1
|
Devi T, Sistla S, Khan RT, Kailoo S, Bhardwaj M, Rasool S. Purification and characterization of detergent stable alkaline lipase from Bacillus safensis TKW3 isolated from Tso Kar brackish water lake. PeerJ 2025; 13:e18921. [PMID: 39989736 PMCID: PMC11846503 DOI: 10.7717/peerj.18921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/10/2025] [Indexed: 02/25/2025] Open
Abstract
Extensive and escalating research has been directed towards halozymes derived from halophiles thriving in extreme hypersaline environments, owing to their myriad industrial applications. These extremophiles have evolved various physiological and metabolic adaptations to endure such extremes, enhancing their industrial potential. Being a potential source of lipases, halophiles of extreme niches have emerged as a emerging research area. This interest has been fueled by the recognition that extreme environments serve as rich reservoirs of diverse cold-active alkaliphilic enzymes. Methods Bacillus safensis TKW3, isolated from brackish Lake Tso Kar of the Ladakh region, India, produced cold-adapted haloalkaliphilic lipase halozyme. The current study focused on the purification and biochemical characterisation of lipase derived from halophilic bacteria. Results The lipase enzyme, purified to homogeneity, exhibited a molecular mass of 28 kDa as confirmed by SDS-PAGE analysis. The purification process yielded a purification fold of 12.01 and a final recovery rate of 29.9%. It demonstrated optimal activity at 30 °C and pH 9. The enzyme was evaluated and demonstrated to exhibit stability over a broad temperature range spanning from 5 °C to 55 °C, as well as a wide pH range of 7.0 to 9.0. Due to its stability across a diverse spectrum of pH values, surfactants, metal ions, and inhibitors, the enzyme appeared to hold significant promise for application within the leather and detergent sectors. Upon undergoing detergent compatibility tests spanning diverse temperature ranges, the lipase showcased compatibility with various commercial detergents, thereby presenting itself as an attractive candidate for inclusion in detergent formulations within the industry. Conclusions The lipase from B. safensis TKW3 exhibits promising attributes, including alkali stability, halophilicity, and a wide spectrum of substrate specificity, rendering it an attractive option for incorporation into detergent formulations within the detergent industry. As far as we are aware, this is the first report on the purification and characterization of lipase enzyme from bacterial halophiles in a Tso Kar brackish lake.
Collapse
Affiliation(s)
- Tishu Devi
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Srinivas Sistla
- Microbiology and Immunology Department, State University of New York, Stony Brook, New York, United States of America
| | - Rabiya T. Khan
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Swadha Kailoo
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Mansavi Bhardwaj
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Shafaq Rasool
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, India
| |
Collapse
|
2
|
Zhang Z, Fan H, Yu Z, Luo X, Zhao J, Wang N, Li Z. Metagenomics-based gene exploration and biochemical characterization of novel glucoamylases and α-amylases in Daqu and Pu-erh tea microorganisms. Int J Biol Macromol 2024; 278:134182. [PMID: 39069062 DOI: 10.1016/j.ijbiomac.2024.134182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
α-Amylases and glucoamylases play a crucial role in starch degradation for various industrial applications. Further exploration of novel α-amylases and glucoamylases with diverse enzymatic characteristics is necessary. In this study, metagenomics analysis revealed a high abundance of these enzymes in the microorganisms of Daqu and Pu-erh tea, identifying 271 glucoamylases and 232 α-amylases with significant sequence identity to known enzymes. Functional studies indicated that these enzymes have broad optimal temperatures (30 °C to 70 °C) and acidic or neutral pH optima. Additionally, two novel low-temperature glucoamylases and one novel low-temperature α-amylases were characterized, demonstrating potential for use in industries operating under low temperature conditions. Further analysis suggested that fewer molecular interactions and more flexible coli regions may contribute to their high activity at low temperatures. In summary, this study not only highlights the feasibility of exploring enzymes through metagenomic approaches, but also presents a library of novel and diverse α-amylases and glucoamylases for potential industrial applications.
Collapse
Affiliation(s)
- Zhengjie Zhang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haiyue Fan
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhao Yu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Junqi Zhao
- Qilu Institute of Technology, Shandong 250200, PR China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Martin Del Campo M, Gómez-Secundino O, Camacho-Ruíz RM, Mateos Díaz JC, Müller-Santos M, Rodríguez JA. Effects of kosmotropic, chaotropic, and neutral salts on Candida antarctica B lipase: An analysis of the secondary structure and its hydrolytic activity on triglycerides. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159380. [PMID: 37591327 DOI: 10.1016/j.bbalip.2023.159380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
The effects of different concentrations of Hofmeister salts on the hydrolytic activity on triglycerides and the secondary structure of lipase B from Candida antarctica (CALB) were investigated. Structural changes after short- and long-time incubation at high salt concentrations were determined using circular dichroism (CD), fluorescence, and RMSD-RMSF simulations. At 5.2 M NaCl, the hydrolytic activity of CALB on tributyrin (TC4) and trioctanoin (TC8) was enhanced by 1.5 (from 817 ± 3.9 to 1228 ± 4.3 U/mg)- and 8.7 (from 25 ± 0.3 to 218 ± 2.3 U/mg)-folds compared with 0.15 M NaCl, respectively at pH 7.0 and 40 °C. An activity activation was seen with other salts tested; however, long-time incubation (24 h) did not result in retention of the activation effect for any of the salts tested. Secondary structure CD and fluorescence spectra showed that long-time incubation with NaCl, KCl, and CsCl provokes a compact structure without loss of native conformation, whereas chaotropic LiCl and CaCl2 induced an increase in the α-helical content, and kosmotropic Na2SO4 provoked a molten globule state with rich β-sheet content. The RMSD-RMSF simulation agreed with the CD analysis, highlighting a principal salt-induced effect at the α-helix 5 region, promoting two different conformational states (open and closed) depending on the type and concentration of salt. Lastly, an increase in the interfacial tension occurred when high salt concentrations were added to the reaction media, affecting the catalytic properties. The results indicate that high-salt environments, such as 2-5.2 M NaCl, can be used to increase the lipolytic activity of CALB on TC4 and TC8.
Collapse
Affiliation(s)
- Martha Martin Del Campo
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico; Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, 46200 Colotlán, Jalisco, Mexico.
| | - Osvaldo Gómez-Secundino
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Rosa M Camacho-Ruíz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Juan C Mateos Díaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Marcelo Müller-Santos
- Departamento de Bioquímica e Biología Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-980 Curitiba, PR, Brazil.
| | - Jorge A Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Abdel-Hady GN, Tajima T, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. A novel salt- and organic solvent-tolerant phosphite dehydrogenase from Cyanothece sp. ATCC 51142. Front Bioeng Biotechnol 2023; 11:1255582. [PMID: 37662428 PMCID: PMC10473253 DOI: 10.3389/fbioe.2023.1255582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Phosphite dehydrogenase (PtxD) is a promising enzyme for NAD(P)H regeneration. To expand the usability of PtxD, we cloned, expressed, and analyzed PtxD from the marine cyanobacterium Cyanothece sp. ATCC 51142 (Ct-PtxD). Ct-PtxD exhibited maximum activity at pH 9.0°C and 50°C and high stability over a wide pH range of 6.0-10.0. Compared to previously reported PtxDs, Ct-PtxD showed increased resistance to salt ions such as Na+, K+, and NH4 +. It also exhibited high tolerance to organic solvents such as ethanol, dimethylformamide, and methanol when bound to its preferred cofactor, NAD+. Remarkably, these organic solvents enhanced the Ct-PtxD activity while inhibiting the PtxD activity of Ralstonia sp. 4506 (Rs-PtxD) at concentrations ranging from 10% to 30%. Molecular electrostatic potential analysis showed that the NAD+-binding site of Ct-PtxD was rich in positively charged residues, which may attract the negatively charged pyrophosphate group of NAD+ under high-salt conditions. Amino acid composition analysis revealed that Ct-PtxD contained fewer hydrophobic amino acids than other PtxD enzymes, which reduced the hydrophobicity and increased the hydration of protein surface under low water activity. We also demonstrated that the NADH regeneration system using Ct-PtxD is useful for the coupled chiral conversion of trimethylpyruvic acid into L-tert-leucine using leucine dehydrogenase under high ammonium conditions, which is less supported by the Rs-PtxD enzyme. These results imply that Ct-PtxD might be a potential candidate for NAD(P)H regeneration in industrial applications under the reaction conditions containing salt and organic solvent.
