1
|
Saha S, Zhang Y, Gibert MK, Dube C, Hanif F, Mulcahy E, Bednarek S, Marcinkiewicz P, Wang X, Kwak G, Hudson K, Sun Y, Dinda M, Saha T, Guessous F, Cruickshanks N, Colon RR, Dell'Olio LG, Anbu R, Kefas B, Kumar P, Klibanov AL, Schiff D, Suk JS, Hanes J, Mata J, Hafner M, Abounader R. Discovery and therapeutic exploitation of Master Regulatory miRNAs in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646663. [PMID: 40236125 PMCID: PMC11996502 DOI: 10.1101/2025.04.01.646663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Glioblastoma is a fatal primary malignant brain tumor. Despite therapies involving surgical resection, chemotherapy, and radiation therapy, the average survival for glioblastoma patients remains at approximately 15 months. MicroRNAs (miRNAs) are short noncoding RNA molecules that regulate the expression of the majority of human genes. Numerous genes are concurrently deregulated in glioblastoma. Consequently, molecular monotherapies have failed to achieve improvements in clinical outcomes. Several lines of evidence suggest that simultaneous targeting of several deregulated molecules is required to achieve better therapies. However, the simultaneous targeting of several deregulated oncogenic drivers is severely limited by the fact that the drugs needed to target many deregulated molecules do not currently exist, and because combining several drugs in a clinical setting leads to an exponential increase in toxicity. We hypothesized that we can develop and use miRNA to simultaneously inhibit multiple deregulated genes for more efficacious glioblastoma therapies. The goal of this study was therefore to identify master regulatory microRNAs (miRNAs) and use them to simultaneously target multiple deregulated molecules for GBM therapy. We defined master regulatory miRNAs as those that target several deregulated genes in glioblastoma. To find master regulatory miRNAs, we first used PAR-CLIP screenings to identify all targets of all miRNAs in glioblastoma cells. We then analyzed TCGA tumor data to determine which of these targets are deregulated in human tumors. We developed and used an algorithm to rank these targets for significance in glioblastoma malignancy based on their magnitude of deregulation, frequency of deregulation, and correlation with patient survival. We then ranked the miRNAs for their capacity of targeting multiple glioblastoma-deregulated genes and therefore the potential to exhibit strong anti-tumor effects when delivered as therapy. Using this strategy, we selected two tumor suppressor master regulatory miRNAs, miR-340, miR-382 and an oncogenic master regulatory miRNA, miR-17. We validated the target genes of the miRNAs and showed that they form part of important glioblastoma regulatory pathways. We then showed that the miRNAs (miR-340 and miR-582) or the miR-17 inhibitor have strong inhibitory effects on glioblastoma cell growth, survival, invasion, stemness and in vivo tumor growth. Ultimately, we developed and successfully tested a new therapeutic approach to delivery miR-340 using MRI guided focused ultrasound and microbubbles (FUS-MB) and special brain penetrating nanoparticles (BPN). This approach resulted in a substantial reduction in tumor volume and prolongation of the survival of glioblastoma-bearing mice and can be translated into clinical trials. We therefore developed and successfully tested a novel strategy to discover and deliver miRNAs for glioblastoma and cancer therapy.
Collapse
|
2
|
Mousavi MA, Rezaei M, Pourhamzeh M, Salari M, Hossein-Khannazer N, Shpichka A, Nabavi SM, Timashev P, Vosough M. Translational Approach using Advanced Therapy Medicinal Products for Huntington's Disease. Curr Rev Clin Exp Pharmacol 2025; 20:14-31. [PMID: 38797903 DOI: 10.2174/0127724328300166240510071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Current therapeutic approaches for Huntington's disease (HD) focus on symptomatic treatment. Therefore, the unavailability of efficient disease-modifying medicines is a significant challenge. Regarding the molecular etiology, targeting the mutant gene or advanced translational steps could be considered promising strategies. The evidence in gene therapy suggests various molecular techniques, including knocking down mHTT expression using antisense oligonucleotides and small interfering RNAs and gene editing with zinc finger proteins and CRISPR-Cas9-based techniques. Several post-transcriptional and post-translational modifications have also been proposed. However, the efficacy and long-term side effects of these modalities have yet to be verified. Currently, cell therapy can be employed in combination with conventional treatment and could be used for HD in which the structural and functional restoration of degenerated neurons can occur. Several animal models have been established recently to develop cell-based therapies using renewable cell sources such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stromal cells, and neural stem cells. These models face numerous challenges in translation into clinics. Nevertheless, investigations in Advanced Therapy Medicinal Products (ATMPs) open a promising window for HD research and their clinical application. In this study, the ATMPs entry pathway in HD management was highlighted, and their advantages and disadvantages were discussed.
Collapse
Affiliation(s)
- Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maliheh Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Mehri Salari
- Department of Neurology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden
| |
Collapse
|
3
|
Li X, Ding X, He Y, Yi W, Zhu Y, Han W, Liao B, Han X, Bai D. Ultrasound Tissue Engineering Technology for Regulating Immune Microenvironment. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 01/06/2025]
Abstract
AbstractThe immune microenvironment is critical for the occurrence, progression, and treatment of diseases. Ultrasound tissue engineering technology utilizes ultrasound and the principles of tissue engineering to repair, regenerate, and functionally reconstruct biological tissues. Ultrasound therapy is a non‐invasive treatment modality that regulates the immune microenvironment and maintains homeostasis through various characteristic effects. Ultrasound‐responsive biomaterials utilize biological properties or drug/gene delivery to regulate the immune microenvironment under ultrasound stimulation for targeted and purposeful treatment. This article comprehensively and systematically reviews advancements in ultrasound tissue engineering technology for regulating the immune microenvironment. First, the changes in the immune microenvironment at different stages of the disease is briefly illustrated. It is then reviewed the regulation of the immune microenvironment by ultrasound and ultrasound‐responsive biomaterials in five types of diseases: tumor, cardiovascular system diseases, nervous system diseases, musculoskeletal diseases, and wound. Finally, the prospects of the ultrasound tissue engineering technology for regulating the immune microenvironment is summarized.
