the WT. These results indicated that AtruLEA1 was involved in salt and drought stress tolerances by maintaining ROS homeostasis, and its expression was positively regulated by abiotic stress. These results indicate a positive role of AtruLEA1 in drought and salt stress and provide theoretical evidence in the direction of cultivating resistant plants.
Collapse
Affiliation(s)
- Shaofeng Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| | - Huijing Meng
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China;
| | - Yanfei Yang
- College of Forestry, Shanxi Agricultural University, Taigu 030801, China; (Y.Y.); (J.Z.)
| | - Jinna Zhao
- College of Forestry, Shanxi Agricultural University, Taigu 030801, China; (Y.Y.); (J.Z.)
| | - Yongxiu Xia
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| | - Shaoli Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| | - Fei Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| | - Guangshun Zheng
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| |
Collapse
|
5
|
Wang X, Li Y, Zhang L, Wang B. Comprehensive identification of LEA protein family genes and functional analysis of MdLEA60 involved in abiotic stress responses in apple (Malus domestica). Int J Biol Macromol 2024; 283:137641. [PMID: 39547624 DOI: 10.1016/j.ijbiomac.2024.137641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Late embryogenesis abundant (LEA) proteins are important proteins that exists widely in many plants and contribute to physiological processes of plant stress resistance. Despite LEA proteins being identified in many plants, none have been reported in apple (Malus domestica) until this study. In this study, a total of 87 MdLEA proteins were identified in apple, and a comprehensive analysis was conducted to elucidate the functions of MdLEA proteins in response to abiotic stress. Results showed that they were classified into 7 groups and distributed on 16 chromosomes. Collineation analysis revealed that segmental duplication primarily drove the expansion of MdLEA genes. The MdLEA promoters were enriched with elements associated with various stress responses. Through transcriptome and qRT-PCR analysis, several MdLEA genes related to drought/salinity/cold were excavated, and MdLEA60 was selected for transgenic validation. The ectopic expression of MdLEA60 enhanced osmotic and extreme temperature tolerance in both prokaryotic and eukaryotic cells, providing stress resistance support via antioxidant protection. Overall, the comprehensive analyses and identification not only establish a basis for future investigation into the functional mechanism of MdLEA proteins but also provide potential candidate genes for apple resistance breeding optimization.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yuwei Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Linsheng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi 712100, China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
6
|
Olgenblum GI, Hutcheson BO, Pielak GJ, Harries D. Protecting Proteins from Desiccation Stress Using Molecular Glasses and Gels. Chem Rev 2024; 124:5668-5694. [PMID: 38635951 PMCID: PMC11082905 DOI: 10.1021/acs.chemrev.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 04/20/2024]
Abstract
Faced with desiccation stress, many organisms deploy strategies to maintain the integrity of their cellular components. Amorphous glassy media composed of small molecular solutes or protein gels present general strategies for protecting against drying. We review these strategies and the proposed molecular mechanisms to explain protein protection in a vitreous matrix under conditions of low hydration. We also describe efforts to exploit similar strategies in technological applications for protecting proteins in dry or highly desiccated states. Finally, we outline open questions and possibilities for future explorations.
Collapse
Affiliation(s)
- Gil I. Olgenblum
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Brent O. Hutcheson
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, Department of Biochemistry & Biophysics, Integrated
Program for Biological & Genome Sciences, Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel Harries
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Blanca-Reyes I, Lechuga V, Llebrés MT, Carreira JA, Ávila C, Cánovas FM, Castro-Rodríguez V. Under Stress: Searching for Genes Involved in the Response of Abies pinsapo Boiss to Climate Change. Int J Mol Sci 2024; 25:4820. [PMID: 38732040 PMCID: PMC11084517 DOI: 10.3390/ijms25094820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Currently, Mediterranean forests are experiencing the deleterious effects of global warming, which mainly include increased temperatures and decreased precipitation in the region. Relict Abies pinsapo fir forests, endemic in the southern Iberian Peninsula, are especially sensitive to these recent environmental disturbances, and identifying the genes involved in the response of this endangered tree species to climate-driven stresses is of paramount importance for mitigating their effects. Genomic resources for A. pinsapo allow for the analysis of candidate genes reacting to warming and aridity in their natural habitats. Several members of the complex gene families encoding late embryogenesis abundant proteins (LEAs) and heat shock proteins (HSPs) have been found to exhibit differential expression patterns between wet and dry seasons when samples from distinct geographical locations and dissimilar exposures to the effects of climate change were analyzed. The observed changes were more perceptible in the roots of trees, particularly in declining forests distributed at lower altitudes in the more vulnerable mountains. These findings align with previous studies and lay the groundwork for further research on the molecular level. Molecular and genomic approaches offer valuable insights for mitigating climate stress and safeguarding this endangered conifer.
Collapse
Affiliation(s)
- Irene Blanca-Reyes
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica en Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain; (I.B.-R.); (M.T.L.); (C.Á.)
| | - Víctor Lechuga
- Department of Ecology, Universidad de Jaen, Campus Las Lagunillas s/n., 23009 Jaén, Spain; (V.L.); (J.A.C.)
| | - María Teresa Llebrés
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica en Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain; (I.B.-R.); (M.T.L.); (C.Á.)
| | - José A. Carreira
- Department of Ecology, Universidad de Jaen, Campus Las Lagunillas s/n., 23009 Jaén, Spain; (V.L.); (J.A.C.)
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica en Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain; (I.B.-R.); (M.T.L.); (C.Á.)
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica en Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain; (I.B.-R.); (M.T.L.); (C.Á.)
| | - Vanessa Castro-Rodríguez
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica en Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain; (I.B.-R.); (M.T.L.); (C.Á.)
| |
Collapse
|
8
|
Zhou C, Niu S, El-Kassaby YA, Li W. Genome-wide identification of late embryogenesis abundant protein family and their key regulatory network in Pinus tabuliformis cold acclimation. TREE PHYSIOLOGY 2023; 43:1964-1985. [PMID: 37565812 DOI: 10.1093/treephys/tpad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Cold acclimation is a crucial biological process that enables conifers to overwinter safely. The late embryogenesis abundant (LEA) protein family plays a pivotal role in enhancing freezing tolerance during this process. Despite its importance, the identification, molecular functions and regulatory networks of the LEA protein family have not been extensively studied in conifers or gymnosperms. Pinus tabuliformis, a conifer with high ecological and economic values and with high-quality genome sequence, is an ideal candidate for such studies. Here, a total of 104 LEA genes were identified from P. tabuliformis, and we renamed them according to their subfamily group: PtLEA1-PtLEA92 (group LEA1-LEA6), PtSMP1-PtSMP6 (group seed maturation protein) and PtDHN1-PtDHN6 (group Dehydrin). While the sequence structure of P. tabuliformis LEA genes are conserved, their physicochemical properties exhibit unique characteristics within different subfamily groupings. Notably, the abundance of low-temperature responsive elements in PtLEA genes was observed. Using annual rhythm and temperature gradient transcriptome data, PtLEA22 was identified as a key gene that responds to low-temperature induction while conforming to the annual cycle of cold acclimation. Overexpression of PtLEA22 enhanced Arabidopsis freezing tolerance. Furthermore, several transcription factors potentially co-expressed with PtLEA22 were validated using yeast one-hybrid and dual-luciferase assays, revealing that PtDREB1 could directly bind PtLEA22 promoter to positively regulate its expression. These findings reveal the genome-wide characterization of P. tabuliformis LEA genes and their importance in the cold acclimation, while providing a theoretical basis for studying the molecular mechanisms of cold acclimation in conifers.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
9
|
Jang BK, Oh S, Kim D, Cho JS, Lee CH. Exogenous preculture with sucrose and abscisic acid improves post-cryopreservation survival of eastern bracken fern gametophytes. Sci Rep 2023; 13:18518. [PMID: 37898728 PMCID: PMC10613233 DOI: 10.1038/s41598-023-45941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023] Open
Abstract
Cryopreservation is an important technique used in the conservation of various plant tissues. This study proposes a cryopreservation method for the long-term conservation of eastern bracken fern gametophytes (Pteridium aquilinum var. latiusculum). Encapsulation-dehydration of the gametophytes was performed, and the exogenous sucrose and abscisic acid (ABA) preculture conditions were investigated. Gametophytes are sensitive to dehydration and drying, and the following treatment conditions were applied: encapsulation by alginate containing 0.75 M sucrose, 18-h loading treatment with 0.75 M sucrose, and 6-h drying treatment. The survival rate following cryopreservation was determined. The water content of < 27.5% in the alginate beads after dehydration and drying was found to be appropriate for ensuring survival. Additionally, performing an exogenous sucrose and ABA preculture was essential before encapsulation to achieve a survival of ≥ 90%. The high stress induced by cryopreservation and exogenous preculture regulated the expression of PaSuSy, PaLEA14, and PaABI1b and the endogenous ABA content. In eastern bracken gametophytes, ABI1 appears to be a negative regulator of ABA signaling. These results indicate that the encapsulation-dehydration method is effective for the long-term conservation of eastern bracken fern gametophytes, and exogenous preculture alleviates abiotic stress and increases the survival rate.
Collapse
Affiliation(s)
- Bo-Kook Jang
- Department of Horticulture, Sunchon National University, Suncheon, 57922, Republic of Korea
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sewon Oh
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Daeil Kim
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ju-Sung Cho
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Cheol Hee Lee
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
10
|
Saifi SK, Passricha N, Tuteja R, Nath M, Gill R, Gill SS, Tuteja N. OsRuvBL1a DNA helicase boost salinity and drought tolerance in transgenic indica rice raised by in planta transformation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111786. [PMID: 37419328 DOI: 10.1016/j.plantsci.2023.111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
RuvBL, is a member of SF6 superfamily of helicases and is conserved among the various model systems. Recently, rice (Oryza sativa L.) homolog of RuvBL has been biochemically characterized for its ATPase and DNA helicase activities; however its involvement in stress has not been studied so far. Present investigation reports the detailed functional characterization of OsRuvBL under abiotic stresses through genetic engineering. An efficient Agrobacterium-mediated in planta transformation protocol was developed in indica rice to generate the transgenic lines and study was focused on optimization of factors to achieve maximum transformation efficiency. Overexpressing OsRuvBL1a transgenic lines showed enhanced tolerance under in vivo salinity stress as compared to WT plants. The physiological and biochemical analysis of the OsRuvBL1a transgenic lines showed better performance under salinity and drought stresses. Several stress responsive interacting partners of OsRuvBL1a were identified using Y2H system revealed to its role in stress tolerance. Functional mechanism for boosting stress tolerance by OsRuvBL1a has been proposed in this study. This integration of OsRuvBL1a gene in rice genome using in planta transformation method helped to achieve the abiotic stress resilient smart crop. This study is the first direct evidence to show the novel function of RuvBL in boosting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Shabnam K Saifi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nishat Passricha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Nath
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh 173213, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India.