Collapse
Affiliation(s)
- Gamal Nasser Abdel-Hady
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Takahisa Tajima
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Takeshi Ikeda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takenori Ishida
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hisakage Funabashi
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Hirota
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Luo C, Hu Y, Xing S, Xie W, Li C, He L, Wang X, Zeng X. Adsorption-precipitation-cross-linking immobilization of GDSL-type esterase from Aspergillus niger GZUF36 by polydopamine-modified magnetic clarity tetroxide nanocouplings and its enzymatic characterization. Int J Biol Macromol 2023:125533. [PMID: 37355062 DOI: 10.1016/j.ijbiomac.2023.125533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Recombinant INANE1 (rINANE1), a recombinant intracellular GDSL-type esterase from Aspergillus niger GZUF36, has high acetate substrate specificity. Here, rINANE1 was successfully immobilized on polydopamine (PDA)-modified magnetic ferric oxide nanoparticles (Fe3O4NPs) by adsorption-precipitation-cross-linking to obtain cross-linked enzyme aggregate (CLEA)-rINANE1-Fe3O4@PDA. Fe3O4, Fe3O4@PDA, and CLEA-rINANE1-Fe3O4@PDA were characterized by scanning electron microscopy, X-ray diffraction, vibrating-sample magnetometry, Fourier transform infrared (FTIR) spectroscopy, and zeta potential analysis. Upon immobilization, CLEA-rINANE1-Fe3O4@PDA, with a protein loading of 72.72 ± 1.01 mg/g, reached optimal activity recovery of 104.40 % ± 1.14 %. FTIR analysis showed that immobilization increased the relative content of β-folding in rINANE1 by 12.25 % and reduced irregular curl by 4.16 %, rendering the structure more orderly. Specifically, under an alkaline condition (pH 10), CLEA-rINANE1-Fe3O4@PDA performed over 100 % of initial activity. The optimum temperature increased by 5 °C, and over 55 % of the initial activity was observed after 12 h at 55 °C. CLEA-rINANE1-Fe3O4@PDA showed over 40 % of its relative activity, whereas free rINANE1 showed <10 % in acetonitrile. In addition, the relative activity of CLEA-rINANE1-Fe3O4@PDA was retained at about 80 % after eight cycles and maintained at 109 % after 45 days. The PDA-modified magnetic ferrite nanoparticles exhibited excellent stability and recyclability, providing a new avenue for developing industrial biocatalysts.
Collapse
Affiliation(s)
- Chaocheng Luo
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yuedan Hu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Wei Xie
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
6
|
Rahman NNA, Sharif FM, Kamarudin NHA, Ali MSM, Aris SNAM, Jonet MA, Rahman RNZRA, Sabri S, Leow TC. X-ray crystallography of mutant GDSL esterase S12A of Photobacterium marinum J15. 3 Biotech 2023; 13:128. [PMID: 37064003 PMCID: PMC10097846 DOI: 10.1007/s13205-023-03534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
GDSL esterase is designated as a member of Family II of lipolytic enzymes known to catalyse the synthesis and hydrolysis of ester bonds. The enzyme possesses a highly conserved motif Ser-Gly-Asn-His in the four conserved blocks I, II, III and V respectively. The enzyme characteristics, such as region-, chemo-, and enantioselectivity, help in resolving the racemic mixture of single-isomer chiral drugs. Recently, crystal structure of GDSL esterase from Photobacterium J15 has been reported (PDB ID: 5XTU) but not in complex with substrate. Therefore, GDSL in complex with substrate could provide insights into the binding mode of substrate towards inactive form of GDSL esterase (S12A) and identify the hot spot residues for the designing of a better binding pocket. Insight into molecular mechanisms is limited due to the lack of crystal structure of GDSL esterase-substrate complex. In this paper, the crystallization of mutant GDSL esterase (S12A) (PDB ID: 8HWO) and its complex with butyric acid (PDB ID: 8HWP) are reported. The optimized structure would be vital in determining hot spot residue for GDSL esterase. This preliminary study provides an understanding of the interactions between enzymes and hydrolysed p-nitro-phenyl butyrate. The information could guide in the rational design of GDSL esterase in overcoming the medical limitations associated with racemic mixture.
Collapse
Affiliation(s)
- Nor Najihah Abdul Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Fairolniza Mohd Sharif
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Sayangku Nor Ariati Mohamad Aris
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
7
|
Liu Y, Gan L, Feng P, Huang L, Chen L, Li S, Chen H. An artificial self-assembling peptide with carboxylesterase activity and substrate specificity restricted to short-chain acid p-nitrophenyl esters. Front Chem 2022; 10:996641. [PMID: 36199662 PMCID: PMC9527324 DOI: 10.3389/fchem.2022.996641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Natural enzymes possess remarkable catalytic activity and high substrate specificity. Many efforts have been dedicated to construct artificial enzymes with high catalytic activity. However, how to mimic the exquisite substrate specificity of a natural enzyme remains challenging because of the complexity of the enzyme structure. Here, we report artificial carboxylesterases that are specific for short chain fatty acids and were constructed via peptide self-assembly. These artificial systems have esterase-like activity rather than lipase-like activity towards p-nitrophenyl esters. The designer peptides self-assembled into nanofibers with strong β-sheet character. The extending histidine units and the hydrophobic edge of the fibrillar structure collectively form the active center of the artificial esterase. These artificial esterases show substrate specificity for short-chain acids esters. Moreover, 1-isopropoxy-4-nitrobenzene could function as a competitive inhibitor of hydrolysis of p-nitrophenyl acetate for an artificial esterase.
Collapse
Affiliation(s)
- Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yanfei Liu,
| | - Lili Gan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Peili Feng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lei Huang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Luoying Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Shuhua Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hui Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Matrawy AA, Khalil AI, Embaby AM. Molecular study on recombinant cold-adapted, detergent- and alkali stable esterase (EstRag) from Lysinibacillus sp.: a member of family VI. World J Microbiol Biotechnol 2022; 38:217. [PMID: 36070019 PMCID: PMC9452428 DOI: 10.1007/s11274-022-03402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Cold-adapted esterases have potential industrial applications. To fulfil the global continuous demand for these enzymes, a cold-adapted esterase member of family VI from Lysinibacillus sp. YS11 was cloned on pET-28b (+) vector and expressed in E. coli BL21(DE3) Rosetta cells for the first time. The open reading frame (654 bp: GenBank MT120818.1) encodes a polypeptide (designated EstRag: 217 amino acid residues). EstRag amino acid sequence has conserved esterase signature motifs: pentapeptide (GFSQG) and catalytic triad Ser110-Asp163-His194. EstRag 3D predicted model, built with LOMETS3 program, showed closest structural similarity to PDB 1AUO_A (esterase: Pseudomonas fluorescens); TM-align score program inferences. Purified EstRag to 9.28-fold, using Ni2+affinity agarose matrix, showed a single protein band (25 kDa) on SDS-PAGE, Km (0.031 mM) and Kcat/Km (657.7 s−1 mM−1) on p-NP-C2. Temperature and pH optima of EstRag were 35 °C and 8.0, respectively. EstRag was fully stable at 5–30 °C for 120 min and at pH(s) 8.0–10.0 after 24 h. EstRag activity (391.46 ± 0.009%) was impressively enhanced after 30 min preincubation with 5 mM Cu2+. EstRag retained full stability after 30 min pre-incubation with 0.1%(v/v) SDS, Triton X-100, and Tween-80. EstRag promising characteristics motivate performing guided evolution and industrial applications prospective studies.
Collapse
Affiliation(s)
- Amira A Matrawy
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt
| | - Ahmed I Khalil
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt
| | - Amira M Embaby
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt.
| |
Collapse
|
9
|
Sustainable Biosynthesis of Esterase Enzymes of Desired Characteristics of Catalysis for Pharmaceutical and Food Industry Employing Specific Strains of Microorganisms. SUSTAINABILITY 2022. [DOI: 10.3390/su14148673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reactions catalysed by sustainably produced enzymes can contribute to the bioeconomy supporting several industries. Low-value compounds can be transformed into added-value products or high-resolution chemicals could be prepared in reactions catalysed by biocatalyst esterase enzymes. These enzymes can be synthesised by purposely isolated or genetically modified strains of microorganisms. Enzymes belonging to the hydrolase family catalyse the formation and hydrolysis of ester bonds to produce the desired esterified molecule. The synthesis of homo-chiral compounds can be accomplished either by chemical or biocatalytic processes, the latter being preferred with the use of microbial esterases. For varied applications, esterases with high stability and retained activity at lower and higher temperatures have been produced with strains isolated from extreme environments. For sustainable production of enzymes, higher productivity has been achieved by employing fast-growing Escherichia coli after incorporating plasmids of required characteristics from specific isolates. This is a review of the isolated and engineered strains used in the biosynthesis of esterase of the desired property, with the objective of a sustainable supply of enzymes, to produce products of industrial importance contributing to the economy.