Collapse
Affiliation(s)
- Xinhe Li
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Xiaoqian Ding
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Yi He
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Ying Zhu
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Wang Han
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Bo Liao
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Dingqun Bai
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering Chongqing Medical University Chongqing 400016 P. R. China
| |
Collapse
|
4
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
6
|
Mascotte-Cruz JU, Vera A, Leija L, Lopez-Salas FE, Gradzielski M, Koetz J, Gatica-García B, Rodríguez-Oviedo CP, Valenzuela-Arzeta IE, Escobedo L, Reyes-Corona D, Gutierrez-Castillo ME, Maldonado-Berny M, Espadas-Alvarez AJ, Orozco-Barrios CE, Martinez-Fong D. Focused ultrasound on the substantia nigra enables safe neurotensin-polyplex nanoparticle-mediated gene delivery to dopaminergic neurons intranasally and by blood circulation. DISCOVER NANO 2024; 19:60. [PMID: 38564106 PMCID: PMC10987469 DOI: 10.1186/s11671-024-04005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Neurotensin-polyplex nanoparticles provide efficient gene transfection of nigral dopaminergic neurons when intracerebrally injected in preclinical trials of Parkinson's disease because they do not cross the blood-brain barrier (BBB). Therefore, this study aimed to open BBB with focused ultrasound (FUS) on the substantia nigra to attain systemic and intranasal transfections and evaluate its detrimental effect in rats. Systemically injected Evans Blue showed that a two-pulse FUS opened the nigral BBB. Accordingly, 35 μL of neurotensin-polyplex nanoparticles encompassing the green fluorescent protein plasmid (79.6 nm mean size and + 1.3 mV Zeta-potential) caused its expression in tyrosine hydroxylase(+) cells (dopaminergic neurons) of both substantiae nigrae upon delivery via internal carotid artery, retro-orbital venous sinus, or nasal mucosa 30 min after FUS. The intracarotid delivery yielded the highest transgene expression, followed by intranasal and venous administration. However, FUS caused neuroinflammation displayed by infiltrated lymphocytes (positive to cluster of differentiation 45), activated microglia (positive to ionized calcium-binding adaptor molecule 1), neurotoxic A1 astrocytes (positive to glial fibrillary acidic protein and complement component 3), and neurotrophic A2 astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10), that ended 15 days after FUS. Dopaminergic neurons and axonal projections decreased but recuperated basal values on day 15 after transfection, correlating with a decrease and recovery of locomotor behavior. In conclusion, FUS caused transient neuroinflammation and reversible neuronal affection but allowed systemic and intranasal transfection of dopaminergic neurons in both substantiae nigrae. Therefore, FUS could advance neurotensin-polyplex nanotechnology to clinical trials for Parkinson's disease.
Collapse
Affiliation(s)
- Juan U Mascotte-Cruz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Arturo Vera
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Lorenzo Leija
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Francisco E Lopez-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Instituto de Investigaciones Biomédicas, Ciudad de Mexico, México
| | - Michael Gradzielski
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Joachim Koetz
- Institut für Chemie , Universität Potsdam, Potsdam, Germany
| | - Bismark Gatica-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
- Nanoparticle Therapy Institute, Aguascalientes, México
| | | | - Irais E Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | | | - M E Gutierrez-Castillo
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Armando J Espadas-Alvarez
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Carlos E Orozco-Barrios
- CONAHCYT - Unidad de Investigaciones Médicas en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México.
- Nanoparticle Therapy Institute, Aguascalientes, México.
| |
Collapse
|
7
|
Niazi SK. Non-Invasive Drug Delivery across the Blood-Brain Barrier: A Prospective Analysis. Pharmaceutics 2023; 15:2599. [PMID: 38004577 PMCID: PMC10674293 DOI: 10.3390/pharmaceutics15112599] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Non-invasive drug delivery across the blood-brain barrier (BBB) represents a significant advancement in treating neurological diseases. The BBB is a tightly packed layer of endothelial cells that shields the brain from harmful substances in the blood, allowing necessary nutrients to pass through. It is a highly selective barrier, which poses a challenge to delivering therapeutic agents into the brain. Several non-invasive procedures and devices have been developed or are currently being investigated to enhance drug delivery across the BBB. This paper presents a review and a prospective analysis of the art and science that address pharmacology, technology, delivery systems, regulatory approval, ethical concerns, and future possibilities.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Fatani AS, Petkova A, Schatzlein AG, Uchegbu IF. Dose-dependent delivery of genes to the cerebral cortex via the nasal route. Int J Pharm 2023; 644:123343. [PMID: 37633538 DOI: 10.1016/j.ijpharm.2023.123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The use of nucleic acids to treat various brain diseases could offer new therapeutic modalities, providing the nucleic acids may be effectively delivered to areas of the brain using non-toxic vectors. In this study, we present evidence that genes may be successfully delivered in a dose-dependent manner via the nose, primarily to the cerebral cortex using a 6-O-glycolchitosan (GC) formulation of plasmid DNA. Positively charged (zeta potential = +13 - + 25 mV) GC-DNA nanoparticles of 100-500 nm in diameter with favourable cell biocompatibility were shown to deliver the reporter Green Fluorescent Protein (GFP) plasmid to the U87MG cell line and the resulting protein expression was not significantly different from that obtained with Lipofectamine 2000. On intranasal delivery of GC-luciferase-plasmid nanoparticles to Balb/ C mice at 4 doses, ranging from 0.02 to 0.1 mg/ kg, luciferase activity was observed qualitatively in intact mouse brains, 48 h after intranasal, using the IV-VIS visualisation. In further confirmation of brain delivery, dose-dependent protein expression was quantified in multiple brain areas 48 h after dosing; with protein expression seen mainly in the cerebral cortex and striatum and following expression levels: cerebral cortex = olfactory bulb > striatum > brain stem > mid brain = cerebellum. No protein expression was observed in the liver and lungs of dosed animals. GC-DNA protein expression was not significantly different to that observed with Lipofectamine 2000. These results demonstrate that GC-DNA nanoparticles are able to deliver genes preferably to specific brain regions such as the cerebral cortex and striatum; offering the possibility of using genes to treat a range of neurological disorders using a non-invasive method of dosing.