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
11
|
Li Y, Qi S, Chen S, Li H, Zhang T, Bao F, Zhan D, Pang Z, Zhang J, Zhao J. Genome-wide identification and expression analysis of late embryogenesis abundant ( LEA) genes reveal their potential roles in somatic embryogenesis in hybrid sweetgum ( Liquidambar styraciflua × Liquidambar formosana). FORESTRY RESEARCH 2023; 3:12. [PMID: 39526275 PMCID: PMC11533890 DOI: 10.48130/fr-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 11/16/2024]
Abstract
Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants that play significant roles in embryonic development and abiotic stress response. Hybrid sweetgum is an important forest tree resource around the world, and somatic embryogenesis is an efficient way of reproduction and utilization. However, a systematic analysis of the LEA family genes in hybrid sweetgum is lacking, this is not conducive to the efficiency of its somatic embryogenesis. From the whole genome of the hybrid sweetgum, utilizing hidden Markov models, an identification of a total of 79 LEA genes was successfully conducted. They were classified into eight different groups based on their conserved domains and phylogenetic relationships, with the LsfLEA2 group of genes being the most abundant. The gene structure and sequence characteristics and chromosomal localization, as well as the physicochemical properties of LEA proteins were meticulously carried out. Analysis of the cis-acting elements shows that most of the LsfLEA genes are associated with light-responsive-elements. In addition, some genes are associated with biosynthetic pathways, such as abscisic acid response, growth hormone response, methyl jasmonate response, somatic embryogenesis, meristematic tissue expression. Furthermore, we systematically analyzed the expression patterns of hybrid sweetgum LEA genes in different stages of somatic embryogenesis and different tissues, in LEA family genes we also found significant specificity in gene expression during somatic embryogenesis. This study provides new insights into the formation of members of the LsfLEA family genes in hybrid sweetgum, while improving the understanding of the potential role of these genes in the process of hybrid sweetgum somatic embryogenesis and abiotic stress response. These results have a certain guiding significance for the future functional study of LsfLEA family genes, and provide a theoretical basis for exploring the regulatory mechanism of LsfLEA genes in the somatic embryo development stage of hybrid sweetgum.
Collapse
Affiliation(s)
- Ying Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shuaizheng Qi
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Siyuan Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongxuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ting Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Fen Bao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dingju Zhan
- Guangxi Bagui Forest and Flowers Seedlings Co., Ltd., Nanning, China
| | - Zhenwu Pang
- Guangxi Bagui Forest and Flowers Seedlings Co., Ltd., Nanning, China
| | - Jinfeng Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jian Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
12
|
Novikova SV, Sharov VV, Oreshkova NV, Simonov EP, Krutovsky KV. Genetic Adaptation of Siberian Larch ( Larix sibirica Ledeb.) to High Altitudes. Int J Mol Sci 2023; 24:ijms24054530. [PMID: 36901960 PMCID: PMC10003562 DOI: 10.3390/ijms24054530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Forest trees growing in high altitude conditions offer a convenient model for studying adaptation processes. They are subject to a whole range of adverse factors that are likely to cause local adaptation and related genetic changes. Siberian larch (Larix sibirica Ledeb.), whose distribution covers different altitudes, makes it possible to directly compare lowland with highland populations. This paper presents for the first time the results of studying the genetic differentiation of Siberian larch populations, presumably associated with adaptation to the altitudinal gradient of climatic conditions, based on a joint analysis of altitude and six other bioclimatic variables, together with a large number of genetic markers, single nucleotide polymorphisms (SNPs), obtained from double digest restriction-site-associated DNA sequencing (ddRADseq). In total, 25,143 SNPs were genotyped in 231 trees. In addition, a dataset of 761 supposedly selectively neutral SNPs was assembled by selecting SNPs located outside coding regions in the Siberian larch genome and mapped to different contigs. The analysis using four different methods (PCAdapt, LFMM, BayeScEnv and RDA) revealed 550 outlier SNPs, including 207 SNPs whose variation was significantly correlated with the variation of some of environmental factors and presumably associated with local adaptation, including 67 SNPs that correlated with altitude based on either LFMM or BayeScEnv and 23 SNPs based on both of them. Twenty SNPs were found in the coding regions of genes, and 16 of them represented non-synonymous nucleotide substitutions. They are located in genes involved in the processes of macromolecular cell metabolism and organic biosynthesis associated with reproduction and development, as well as organismal response to stress. Among these 20 SNPs, nine were possibly associated with altitude, but only one of them was identified as associated with altitude by all four methods used in the study, a nonsynonymous SNP in scaffold_31130 in position 28092, a gene encoding a cell membrane protein with uncertain function. Among the studied populations, at least two main groups (clusters), the Altai populations and all others, were significantly genetically different according to the admixture analysis based on any of the three SNP datasets as follows: 761 supposedly selectively neutral SNPs, all 25,143 SNPs and 550 adaptive SNPs. In general, according to the AMOVA results, genetic differentiation between transects or regions or between population samples was relatively low, although statistically significant, based on 761 neutral SNPs (FST = 0.036) and all 25,143 SNPs (FST = 0.017). Meanwhile, the differentiation based on 550 adaptive SNPs was much higher (FST = 0.218). The data showed a relatively weak but highly significant linear correlation between genetic and geographic distances (r = 0.206, p = 0.001).
Collapse
Affiliation(s)
- Serafima V. Novikova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Vadim V. Sharov
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Department of High-Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, 660074 Krasnoyarsk, Russia
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3498838, Israel
| | - Natalia V. Oreshkova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Evgeniy P. Simonov
- Laboratory of Evolutionary Trophology, A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Konstantin V. Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
- Correspondence: ; Tel.: +49-551-339-3537
| |
Collapse
|
13
|
Luo W, Tan J, Li T, Feng Z, Ding Z, Xie X, Chen Y, Chen L, Liu YG, Zhu Q, Guo J. Overexpression of maize GOLDEN2 in rice and maize calli improves regeneration by activating chloroplast development. SCIENCE CHINA. LIFE SCIENCES 2023; 66:340-349. [PMID: 35982378 DOI: 10.1007/s11427-022-2149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022]
Abstract
Golden2 (G2), a member of the GARP transcription factor superfamily, regulates several biological processes and phytohormone signaling pathways in plants. In this study, we used a rice codon-optimized maize G2 gene (rZmG2) to improve the regeneration efficiency of rice and maize calli for genetic transformation. We isolated a promoter driving strong and callus-specific expression from rice to drive rZmG2 transcription from a transgene after transformation of two indica and two japonica rice cultivars. The resulting rZmG2 transgenic calli turned green in advance at the differentiation stage, thus significantly raising the regeneration rates of the transgenic indica and japonica rice plants relative to control transformations. Similar effect of this gene on improving maize transformation was also observed. Transcriptome sequencing and RT-qPCR analyses showed that many rice genes related to chloroplast development and phytohormones are upregulated in rZmG2-transgenic calli. These results demonstrate that rZmG2 can promote embryogenic callus differentiation and improve regeneration efficiency by activating chloroplast development and phytohormone pathways. We also established a heat-inducible Cre/loxP-based gene-excision system to remove rZmG2 and the antibiotic selectable gene after obtaining the transgenic plants. This study provides a useful tool for functional genomics work and biotechnology in plants.
Collapse
Affiliation(s)
- Wanni Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China
| | - Tie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China
| | - Ziting Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China
| | - Zhi Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuanling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Jinxing Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
14
|
A YSK-Type Dehydrin from Nicotiana tabacum Enhanced Copper Tolerance in Escherichia coli. Int J Mol Sci 2022; 23:ijms232315162. [PMID: 36499485 PMCID: PMC9737620 DOI: 10.3390/ijms232315162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Copper is an essential micronutrient for the maintenance of normal cell function but is toxic in excess. Dehydrins are group two late embryogenesis abundant proteins, which facilitate plant survival in harsh environmental conditions. Here, a YSK-type dehydrin, NtDhn17, was cloned from Nicotiana tabacum under copper toxicity and characterized using a heterologous expression system and in vitro or in vivo experiments and exhibited characteristics of intrinsic disorder during in vitro analyses. Heterologous expression of NtDHN17 enhanced the tolerance of E. coli to various metals, osmotic, and oxidative stress. NtDHN17 showed no Cu2+-binding properties in vivo or in vitro, indicating that metal ion binding is not universal among dehydrins. In vitro and in vivo experiments suggested that NtDHN17 behaved as a potent anti-aggregation agent providing strong protection to aggregated proteins induced by excess copper ions, an effect dependent on the K-segment but not on the Y- or S-segments. In summary, the protective role of NtDHN17 towards E. coli under conditions of copper toxicity may be related to anti-aggregation ability rather than its acting as an ion scavenger, which might be a valuable target for the genetic improvement of resistance to heavy metal stresses in plants.