Collapse
|
10
|
Knepp ZJ, Ghaner A, Root KT. Purification and refolding protocol for cold-active recombinant esterase AaSGNH1 from Aphanizomenon flos-aquae expressed as insoluble inclusion bodies. Prep Biochem Biotechnol 2021; 52:394-403. [PMID: 34355672 DOI: 10.1080/10826068.2021.1952601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial esterases are a highly desirable tool for numerous biosynthetic and biotechnological applications requiring ester bond cleavage. Once identified, microbial esterases are often produced recombinantly in Escherichia coli to enhance yield and ease of purification. In this study a polyhistidine-tagged SGNH esterase gene (AaSGNH1), originating from the cyanobacterium Aphanizomenon flos-aquae, was cloned into an over-expression plasmid and expressed in BL21(DE3) cells. The recombinant esterase enzyme was produced as inactive inclusion bodies which were insoluble in 8 M urea but readily solubilized by the detergent Empigen BB®. Crucially, the procurement of active enzyme required controlled removal of detergent during column chromatography and dialysis steps. The refolded esterase was characterized with respect to its ability to catalyze the cleavage of p-nitrophenol esters of different chain lengths (C2, C8, C16). In addition, the temperature and pH optima were determined and it was found that the enzyme was most active at low temperatures (5-15 °C) and under alkaline conditions (pH 8-10). It was found that the kinetic properties of AaSGNH1 were remarkably similar to other SGNH esterases described thereby validating that the protein was effectively refolded. Overall, this study provides a simple strategy for isolating cold-active recombinant esterase enzyme when expressed as inclusion bodies.
Collapse
Affiliation(s)
- Zachary J Knepp
- Department of Chemistry, Lock Haven University, Lock Haven, PA, USA
| | - Ashlea Ghaner
- Department of Chemistry, Lock Haven University, Lock Haven, PA, USA
| | - Kyle T Root
- Department of Chemistry, Lock Haven University, Lock Haven, PA, USA
| |
Collapse
|
11
|
Tang XD, Dong FY, Zhang QH, Lin L, Wang P, Xu XY, Wei W, Wei DZ. Protein engineering of a cold-adapted rhamnogalacturonan acetylesterase: In vivo functional expression and cinnamyl acetate synthesis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Xin A, Fei Y, Molnar A, Fry SC. Cutin:cutin-acid endo-transacylase (CCT), a cuticle-remodelling enzyme activity in the plant epidermis. Biochem J 2021; 478:777-798. [PMID: 33511979 PMCID: PMC7925011 DOI: 10.1042/bcj20200835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023]
Abstract
Cutin is a polyester matrix mainly composed of hydroxy-fatty acids that occurs in the cuticles of shoots and root-caps. The cuticle, of which cutin is a major component, protects the plant from biotic and abiotic stresses, and cutin has been postulated to constrain organ expansion. We propose that, to allow cutin restructuring, ester bonds in this net-like polymer can be transiently cleaved and then re-formed (transacylation). Here, using pea epicotyl epidermis as the main model, we first detected a cutin:cutin-fatty acid endo-transacylase (CCT) activity. In-situ assays used endogenous cutin as the donor substrate for endogenous enzymes; the exogenous acceptor substrate was a radiolabelled monomeric cutin-acid, 16-hydroxy-[3H]hexadecanoic acid (HHA). High-molecular-weight cutin became ester-bonded to intact [3H]HHA molecules, which thereby became unextractable except by ester-hydrolysing alkalis. In-situ CCT activity correlated with growth rate in Hylotelephium leaves and tomato fruits, suggesting a role in loosening the outer epidermal wall during organ growth. The only well-defined cutin transacylase in the apoplast, CUS1 (a tomato cutin synthase), when produced in transgenic tobacco, lacked CCT activity. This finding provides a reference for future CCT protein identification, which can adopt our sensitive enzyme assay to screen other CUS1-related enzymes.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Yue Fei
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Attila Molnar
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| |
Collapse
|
13
|
Characterization of EstDR4, a Novel Cold-Adapted Insecticides-Metabolizing Esterase from Deinococcus radiodurans. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cold-adapted esterases are attracting increasing attention owing to their prospective use in biotechnology. In this study, a novel cold-adapted family Ⅳ esterase EstDR4 was identified and obtained from extremophile Deinococcus radiodurans (D. radiodurans). EstDR4 displayed significant substrate preference towards short and medium chain monoesters (C2–C12). It also showed regioselectivity, enantioselectivity and degradation effects on four insecticides. The optimum temperature and pH for EstDR4 activity were 30 °C and pH 8, respectively. Additionally, EstDR4 exhibited relatively high catalytic activity at 0 °C and high stability from 10–40 °C, with over 80% of its initial activity retained after 1 h of incubation. Moreover, EstDR4 activity was stimulated by Tween 80 and Triton X-100, and inhibited by metal ions such as Co2+, Cu2+ and Zn2+ and several organic solvents. Thus, this enzyme shows development potential for many industrial biotechnological applications, including the manufacture of thermolabile pharmaceutical products, cold-wash detergents and insecticide biodegradation.
Collapse
|
14
|
A Novel Carboxylesterase Derived from a Compost Metagenome Exhibiting High Stability and Activity towards High Salinity. Genes (Basel) 2021; 12:genes12010122. [PMID: 33478024 PMCID: PMC7835964 DOI: 10.3390/genes12010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Halotolerant lipolytic enzymes have gained growing interest, due to potential applications under harsh conditions, such as hypersalinity and presence of organic solvents. In this study, a lipolytic gene, est56, encoding 287 amino acids was identified by functional screening of a compost metagenome. Subsequently, the gene was heterologously expressed, and the recombinant protein (Est56) was purified and characterized. Est56 is a mesophilic (Topt 50 °C) and moderate alkaliphilic (pHopt 8) enzyme, showing high thermostability at 30 and 40 °C. Strikingly, Est56 is halotolerant as it exhibited high activity and stability in the presence of up to 4 M NaCl or KCl. Est56 also displayed enhanced stability against high temperatures (50 and 60 °C) and urea (2, 4, and 6 M) in the presence of NaCl. In addition, the recently reported halotolerant lipolytic enzymes were summarized. Phylogenetic analysis grouped these enzymes into 13 lipolytic protein families. The majority (45%) including Est56 belonged to family IV. To explore the haloadaptation of halotolerant enzymes, the amino acid composition between halotolerant and halophilic enzymes was statistically compared. The most distinctive feature of halophilic from non-halophilic enzymes are the higher content of acidic residues (Asp and Glu), and a lower content of lysine, aliphatic hydrophobic (Leu, Met and Ile) and polar (Asn) residues. The amino acid composition and 3-D structure analysis suggested that the high content of acidic residues (Asp and Glu, 12.2%) and low content of lysine residues (0.7%), as well as the excess of surface-exposed acidic residues might be responsible for the haloadaptation of Est56.
Collapse
|
15
|
Microbiota profiling and screening of the lipase active halotolerant yeasts of the olive brine. World J Microbiol Biotechnol 2021; 37:23. [PMID: 33428003 DOI: 10.1007/s11274-020-02976-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Searching for novel enzymes that could be active in organic solvents has become an area of interest in recent years. Olive brine naturally provides a suitable environment for the survival of halophilic and acidophilic microorganisms and the resulting genome is thought to be a gene source for determining the halophilic and acidophilic proteins that are active in a non-aqueous organic solvent medium, and so it has been used in several biotechnological and industrial applications. In this study, microbial analysis of natural, cracked green olive brine from the southern region of Turkey has been made by next-generation sequencing of the brine metagenome for the first time in the literature. The number of reads assigned to fungal operational taxonomic units was the highest percentage (73.04%) with the dominant representation of Ascomycota phylum (99% of fungi). Bacterial OTU was 3.56% of the reads and Proteobacteria phylum was 65% of the reads. The lipase production capacity of the yeasts that were grown on the media containing elevated concentrations of NaCl (1-3 M) was determined on a Rhodamine B-including medium. Molecular identification of the selected yeasts was performed and 90% of sequenced yeasts had a high level of similarity with Candida diddensiae, whereas 10% showed similarity to Candida boidinii. The hydrolytic lipase activities using olive oil were analyzed and both yeasts showed cell-bound lipase activity at pH 3.0.
Collapse
|
16
|
Yao Y, Zhou X, Hadiatullah H, Zhang J, Zhao G. Determination of microbial diversities and aroma characteristics of Beitang shrimp paste. Food Chem 2020; 344:128695. [PMID: 33246688 DOI: 10.1016/j.foodchem.2020.128695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
Beitang shrimp paste (BSP) is fermented by different parts of shrimp, such as the head (H), meat (M), or the whole shrimp (S and W). Microbial communities of BSP were dominated by Firmicutes and Proteobacteria at the phyla level and Tetragenococcus at the genus level. However, the microbial diversity of M was the lowest than the others. Non-dominant bacterial communities were presented by a mutual symbiotic model in BSP fermentation. Tetragenococcus, Halanaerobium, Streptococcus, and Brevundimonas were positively correlated with the biosynthesis of amino acids, fatty acids, and metabolic cofactors; Marinilactibacillus and Pseudomonas might be the main contributors to inorganic sulfides, nitrogen oxides, and long-chain alkanes in BSP; Psychrobacter was closely related to the ester characteristics of methyl palmitoleate and methyl hexadecanoate in H. Halanaerobium and Streptococcus promoted the production of pyrazines in S. Tetragenococcus was positively correlated with acetic acid, decanoic acid, and palmitic acid that improved the sour aroma of M. The relationship between bacteria and aroma formation under different raw materials was expected to improve the quality of BSP.