Collapse
Affiliation(s)
| | - Asya Petkova
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., Block Y, Northwick Park and St Mark's Hospital, Watford Road, Harrow HA1 3UJ, UK
| | - Andreas G Schatzlein
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., Block Y, Northwick Park and St Mark's Hospital, Watford Road, Harrow HA1 3UJ, UK
| | - Ijeoma F Uchegbu
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., Block Y, Northwick Park and St Mark's Hospital, Watford Road, Harrow HA1 3UJ, UK.
| |
Collapse
|
9
|
Muksuris K, Scarisbrick DM, Mahoney JJ, Cherkasova MV. Noninvasive Neuromodulation in Parkinson's Disease: Insights from Animal Models. J Clin Med 2023; 12:5448. [PMID: 37685514 PMCID: PMC10487610 DOI: 10.3390/jcm12175448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The mainstay treatments for Parkinson's Disease (PD) have been limited to pharmacotherapy and deep brain stimulation. While these interventions are helpful, a new wave of research is investigating noninvasive neuromodulation methods as potential treatments. Some promising avenues have included transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electroconvulsive therapy (ECT), and focused ultrasound (FUS). While these methods are being tested in PD patients, investigations in animal models of PD have sought to elucidate their therapeutic mechanisms. In this rapid review, we assess the available animal literature on these noninvasive techniques and discuss the possible mechanisms mediating their therapeutic effects based on these findings.
Collapse
Affiliation(s)
- Katherine Muksuris
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - David M. Scarisbrick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Mahoney
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Mariya V. Cherkasova
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
10
|
Bao Y, Lu W. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1681-1698. [PMID: 36945117 DOI: 10.1080/17425247.2023.2193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cerebral diseases have been threatening public physical and psychological health in the recent years. With the existence of the blood-brain barrier (BBB), it is particularly hard for therapeutic proteins like peptides, enzymes, antibodies, etc. to enter the central nervous system (CNS) and function in diagnosis and treatment in cerebral diseases. Fortunately, the past decade has witnessed some emerging strategies of delivering macromolecular therapeutic proteins across the BBB. AREAS COVERED Based on the structure, functions, and substances transport mechanisms, various enhanced delivery strategies of therapeutic proteins were reviewed, categorized by molecule-mediated delivery strategies, carrier-mediated delivery strategies, and other delivery strategies. EXPERT OPINION As for molecule-mediated delivery strategies, development of genetic engineering technology, optimization of protein expression and purification techniques, and mature of quality control systems all help to realize large-scale production of recombinant antibodies, making it possible to apply to the clinical practice. In terms of carrier-mediated delivery strategies and others, although nano-carriers/adeno-associated virus (AAV) are also promising candidates for delivering therapeutic proteins or genes across the BBB, some issues still remain to be further investigated, including safety concerns related to applied materials, large-scale production costs, quality control standards, combination therapies with auxiliary delivery strategies like focused ultrasound, etc.
Collapse
Affiliation(s)
- Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
- Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd. Lingang of Shanghai, China
| |
Collapse
|
11
|
Kong C, Chang WS. Preclinical Research on Focused Ultrasound-Mediated Blood-Brain Barrier Opening for Neurological Disorders: A Review. Neurol Int 2023; 15:285-300. [PMID: 36810473 PMCID: PMC9944161 DOI: 10.3390/neurolint15010018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Several therapeutic agents for neurological disorders are usually not delivered to the brain owing to the presence of the blood-brain barrier (BBB), a special structure present in the central nervous system (CNS). Focused ultrasound (FUS) combined with microbubbles can reversibly and temporarily open the BBB, enabling the application of various therapeutic agents in patients with neurological disorders. In the past 20 years, many preclinical studies on drug delivery through FUS-mediated BBB opening have been conducted, and the use of this method in clinical applications has recently gained popularity. As the clinical application of FUS-mediated BBB opening expands, it is crucial to understand the molecular and cellular effects of FUS-induced microenvironmental changes in the brain so that the efficacy of treatment can be ensured, and new treatment strategies established. This review describes the latest research trends in FUS-mediated BBB opening, including the biological effects and applications in representative neurological disorders, and suggests future directions.
Collapse
Affiliation(s)
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Zhong YX, Liao JC, Liu X, Tian H, Deng LR, Long L. Low intensity focused ultrasound: a new prospect for the treatment of Parkinson's disease. Ann Med 2023; 55:2251145. [PMID: 37634059 PMCID: PMC10461511 DOI: 10.1080/07853890.2023.2251145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
Background: As a chronic and progressive neurodegenerative disease, Parkinson's disease (PD) still lacks effective and safe targeted drug therapy. Low-intensity focused ultrasound (LIFU), a new method to stimulate the brain and open the blood-brain barrier (BBB), has been widely concerned by PD researchers due to its non-invasive characteristics.Methods: PubMed was searched for the past 10 years using the terms 'focused ultrasound', 'transcranial ultrasound', 'pulse ultrasound', and 'Parkinson's disease'. Relevant citations were selected from the authors' references. After excluding articles describing high-intensity focused ultrasound or non-Parkinson's disease applications, we found more than 100 full-text analyses for pooled analysis.Results: Current preclinical studies have shown that LIFU could improve PD motor symptoms by regulating microglia activation, increasing neurotrophic factors, reducing oxidative stress, and promoting nerve repair and regeneration, while LIFU combined with microbubbles (MBs) can promote drugs to cross the BBB, which may become a new direction of PD treatment. Therefore, finding an efficient drug carrier system is the top priority of applying LIFU with MBs to deliver drugs.Conclusions: This article aims to review neuro-modulatory effect of LIFU and the possible biophysical mechanism in the treatment of PD, summarize the latest progress in delivering vehicles with MBs, and discuss its advantages and limitations.