Collapse
|
15
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
16
|
Soualiou S, Duan F, Li X, Zhou W. CROP PRODUCTION UNDER COLD STRESS: An understanding of plant responses, acclimation processes, and management strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:47-61. [PMID: 36099808 DOI: 10.1016/j.plaphy.2022.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate change, the magnitude and frequency of temperature extremes (low and high temperatures) are increasing worldwide. Changes to the lower extremes of temperature, known as cold stress (CS), are one of the recurrent stressors in many parts of the world, severely limiting agricultural production. A series of plant reactions to CS could be generalized into morphological, physiological, and biochemical responses based on commonalities among crop plants. However, the differing originality of crops revealed varying degrees of sensitivity to cold and, therefore, exhibited large differences in these responses among the crops. This review discusses the vegetative and reproductive growth effects of CS and highlights the species-specific aspect of each growth stage whereby the reproductive growth CS appears more detrimental in rice and wheat, with marginal yield losses. To mitigate CS negative effects, crop plants have evolved cold-acclimation mechanisms (with differing capability), characterized by specific protein accumulation, membrane modification, regulation of signaling pathways, osmotic regulation, and induction of endogenous hormones. In addition, we reviewed a comprehensive account of management strategies for regulating tolerance mechanisms of crop plants under CS.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
17
|
Xin H, Wang Y, Li Q, Wan T, Hou Y, Liu Y, Gichuki DK, Zhou H, Zhu Z, Xu C, Zhou Y, Liu Z, Li R, Liu B, Lu L, Jiang H, Zhang J, Wan J, Aryal R, Hu G, Chen Z, Gituru RW, Liang Z, Wen J, Wang Q. A genome for Cissus illustrates features underlying its evolutionary success in dry savannas. HORTICULTURE RESEARCH 2022; 9:uhac208. [PMID: 36467268 PMCID: PMC9715578 DOI: 10.1093/hr/uhac208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Cissus is the largest genus in Vitaceae and is mainly distributed in the tropics and subtropics. Crassulacean acid metabolism (CAM), a photosynthetic adaptation to the occurrence of succulent leaves or stems, indicates that convergent evolution occurred in response to drought stress during species radiation. Here we provide the chromosomal level assembly of Cissus rotundifolia (an endemic species in Eastern Africa) and a genome-wide comparison with grape to understand genome divergence within an ancient eudicot family. Extensive transcriptome data were produced to illustrate the genetics underpinning C. rotundifolia's ecological adaption to seasonal aridity. The modern karyotype and smaller genome of C. rotundifolia (n = 12, 350.69 Mb/1C), which lack further whole-genome duplication, were mainly derived from gross chromosomal rearrangements such as fusions and segmental duplications, and were sculpted by a very recent burst of retrotransposon activity. Bias in local gene amplification contributed to its remarkable functional divergence from grape, and the specific proliferated genes associated with abiotic and biotic responses (e.g. HSP-20, NBS-LRR) enabled C. rotundifolia to survive in a hostile environment. Reorganization of existing enzymes of CAM characterized as diurnal expression patterns of relevant genes further confer the ability to thrive in dry savannas.
Collapse
Affiliation(s)
| | | | | | | | - Yujun Hou
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanshuang Liu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duncan Kiragu Gichuki
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Zhou
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfei Zhu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Xu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yadong Zhou
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhiming Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - Rongjun Li
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bing Liu
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Limin Lu
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Hongsheng Jiang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junnan Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Guangwan Hu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhiduan Chen
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Robert Wahiti Gituru
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, 62000-00200, Nairobi, Kenya
| | | | - Jun Wen
- Corresponding authors. E-mail: ; ;
| | | |
Collapse
|
18
|
Singh CM, Kumar M, Pratap A, Tripathi A, Singh S, Mishra A, Kumar H, Nair RM, Singh NP. Genome-Wide Analysis of Late Embryogenesis Abundant Protein Gene Family in Vigna Species and Expression of VrLEA Encoding Genes in Vigna glabrescens Reveal Its Role in Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:843107. [PMID: 35392521 PMCID: PMC8981728 DOI: 10.3389/fpls.2022.843107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/02/2022] [Indexed: 06/12/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are identified in many crops for their response and role in adaptation to various abiotic stresses, such as drought, salinity, and temperature. The LEA genes have been studied systematically in several crops but not in Vigna crops. In this study, we reported the first comprehensive analysis of the LEA gene family in three legume species, namely, mung bean (Vigna radiata), adzuki bean (Vigna angularis), and cowpea (Vigna unguiculata), and the cross-species expression of VrLEA genes in a wild tetraploid species, Vigna glabrescens. A total of 201 LEA genes from three Vigna crops were identified harboring the LEA conserved motif. Among these 55, 64, and 82 LEA genes were identified in mung bean, adzuki bean, and cowpea genomes, respectively. These LEA genes were grouped into eight different classes. Our analysis revealed that the cowpea genome comprised all eight classes of LEA genes, whereas the LEA-6 class was absent in the mung bean genome. Similarly, LEA-5 and LEA-6 were absent in the adzuki bean genome. The analysis of LEA genes provides an insight into their structural and functional diversity in the Vigna genome. The genes, such as VrLEA-2, VrLEA-40, VrLEA-47, and VrLEA-55, were significantly upregulated in the heat-tolerant genotype under stress conditions indicating the basis of heat tolerance. The successful amplification and expression of VrLEA genes in V. glabrescens indicated the utility of the developed markers in mung bean improvement. The results of this study increase our understanding of LEA genes and provide robust candidate genes for future functional investigations and a basis for improving heat stress tolerance in Vigna crops.
Collapse
Affiliation(s)
- Chandra Mohan Singh
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | - Mukul Kumar
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | - Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Anupam Tripathi
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | - Smita Singh
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | - Anuj Mishra
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | - Hitesh Kumar
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | | | - Narendra Pratap Singh
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| |
Collapse
|
19
|
Samtani H, Sharma A, Khurana P. Overexpression of HVA1 Enhances Drought and Heat Stress Tolerance in Triticum aestivum Doubled Haploid Plants. Cells 2022; 11:cells11050912. [PMID: 35269534 PMCID: PMC8909738 DOI: 10.3390/cells11050912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Plant responses to multiple environmental stresses include various signaling pathways that allow plant acclimation and survival. Amongst different stresses, drought and heat stress severely affect growth and productivity of wheat. HVA1, a member of the group 3 LEA protein, has been well known to provide protection against drought stress. However, its mechanism of action and its role in other stresses such as heat remain unexplored. In this study, doubled haploid (DH) wheat plants overexpressing the HVA1 gene were analyzed and found to be both drought-and heat stress-tolerant. The transcriptome analysis revealed the upregulation of transcription factors such as DREB and HsfA6 under drought and heat stress, respectively, which contribute toward the tolerance mechanism. Particularly under heat stress conditions, the transgenic plants had a lower oxidative load and showed enhanced yield. The overexpression lines were found to be ABA-sensitive, therefore suggesting the role of HsfA6 in providing heat tolerance via the ABA-mediated pathway. Thus, apart from its known involvement in drought stress, this study highlights the potential role of HVA1 in the heat stress signaling pathway. This can further facilitate the engineering of multiple stress tolerance in crop plants, such as wheat.
Collapse
|
20
|
Hibshman JD, Goldstein B. LEA motifs promote desiccation tolerance in vivo. BMC Biol 2021; 19:263. [PMID: 34903234 PMCID: PMC8670023 DOI: 10.1186/s12915-021-01176-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cells and organisms typically cannot survive in the absence of water. However, some animals including nematodes, tardigrades, rotifers, and some arthropods are able to survive near-complete desiccation. One class of proteins known to play a role in desiccation tolerance is the late embryogenesis abundant (LEA) proteins. These largely disordered proteins protect plants and animals from desiccation. A multitude of studies have characterized stress-protective capabilities of LEA proteins in vitro and in heterologous systems. However, the extent to which LEA proteins exhibit such functions in vivo, in their native contexts in animals, is unclear. Furthermore, little is known about the distribution of LEA proteins in multicellular organisms or tissue-specific requirements in conferring stress protection. Here, we used the nematode C. elegans as a model to study the endogenous function of an LEA protein in an animal. RESULTS We created a null mutant of C. elegans LEA-1, as well as endogenous fluorescent reporters of the protein. LEA-1 mutant animals formed defective dauer larvae at high temperature. We confirmed that C. elegans lacking LEA-1 are sensitive to desiccation. LEA-1 mutants were also sensitive to heat and osmotic stress and were prone to protein aggregation. During desiccation, LEA-1 expression increased and became more widespread throughout the body. LEA-1 was required at high levels in body wall muscle for animals to survive desiccation and osmotic stress, but expression in body wall muscle alone was not sufficient for stress resistance, indicating a likely requirement in multiple tissues. We identified minimal motifs within C. elegans LEA-1 that were sufficient to increase desiccation survival of E. coli. To test whether such motifs are central to LEA-1's in vivo functions, we then replaced the sequence of lea-1 with these minimal motifs and found that C. elegans dauer larvae formed normally and survived osmotic stress and mild desiccation at the same levels as worms with the full-length protein. CONCLUSIONS Our results provide insights into the endogenous functions and expression dynamics of an LEA protein in a multicellular animal. The results show that LEA-1 buffers animals from a broad range of stresses. Our identification of LEA motifs that can function in both bacteria and in a multicellular organism in vivo suggests the possibility of engineering LEA-1-derived peptides for optimized desiccation protection.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA.
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Chen J, Li N, Wang X, Meng X, Cui X, Chen Z, Ren H, Ma J, Liu H. Late embryogenesis abundant (LEA) gene family in Salvia miltiorrhiza: identification, expression analysis, and response to drought stress. PLANT SIGNALING & BEHAVIOR 2021; 16:1891769. [PMID: 33818288 PMCID: PMC8078505 DOI: 10.1080/15592324.2021.1891769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 05/19/2023]
Abstract
Late embryogenesis abundant (LEA) proteins play important roles in plant defense response to drought stress. However, genome-wide identification of the LEA gene family was not revealed in Salvia miltiorrhiza. In this study, 61 SmLEA genes were identified from S. miltiorrhiza and divided into 7 subfamilies according to their conserved domains and phylogenetic relationships. SmLEA genes contained the LEA conserved motifs and few introns. SmLEA genes of the same subfamilies had similar gene structures and predicted subcellular locations. Our results indicated that the promoters of SmLEA genes contained various cis-acting elements associated with abiotic stress response. In addition, RNA-seq and real-time PCR results suggested that SmLEA genes are specifically expressed in different tissue, and most SmLEA genes can be induced by drought stress. These results provide a valuable foundation for future functional investigations of SmLEA genes and drought stress-resistant breeding of S. miltiorrhiza.