Collapse
Affiliation(s)
- Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinyun Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hadiatullah Hadiatullah
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, China
| | - Jian Zhang
- Tianjin Tianfeng Zetian Biotechnology Co., Ltd, Tianjin 300457, China
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
17
|
Characterization of a novel halotolerant esterase from Chromohalobacter canadensis isolated from salt well mine. 3 Biotech 2020; 10:430. [PMID: 32983823 DOI: 10.1007/s13205-020-02420-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
A esterase gene was characterized from a halophilic bacterium Chromohalobacter canadensis which was originally isolated from a salt well mine. Sequence analysis showed that the esterase, named as EstSHJ2, contained active site serine encompassed by a conserved pentapeptide motif (GSSMG). The EstSHJ2 was classified into a new lipase/esterase family by phylogenetic association analysis. Molecular weight of EstSHJ2 was 26 kDa and the preferred substrate was p-NP butyrate. The EstSHJ2 exhibited a maximum activity at 2.5 M NaCl concentration. Intriguingly, the optimum temperature, pH and stability of EstSHJ2 were related to NaCl concentration. At 2.5 M NaCl concentration, the optimum temperature and pH of EstSHJ2 were 65 ℃ and pH 9.0, and enzyme remained 81% active after 80 ℃ treatment for 2 h. Additionally, the EstSHJ2 showed strong tolerance to metal ions and organic solvents. Among these, 10 mM K+, Ca2+ , Mg2+ and 30% hexane, benzene, toluene has significantly improved activity of EstSHJ2. The EstSHJ2 was the first reported esterase from Chromohalobacter canadensis, and may carry considerable potential for industrial applications under extreme conditions.
Collapse
|
18
|
Gene cloning, expression and biochemical characterization of a new multi-domain, halotolerant and SDS-resistant alkaline pullulanase from Alkalibacterium sp. SL3. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Yang Y, Yang Y, Fan Q, Huang Z, Li J, Wu Q, Tang X, Ding J, Han N, Xu B. Molecular and Biochemical Characterization of Salt-Tolerant Trehalose-6-Phosphate Hydrolases Identified by Screening and Sequencing Salt-Tolerant Clones From the Metagenomic Library of the Gastrointestinal Tract. Front Microbiol 2020; 11:1466. [PMID: 32733411 PMCID: PMC7358406 DOI: 10.3389/fmicb.2020.01466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
The exploration and utilization of microbial salt-tolerant enzymatic and genetic resources are of great significance in the field of biotechnology and for the research of the adaptation of microorganisms to extreme environments. The presence of new salt-tolerant genes and enzymes in the microbial metagenomic library of the gastrointestinal tract has been confirmed through metagenomic technology. This paper aimed to identify and characterize enzymes that confer salt tolerance in the gastrointestinal tract microbe. By screening the fecal metagenomic library, 48 salt-tolerant clones were detected, of which 10 salt-tolerant clones exhibited stronger tolerance to 7% (wt/vol) NaCl and stability in different concentrations of NaCl [5%-9% (wt/vol)]. High-throughput sequencing and biological information analysis showed that 91 potential genes encoded proteins and enzymes that were widely involved in salt tolerance. Furthermore, two trehalose-6-phosphate hydrolase genes, namely, tre_P2 and tre_P3, were successfully cloned and expressed in Escherichia coli BL21 (DE3). By virtue of the substrate of p-nitrophenyl-α-D-glucopyranoside (pNPG) which can be specifically hydrolyzed by trehalose-6-phosphate hydrolase to produce glucose and p-nitrophenol, the two enzymes can act optimally at pH 7.5 and 30°C. Steady-state kinetics with pNPG showed that the K M and K cat values were 15.63 mM and 10.04 s-1 for rTRE_P2 and 12.51 mM and 10.71 s-1 for rTRE_P3, respectively. Characterization of enzymatic properties demonstrated that rTRE_P2 and rTRE_P3 were salt-tolerant. The enzymatic activity increased with increasing NaCl concentration, and the maximum activities of rTRE_P2 and rTRE_P3 were obtained at 4 and 3 M NaCl, respectively. The activities of rTRE_P2 increased by approximately 43-fold even after 24 h of incubation with 5 M NaCl. This study is the first to report the identification as well as molecular and biochemical characterization of salt-tolerant trehalose-6-phosphate hydrolase from the metagenomic library of the gastrointestinal tract. Results indicate the existence of numerous salt-tolerant genes and enzymes in gastrointestinal microbes and provide new insights into the salt-tolerant mechanisms in the gastrointestinal environment.
Collapse
Affiliation(s)
- Yanxia Yang
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yunjuan Yang
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
| | - Qin Fan
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
| | - Junjun Li
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
| | - Qian Wu
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
| | - Xianghua Tang
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
| | - Junmei Ding
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
| | - Nanyu Han
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
| | - Bo Xu
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
| |
Collapse
|
20
|
Le LTHL, Yoo W, Jeon S, Lee C, Kim KK, Lee JH, Kim TD. Biodiesel and flavor compound production using a novel promiscuous cold-adapted SGNH-type lipase ( HaSGNH1) from the psychrophilic bacterium Halocynthiibacter arcticus. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:55. [PMID: 32190120 PMCID: PMC7074997 DOI: 10.1186/s13068-020-01696-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Biodiesel and flavor compound production using enzymatic transesterification by microbial lipases provides mild reaction conditions and low energy cost compared to the chemical process. SGNH-type lipases are very effective catalysts for enzymatic transesterification due to their high reaction rate, great stability, relatively small size for convenient genetic manipulations, and ease of immobilization. Hence, it is highly important to identify novel SGNH-type lipases with high catalytic efficiencies and good stabilities. RESULTS A promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from Halocynthiibacter arcticus was catalytically characterized and functionally explored. HaSGNH1 displayed broad substrate specificity that included tert-butyl acetate, glucose pentaacetate, and p-nitrophenyl esters with excellent stability and high efficiency. Important amino acids (N83, M86, R87, F131, and I173F) around the substrate-binding pocket were shown to be responsible for catalytic activity, substrate specificity, and reaction kinetics. Moreover, immobilized HaSGNH1 was used to produce high yields of butyl and oleic esters. CONCLUSIONS This work provides a molecular understanding of substrate specificities, catalytic regulation, immobilization, and industrial applications of a promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from H. arcticus. This is the first analysis on biodiesel and flavor synthesis using a cold-adapted halophilic SGNH-type lipase from a Halocynthiibacter species.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Sangeun Jeon
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
| | - Changwoo Lee
- Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990 South Korea
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990 South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Jun Hyuck Lee
- Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990 South Korea
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990 South Korea
| | - T. Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
| |
Collapse
|
21
|
Won SJ, Jeong HB, Kim HK. Characterization of Novel Salt-Tolerant Esterase Isolated from the Marine Bacterium Alteromonas sp. 39-G1. J Microbiol Biotechnol 2020; 30:216-225. [PMID: 31838795 PMCID: PMC9728341 DOI: 10.4014/jmb.1907.07057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An esterase gene, estA1, was cloned from Alteromonas sp. 39-G1 isolated from the Beaufort Sea. The gene is composed of 1,140 nucleotides and codes for a 41,190 Da protein containing 379 amino acids. As a result of a BLAST search, the protein sequence of esterase EstA1 was found to be identical to Alteromonas sp. esterase (GenBank: PHS53692). As far as we know, no research on this enzyme has yet been conducted. Phylogenetic analysis showed that esterase EstA1 was a member of the bacterial lipolytic enzyme family IV (hormone sensitive lipases). Two deletion mutants (Δ20 and Δ54) of the esterase EstA1 were produced in Escherichia coli BL21 (DE3) cells with part of the N-terminal of the protein removed and His-tag attached to the C-terminal. These enzymes exhibited the highest activity toward p-nitrophenyl (pNP) acetate (C2) and had little or no activity towards pNP-esters with acyl chains longer than C6. Their optimum temperature and pH of the catalytic activity were 45°C and pH 8.0, respectively. As the NaCl concentration increased, their enzyme activities continued to increase and the highest enzyme activities were measured in 5 M NaCl. These enzymes were found to be stable for up to 8 h in the concentration of 3-5 M NaCl. Moreover, they have been found to be stable for various metal ions, detergents and organic solvents. These salt-tolerant and chemical-resistant properties suggest that the enzyme esterase EstA1 is both academically and industrially useful.