Collapse
Affiliation(s)
- Yun-Xiao Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin-Chi Liao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xv Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Tian
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Ren Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ling Long
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Shen Y, Li N, Sun S, Dong L, Wang Y, Chang L, Zhang X, Wang F. Non-invasive, targeted, and non-viral ultrasound-mediated brain-derived neurotrophic factor plasmid delivery for treatment of autism in a rat model. Front Neurosci 2022; 16:986571. [PMID: 36117626 PMCID: PMC9475200 DOI: 10.3389/fnins.2022.986571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Autism has clinical manifestations such as social interaction disorder, speech and intellectual development disorder, narrow interest range, and stereotyped and repetitive behavior, all of which bring considerable economic and mental burden to society and families, and represent a public health problem requiring urgent attention. Brain-derived neurotrophic factor (BDNF) plays an important role in supporting survival, differentiation, growth, and synapse formation of neurons and participates in the plasticity of nerves. However, it is difficult for BDNF to penetrate the blood-brain barrier (BBB) due to its large molecular weight. Low-frequency focused ultrasound (FUS) combined with microbubbles (MBs) has been demonstrated to be a promising method for opening the BBB non-invasively, transiently, and locally. Here, we studied the therapeutic effect of FUS combined with BDNF plasmid-loaded cationic microbubbles (BDNFp-CMBs) in a rat model of autism. BDNF-CMBs were prepared and the transfection efficiency of FUS combined with BDNF-CMBs was tested in vitro. A rat model of autism was established from the juvenile male offspring of Sprague-Dawley (SD) pregnant rats treated with sodium valproate (VPA) solution through intraperitoneal injection. The autism rats were randomized into three groups: the VPA group, which received no treatment, the BDNFp group, which was treated by injection of BDNFp, and the FUS + BDNFp-CMBs group, which was administered FUS combined with BDNFp-CMBs. Age-matched normal rats served as the control group (Con). Following treatment, stereotyped, exploratory, and social–behavioral tests were performed on the animals in each group. The rat brains were then collected for subsequent histological examination, and the changes in synaptic structures in the prefrontal cortex (PFC) were detected under transmission electron microscopy. The results showed that the constructed BDNFp could be loaded onto CMBs with high loading efficiency. The BDNFp-CMBs prepared in this study showed good stability in vivo. FUS combined BDNFp-CMBs could effectively and non-invasively open the BBB of rats. The stereotyped, exploratory, and social behaviors of the FUS + BDNFp-CMBs group were significantly improved. Compared to the VPA group, the abnormality of neuronal morphology and number in the PFC of the FUS + BDNFp-CMBs was alleviated to a certain extent and was accompanied by restoration of the damaged synapses in the encephalic region. Our work demonstrates the positive therapeutic effect of BDNF delivered by FUS non-invasively across the BBB into the PFC in a rat model of autism, offering a potential strategy for treating autism.
Collapse
Affiliation(s)
- Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shuneng Sun
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Lei Dong
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yongling Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Liansheng Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Liansheng Chang,
| | - Xinyu Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Xinyu Zhang,
| | - Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Feng Wang,
| |
Collapse
|
15
|
Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Front Neurol 2022; 13:852003. [PMID: 35614915 PMCID: PMC9124903 DOI: 10.3389/fneur.2022.852003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (asyn) is a key pathogenetic factor in a group of neurodegenerative diseases generically known as synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the initial triggers of pathology and progression are unclear, multiple lines of evidence support therapeutic targeting of asyn in order to limit its prion-like misfolding. Here, we review recent pre-clinical and clinical work that offers promising treatment strategies to sequester, degrade, or silence asyn expression as a means to reduce the levels of seed or substrate. These diverse approaches include removal of aggregated asyn with passive or active immunization or by expression of vectorized antibodies, modulating kinetics of misfolding with small molecule anti-aggregants, lowering asyn gene expression by antisense oligonucleotides or inhibitory RNA, and pharmacological activation of asyn degradation pathways. We also discuss recent technological advances in combining low intensity focused ultrasound with intravenous microbubbles to transiently increase blood-brain barrier permeability for improved brain delivery and target engagement of these large molecule anti-asyn biologics.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Sabrina Armstrong
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Amir Hamzeh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Naomi P. Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | | | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Stefani A, Pierantozzi M, Cardarelli S, Stefani L, Cerroni R, Conti M, Garasto E, Mercuri NB, Marini C, Sucapane P. Neurotrophins as Therapeutic Agents for Parkinson’s Disease; New Chances From Focused Ultrasound? Front Neurosci 2022; 16:846681. [PMID: 35401084 PMCID: PMC8990810 DOI: 10.3389/fnins.2022.846681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Magnetic Resonance–guided Focused Ultrasound (MRgFUS) represents an effective micro-lesioning approach to target pharmaco-resistant tremor, mostly in patients afflicted by essential tremor (ET) and/or Parkinson’s disease (PD). So far, experimental protocols are verifying the clinical extension to other facets of the movement disorder galaxy (i.e., internal pallidus for disabling dyskinesias). Aside from those neurosurgical options, one of the most intriguing opportunities of this technique relies on its capability to remedy the impermeability of blood–brain barrier (BBB). Temporary BBB opening through low-intensity focused ultrasound turned out to be safe and feasible in patients with PD, Alzheimer’s disease, and amyotrophic lateral sclerosis. As a mere consequence of the procedures, some groups described even reversible but significant mild cognitive amelioration, up to hippocampal neurogenesis partially associated to the increased of endogenous brain-derived neurotrophic factor (BDNF). A further development elevates MRgFUS to the status of therapeutic tool for drug delivery of putative neurorestorative therapies. Since 2012, FUS-assisted intravenous administration of BDNF or neurturin allowed hippocampal or striatal delivery. Experimental studies emphasized synergistic modalities. In a rodent model for Huntington’s disease, engineered liposomes can carry glial cell line–derived neurotrophic factor (GDNF) plasmid DNA (GDNFp) to form a GDNFp-liposome (GDNFp-LPs) complex through pulsed FUS exposures with microbubbles; in a subacute MPTP-PD model, the combination of intravenous administration of neurotrophic factors (either through protein or gene delivery) plus FUS did curb nigrostriatal degeneration. Here, we explore these arguments, focusing on the current, translational application of neurotrophins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