Collapse
Affiliation(s)
- Juan Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an Shaanxi, China
| | - Na Li
- College of Agriculture, Henan University of Science and Technology, Luoyang Henan, China
| | - Xiaoyu Wang
- College of Life Science, Northwest A&F University, Yangling Shaanxi, China
| | - Xue Meng
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an Shaanxi, China
| | - Xiaomin Cui
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an Shaanxi, China
| | - Zhiyong Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an Shaanxi, China
| | - Hui Ren
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an Shaanxi, China
| | - Jing Ma
- Inspection and Testing Center for Quality and Safety of Agricultural Products, Ningxia Institute of Agricultural Survey and Design, Yinchuan Ningxia, China
| | - Hao Liu
- College of Life Science, Northwest A&F University, Yangling Shaanxi, China
- College of Agriculture, Ludong University, Yantai Shandong, China
- CONTACT Hao Liu College of Life Science, Northwest A&F University, Yangling Shaanxi 712100, China; College of Agriculture, Ludong University, Yantai Shandong264001, China
| |
Collapse
|
22
|
Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance. Int J Mol Sci 2021; 22:ijms22094554. [PMID: 33925342 PMCID: PMC8123667 DOI: 10.3390/ijms22094554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022] Open
Abstract
Canavalia rosea (bay bean), distributing in coastal areas or islands in tropical and subtropical regions, is an extremophile halophyte with good adaptability to seawater and drought. Late embryogenesis abundant (LEA) proteins typically accumulate in response to various abiotic stresses, including dehydration, salinity, high temperature, and cold, or during the late stage of seed development. Abscisic acid-, stress-, and ripening-induced (ASR) genes are stress and developmentally regulated plant-specific genes. In this study, we reported the first comprehensive survey of the LEA and ASR gene superfamily in C. rosea. A total of 84 CrLEAs and three CrASRs were identified in C. rosea and classified into nine groups. All CrLEAs and CrASRs harbored the conserved motif for their family proteins. Our results revealed that the CrLEA genes were widely distributed in different chromosomes, and all of the CrLEA/CrASR genes showed wide expression features in different tissues in C. rosea plants. Additionally, we introduced 10 genes from different groups into yeast to assess the functions of the CrLEAs/CrASRs. These results contribute to our understanding of LEA/ASR genes from halophytes and provide robust candidate genes for functional investigations in plant species adapted to extreme environments.
Collapse
|
23
|
He C, Liu X, Teixeira da Silva JA, Wang H, Peng T, Zhang M, Si C, Yu Z, Tan J, Zhang J, Luo J, Duan J. Characterization of LEA genes in Dendrobium officinale and one Gene in induction of callus. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153356. [PMID: 33423816 DOI: 10.1016/j.jplph.2020.153356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are widely involved in plant stress responsive, while their involvement in callus formation is largest unknown. In this study, we identified and conducted expression analysis of the LEA genes from Phalaenopsis equestris and Dendrobium officinale, and characterized a LEA gene from D. officinale. A total 57 and 59 LEA genes were identified in P. equestris and D. officinale, respectively. A phylogenetic analysis showed that AtM, LEA_5 and Dehydrin groups were absent in both orchids. LEA_1 group genes were strongly expressed in seeds, significantly down-regulated in flowers, and absent in vegetative organs (leaves, stems and roots) in both orchids. Moreover, LEA_1 and LEA_4 group genes from D. officinale were abundant in the protocorm-like body stage and were dramatically up-regulated in response to abscisic acid and salinity stress. A LEA_1 gene (DoLEA43) was selected for further functional analysis. DoLEA43 protein was localized in the cytoplasm and nucleus, and its promoter contained a WUN-motif that was modulated by wounding. Overexpression of DoLEA43 in Arabidopsis enhanced callus induction, causing changes to callus formation-related genes such as WIND1. Our results indicate the involvement of LEA genes in the induction of callus, which provide insights into plant regeneration.
Collapse
Affiliation(s)
- Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jaime A Teixeira da Silva
- Independent researcher, P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan
| | - Haobin Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Peng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jianwen Tan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxia Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianping Luo
- School of Food Engineering and Biotechnology, Hefei University of Technology, Hefei, 230009, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
24
|
Gulzar B, Mujib A, Rajam MV, Zafar N, Mamgain J, Malik M, Syeed R, Ejaz B. Shotgun label-free proteomic and biochemical study of somatic embryos (cotyledonary and maturation stage) in Catharanthus roseus (L.) G. Don. 3 Biotech 2021; 11:86. [PMID: 33505840 PMCID: PMC7817727 DOI: 10.1007/s13205-021-02649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
Somatic embryogenesis is an important and wonderful biotechnological tool used to develop whole plant from a single or a group of somatic cells. The differentiated somatic cells become totipotent stem cells by drastic reprogramming of a wide range of cellular activities, leading to the acquisition of embryogenic competence. After acquiring competence, the cells pass through globular, heart, torpedo and cotyledonary stages of embryo; however, all advanced embryos do not convert into full plant, produce adventive embryos or callus instead, thus reverses the programming. This is a big limitation in propagation of many plants. Understanding and unraveling the proteins at this 'embryo to plantlet' transition stage will help to get more numbers of plants. Thus, our study was aimed at an identification of differentially abundant proteins between two important advanced stages, i.e. cotyledonary-(T1) and maturation stage (T2) of somatic embryos in Catharanthus roseus. A total of 2949 and 3030 proteins were identified in cotyledonary and maturation stage, respectively. Of these, 1129 proteins were common to both. Several proteins were found to be differentially accumulated in two different embryo stages in which over 60 proteins were most accumulated during somatic embryo maturation time. More chlorophyll accumulation was noted at this time under the influence of gibberellic acid (GA3). Proteins like Mg-protoporphyrin IX chelatase, chlorophyll a-b-binding protein, photosystem I iron-sulfur center, photosystem II Psb, photosystem II subunit P-1, P-II domain-containing protein, RuBisCO large chain, RuBisCO small chain, RuBisCO activase, RuBisCO large subunit-binding proteins were synthesized. Some of the identified proteins are linked to chlorophyll synthesis, carbohydrate metabolism and stress. The identified proteins are categorized into different groups on the basis of their cellular location, role and other metabolic processes. Biochemical attributes like protein, sugar, proline, antioxidant enzyme (APX, SOD and CAT) activities were high in T2 as compared to T1. The proteins like peroxidases, pathogenesis-related proteins, the late-embryogenesis abundant proteins, argonaute, germin and others have been discussed in C. roseus somatic embryo maturation process.
Collapse
Affiliation(s)
- Basit Gulzar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Abdul Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Nadia Zafar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moien Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Bushra Ejaz
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
25
|
Lv K, Wei H, Liu G. A R2R3-MYB Transcription Factor Gene, BpMYB123, Regulates BpLEA14 to Improve Drought Tolerance in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2021; 12:791390. [PMID: 34956289 PMCID: PMC8702527 DOI: 10.3389/fpls.2021.791390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 05/07/2023]
Abstract
Drought stress causes various negative impacts on plant growth and crop production. R2R3-MYB transcription factors (TFs) play crucial roles in the response to abiotic stress. However, their functions in Betula platyphylla haven't been fully investigated. In this study, a R2R3 MYB transcription factor gene, BpMYB123, was identified from Betula platyphylla and reveals its significant role in drought stress. Overexpression of BpMYB123 enhances tolerance to drought stress in contrast to repression of BpMYB123 by RNA interference (RNAi) in transgenic experiment. The overexpression lines increased peroxidase (POD) and superoxide dismatase (SOD) activities, while decreased hydrogen peroxide (H2O2), superoxide radicals (O2 -), electrolyte leakage (EL) and malondialdehyde (MDA) contents. Our study showed that overexpression of BpMYB123 increased BpLEA14 gene expression up to 20-fold due to BpMYB123 directly binding to the MYB1AT element of BpLEA14 promoter. These results indicate that BpMYB123 acts as a regulator via regulating BpLEA14 to improve drought tolerance in birch.
Collapse
Affiliation(s)
- Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Guifeng Liu,
| |
Collapse
|
26
|
Zhao P, Xin G, Yan F, Wang H, Ren X, Woeste K, Liu W. The de novo genome assembly of Tapiscia sinensis and the transcriptomic and developmental bases of androdioecy. HORTICULTURE RESEARCH 2020; 7:191. [PMID: 33328438 PMCID: PMC7705024 DOI: 10.1038/s41438-020-00414-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 05/05/2023]
Abstract
Tapiscia sinensis (Tapisciaceae) possesses an unusual androdioecious breeding system that has attracted considerable interest from evolutionary biologists. Key aspects of T. sinensis biology, including its biogeography, genomics, and sex-linked genes, are unknown. Here, we report the first de novo assembly of the genome of T. sinensis. The genome size was 410 Mb, with 22,251 predicted genes. Based on whole-genome resequencing of 55 trees from 10 locations, an analysis of population genetic structure indicated that T. sinensis has fragmented into five lineages, with low intrapopulation genetic diversity and little gene flow among populations. By comparing whole-genome scans of male versus hermaphroditic pools, we identified 303 candidate sex-linked genes, 79 of which (25.9%) were located on scaffold 25. A 24-kb region was absent in hermaphroditic individuals, and five genes in that region, TsF-box4, TsF-box10, TsF-box13, TsSUT1, and TsSUT4, showed expression differences between mature male and hermaphroditic flowers. The results of this study shed light on the breeding system evolution and conservation genetics of the Tapisciaceae.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Guiliang Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Huan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xiaolong Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN, 47907, USA
| | - Wenzhe Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
27
|
Gulzar B, Mujib A, Mushtaq Z, Malik MQ. Old Catharanthus roseus culture (14 years) produced somatic embryos and plants and showed normal genome size; demonstrated an increased antioxidant defense mechanism; and synthesized stress proteins as biochemical, proteomics, and flow-cytometry studies reveal. J Appl Genet 2020; 62:43-57. [PMID: 33145639 DOI: 10.1007/s13353-020-00590-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Various strategies have been developed globally to conserve germplasm by propagating plants. One important technique is in vitro propagation and preservation through tissue culture. In many investigated plants, the long in vitro conservation is plagued with several limitations like genetic variations, developmental errors in cells or tissues due to induced stress. This provoked us to conduct a study of Catharanthus roseus culture maintained for over fourteen long years and a newly established 8-month-old culture. The present study investigated and compared the two tissue types differing by their age. The biomass accumulation, the biochemical differences of the two, dead cell analysis with aging via confocal microscopy, and liquid chromatography-mass spectroscopy (LC-MS)-based proteomic differences were studied in old and newly established Catharanthus culture. The proteomic study reveals more than 120 upregulated or high abundance proteins in old culture as compared to newly established Catharanthus. The identified upregulated proteins are stress protein 69, heat shock proteins (HSP), isocitrate dehydrogenase, pyruvate dehydrogenase, and others. These proteins had an association with antioxidant activities, related to stress, and a few are linked to respiration. Our study reveals the presence of a robust antioxidant defense mechanism, i.e., 51.94%, 78.8%, and 61% higher SOD, APX, and CAT activities in older cultures (O) as compared to newly established tissues (N), which perhaps act against stress and may play a key role in ameliorating negative impacts of long-term in vitro conditions. The inherent strong antioxidant defense system in old cultures added resilience and enabled the culture to revive growth quickly (within 1-2 days) following transfer to new medium as compared to new culture (7-10 days). The biomass accumulation was more (37.08 %) in old tissues as compared to new culture. The 2C DNA or genome size of C. roseus especially the 14-year-old culture-derived regenerated plant was measured by flow cytometry. The 2C DNA size of this Catharanthus (old culture) plant is 1.516 pg, which is very similar to new culture-derived plants' and field-grown plants' genome size. No anomaly in genome size was noted in plants of old culture, as opposed to common perception.