Collapse
Affiliation(s)
- Seok-Jae Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Han Byeol Jeong
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyung-Kwoun Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4890 Fax: +82-2-2164-4865 E-mail:
| |
Collapse
|
22
|
Noby N, Hussein A, Saeed H, Embaby AM. "Recombinant cold -adapted halotolerant, organic solvent-stable esterase (estHIJ) from Bacillus halodurans. Anal Biochem 2020; 591:113554. [PMID: 31863727 DOI: 10.1016/j.ab.2019.113554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/08/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Esterases and lipases enduring harsh conditions, including low temperature and extreme tolerance to organic solvents, have attracted great attention in recent times. In the current study, a full open reading frame of 747 bp that encodes a novel, cold-adapted esterase (estHIJ) of 248 amino acids from Bacillus halodurans strain NAH-Egypt was heterologously cloned and expressed in E. coli BL21 (DE3) Rosetta. Amino acid sequence analysis revealed that estHIJ belongs to family XIII of lipolytic enzymes, with a characteristic pentapeptide motif (G-L-S-L-G). The recombinant estHIJ was purified using Ni-affinity chromatography to homogeneity with purification fold, yield, specific activity, and molecular weight (MW) of 3.5, 47.5%, 19.8 U/mg and 29 kDa, respectively. The enzyme showed preferential substrate specificity towards pNP-acetate (C2), with catalytic efficiency of 46,825 min-1 mM-1 estHIJ displayed optimal activity at 30 °C and pH (7.0-8.0). estHIJ demonstrated robust stability in the presence of 50% (v/v) non-polar solvents and 4 M NaCl after 15 h and 6 h of incubation, respectively. The promising features of the recombinant estHIJ underpin its potential in several fields, e.g., the synthesis of pharmaceutical compounds and the food industry.
Collapse
Affiliation(s)
- Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
23
|
Adıgüzel AO. Production and characterization of thermo-, halo- and solvent-stable esterase from Bacillus mojavensis TH309. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1715370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ali Osman Adıgüzel
- Department of Molecular Biology and Genetics, Science and Letter Faculty, University of Ondokuz Mayıs, Samsun, Turkey
| |
Collapse
|
24
|
Li Z, Li L, Huo Y, Chen Z, Zhao Y, Huang J, Jian S, Rong Z, Wu D, Gan J, Hu X, Li J, Xu XW. Structure-guided protein engineering increases enzymatic activities of the SGNH family esterases. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:107. [PMID: 32549911 PMCID: PMC7294632 DOI: 10.1186/s13068-020-01742-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/30/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Esterases and lipases hydrolyze short-chain esters and long-chain triglycerides, respectively, and therefore play essential roles in the synthesis and decomposition of ester bonds in the pharmaceutical and food industries. Many SGNH family esterases share high similarity in sequences. However, they have distinct enzymatic activities toward the same substrates. Due to a lack of structural information, the detailed catalytic mechanisms of these esterases remain barely investigated. RESULTS In this study, we identified two SGNH family esterases, CrmE10 and AlinE4, from marine bacteria with significantly different preferences for pH, temperature, metal ion, and organic solvent tolerance despite high sequence similarity. The crystal structures of these two esterases, including wild type and mutants, were determined to high resolutions ranging from 1.18 Å to 2.24 Å. Both CrmE10 and AlinE4 were composed of five β-strands and nine α-helices, which formed one compact N-terminal α/β globular domain and one extended C-terminal domain. The aspartic residues (D178 in CrmE10/D162 in AlinE4) destabilized the conformations of the catalytic triad (Ser-Asp-His) in both esterases, and the metal ion Cd2+ might reduce enzymatic activity by blocking proton transfer or substrate binding. CrmE10 and AlinE4 showed distinctly different electrostatic surface potentials, despite the similar atomic architectures and a similar swap catalytic mechanism. When five negatively charged residues (Asp or Glu) were mutated to residue Lys, CrmE10 obtained elevated alkaline adaptability and significantly increased the enzymatic activity from 0 to 20% at pH 10.5. Also, CrmE10 mutants exhibited dramatic change for enzymatic properties when compared with the wide-type enzyme. CONCLUSIONS These findings offer a perspective for understanding the catalytic mechanism of different esterases and might facilitate the industrial biocatalytic applications.
Collapse
Affiliation(s)
- Zhengyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Long Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Yingyi Huo
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| | - Zijun Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Yu Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jing Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Shuling Jian
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| | - Zhen Rong
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| | - Di Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Xiaojian Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| |
Collapse
|
25
|
Tutuncu HE, Balci N, Tuter M, Karaguler NG. Recombinant production and characterization of a novel esterase from a hypersaline lake, Acıgöl, by metagenomic approach. Extremophiles 2019; 23:507-520. [PMID: 31154531 DOI: 10.1007/s00792-019-01103-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
The aim of this study was to isolate a novel esterase from a hypersaline lake by sequence-based metagenomics. The metagenomic DNA was isolated from the enriched hypersaline lake sediment. Degenerate primers targeting the conserved regions of lipolytic enzymes of halophilic microorganisms were used for polymerase chain reaction (PCR) and a whole gene was identified by genome walking. The gene was composed of 783 bp, which corresponds to 260 amino acids with a molecular weight of 28.2 kDa. The deduced amino acid sequence best matched with the esterase from Halomonas gudaonensis with an identity of 91%. Recombinantly expressed enzyme exhibited maximum activity towards pNP-hexanoate with a kcat value of 12.30 s-1. The optimum pH and temperature of the enzyme were found as 9 and 30 °C, respectively. The effects of NaCl, solvents, metal ions, detergents and enzyme inhibitors were also studied. In conclusion, a novel enzyme, named as hypersaline lake "Acıgöl" esterase (hAGEst), was identified by sequence-based metagenomics. The high expression level, the ability to maintain activity at cold temperatures and tolerance to DMSO and metal ions are the most outstanding properties of the hAGEst.
Collapse
Affiliation(s)
- Havva Esra Tutuncu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, 34469, Istanbul, Turkey
- Istanbul Technical University Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, 34469, Istanbul, Turkey
- Department of Gastronomy and Culinary Arts, Istanbul Gedik University, 34876, Istanbul, Turkey
| | - Nurgul Balci
- Department of Geological Engineering, Faculty of Mines, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Melek Tuter
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Nevin Gul Karaguler
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, 34469, Istanbul, Turkey.
- Istanbul Technical University Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, 34469, Istanbul, Turkey.
| |
Collapse
|
26
|
Cloning, Expression, and Characterization of a Novel Thermostable and Alkaline-stable Esterase from Stenotrophomonas maltophilia OUC_Est10 Catalytically Active in Organic Solvents. Catalysts 2019. [DOI: 10.3390/catal9050401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A thermostable and alkaline-stable novel esterase (Est7) was identified through the whole genome sequencing of Stenotrophomonas maltophilia OUC_Est10. The open reading frame of this gene encoded 617 amino acid residues. After heterologous expression in Escherichia coli BL21 (DE3), the purified Est7 was separated as a single protein and presented a molecular mass of 70.6 kDa. Multiple sequence alignment indicated that Est7 had a typical catalytic triad (Ser-Asp-His) and the conserved sequence (GDSL) typical of the family II lipid hydrolase proteins. Est7 showed good stability in alkaline buffers, especially in Tris-HCl buffer at pH 9.0 (residual activity 93.8% after 96 h at 4 °C) and in the medium temperature conditions (residual activity 70.2% after 96 h at 45 °C and pH 8.0). The enzyme also retained higher stability toward several hydrophilic and hydrophobic organic solvents (e.g., after incubation in 100% acetonitrile or in n-hexane the enzyme retained about 97% and 84% of the activity in the absence of organic solvent, respectively). Furthermore, Est7 could catalyze the transesterification reaction of vinylacetate with 2-phenylethanol and cis-3-hexen-1-ol to their corresponding acetate esters in petroleum ether or tert-butyl methyl ether. These results indicate Est7 as a promising biocatalyst for applications of Est7 in non-aqueous media.
Collapse
|
27
|
Hong LG, Jian SL, Huo YY, Cheng H, Hu XJ, Li J, Cui HL, Xu XW. A novel SGNH family hydrolase Ali5 with thioesterase activity and a GNSL motif but without a classic GDSL motif from Altererythrobacter ishigakiensis. Biotechnol Lett 2019; 41:591-604. [DOI: 10.1007/s10529-019-02662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/15/2019] [Indexed: 11/29/2022]
|
28
|
Structural and functional analysis of a dimeric fumarylacetoacetate hydrolase (EaFAH) from psychrophilic Exiguobacterium antarcticum. Biochem Biophys Res Commun 2019; 509:773-778. [PMID: 30630595 DOI: 10.1016/j.bbrc.2018.12.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 11/23/2022]
Abstract
Fumarylacetoacetate hydrolase (FAH) is essential for the degradation of aromatic amino acids as well as for the cleavage of carbon-carbon bonds in metabolites or small organic compounds. Here, the X-ray crystal structure of EaFAH, a dimeric fumarylacetoacetate hydrolase from Exiguobacterium antarcticum, was determined, and its functional properties were investigated using biochemical methods. EaFAH adopts a mixed β-sandwich roll fold with a highly flexible lid region (Val73-Leu94), and an Mg2+ ion is bound at the active site by coordinating to the three carboxylate oxygen atoms of Glu124, Glu126, and Asp155. The hydrolytic activity of EaFAH toward various substrates, including linalyl acetate was investigated using native polyacrylamide gel electrophoresis, activity staining, gel filtration, circular dichroism spectroscopy, fluorescence, and enzyme assays.