- *Correspondence: Alessandro Stefani,
| | | | - Silvia Cardarelli
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Lucrezia Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Rocco Cerroni
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Matteo Conti
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Elena Garasto
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Nicola B. Mercuri
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Carmine Marini
- UOC Neurology and Stroke Unit, University of L’Aquila, L’Aquila, Italy
| | | |
Collapse
|
17
|
Lu S, Zhao P, Deng Y, Liu Y. Mechanistic Insights and Therapeutic Delivery through Micro/Nanobubble-Assisted Ultrasound. Pharmaceutics 2022; 14:pharmaceutics14030480. [PMID: 35335857 PMCID: PMC8954263 DOI: 10.3390/pharmaceutics14030480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
Ultrasound with low frequency (20–100 kHz) assisted drug delivery has been widely investigated as a non-invasive method to enhance the permeability and retention effect of drugs. The functional micro/nanobubble loaded with drugs could provide an unprecedented opportunity for targeted delivery. Then, ultrasound with higher intensity would locally burst bubbles and release agents, thus avoiding side effects associated with systemic administration. Furthermore, ultrasound-mediated destruction of micro/nanobubbles can effectively increase the permeability of vascular membranes and cell membranes, thereby not only increasing the distribution concentration of drugs in the interstitial space of target tissues but also promoting the penetration of drugs through cell membranes into the cytoplasm. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theragnostic tool. In this review, we first discuss the structure and generation of micro/nanobubbles. Second, ultrasound parameters and mechanisms of therapeutic delivery are discussed. Third, potential biomedical applications of micro/nanobubble-assisted ultrasound are summarized. Finally, we discuss the challenges and future directions of ultrasound combined with micro/nanobubbles.
Collapse
|
18
|
Lee KS, Clennell B, Steward TGJ, Gialeli A, Cordero-Llana O, Whitcomb DJ. Focused Ultrasound Stimulation as a Neuromodulatory Tool for Parkinson's Disease: A Scoping Review. Brain Sci 2022; 12:289. [PMID: 35204052 PMCID: PMC8869888 DOI: 10.3390/brainsci12020289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Non-invasive focused ultrasound stimulation (FUS) is a non-ionising neuromodulatory technique that employs acoustic energy to acutely and reversibly modulate brain activity of deep-brain structures. It is currently being investigated as a potential novel treatment for Parkinson's disease (PD). This scoping review was carried out to map available evidence pertaining to the provision of FUS as a PD neuromodulatory tool. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews, a search was applied to Ovid MEDLINE, Embase, Web of Science and Cochrane Central Register of Controlled Trials on 13 January 2022, with no limits applied. In total, 11 studies were included: 8 were from China and 1 each from Belgium, South Korea and Taiwan. All 11 studies were preclinical (6 in vivo, 2 in vitro, 2 mix of in vivo and in vitro and 1 in silico). The preclinical evidence indicates that FUS is safe and has beneficial neuromodulatory effects on motor behaviour in PD. FUS appears to have a therapeutic role in influencing the disease processes of PD, and therefore holds great promise as an attractive and powerful neuromodulatory tool for PD. Though these initial studies are encouraging, further study to understand the underlying cellular and molecular mechanisms is required before FUS can be routinely used in PD.
Collapse
Affiliation(s)
- Keng Siang Lee
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Benjamin Clennell
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Tom G. J. Steward
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Andriana Gialeli
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Oscar Cordero-Llana
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Daniel J. Whitcomb
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
19
|
Lin CY, Huang CY, Chen CM, Liu HL. Focused Ultrasound-Induced Blood–Brain Barrier Opening Enhanced α-Synuclein Expression in Mice for Modeling Parkinson’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020444. [PMID: 35214176 PMCID: PMC8876143 DOI: 10.3390/pharmaceutics14020444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by α-synuclein (αSNCA) aggregation in dopaminergic neurons. Gradual accumulation of αSNCA aggregates in substantia nigra (SN) diminishes the normal functioning of soluble αSNCA, leading to a loss of dopamine (DA) neurons. In this study, we developed focused ultrasound-targeted microbubble destruction (UTMD)-mediated PD model that could generate the disease phenotype via αSNCA CNS gene delivery. The formation of neuronal aggregates was analyzed with immunostaining. To evaluate the DA cell loss, we used tyrosine hydroxylase immunostaining and HPLC analysis on DA and its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). This loss of DA was associated with a dose-dependent impairment in motor function, as assessed by the rotarod motor assessment. We demonstrate that UTMD-induced SNCA expression initiates αSNCA aggregation and results in a 50% loss of DA in SN. UTMD-related dose-dependent neuronal loss was identified, and it correlates with the degree of impairment of motor function. In comparison to chemical neurotoxin 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated and conventional intracerebral (IC)-injected animal models of PD, the UTMD-mediated αSNCA-based mouse model offers the advantage of mimicking the rapid development of the PD phenotype. The PD models that we created using UTMD also prove valuable in assessing specific aspects of PD pathogenesis and can serve as a useful PD model for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.L.); (C.-Y.H.)