Collapse
Affiliation(s)
- Basit Gulzar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - A Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India.
| | - Zeenat Mushtaq
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Moien Qadir Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
28
|
Ma Q, Sun T, Li S, Wen J, Zhu L, Yin T, Yan K, Xu X, Li S, Mao J, Wang Y, Jin S, Zhao X, Li Q. The Acer truncatum genome provides insights into nervonic acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:662-678. [PMID: 32772482 PMCID: PMC7702125 DOI: 10.1111/tpj.14954] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 05/10/2023]
Abstract
Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). However, the lack of a complete genome sequence has limited both basic and applied research on A. truncatum. We describe a high-quality draft genome assembly comprising 633.28 Mb (contig N50 = 773.17 kb; scaffold N50 = 46.36 Mb) with at least 28 438 predicted genes. The genome underwent an ancient triplication, similar to the core eudicots, but there have been no recent whole-genome duplication events. Acer yangbiense and A. truncatum are estimated to have diverged about 9.4 million years ago. A combined genomic, transcriptomic, metabonomic, and cell ultrastructural analysis provided new insights into the biosynthesis of very long-chain monounsaturated fatty acids. In addition, three KCS genes were found that may contribute to regulating nervonic acid biosynthesis. The KCS paralogous gene family expanded to 28 members, with 10 genes clustered together and distributed in the 0.27-Mb region of pseudochromosome 4. Our chromosome-scale genomic characterization may facilitate the discovery of agronomically important genes and stimulate functional genetic research on A. truncatum. Furthermore, the data presented also offer important foundations from which to study the molecular mechanisms influencing the production of nervonic acids.
Collapse
Affiliation(s)
- Qiuyue Ma
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Tianlin Sun
- Novogene Bioinformatics InstituteBeijing100083China
| | - Shushun Li
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Jing Wen
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Lu Zhu
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Tongming Yin
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjing210037China
| | - Kunyuan Yan
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Xiao Xu
- Novogene Bioinformatics InstituteBeijing100083China
| | - Shuxian Li
- The Southern Modern Forestry Collaborative Innovation CenterNanjing Forestry UniversityNanjing210037China
| | - Jianfeng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijing100083China
| | - Ya‐nan Wang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjing210037China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Xing Zhao
- Novogene Bioinformatics InstituteBeijing100083China
| | - Qianzhong Li
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| |
Collapse
|
29
|
Thakur AK, Parmar N, Singh KH, Nanjundan J. Current achievements and future prospects of genetic engineering in Indian mustard (Brassica juncea L. Czern & Coss.). PLANTA 2020; 252:56. [PMID: 32951089 DOI: 10.1007/s00425-020-03461-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Transgenic technology in Indian mustard has expedited crop improvement programs. Further, there is a need to optimize gene editing protocols and find out the suitable target genes to harvest the benefits of gene editing technology in this important edible oilseed crop. Brassica juncea is an economically and industrially important oilseed crop being grown mainly in India and in some parts of Canada, Russia, China and Australia. Besides being consumed as edible oil, it also has numerous applications in food and paint industry. However, its overall production and productivity are being hampered by a number of biotic and abiotic stress factors. Further, its oil and seedmeal quality needs to be improved for increasing food as well as feed value. However, the lack of resistant crossable germplasm or varieties necessitated the use of genetic engineering interventions in Indian mustard crop improvement. A number of genes conferring resistance to biotic stresses including lectins for aphids' control, chitinase, glucanase and osmotin for disease control and for abiotic stresses, CODA, LEA and ion antiporter genes have been transferred to Indian mustard. Both antisense and RNAi technologies have been employed for improving oil and seedmeal quality. Efforts have been made to improve the phytoremediation potential of this crop through genetic engineering approach. The deployment of barnase/barstar gene system for developing male sterile and restorer lines has really expedited hybrid development programs in Indian mustard. Further, there is a need to optimize gene editing protocols and to find out suitable target genes for gene editing in this crop. In this review paper, authors have attempted to review various genetic transformation efforts carried out in Indian mustard for its improvement to combat biotic and abiotic stress challenges, quality improvement and hybrid development.
Collapse
Affiliation(s)
- Ajay Kumar Thakur
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, 321303, India.
| | - Nehanjali Parmar
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, 321303, India
| | - K H Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, 321303, India
| | - J Nanjundan
- ICAR-Indian Agricultural Research Institute-Regional Station, Wellington, Tamilnadu, 643 231, India
| |
Collapse
|
30
|
Yang J, Kim HE, Jung YH, Kim J, Kim DH, Walmsley AR, Kim KH. Zmo0994, a novel LEA-like protein from Zymomonas mobilis, increases multi-abiotic stress tolerance in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:151. [PMID: 32863881 PMCID: PMC7448490 DOI: 10.1186/s13068-020-01790-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/16/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Pretreatment processes and subsequent enzymatic hydrolysis are prerequisites to utilize lignocellulosic sugar for fermentation. However, the resulting hydrolysate frequently hinders fermentation processes due to the presence of inhibitors and toxic products (e.g., ethanol). Thus, it is crucial to develop robust microbes conferring multi-stress tolerance. RESULTS Zmo0994, a functionally uncharacterized protein from Zymomonas mobilis, was identified and characterized for the first time. A major effect of Zmo0994 was a significant enhancement in the tolerance to abiotic stresses such as ethanol, furfural, 5'-hydroxymethylfurfural and high temperature, when expressed in Escherichia coli. Through transcriptome analysis and in vivo experiments, the cellular mechanism of this protein was revealed as due to its ability to trigger genes, involved in aerobic respiration for ATP synthesis. CONCLUSIONS These findings have significant implications that might lead to the development of robust microbes for the highly efficient industrial fermentation processes.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Ha Eun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566 Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Do Hyoung Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Adrian R. Walmsley
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE UK
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
31
|
Reis RR, Mertz-Henning LM, Marcolino-Gomes J, Rodrigues FA, Rockenbach-Marin S, Fuganti-Pagliarini R, Koltun A, Gonçalves LSA, Nepomuceno AL. Differential gene expression in response to water deficit in leaf and root tissues of soybean genotypes with contrasting tolerance profiles. Genet Mol Biol 2020; 43:e20180290. [PMID: 32478791 PMCID: PMC7263426 DOI: 10.1590/1678-4685-gmb-2018-0290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 09/25/2019] [Indexed: 11/22/2022] Open
Abstract
Water deficit is one of the major limitations to soybean production worldwide, yet the genetic basis of drought-responsive mechanisms in crops remains poorly understood. In order to study the gene expression patterns in leaves and roots of soybean, two contrasting genotypes, Embrapa 48 (drought-tolerant) and BR 16 (drought-sensitive), were evaluated under moderate and severe water deficit. Transcription factors from the AP2/EREBP and WRKY families were investigated. Embrapa 48 showed 770 more up-regulated genes than BR 16, in eight categories. In general, leaves presented more differentially expressed genes (DEGs) than roots. Embrapa 48 responded to water deficit faster than BR 16, presenting a greater number of DEGs since the first signs of drought. Embrapa 48 exhibited initial modulation of genes associated with stress, while maintaining the level of the ones related to basic functions. The genes expressed exclusively in the drought-tolerant cultivar, belonging to the category of dehydration responsive genes, and the ones with a contrasting expression pattern between the genotypes are examples of important candidates to confer tolerance to plants. Finally, this study identified genes of the AP2/EREBP and WRKY families related to drought tolerance.
Collapse
Affiliation(s)
- Rafaela Ribeiro Reis
- Universidade Estadual de Londrina, Departamento de Biologia e
Departamento de Agronomia, Londrina, PR, Brazil
| | | | - Juliana Marcolino-Gomes
- Embrapa Soybean, Empresa Brasileira de Pesquisa Agropecuária,
Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico -
CNPq, Brasília, DF, Brazil
| | | | - Silvana Rockenbach-Marin
- Universidade Estadual de Londrina, Departamento de Biologia e
Departamento de Agronomia, Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico -
CNPq, Brasília, DF, Brazil
| | - Renata Fuganti-Pagliarini
- Embrapa Soybean, Empresa Brasileira de Pesquisa Agropecuária,
Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico -
CNPq, Brasília, DF, Brazil
| | | | | | | |
Collapse
|
32
|
Knox-Brown P, Rindfleisch T, Günther A, Balow K, Bremer A, Walther D, Miettinen MS, Hincha DK, Thalhammer A. Similar Yet Different-Structural and Functional Diversity among Arabidopsis thaliana LEA_4 Proteins. Int J Mol Sci 2020; 21:E2794. [PMID: 32316452 PMCID: PMC7215670 DOI: 10.3390/ijms21082794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022] Open
Abstract
The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics.