Collapse
|
29
|
Noby N, Saeed H, Embaby AM, Pavlidis IV, Hussein A. Cloning, expression and characterization of cold active esterase (EstN7) from Bacillus cohnii strain N1: A novel member of family IV. Int J Biol Macromol 2018; 120:1247-1255. [PMID: 30063933 DOI: 10.1016/j.ijbiomac.2018.07.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/11/2023]
Abstract
Esterases and lipases from extremophiles have attracted great attention due to their unique characteristics and wide applications. In the present study, an open reading frame (ORF) encoding a novel cold active esterase (EstN7) from Bacillus cohnii strain N1 was cloned and expressed in Escherichia coli. The full-length esterase gene encoding a protein of 320 amino acids with estimated molecular weight of 37.0 kDa. Amino acid sequence analysis revealed that the EstN7 belongs to family IV lipases with a characteristic penta-peptide motif (GXSXG), the catalytic triad Ser, Asp, His and the conserved HGGG motif of the family IV. The recombinant enzyme was purified to apparent homogeneity using nickel-affinity chromatography with a purification fold of 5 and recovery 94.5%. The specific activity of the purified enzyme was 336.89 U/mg. The recombinant EstN7 showed optimal activity at 5 °C moreover, EstN7 displayed full robust stability in the presence of wide range of organic solvents. The purified enzyme had Km and Vmax of 45 ± 0.019 μM and 1113 μmol min-1 mg-1, respectively on p-NP-acetate. These promising characteristics of the recombinant EstN7 would underpin its possible usage with high potential in the synthesis of fragile compounds in pharmaceutical industries.
Collapse
Affiliation(s)
- Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Mazlan SNHS, Ali MSM, Rahman RNZRA, Sabri S, Jonet MA, Leow TC. Crystallization and structure elucidation of GDSL esterase of Photobacterium sp. J15. Int J Biol Macromol 2018; 119:1188-1194. [PMID: 30102982 DOI: 10.1016/j.ijbiomac.2018.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022]
Abstract
GDSL esterase J15 (EstJ15) is a member of Family II of lipolytic enzyme. The enzyme was further classified in subgroup SGNH hydrolase due to the presence of highly conserve motif, Ser-Gly-Asn-His in four conserved blocks I, II, III, and V, respectively. X-ray quality crystal of EstJ15 was obtained from optimized formulation containing 0.10 M ammonium sulphate, 0.15 M sodium cacodylate trihydrate pH 6.5, and 20% PEG 8000. The crystal structure of EstJ15 was solved at 1.38 Å with one molecule per asymmetric unit. The structure exhibits α/β hydrolase fold and shared low amino acid sequence identity of 23% with the passenger domain of the autotransporter EstA of Pseudomonas aeruginosa. The active site is located at the centre of the structure, formed a narrow tunnel that hinder long substrates to be catalysed which was proven by the protein-ligand docking analysis. This study facilitates the understanding of high substrate specificity of EstJ15 and provide insights on its catalytic mechanism.
Collapse
Affiliation(s)
- Sharifah Nur Hidayah Syed Mazlan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology Research Center, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology Research Center, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology Research Center, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology Research Center, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology Research Center, Malaysia.
| |
Collapse
|
31
|
Wu L, Ali DC, Liu P, Peng C, Zhai J, Wang Y, Ye B. Degradation of phenol via ortho-pathway by Kocuria sp. strain TIBETAN4 isolated from the soils around Qinghai Lake in China. PLoS One 2018; 13:e0199572. [PMID: 29949643 PMCID: PMC6021097 DOI: 10.1371/journal.pone.0199572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/09/2018] [Indexed: 01/17/2023] Open
Abstract
Based on the feature of high-altitude permafrost topography and the diverse microbial ecological communities of the Qinghai-Tibetan Plateau, soil samples from thirteen different collection points around Qinghai lake were collected to screen for extremophilic strains with the ability to degrade phenol, and one bacterial strain recorded as TIBETAN4 that showed effective biodegradation of phenol was isolated and identified. TIBETAN4 was closely related to Kocuria based on its observed morphological, molecular and biochemical characteristics. TIBETAN4 grew well in the LB medium at pH 7–9 and 0–4% NaCl showing alkalophilicity and halophilism. The isolate could also tolerate up to 12.5 mM phenol and could degrade 5 mM phenol within 3 days. It maintained a high phenol degradation rate at pH 7–9 and 0–3% NaCl in MSM with 5 mM phenol added as the sole carbon source. Moreover, TIBETAN4 could maintain efficient phenol degradation activity in MSM supplemented with both phenol and glucose and complex water environments, including co-culture Penicillium strains or selection of non-sterilized natural lake water as a culture. It was found that TIBETAN4 showed enzymatic activity of phenol hydroxylase and catechol 1,2-dioxygenase after induction by phenol and the corresponding genes of the two enzymes were detected in the genome of the isolate, while catechol 2,3-dioxygenase or its gene was not, which means there could be a degradation pathway of phenol through the ortho-pathway. The Q-PCR results showed that the transcripts of both the phenol hydroxylase gene and catechol 1,2-dioxygenase gene were up-regulated under the stimulation of phenol, demonstrating again that the strain degraded phenol via ortho-degradation pathway.
Collapse
Affiliation(s)
- Leyang Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Daniel C. Ali
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Peng Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Cheng Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jingxin Zhai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
- * E-mail: (YW); (BY)
| | - Boping Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
- * E-mail: (YW); (BY)
| |
Collapse
|
32
|
Lu P, Gao X, Dong H, Liu Z, Secundo F, Xue C, Mao X. Identification of a Novel Esterase from Marine Environmental Genomic DNA Libraries and Its Application in Production of Free All- trans-Astaxanthin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2812-2821. [PMID: 29468878 DOI: 10.1021/acs.jafc.7b06062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Astaxanthin is a pigment with various functions. Free astaxanthin is obtained mainly through saponification methods, which could result in many byproducts. Enzymatic methods using lipases have been used in a few cases, while there are no reports on the use of esterases for the production of free astaxanthin. Herein we present the screening and identification of a novel esterase (Est3-14) from a marine mud metagenomic library. Est3-14 is pH-sensitive and keeps good stability in alkaline buffers (residual activity 94%, pH 8.0, 4 °C, and 36 h). Meanwhile, Est3-14 keeps a good stability in the medium temperature condition (residual activity 56.7%, pH 8.0, 40 °C, and 84 h). Est3-14 displayed high hydrolysis activity to prepare free all- trans-astaxanthin in biphasic systems. Furthermore, under optimal conditions (0.5 mL ethanol, 6 mL 0.1 M Tris-HCl buffer, pH 8.0, 0.5% (w/v) H. pluvialis oil, 40 °C), the hydrolytic conversion ratio was 99.3% after 36 h.