- Department of Nephrology and Clinical Position Center, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Ching-Yun Huang
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.L.); (C.-Y.H.)
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (C.-M.C.); (H.-L.L.); Tel.: +886-3-3281200 (ext. 8729) (C.-M.C.); +886-2-33665416 (H.-L.L.)
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: (C.-M.C.); (H.-L.L.); Tel.: +886-3-3281200 (ext. 8729) (C.-M.C.); +886-2-33665416 (H.-L.L.)
| |
Collapse
|
20
|
Zhang M, Rodrigues A, Zhou Q, Li G. Focused ultrasound: growth potential and future directions in neurosurgery. J Neurooncol 2022; 156:23-32. [PMID: 34410576 DOI: 10.1007/s11060-021-03820-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/31/2021] [Indexed: 12/18/2022]
Abstract
Over the past two decades, vast improvements in focused ultrasound (FUS) technology have made the therapy an exciting addition to the neurosurgical armamentarium. In this time period, FUS has gained US Food and Drug Administration (FDA) approval for the treatment of two neurological disorders, and ongoing efforts seek to expand the lesion profile that is amenable to ultrasonic intervention. In the following review, we highlight future applications for FUS therapy and compare its potential role against established technologies, including deep brain stimulation and stereotactic radiosurgery. Particular attention is paid to tissue ablation, blood-brain-barrier opening, and gene therapy. We also address technical and infrastructural challenges involved with FUS use and summarize the hurdles that must be overcome before FUS becomes widely accepted in the neurosurgical community.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Academic Medicine, Neurosurgery, Stanford University School of Medicine, MC 5327, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| | - Adrian Rodrigues
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Quan Zhou
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
21
|
Poon C, Pellow C, Hynynen K. Neutrophil Recruitment and Leukocyte Response Following Focused Ultrasound and Microbubble Mediated Blood-Brain Barrier Treatments. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:100-116. [PMID: 35746942 PMCID: PMC9063606 DOI: 10.1176/appi.focus.20104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
(Appeared originally in Theranostics 2021; 11:1655-1671) Reprinted under Creative Commons Attribution License.
Collapse
|
22
|
Endo-Takahashi Y, Negishi Y. Gene and oligonucleotide delivery via micro- and nanobubbles by ultrasound exposure. Drug Metab Pharmacokinet 2022; 44:100445. [DOI: 10.1016/j.dmpk.2022.100445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
|
23
|
Roshani M, Kiaie N, Aghdam RM. Biomaterials and stem cells as drug/gene-delivery vehicles for Parkinson's treatment: an update. Regen Med 2021; 16:1057-1072. [PMID: 34865515 DOI: 10.2217/rme-2021-0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By introducing biomaterials and stem cells into Parkinson's disease (PD), therapeutic approaches have led to promising results due to facilitating brain targeting and blood-brain barrier permeation of the drugs and genes. Here, after reviewing the most recent drug- and gene-delivery vehicles including liposomes, exosomes, natural/synthetic polymeric particles/fibers, metallic/ceramic nanoparticles and microbubbles, used for Parkinson's disease treatment, the effect of stem cells as a reservoir of neurotrophic factors and exosomes is provided.
Collapse
Affiliation(s)
- Milad Roshani
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran.,Department of Biomedical Engineering, Shahab Danesh University, Qom, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rouhollah Mehdinavaz Aghdam
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| |
Collapse
|
24
|
Fishman PS, Fischell JM. Focused Ultrasound Mediated Opening of the Blood-Brain Barrier for Neurodegenerative Diseases. Front Neurol 2021; 12:749047. [PMID: 34803886 PMCID: PMC8599441 DOI: 10.3389/fneur.2021.749047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
The blood brain barrier (BBB) is an obstacle for the delivery of potential molecular therapies for neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). Although there has been a proliferation of potential disease modifying therapies for these progressive conditions, strategies to deliver these large agents remain limited. High intensity MRI guided focused ultrasound has already been FDA approved to lesion brain targets to treat movement disorders, while lower intensity pulsed ultrasound coupled with microbubbles commonly used as contrast agents can create transient safe opening of the BBB. Pre-clinical studies have successfully delivered growth factors, antibodies, genes, viral vectors, and nanoparticles in rodent models of AD and PD. Recent small clinical trials support the safety and feasibility of this strategy in these vulnerable patients. Further study is needed to establish safety as MRI guided BBB opening is used to enhance the delivery of newly developed molecular therapies.
Collapse
|
25
|
Fischell JM, Fishman PS. A Multifaceted Approach to Optimizing AAV Delivery to the Brain for the Treatment of Neurodegenerative Diseases. Front Neurosci 2021; 15:747726. [PMID: 34630029 PMCID: PMC8497810 DOI: 10.3389/fnins.2021.747726] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major advancements in gene therapy technologies, there are no approved gene therapies for diseases which predominantly effect the brain. Adeno-associated virus (AAV) vectors have emerged as the most effective delivery vector for gene therapy owing to their simplicity, wide spread transduction and low immunogenicity. Unfortunately, the blood-brain barrier (BBB) makes IV delivery of AAVs, to the brain highly inefficient. At IV doses capable of widespread expression in the brain, there is a significant risk of severe immune-mediated toxicity. Direct intracerebral injection of vectors is being attempted. However, this method is invasive, and only provides localized delivery for diseases known to afflict the brain globally. More advanced methods for AAV delivery will likely be required for safe and effective gene therapy to the brain. Each step in AAV delivery, including delivery route, BBB transduction, cellular tropism and transgene expression provide opportunities for innovative solutions to optimize delivery efficiency. Intra-arterial delivery with mannitol, focused ultrasound, optimized AAV capsid evolution with machine learning algorithms, synthetic promotors are all examples of advanced strategies which have been developed in pre-clinical models, yet none are being investigated in clinical trials. This manuscript seeks to review these technological advancements, and others, to improve AAV delivery to the brain, and to propose novel strategies to build upon this research. Ultimately, it is hoped that the optimization of AAV delivery will allow for the human translation of many gene therapies for neurodegenerative and other neurologic diseases.