Collapse
Affiliation(s)
- Patrick Knox-Brown
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, D-14476 Potsdam, Germany; (P.K.-B.); (T.R.)
| | - Tobias Rindfleisch
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, D-14476 Potsdam, Germany; (P.K.-B.); (T.R.)
| | - Anne Günther
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Kim Balow
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Anne Bremer
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
- Department for Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Dirk Walther
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Markus S. Miettinen
- Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany;
| | - Dirk K. Hincha
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, D-14476 Potsdam, Germany; (P.K.-B.); (T.R.)
| |
Collapse
|
33
|
Kumaravel M, Uma S, Backiyarani S, Saraswathi MS. Proteomic analysis of somatic embryo development in Musa spp. cv. Grand Naine (AAA). Sci Rep 2020; 10:4501. [PMID: 32161309 PMCID: PMC7066174 DOI: 10.1038/s41598-020-61005-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Somatic embryos are comparable to their zygotic counterparts for morphological traits but are derived from somatic cells through various metabolic regulations, collectively referred as somatic embryogenesis (SE). It has been well exploited for germplasm conservation, genetic engineering, mutation breeding, for artificial seed technology and as a tool for mass multiplication. Though somatic embryo development is an important area of interest in growth, and developmental studies, the underlying molecular mechanism remains unclear. Therefore, understanding the molecular basis behind somatic embryo development can provide insight into the signaling pathways integrating this process. Proteomic analysis of somatic embryo development in cv. Grand Naine (AAA) was carried out to identify the differentially expressed protein during somatic embryo development stages, using two dimensional gel electrophoresis together with mass spectrometry. In total, 25 protein spots were differentially expressed during sequential developmental stages of somatic embryos. Among these, three proteins were uniquely present in 30 days globular stage and six proteins in 60 days old mature somatic embryo. Functional annotation of identified spots showed that major proteins are involved in growth and developmental process (17%) followed by defense response (12%) and signal transportation events (12%). In the early stage, cell division and growth related proteins are involved in the induction of somatic embryos whereas in the late developmental stage, cell wall associated proteins along with stress related proteins played a defensive role against dehydration and osmotic stress and resulted in the maturation of somatic embryo. The identified stage specific proteins are valuable indicators and genetic markers for screening and for media manipulation to improve SE efficiency in recalcitrant crops and varieties.
Collapse
Affiliation(s)
- Marimuthu Kumaravel
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Subbaraya Uma
- Director, ICAR-National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India.
| | - Suthanthiram Backiyarani
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Marimuthu Somasundaram Saraswathi
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| |
Collapse
|
34
|
Abscisic Acid, Stress, and Ripening ( TtASR1) Gene as a Functional Marker for Salt Tolerance in Durum Wheat. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7876357. [PMID: 32076614 PMCID: PMC7013306 DOI: 10.1155/2020/7876357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
Abstract
In semiarid Mediterranean agroecosystems, drought and salinity are the main abiotic stresses hampering wheat productivity and yield instability. Abscisic acid, stress, and ripening (ASR) are small plant proteins and play important roles in different biological processes. In the present study, the TtASR1 gene was isolated and characterized for the first time from durum wheat (Tritucum turgidum L. subsp. durum). TtASR1 is a small gene, about 684 bp long, located on chromosome 4AL, encoding a protein of 136 amino acid residues consisting of a histidine-rich N terminus and C-terminal conserved ABA-WDS domain (Pfam PF02496). Our results showed that TtASR1 protein could function as a chaperone-like protein and improve the viability of E. coli under heat and cold stress and increase the Saccharomyces cerevisiae tolerance under salt and osmotic stress. Transcript expression patterns of TtASR1 revealed that ASRs play important roles in abiotic stress responses in diverse organs. Indeed, TtASR1 was upregulated in leaves by different developmental (ABA) and environmental signals (PEG, salt). In cv. Mahmoudi (salt-tolerant Tunisian durum landraces) roots, TtASR1 was upregulated by salt stress, while it was downregulated in cv. Azizi (salt-sensitive Tunisian durum landraces), supporting the implication of this gene in the salt tolerance mechanism. Taken together and after validation in the plant system, the TtASR1 gene may provide a potential functional marker for marker-assisted selection in a durum wheat breeding program for salt tolerance.
Collapse
|
35
|
Proteomic Responses to Drought Vary Widely Among Eight Diverse Genotypes of Rice ( Oryza sativa). Int J Mol Sci 2020; 21:ijms21010363. [PMID: 31935846 PMCID: PMC6982093 DOI: 10.3390/ijms21010363] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/01/2023] Open
Abstract
Rice is a critically important food source but yields worldwide are vulnerable to periods of drought. We exposed eight genotypes of upland and lowland rice (Oryza sativa L. ssp. japonica and indica) to drought stress at the late vegetative stage, and harvested leaves for label-free shotgun proteomics. Gene ontology analysis was used to identify common drought-responsive proteins in vegetative tissues, and leaf proteins that are unique to individual genotypes, suggesting diversity in the metabolic responses to drought. Eight proteins were found to be induced in response to drought stress in all eight genotypes. A total of 213 proteins were identified in a single genotype, 83 of which were increased in abundance in response to drought stress. In total, 10 of these 83 proteins were of a largely uncharacterized function, making them candidates for functional analysis and potential biomarkers for drought tolerance.
Collapse
|
36
|
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evol Appl 2020; 13:210-227. [PMID: 31892953 PMCID: PMC6935586 DOI: 10.1111/eva.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water-conducting systems, secondary metabolism, stress defense mechanisms, and small RNA-mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole-genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications.
Collapse
Affiliation(s)
| | - Anthony Piot
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| | - Bobin Liu
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
- College of ForestryFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | | | - Matthew Weiss
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
| | - Ilga Porth
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| |
Collapse
|
37
|
Cocozza C, Brilli F, Miozzi L, Pignattelli S, Rotunno S, Brunetti C, Giordano C, Pollastri S, Centritto M, Accotto GP, Tognetti R, Loreto F. Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110260. [PMID: 31623790 DOI: 10.1016/j.plantsci.2019.110260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The potential of Arundo donax to grow in degraded soils, characterized by excess of salinity (Na+), and phosphorus deficiency (-P) or excess (+P) also coupled with salinity (+NaP), was investigated by combining in vivo plant phenotyping, quantification of metabolites and ultrastructural imaging of leaves with a transcriptome-wide screening. Photosynthesis and growth were impaired by + Na, -P and + NaP. While + Na caused stomatal closure, enhanced biosynthesis of carotenoids, sucrose and isoprene and impaired anatomy of cell walls, +P negatively affected starch production and isoprene emission, and damaged chloroplasts. Finally, +NaP largely inhibited photosynthesis due to stomatal limitations, increased sugar content, induced/repressed a number of genes 10 time higher with respect to + P and + Na, and caused appearance of numerous and large plastoglobules and starch granules in chloroplasts. Our results show that A. donax is sensitive to unbalances of soil ion content, despite activation of defensive mechanisms that enhance plant resilience, growth and biomass production of A. donax under these conditions.
Collapse
Affiliation(s)
- Claudia Cocozza
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; Department of Agriculture, Food, Environment and Forestry, Via San Bonaventura 13, 50145 Florence, Italy.
| | - Federico Brilli
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Laura Miozzi
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Strada delle Cacce 73, 10135 Torino, Italy
| | - Sara Pignattelli
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Silvia Rotunno
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Strada delle Cacce 73, 10135 Torino, Italy; Department of Biosciences and Territory, University of Molise, contrada Fonte Lappone, 86090 Pesche, Italy
| | - Cecilia Brunetti
- National Research Council of Italy, Institute for BioEconomy (IBE), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Cristiana Giordano
- National Research Council of Italy, Institute for BioEconomy (IBE), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Susanna Pollastri
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Gian Paolo Accotto
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Strada delle Cacce 73, 10135 Torino, Italy
| | - Roberto Tognetti
- Department of Agriculture, Environment and Food Sciences, University of Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy; The EFI Project Centre on Mountain Forests (MOUNTFOR), Edmund Mach Foundation, 38010 San Michele all'Adige, Italy
| | - Francesco Loreto
- National Research Council of Italy, Department of Biology, Agriculture, and Food Sciences, Piazzale Aldo Moro 7, Roma, Italy; Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| |
Collapse
|
38
|
Yang X, Kirungu JN, Magwanga RO, Xu Y, Pu L, Zhou Z, Hou Y, Cai X, Wang K, Liu F. Knockdown of GhIQD31 and GhIQD32 increases drought and salt stress sensitivity in Gossypium hirsutum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:166-177. [PMID: 31568959 DOI: 10.1016/j.plaphy.2019.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Drought, salinity and cold stresses have a major impact on cotton production, thus identification and utilization of plant genes vital for plant improvement Whole-genome identification and functional characterizations of the IQ67-domain (IQD) protein family was carried out in which 148, 77, and 79 IQD genes were identified in Gossypium hirsutum, G. raimondii, and G. arboreum. The entire IQD proteins had varied physiochemical properties, however; their grand hydropathy values were negative, which demonstrated that the proteins were hydrophilic, a property common among the proteins encoded by various stresses responsive genes, such as the late embryogenesis abundant (LEA) proteins. The IQD proteins were predicted to be majorly sublocalized in the nucleus; moreover, various cis-regulatory elements with higher role in enhancing abiotic stress tolerance were detected. RNA-seq and RT-qPCR analysis revealed two key genes, Gh_D06G0014 and Gh_A09G1608 with significantly higher upregulation across the various tissues under drought, salt and cold stress. Knockdown of the two genes negatively affected the ability of G. hirsutum to tolerate the effects of the three stress factors, being all the antioxidant assayed were significantly low concentrations compared to the oxidizing enzymes in VIGS plants under stress, furthermore, morphological and physiological traits were all negatively affected in VIGS plants. Expression levels of GhLEA2, GhCDK_F4, GPCR (TOM1) and Gh_A05G2067 (TH), the stress responsive genes were all downregulated in the VIGS plants, but significantly upregulated in WT and positively controlled plants. The results demonstrated that the IQD genes could be responsible for enhancing drought, salt and cold stress tolerance in cotton.
Collapse
Affiliation(s)
- Xiu Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China; Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China; School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), P.O Box 210-40601, Bondo, Kenya
| | - Yuanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Lu Pu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China; Tarim University, Alar, Xinjiang, 843300, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
39
|
Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, Varshney RK. Peg Biology: Deciphering the Molecular Regulations Involved During Peanut Peg Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1289. [PMID: 31681383 PMCID: PMC6813228 DOI: 10.3389/fpls.2019.01289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/17/2019] [Indexed: 05/07/2023]
Abstract
Peanut or groundnut is one of the most important legume crops with high protein and oil content. The high nutritional qualities of peanut and its multiple usage have made it an indispensable component of our daily life, in both confectionary and therapeutic food industries. Given the socio-economic significance of peanut, understanding its developmental biology is important in providing a molecular framework to support breeding activities. In peanut, the formation and directional growth of a specialized reproductive organ called a peg, or gynophore, is especially relevant in genetic improvement. Several studies have indicated that peanut yield can be improved by improving reproductive traits including peg development. Therefore, we aim to identify unifying principles for the genetic control, underpinning molecular and physiological basis of peg development for devising appropriate strategy for peg improvement. This review discusses the current understanding of the molecular aspects of peanut peg development citing several studies explaining the key mechanisms. Deciphering and integrating recent transcriptomic, proteomic, and miRNA-regulomic studies provide a new perspective for understanding the regulatory events of peg development that participate in pod formation and thus control yield.