Collapse
Affiliation(s)
- Ping Lu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Xinwei Gao
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Hao Dong
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Zhen Liu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR , v. Mario Bianco 9 , Milan 20131 , Italy
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Xiangzhao Mao
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| |
Collapse
|
33
|
Yang X, Wu L, Xu Y, Ke C, Hu F, Xiao X, Huang J. Identification and characterization of a novel alkalistable and salt-tolerant esterase from the deep-sea hydrothermal vent of the East Pacific Rise. Microbiologyopen 2018; 7:e00601. [PMID: 29504251 PMCID: PMC6182558 DOI: 10.1002/mbo3.601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/11/2022] Open
Abstract
A novel esterase gene selected from metagenomic sequences of deep-sea hydrothermal vents was successfully expressed in Escherichia coli. The recombinant protein (est-OKK), which belongs to the lipolytic enzyme family V, exhibited high activity toward pNP-esters with short acyl chains and especially p-nitrophenyl butyrate. Site-mutagenesis results confirmed that est-OKK contains the nonclassical catalytic tetrad predicted by alignment and computational modeling. The est-OKK protein is a moderately thermophilic enzyme that is relatively thermostable, and highly salt-tolerant, which remained stable in 3 mol/L NaCl for 6 hr. The est-OKK protein showed the considerable alkalistability, displayed optimal activity at pH 9.0 and maintained approximately 70% of its residual activity after incubation at pH 10 for 4 hr. Furthermore, the est-OKK activity was strongly resistant to a variety of metal ions such as Co2+ , Zn2+ , Fe2+ , Na+ , and K+ ; nonionic detergents such as Tween-20, Tween-80; and organic solvents such as acetone and isopropanol. Taken together, the novel esterase with unique characteristics may give us a new insight into the family V of lipolytic enzymes, and could be a highly valuable candidate for biotechnological applications such as organic synthesis reactions or food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xinwei Yang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Lianzuan Wu
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Ying Xu
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Chongrong Ke
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Fangfang Hu
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
34
|
Chen K, Mo Q, Liu H, Yuan F, Chai H, Lu F, Zhang H. Identification and characterization of a novel cold-tolerant extracellular protease from Planococcus sp. CGMCC 8088. Extremophiles 2018; 22:473-484. [PMID: 29497843 DOI: 10.1007/s00792-018-1010-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/05/2018] [Indexed: 01/12/2023]
Abstract
A psychrophilic extracellular protease was isolated from the marine bacterium Planococcus sp. M7 found in the deep-sea mud of the Southern Indian Ocean. The mature protease is about 43 kDa and contains 389 amino acids. Sequence alignment revealed that the protease whose catalytic triad was comprised of Ser224, Lys249, and Gln253 contains a catalytic module belonging to the serralysin-type protease family 41, and displays 46.55% identity with the experimentally verified serine protease from Bacillus subtilis str. 168. The enzyme displayed an alkaline mesophilic preference with an optimum pH of 10.0 and an optimum temperature of 35 °C. The enzyme retained its activity from 5 to 35 °C and was resistant to repeated freezing and thawing, but was completely inactivated at 55 °C. Calcium ions had a protective effect against thermal denaturation. More than 60% of the maximum activity was retained at pH values in the range of 5.0-11.0. Almost no activity loss was detected after 1 h of incubation at pH 8.0-10.0 and 20 °C, or with 1.0% SDS. Most important, this protease also showed good stability and compatibility with the standard enzyme-free detergent, which indicates its special interest for applications in detergent industry.
Collapse
Affiliation(s)
- Kun Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qingshan Mo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Huan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Feiyan Yuan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haonan Chai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,Industrial Microbiology Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin, 300457, People's Republic of China.
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,Industrial Microbiology Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
35
|
Madhavan A, Sindhu R, Binod P, Sukumaran RK, Pandey A. Strategies for design of improved biocatalysts for industrial applications. BIORESOURCE TECHNOLOGY 2017; 245:1304-1313. [PMID: 28533064 DOI: 10.1016/j.biortech.2017.05.031] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/28/2017] [Accepted: 05/05/2017] [Indexed: 05/07/2023]
Abstract
Biocatalysts are creating increased interest among researchers due to their unique properties. Several enzymes are efficiently produced by microorganisms. However, the use of natural enzymes as biocatalysts is hindered by low catalytic efficiency and stability during various industrial processes. Many advanced enzyme technologies have been developed to reshape the existing natural enzymes to reduce these limitations and prospecting of novel enzymes. Frequently used enzyme technologies include protein engineering by directed evolution, immobilisation techniques, metagenomics etc. This review summarizes recent and emerging advancements in the area of enzyme technologies for the development of novel biocatalysts and further discusses the future directions in this field.
Collapse
Affiliation(s)
- Aravind Madhavan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India; Rajiv Gandhi Centre For Biotechnology, Trivandrum 695 014, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India.
| | - Parameswaran Binod
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, Punjab, India
| |
Collapse
|
36
|
Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting. Appl Biochem Biotechnol 2017; 183:636-651. [PMID: 28815469 DOI: 10.1007/s12010-017-2568-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
Abstract
Microorganisms are found throughout every corner of nature, and vast number of microorganisms is difficult to cultivate by classical microbiological techniques. The advent of metagenomics has revolutionized the field of microbial biotechnology. Metagenomics allow the recovery of genetic material directly from environmental niches without any cultivation techniques. Currently, metagenomic tools are widely employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the uncultivable component of microbial communities. The employment of next-generation sequencing techniques for metagenomics resulted in the generation of large sequence data sets derived from various environments, such as soil, the human body and ocean water. This review article describes the state-of-the-art techniques and tools in metagenomics and discusses the potential of metagenomic approaches for the bioprospecting of industrial enzymes from various environmental samples. We also describe the unusual novel enzymes discovered via metagenomic approaches and discuss the future prospects for metagenome technologies.
Collapse
|
37
|
Cai X, Wang W, Lin L, He D, Huang G, Shen Y, Wei W, Wei D. Autotransporter domain-dependent enzymatic analysis of a novel extremely thermostable carboxylesterase with high biodegradability towards pyrethroid pesticides. Sci Rep 2017; 7:3461. [PMID: 28615636 PMCID: PMC5471204 DOI: 10.1038/s41598-017-03561-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 05/02/2017] [Indexed: 11/24/2022] Open
Abstract
The EstPS1 gene, which encodes a novel carboxylesterase of Pseudomonas synxantha PS1 isolated from oil well-produced water, was cloned and sequenced. EstPS1 has an open reading frame of 1923 bp and encodes the 640-amino acid carboxylesterase (EstPS1), which contains an autotransporter (AT) domain (357–640 amino acids). Homology analysis revealed that EstPS1 shared the highest identity (88%) with EstA from Pseudomonas fluorescens A506 (NCBI database) and belonged to the carboxylesterase family (EC 3.1.1.1). The optimum pH and temperature of recombinant EstPS1 were found to be 8.0 and 60 °C, respectively. EstPS1 showed high thermostability, and the half-lives (T1/2 thermal inactivation) at 60, 70, 80, 90, and 100 °C were 14 h, 2 h, 31 min, 10 min, and 1 min, respectively. To understand the role of the AT domain in carboxylesterase, AT domain-truncated carboxylesterase (EstPS1ΔAT) was generated. EstPS1ΔAT showed a clearly decreased secretion rate, owing to the AT domain strongly improved secretory expression in the heterogeneous system. EstPS1 degraded various pyrethroid pesticides, and hydrolysis efficiencies were dependent on the pyrethroid molecular structure. EstPS1 degraded all the tested pyrethroid pesticides and hydrolysed the p-nitrophenyl esters of medium-short-chain fatty acids, indicating that EstPS1 is an esterase with broad specificity.