Collapse
Affiliation(s)
- Jonathan M Fischell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul S Fishman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
27
|
Arango D, Bittar A, Esmeral NP, Ocasión C, Muñoz-Camargo C, Cruz JC, Reyes LH, Bloch NI. Understanding the Potential of Genome Editing in Parkinson's Disease. Int J Mol Sci 2021; 22:9241. [PMID: 34502143 PMCID: PMC8430539 DOI: 10.3390/ijms22179241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson's disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson's disease to highlight the main biological pathways that become disrupted in Parkinson's disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative research and potential therapies. Finally, we review the latest developments in CRISPR-based applications and gene therapies to understand and treat Parkinson's disease. We carefully examine their advantages and shortcomings for diverse gene-editing applications in the brain, highlighting promising avenues for future research.
Collapse
Affiliation(s)
- David Arango
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Amaury Bittar
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Camila Ocasión
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Natasha I. Bloch
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| |
Collapse
|
28
|
Chen KT, Wei KC, Liu HL. Focused Ultrasound Combined with Microbubbles in Central Nervous System Applications. Pharmaceutics 2021; 13:pharmaceutics13071084. [PMID: 34371774 PMCID: PMC8308978 DOI: 10.3390/pharmaceutics13071084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
The blood–brain barrier (BBB) protects the central nervous system (CNS) from invasive pathogens and maintains the homeostasis of the brain. Penetrating the BBB has been a major challenge in the delivery of therapeutic agents for treating CNS diseases. Through a physical acoustic cavitation effect, focused ultrasound (FUS) combined with microbubbles achieves the local detachment of tight junctions of capillary endothelial cells without inducing neuronal damage. The bioavailability of therapeutic agents is increased only in the area targeted by FUS energy. FUS with circulating microbubbles is currently the only method for inducing precise, transient, reversible, and noninvasive BBB opening (BBBO). Over the past decade, FUS-induced BBBO (FUS-BBBO) has been preclinically confirmed to not only enhance the penetration of therapeutic agents in the CNS, but also modulate focal immunity and neuronal activity. Several recent clinical human trials have demonstrated both the feasibility and potential advantages of using FUS-BBBO in diseased patients. The promising results support adding FUS-BBBO as a multimodal therapeutic strategy in modern CNS disease management. This review article explores this technology by describing its physical mechanisms and the preclinical findings, including biological effects, therapeutic concepts, and translational design of human medical devices, and summarizes completed and ongoing clinical trials.
Collapse
Affiliation(s)
- Ko-Ting Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan;
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan;
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, TuCheng, New Taipei 236, Taiwan
- School of Medicine, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Correspondence: (K.-C.W.); (H.-L.L.)
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Da’an, Taipei 106, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Da’an, Taipei 106, Taiwan
- Correspondence: (K.-C.W.); (H.-L.L.)
| |
Collapse
|
29
|
Nam Y, Moon GJ, Kim SR. Therapeutic Potential of AAV1-Rheb(S16H) Transduction against Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22063064. [PMID: 33802760 PMCID: PMC8002454 DOI: 10.3390/ijms22063064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023] Open
Abstract
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Hence, the key molecule that can regulate the expression of NTFs is an important target for gene therapy coupling adeno-associated virus vector (AAV) gene. We have previously reported that the Ras homolog protein enriched in brain (Rheb)–mammalian target of rapamycin complex 1 (mTORC1) axis plays a vital role in preventing neuronal death in the brain of AD and PD patients. AAV transduction using a constitutively active form of Rheb exerts a neuroprotective effect through the upregulation of NTFs, thereby promoting the neurotrophic interaction between astrocytes and neurons in AD conditions. These findings suggest the role of Rheb as an important regulator of the regulatory system of NTFs to treat neurodegenerative diseases. In this review, we present an overview of the role of Rheb in neurodegenerative diseases and summarize the therapeutic potential of AAV serotype 1 (AAV1)-Rheb(S16H) transduction in the treatment of neurodegenerative disorders, focusing on diseases, such as AD and PD.