Collapse
Affiliation(s)
- Rakesh Kumar
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
40
|
Zheng J, Su H, Lin R, Zhang H, Xia K, Jian S, Zhang M. Isolation and characterization of an atypical LEA gene (IpLEA) from Ipomoea pes-caprae conferring salt/drought and oxidative stress tolerance. Sci Rep 2019; 9:14838. [PMID: 31619699 PMCID: PMC6796003 DOI: 10.1038/s41598-019-50813-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/18/2019] [Indexed: 12/23/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins belong to a large family that exists widely in plants and is mainly involved in desiccation processes during plant development or in the response to abiotic stresses. Here, we reported on an atypical LEA gene (IpLEA) related to salt tolerance from Ipomoea pes-caprae L. (Convolvulaceae). Sequence analysis revealed that IpLEA belongs to the LEA_2 (PF03168) group. IpLEA was shown to have a cytoplasmic localization pattern. Quantitative reverse transcription PCR analysis showed that IpLEA was widely expressed in different organs of the I. pes-caprae plants, and the expression levels increased following salt, osmotic, oxidative, freezing, and abscisic acid treatments. Analysis of the 1,495 bp promoter of IpLEA identified distinct cis-acting regulatory elements involved in abiotic stress. Induction of IpLEA improved Escherichia coli growth performance compared with the control under abiotic stresses. To further assess the function of IpLEA in plants, transgenic Arabidopsis plants overexpressing IpLEA were generated. The IpLEA-overexpressing Arabidopsis seedlings and adult plants showed higher tolerance to salt and drought stress than the wild-type. The transgenic plants also showed higher oxidative stress tolerance than the wild-type Arabidopsis. Furthermore, the expression patterns of a series of stress-responsive genes were affected. The results indicate that IpLEA is involved in the plant response to salt and drought, probably by mediating water homeostasis or by acting as a reactive oxygen species scavenger, thereby influencing physiological processes under various abiotic stresses in microorganisms and plants.
Collapse
Affiliation(s)
- Jiexuan Zheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Huaxiang Su
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Ruoyi Lin
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Hui Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China
| | - Shuguang Jian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China
| | - Mei Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China. .,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.
| |
Collapse
|
41
|
Artur MAS, Rienstra J, Dennis TJ, Farrant JM, Ligterink W, Hilhorst H. Structural Plasticity of Intrinsically Disordered LEA Proteins from Xerophyta schlechteri Provides Protection In Vitro and In Vivo. FRONTIERS IN PLANT SCIENCE 2019; 10:1272. [PMID: 31681372 PMCID: PMC6798065 DOI: 10.3389/fpls.2019.01272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/11/2019] [Indexed: 05/27/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are essential to the ability of resurrection plants and orthodox seeds to protect the subcellular milieu against irreversible damage associated with desiccation. In this work, we investigated the structure and function of six LEA proteins expressed during desiccation in the monocot resurrection species Xerophyta schlechteri (XsLEAs). In silico analyses suggested that XsLEAs are hydrophilic proteins with variable intrinsically disordered protein (IDP) properties. Circular dichroism (CD) analysis indicated that these proteins are mostly unstructured in water but acquire secondary structure in hydrophobic solution, suggesting that structural dynamics may play a role in their function in the subcellular environment. The protective property of XsLEAs was demonstrated by their ability to preserve the activity of the enzyme lactate dehydrogenase (LDH) against desiccation, heat and oxidative stress, as well as growth of Escherichia coli upon exposure to osmotic and salt stress. Subcellular localization analysis indicated that XsLEA recombinant proteins are differentially distributed in the cytoplasm, membranes and nucleus of Nicotiana benthamiana leaves. Interestingly, a LEA_1 family protein (XsLEA1-8), showing the highest disorder-to-order propensity and protective ability in vitro and in vivo, was also able to enhance salt and drought stress tolerance in Arabidopsis thaliana. Together, our results suggest that the structural plasticity of XsLEAs is essential for their protective activity to avoid damage of various subcellular components caused by water deficit stress. XsLEA1-8 constitutes a potential model protein for engineering structural stability in vitro and improvement of water-deficit stress tolerance in plants.
Collapse
Affiliation(s)
| | - Juriaan Rienstra
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Timothy J. Dennis
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Henk Hilhorst
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
42
|
Jin X, Cao D, Wang Z, Ma L, Tian K, Liu Y, Gong Z, Zhu X, Jiang C, Li Y. Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses. Sci Rep 2019; 9:14123. [PMID: 31575979 PMCID: PMC6773783 DOI: 10.1038/s41598-019-50645-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are widely known to be present in higher plants and are believed to play important functional roles in embryonic development and abiotic stress responses. However, there is a current lack of systematic analyses on the LEA protein gene family in tea plant. In this study, a total of 48 LEA genes were identified using Hidden Markov Model profiles in C. sinensis, and were classified into seven distinct groups based on their conserved domains and phylogenetic relationships. Genes in the CsLEA_2 group were found to be the most abundant. Gene expression analyses revealed that all the identified CsLEA genes were expressed in at least one tissue, and most had higher expression levels in the root or seed relative to other tested tissues. Nearly all the CsLEA genes were found to be involved in seed development, and thirty-nine might play an important role in tea seed maturation concurrent with dehydration. However, only sixteen CsLEA genes were involved in seed desiccation, and furthermore, most were suppressed. Additionally, forty-six CsLEA genes could be induced by at least one of the tested stress treatments, and they were especially sensitive to high temperature stress. Furthermore, it was found that eleven CsLEA genes were involved in tea plant in response to all tested abiotic stresses. Overall, this study provides new insights into the formation of CsLEA gene family members and improves our understanding on the potential roles of these genes in normal development processes and abiotic stress responses in tea plant, particularly during seed development and desiccation. These results are beneficial for future functional studies of CsLEA genes that will help preserve the recalcitrant tea seeds for a long time and genetically improve tea plant.
Collapse
Affiliation(s)
- Xiaofang Jin
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Dan Cao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhongjie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Linlong Ma
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Kunhong Tian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ziming Gong
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xiangxiang Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Changjun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
43
|
Genome-wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum). Sci Rep 2019; 9:13375. [PMID: 31527624 PMCID: PMC6746774 DOI: 10.1038/s41598-019-49759-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are involved in the responses and adaptation of plants to various abiotic stresses, including dehydration, salinity, high temperature, and cold. Here, we report the first comprehensive survey of the LEA gene family in “Chinese Spring” wheat (Triticum aestivum). A total of 179 TaLEA genes were identified in T. aestivum and classified into eight groups. All TaLEA genes harbored the LEA conserved motif and had few introns. TaLEA genes belonging to the same group exhibited similar gene structures and chromosomal locations. Our results revealed that most TaLEA genes contained abscisic acid (ABA)-responsive elements (ABREs) and various cis-acting elements associated with the stress response in the promoter region and were induced under ABA and abiotic stress treatments. In addition, 8 genes representing each group were introduced into E. coli and yeast to investigate the protective function of TaLEAs under heat and salt stress. TaLEAs enhanced the tolerance of E. coli and yeast to salt and heat, indicating that these proteins have protective functions in host cells under stress conditions. These results increase our understanding of LEA genes and provide robust candidate genes for future functional investigations aimed at improving the stress tolerance of wheat.
Collapse
|
44
|
Soriano JM, Alvaro F. Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep 2019; 9:10537. [PMID: 31332216 PMCID: PMC6646344 DOI: 10.1038/s41598-019-47038-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/09/2019] [Indexed: 11/25/2022] Open
Abstract
Root system architecture is crucial for wheat adaptation to drought stress, but phenotyping for root traits in breeding programmes is difficult and time-consuming owing to the belowground characteristics of the system. Identifying quantitative trait loci (QTLs) and linked molecular markers and using marker-assisted selection is an efficient way to increase selection efficiency and boost genetic gains in breeding programmes. Hundreds of QTLs have been identified for different root traits in the last few years. In the current study, consensus QTL regions were identified through QTL meta-analysis. First, a consensus map comprising 7352 markers was constructed. For the meta-analysis, 754 QTLs were retrieved from the literature and 634 of them were projected onto the consensus map. Meta-analysis grouped 557 QTLs in 94 consensus QTL regions, or meta-QTLs (MQTLs), and 18 QTLs remained as singletons. The recently published genome sequence of wheat was used to search for gene models within the MQTL peaks. As a result, gene models for 68 of the 94 Root_MQTLs were found, 35 of them related to root architecture and/or drought stress response. This work will facilitate QTL cloning and pyramiding to develop new cultivars with specific root architecture for coping with environmental constraints.
Collapse
Affiliation(s)
- Jose Miguel Soriano
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain.
| | - Fanny Alvaro
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain
| |
Collapse
|
45
|
Genetic Dissection of the Seminal Root System Architecture in Mediterranean Durum Wheat Landraces by Genome-Wide Association Study. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9070364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Roots are crucial for adaptation to drought stress. However, phenotyping root systems is a difficult and time-consuming task due to the special feature of the traits in the process of being analyzed. Correlations between root system architecture (RSA) at the early stages of development and in adult plants have been reported. In this study, the seminal RSA was analysed on a collection of 160 durum wheat landraces from 21 Mediterranean countries and 18 modern cultivars. The landraces showed large variability in RSA, and differences in root traits were found between previously identified genetic subpopulations. Landraces from the eastern Mediterranean region, which is the driest and warmest within the Mediterranean Basin, showed the largest seminal root size in terms of root length, surface, and volume and the widest root angle, whereas landraces from eastern Balkan countries showed the lowest values. Correlations were found between RSA and yield-related traits in a very dry environment. The identification of molecular markers linked to the traits of interest detected 233 marker-trait associations for 10 RSA traits and grouped them in 82 genome regions named marker-train association quantitative trait loci (MTA-QTLs). Our results support the use of ancient local germplasm to widen the genetic background for root traits in breeding programs.