Collapse
Affiliation(s)
- Xianghai Cai
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Lin Lin
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China.,Shanghai University of Medicine and Health Sciences, Shanghai, 200093, People's Republic of China
| | - Dannong He
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China.,Shanghai University of Medicine and Health Sciences, Shanghai, 200093, People's Republic of China
| | - Gang Huang
- Shanghai University of Medicine and Health Sciences, Shanghai, 200093, People's Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
38
|
A Shinella β-N-acetylglucosaminidase of glycoside hydrolase family 20 displays novel biochemical and molecular characteristics. Extremophiles 2017; 21:699-709. [DOI: 10.1007/s00792-017-0935-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
|
39
|
Zhou J, Song Z, Zhang R, Liu R, Wu Q, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Distinctive molecular and biochemical characteristics of a glycoside hydrolase family 20 β-N-acetylglucosaminidase and salt tolerance. BMC Biotechnol 2017; 17:37. [PMID: 28399848 PMCID: PMC5387316 DOI: 10.1186/s12896-017-0358-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/04/2017] [Indexed: 12/05/2022] Open
Abstract
Background Enzymatic degradation of chitin has attracted substantial attention because chitin is an abundant renewable natural resource, second only to lignocellulose, and because of the promising applications of N-acetylglucosamine in the bioethanol, food and pharmaceutical industries. However, the low activity and poor tolerance to salts and N-acetylglucosamine of most reported β-N-acetylglucosaminidases limit their applications. Mining for novel enzymes from new microorganisms is one way to address this problem. Results A glycoside hydrolase family 20 (GH 20) β-N-acetylglucosaminidase (GlcNAcase) was identified from Microbacterium sp. HJ5 harboured in the saline soil of an abandoned salt mine and was expressed in Escherichia coli. The purified recombinant enzyme showed specific activities of 1773.1 ± 1.1 and 481.4 ± 2.3 μmol min−1 mg−1 towards p-nitrophenyl β-N-acetylglucosaminide and N,N'-diacetyl chitobiose, respectively, a Vmax of 3097 ± 124 μmol min−1 mg−1 towards p-nitrophenyl β-N-acetylglucosaminide and a Ki of 14.59 mM for N-acetylglucosamine inhibition. Most metal ions and chemical reagents at final concentrations of 1.0 and 10.0 mM or 0.5 and 1.0% (v/v) had little or no effect (retaining 84.5 − 131.5% activity) on the enzyme activity. The enzyme can retain more than 53.6% activity and good stability in 3.0–20.0% (w/v) NaCl. Compared with most GlcNAcases, the activity of the enzyme is considerably higher and the tolerance to salts and N-acetylglucosamine is much better. Furthermore, the enzyme had higher proportions of aspartic acid, glutamic acid, alanine, glycine, random coils and negatively charged surfaces but lower proportions of cysteine, lysine, α-helices and positively charged surfaces than its homologs. These molecular characteristics were hypothesised as potential factors in the adaptation for salt tolerance and high activity of the GH 20 GlcNAcase. Conclusions Biochemical characterization revealed that the GlcNAcase had novel salt–GlcNAc tolerance and high activity. These characteristics suggest that the enzyme has versatile potential in biotechnological applications, such as bioconversion of chitin waste and the processing of marine materials and saline foods. Molecular characterization provided an understanding of the molecular–function relationships for the salt tolerance and high activity of the GH 20 GlcNAcase. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0358-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zhifeng Song
- College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Rui Liu
- College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China. .,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
40
|
Zhang Y, Hao J, Zhang YQ, Chen XL, Xie BB, Shi M, Zhou BC, Zhang YZ, Li PY. Identification and Characterization of a Novel Salt-Tolerant Esterase from the Deep-Sea Sediment of the South China Sea. Front Microbiol 2017; 8:441. [PMID: 28386249 PMCID: PMC5362591 DOI: 10.3389/fmicb.2017.00441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/03/2017] [Indexed: 12/02/2022] Open
Abstract
Marine esterases play an important role in marine organic carbon degradation and cycling. Halotolerant esterases from the sea may have good potentials in industrial processes requiring high salts. Although a large number of marine esterases have been characterized, reports on halotolerant esterases are only a few. Here, a fosmid library containing 7,200 clones was constructed from a deep-sea sediment sample from the South China Sea. A gene H8 encoding an esterase was identified from this library by functional screening and expressed in Escherichia coli. Phylogenetic analysis showed that H8 is a new member of family V of bacterial lipolytic enzymes. H8 could effectively hydrolyze short-chain monoesters (C4–C10), with the highest activity toward p-nitrophenyl hexanoate. The optimal temperature and pH for H8 activity were 35°C and pH 10.0, respectively. H8 had high salt tolerance, remaining stable in 4.5 M NaCl, which suggests that H8 is well adapted to the marine saline environment and that H8 may have industrial potentials. Unlike reported halophilic/halotolerant enzymes with high acidic/basic residue ratios and low pI values, H8 contains a large number of basic residues, leading to its high basic/acidic residue ratio and high predicted pI (9.09). Moreover, more than 10 homologous sequences with similar basic/acidic residue ratios and predicted pI values were found in database, suggesting that H8 and its homologs represent a new group of halotolerant esterases. We also investigated the role of basic residues in H8 halotolerance by site-directed mutation. Mutation of Arg195, Arg203 or Arg236 to acidic Glu significantly decreased the activity and/or stability of H8 under high salts, suggesting that these basic residues play a role in the salt tolerance of H8. These results shed light on marine bacterial esterases and halotolerant enzymes.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University Jinan, China
| | - Jie Hao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University Jinan, China
| | - Yan-Qi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University Jinan, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University Jinan, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University Jinan, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University Jinan, China
| | - Bai-Cheng Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University Jinan, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University Jinan, China
| |
Collapse
|
41
|
Dong H, Secundo F, Xue C, Mao X. Whole-Cell Biocatalytic Synthesis of Cinnamyl Acetate with a Novel Esterase from the DNA Library of Acinetobacter hemolyticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2120-2128. [PMID: 28220703 DOI: 10.1021/acs.jafc.6b05799] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cinnamyl acetate has a wide application in the flavor and fragrance industry because of its sweet, balsamic, and floral odor. Up to now, lipases have been mainly used in enzyme-mediated synthesis of cinnamyl acetate, whereas esterases are used in only a few cases. Moreover, the use of purified enzymes is often a disadvantage, which leads to increases of the production costs. In this paper, a genomic DNA library of Acinetobacter hemolyticus was constructed, and a novel esterase (EstK1) was identified. After expression in Escherichia coli, the whole-cell catalyst of EstK1 displayed high transesterification activity to produce cinnamyl acetate in nonaqueous systems. Furthermore, under optimal conditions (vinyl acetate as acyl donor, isooctane as solvent, molar ratio 1:4, temperature 40 °C), the conversion ratio of cinnamyl alcohol could be up to 94.1% at 1 h, and it reached an even higher level (97.1%) at 2 h.
Collapse
Affiliation(s)
- Hao Dong
- College of Food Science and Engineering, Ocean University of China , Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR , v. Mario Bianco 9, 20131 Milan, Italy
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China , Qingdao 266003, China
| |
Collapse
|
42
|
Kang LJ, Meng ZT, Hu C, Zhang Y, Guo HL, Li Q, Li M. Screening, purification, and characterization of a novel organic solvent-tolerant esterase, Lip2, from Monascus purpureus strain M7. Extremophiles 2017; 21:345-355. [DOI: 10.1007/s00792-016-0907-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/19/2016] [Indexed: 12/01/2022]
|
43
|
Wang G, Wu J, Yan R, Lin J, Ye X. A Novel Multi-domain High Molecular, Salt-Stable Alkaline Xylanase from Alkalibacterium sp. SL3. Front Microbiol 2017; 7:2120. [PMID: 28101084 PMCID: PMC5209378 DOI: 10.3389/fmicb.2016.02120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
A novel multi-domain high molecular xylanase coding gene (xynSL3) was cloned from Alkalibacterium sp. SL3, an alkaliphilic bacterial strain isolated from the sediment of soda lake Dabusu. The deduced XynSL3 is composed of a putative signal peptide, three tandem domains of carbohydrate binding module (CBM) family 22, a catalytic domain of glycosyl hydrolase (GH) family 10 and a domain of CBM9. XynSL3 shares the highest identity of 66% to a hypothetical protein from Alkalibacterium sp. AK22 and has low identities (33-45%) with other functionally characterized xylanases. The gene xynSL3 was expressed heterologously in Escherichia coli and the recombinant enzyme demonstrated some particular characteristics. Purified recombinant XynSL3 (rXynSL3) was highly active and stable over the neutral and alkaline pH ranges from 7.0 to 12.0, with maximum activity at pH 9.0 and around 45% activity at pH 12.0. It had an apparent temperature optimum of 55°C and was stable at 50°C. The rXynSL3 was highly halotolerant, retaining more than 60% activity with 3 M NaCl and was stable at up to a 4 M concentration of NaCl. The hydrolysis products of rXynSL3 from corncob xylan were mainly xylobiose and xylotetraose. The activity of rXynSL3 was enhanced by Ca2+ and it has strong resistance to sodium dodecyl sulfate (SDS). This multi-domain, alkaline and salt-tolerant enzyme has great potential for basic research and industrial applications such as the biobleaching of paper pulp and production of xylo-oligosaccharides (XOS).
Collapse
Affiliation(s)
- Guozeng Wang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFuzhou, China; College of Biological Science and Technology, Fuzhou UniversityFuzhou, China
| | - Jingjing Wu
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFuzhou, China; College of Biological Science and Technology, Fuzhou UniversityFuzhou, China
| | - Renxiang Yan
- College of Biological Science and Technology, Fuzhou University Fuzhou, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFuzhou, China; College of Biological Science and Technology, Fuzhou UniversityFuzhou, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFuzhou, China; College of Biological Science and Technology, Fuzhou UniversityFuzhou, China
| |
Collapse
|
44
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
45
|
Functional Characterization of a Marine Bacillus Esterase and its Utilization in the Stereo-Selective Production of D-Methyl Lactate. Appl Biochem Biotechnol 2016; 180:1467-1481. [PMID: 27364331 DOI: 10.1007/s12010-016-2180-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
Chiral lactic acid and its ester derivatives are crucial building blocks and platforms in the generation of high value-added drugs, fine chemicals and functional materials. Optically pure D-lactic acid and its ester derivatives cannot be directly generated from fermentation and are quite expensive. Herein, we identified, heterologously expressed and functionally characterized one Bacillus esterase BSE01701 from the deep sea of the Indian Ocean. Esterase BSE01701 could enzymatically resolve inexpensive racemic methyl lactate and generate chiral D-methyl lactate. The enantiomeric excess of desired chiral D-methyl lactate and the substrate conversion could reach over 99 % and 60 %, respectively, after process optimization. Notably, the addition of 60 % (v/v) organic co-solvent heptane could greatly improve both the enantiomeric excess of D-methyl lactate and the conversion. BSE01701 was a very promising marine microbial esterase in the generation of chiral chemicals in industry.
Collapse
|
46
|
Functional Characterization of a Robust Marine Microbial Esterase and Its Utilization in the Stereo-Selective Preparation of Ethyl (S)-3-Hydroxybutyrate. Appl Biochem Biotechnol 2016; 180:1196-1212. [DOI: 10.1007/s12010-016-2161-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/06/2016] [Indexed: 11/30/2022]
|