Collapse
|
46
|
Priya M, Dhanker OP, Siddique KHM, HanumanthaRao B, Nair RM, Pandey S, Singh S, Varshney RK, Prasad PVV, Nayyar H. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1607-1638. [PMID: 30941464 DOI: 10.1007/s00122-019-03331-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
We describe here the recent developments about the involvement of diverse stress-related proteins in sensing, signaling, and defending the cells in plants in response to drought or/and heat stress. In the current era of global climate drift, plant growth and productivity are often limited by various environmental stresses, especially drought and heat. Adaptation to abiotic stress is a multigenic process involving maintenance of homeostasis for proper survival under adverse environment. It has been widely observed that a series of proteins respond to heat and drought conditions at both transcriptional and translational levels. The proteins are involved in various signaling events, act as key transcriptional activators and saviors of plants under extreme environments. A detailed insight about the functional aspects of diverse stress-responsive proteins may assist in unraveling various stress resilience mechanisms in plants. Furthermore, by identifying the metabolic proteins associated with drought and heat tolerance, tolerant varieties can be produced through transgenic/recombinant technologies. A large number of regulatory and functional stress-associated proteins are reported to participate in response to heat and drought stresses, such as protein kinases, phosphatases, transcription factors, and late embryogenesis abundant proteins, dehydrins, osmotins, and heat shock proteins, which may be similar or unique to stress treatments. Few studies have revealed that cellular response to combined drought and heat stresses is distinctive, compared to their individual treatments. In this review, we would mainly focus on the new developments about various stress sensors and receptors, transcription factors, chaperones, and stress-associated proteins involved in drought or/and heat stresses, and their possible role in augmenting stress tolerance in crops.
Collapse
Affiliation(s)
- Manu Priya
- Department of Botany, Panjab University, Chandigarh, India
| | - Om P Dhanker
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | | | | | - Sarita Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Sadhana Singh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India.
| |
Collapse
|
47
|
Hu T, Liu Y, Zhu S, Qin J, Li W, Zhou N. Overexpression of OsLea14-A improves the tolerance of rice and increases Hg accumulation under diverse stresses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10537-10551. [PMID: 30762181 DOI: 10.1007/s11356-019-04464-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/03/2019] [Indexed: 04/16/2023]
Abstract
The group 5 LEA (late embryogenesis abundant) proteins are an atypical LEA protein group, which is associated with resistance to multiple stresses. In this study, OsLea14-A gene was isolated from Oryza sativa L., which encodes a 5C LEA protein with 151 amino acids. The qPCR analysis showed that OsLea14-A expressed in all tissues and organs at all times. The expression of OsLea14-A in the panicles of plumping stage were dramatically increased. The heterologous expression of OsLea14-A in Escherichia coli improved its growth performance under salinity, desiccation, high temperature, and freeze-thaw stresses. The purified OsLea14-A protein can protect LDH activity from freeze-thaw-, heat-, and desiccation-induced inactivation. The overexpression of OsLea14-A in rice improved tolerance to dehydration, high salinity, CuSO4, and HgCl2, but excluding K2Cr2O7. The analysis of metal contents showed that the accumulation of OsLea14-A protein in transgenic rice could increase the accumulation of Hg, but could not increase the accumulation of Na, Cr, and Cu after HgCl2, NaCl, K2Cr2O7, and CuSO4 treatment, respectively. These results suggested that OsLea14-A conferred multiple stress tolerance and Hg accumulation, which made it a possible gene in genetic improvement for plants to acclimatize itself to multiple stresses and remediate Hg-contaminated soil.
Collapse
Affiliation(s)
- Tingzhang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China.
| | - Yuanli Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Shanshan Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Juan Qin
- College of Food and Biological Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Wenping Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Nong Zhou
- College of Food and Biological Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| |
Collapse
|
48
|
Magwanga RO, Lu P, Kirungu JN, Dong Q, Cai X, Zhou Z, Wang X, Hou Y, Xu Y, Peng R, Agong SG, Wang K, Fang L. Knockdown of Cytochrome P450 Genes Gh_D07G1197 and Gh_A13G2057 on Chromosomes D07 and A13 Reveals Their Putative Role in Enhancing Drought and Salt Stress Tolerance in Gossypium hirsutum. Genes (Basel) 2019; 10:genes10030226. [PMID: 30889904 PMCID: PMC6471685 DOI: 10.3390/genes10030226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022] Open
Abstract
We identified 672, 374, and 379 CYPs proteins encoded by the CYPs genes in Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum, respectively. The genes were found to be distributed in all 26 chromosomes of the tetraploid cotton, with chrA05, chrA12, and their homeolog chromosomes harboring the highest number of genes. The physiochemical properties of the proteins encoded by the CYP450 genes varied in terms of their protein lengths, molecular weight, isoelectric points (pI), and even grand hydropathy values (GRAVY). However, over 99% of the cotton proteins had GRAVY values below 0, which indicated that the majority of the proteins encoded by the CYP450 genes were hydrophilic in nature, a common property of proteins encoded by stress-responsive genes. Moreover, through the RNA interference (RNAi) technique, the expression levels of Gh_D07G1197 and Gh_A13G2057 were suppressed, and the silenced plants showed a higher concentration of hydrogen peroxide (H2O2) with a significant reduction in the concentration levels of glutathione (GSH), ascorbate peroxidase (APX), and proline compared to the wild types under drought and salt stress conditions. Furthermore, the stress-responsive genes 1-Pyrroline–5-Carboxylate Synthetase (GhP5CS), superoxide dismutase (GhSOD), and myeloblastosis (GhMYB) were downregulated in VIGS plants, but showed upregulation in the leaf tissues of the wild types under drought and salt stress conditions. In addition, CYP450-silenced cotton plants exhibited a high level of oxidative injury due to high levels of oxidant enzymes, in addition to negative effects on CMS, ELWL, RLWC, and chlorophyll content The results provide the basic foundation for future exploration of the proteins encoded by the CYP450 genes in order to understand the physiological and biochemical mechanisms in enhancing drought and salt stress tolerance in plants.
Collapse
Affiliation(s)
- Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
- School of Biological and Physical sciences (SBPS), Main campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), P.O Box 210-40601, Bondo 210-40601, Kenya.
| | - Pu Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Qi Dong
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Renhai Peng
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Anyang Institute of technology, State key laboratory of cotton R.P, Anyang, Henan 455000, China.
| | - Stephen Gaya Agong
- School of Biological and Physical sciences (SBPS), Main campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), P.O Box 210-40601, Bondo 210-40601, Kenya.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Liu Fang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
49
|
Chen Y, Li C, Zhang B, Yi J, Yang Y, Kong C, Lei C, Gong M. The Role of the Late Embryogenesis-Abundant (LEA) Protein Family in Development and the Abiotic Stress Response: A Comprehensive Expression Analysis of Potato ( Solanum Tuberosum). Genes (Basel) 2019; 10:genes10020148. [PMID: 30781418 PMCID: PMC6410179 DOI: 10.3390/genes10020148] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022] Open
Abstract
Late embryogenesis-abundant (LEA) proteins are a large and highly diverse family believed to function in normal plant growth and development, and in protecting cells from abiotic stress. This study presents a characterisation of 74 Solanum tuberosum LEA (StLEA) proteins belonging to nine groups. StLEA genes have few introns (≤2) and are distributed on all chromosomes, occurring as gene clusters on chromosomes 1, 2, and 10. All four StASR (StLEA7 group) genes were concentrated on chromosome 4, suggesting their evolutionary conservation on one chromosome. Expression profiles of StLEA genes, in different tissues and in response to hormone and stress treatments, indicated that 71 StLEA genes had differential expression levels, of which 68 StLEA genes were differentially expressed in response to hormones and stress exposure in the potato. Continuous high expression of StASR-2, StLEA3-3, StDHN-3, StLEA2-29, and StLEA2-14 in different tissues indicated their contribution to plant development processes. StLEA2-14, StLEA2-31, StLEA3-3, StASR-1, and StDHN-1 were upregulated by six abiotic stresses, showing their tolerance to a wide spectrum of environmental stresses. Expression analysis of 17 selected StLEA genes in response to drought, salt, heavy metal, heat, and cold treatments by quantitative real-time polymerase chain reaction indicated that StLEA proteins may be involved in distinct signalling pathways. Taken together, StLEA3, StDHN, and StASR subgroup genes may be excellent resources for potato defence against environmental stresses. These results provide valuable information and robust candidate genes for future functional analysis aimed at improving the stress tolerance of the potato.
Collapse
Affiliation(s)
- Yongkun Chen
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| | - Canhui Li
- Joint Academy of Potato Science, Yunnan Normal University, Kunming 650550, China.
| | - Bo Zhang
- Joint Academy of Potato Science, Yunnan Normal University, Kunming 650550, China.
| | - Jing Yi
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| | - Yu Yang
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| | - Chunyan Kong
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| | - Chunxia Lei
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| | - Ming Gong
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| |
Collapse
|
50
|
Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L. Mol Biol Rep 2019; 46:2577-2593. [PMID: 30758807 DOI: 10.1007/s11033-019-04686-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Wheat is an important cereal crop that fulfils the calorie demands of the global humanity. Rapidly expanding populations are exposed to a fast approaching acute shortage in the adequate supply of food and fibre from agricultural resources. One of the significant threats to food security lies in the constantly increasing global temperatures which inflict serious injuries to the plants in terms of various physiological, biochemical and molecular processes. Wheat being a cool season crop is majorly impacted by the heat stress which adversely affects crop productivity and yield. These challenges would be potentially defeated with the implementation of genetic engineering strategies coupled with the new genome editing approaches. Development of transgenic plants for various crops has proved very effective for the incorporation of improved varietal traits in context of heat stress. With a similar approach, we need to target for the generation of heat stress tolerant wheat varieties which are capable of survival in such adverse conditions and yet produce well. In this review, we enumerate the current status of research on the heat stress responsive genes/factors and their potential role in mitigating heat stress in plants particularly in wheat with an aim to help the researchers get a holistic view of this topic. Also, we discuss on the prospective signalling pathway that is triggered in plants in general under heat stress.
Collapse
|