Collapse
Affiliation(s)
- Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Gyeong Joon Moon
- Center for Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea;
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang Ryong Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea;
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|
30
|
Dong Y, Liu D, Zhao Y, Yuan Y, Wang W, Wu S, Liang X, Wang Z, Liu L. Assessment of Neuroprotective Effects of Low-Intensity Transcranial Ultrasound Stimulation in a Parkinson's Disease Rat Model by Fractional Anisotropy and Relaxation Time T2 ∗ Value. Front Neurosci 2021; 15:590354. [PMID: 33633533 PMCID: PMC7900573 DOI: 10.3389/fnins.2021.590354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Low-intensity transcranial ultrasound (LITUS) may have a therapeutic effect on Parkinson's disease (PD) patients to some extent. Fractional anisotropy (FA) and relaxation time T2∗ that indicate the integrity of fiber tracts and iron concentrations in brain tissue have been used to evaluate the therapeutic effects of LITUS. Purpose: This study aims to use FA and T2∗ values to evaluate the therapeutic effects of LITUS in a PD rat model. Materials and Methods: Twenty Sprague-Dawley rats were randomly divided into a hemi-PD group (n = 10) and a LITUS group (n = 10). Single-shot spin echo echo-planar imaging and fast low-angle shot T2WI sequences at 3.0 T were used. The FA and T2∗ values on the right side of the substantia nigra (SN) pars compacta were measured to evaluate the therapeutic effect of LITUS in the rats. Results: One week after PD-like signs were induced in the rats, the FA value in the LITUS group was significantly larger compared with the PD group (0.214 ± 0.027 vs. 0.340 ± 0.032, t = 2.864, P = 0.011). At the 5th and 6th weeks, the FA values in the LITUS group were significantly smaller compared with the PD group (5th week: 0.290 ± 0.037 vs. 0.405 ± 0.027, t = 2.385, P = 0.030; 6th week: 0.299 ± 0.021 vs. 0.525 ± 0.028, t = 6.620, P < 0.0001). In the 5th and 6th weeks, the T2∗ values in the injected right SN of the LITUS group were significantly higher compared with the PD group (5th week, 12.169 ± 0.826 in the LITUS group vs. 7.550 ± 0.824 in the PD group; 6th week, 11.749 ± 0.615 in the LITUS group vs. 7.550 ± 0.849 in the PD group). Conclusion: LITUS had neuroprotective effects and can reduce the damage of 6-OHDA-induced neurotoxicity in hemi-PD rats. The combination of FA and T2∗ assessments can potentially serve as a new and effective method to evaluate the therapeutic effects of LITUS.
Collapse
Affiliation(s)
- Yanchao Dong
- Department of Interventional Treatment, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Defeng Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yuemei Zhao
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yi Yuan
- College of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Wenxi Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Shuo Wu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Xin Liang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Zhanqiu Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| |
Collapse
|
31
|
Ogawa K, Kato N, Kawakami S. Recent Strategies for Targeted Brain Drug Delivery. Chem Pharm Bull (Tokyo) 2021; 68:567-582. [PMID: 32611994 DOI: 10.1248/cpb.c20-00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because the brain is the most important human organ, many brain disorders can cause severe symptoms. For example, glioma, one type of brain tumor, is progressive and lethal, while neurodegenerative diseases cause severe disability. Nevertheless, medical treatment for brain diseases remains unsatisfactory, and therefore innovative therapies are desired. However, the development of therapies to treat some cerebral diseases is difficult because the blood-brain barrier (BBB) or blood-brain tumor barrier prevents drugs from entering the brain. Hence, drug delivery system (DDS) strategies are required to deliver therapeutic agents to the brain. Recently, brain-targeted DDS have been developed, which increases the quality of therapy for cerebral disorders. This review gives an overview of recent brain-targeting DDS strategies. First, it describes strategies to cross the BBB. This includes BBB-crossing ligand modification or temporal BBB permeabilization. Strategies to avoid the BBB using local administration are also summarized. Intrabrain drug distribution is a crucial factor that directly determines the therapeutic effect, and thus it is important to evaluate drug distribution using optimal methods. We introduce some methods for evaluating drug distribution in the brain. Finally, applications of brain-targeted DDS for the treatment of brain tumors, Alzheimer's disease, Parkinson's disease, and stroke are explained.
Collapse
Affiliation(s)
- Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
32
|
Mathew AS, Gorick CM, Price RJ. Single-cell mapping of focused ultrasound-transfected brain. Gene Ther 2021; 30:255-263. [PMID: 33526842 PMCID: PMC8325700 DOI: 10.1038/s41434-021-00226-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Gene delivery via focused ultrasound (FUS) mediated blood-brain barrier (BBB) opening is a disruptive therapeutic modality. Unlocking its full potential will require an understanding of how FUS parameters (e.g., peak-negative pressure (PNP)) affect transfected cell populations. Following plasmid (mRuby) delivery across the BBB with 1 MHz FUS, we used single-cell RNA-sequencing to ascertain that distributions of transfected cell types were highly dependent on PNP. Cells of the BBB (i.e., endothelial cells, pericytes, and astrocytes) were enriched at 0.2 MPa PNP, while transfection of cells distal to the BBB (i.e., neurons, oligodendrocytes, and microglia) was augmented at 0.4 MPa PNP. PNP-dependent differential gene expression was observed for multiple cell types. Cell stress genes were upregulated proportional to PNP, independent of cell type. Our results underscore how FUS may be tuned to bias transfection toward specific brain cell types in vivo and predict how those cells will respond to transfection.
Collapse
Affiliation(s)
- A S Mathew
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - C M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - R J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA. .,Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
33
|
Rahimi S, Jones RM, Hynynen K. A High-Frequency Phased Array System for Transcranial Ultrasound Delivery in Small Animals. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:127-135. [PMID: 32746231 PMCID: PMC7863589 DOI: 10.1109/tuffc.2020.3012868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Existing systems for applying transcranial focused ultrasound (FUS) in small animals produce large focal volumes relative to the size of cerebral structures available for interrogation. The use of high ultrasonic frequencies can improve targeting specificity; however, the aberrations induced by rodent calvaria at megahertz frequencies severely distort the acoustic fields produced by single-element focused transducers. Here, we present the design, fabrication, and characterization of a high-frequency phased array system for transcranial FUS delivery in small animals. A transducer array was constructed by micromachining a spherically curved PZT-5H bowl (diameter = 25 mm, radius of curvature = 20 mm, fundamental frequency = 3.3 MHz) into 64 independent elements of equal surface area. The acoustic field generated by the phased array was measured at various target locations using a calibrated fiber-optic hydrophone, both in free-field conditions as well as through ex vivo rat skullcaps with and without hydrophone-assisted phase aberration corrections. Large field-of-view acoustic field simulations were carried out to investigate potential grating lobe formation. The focal beam size obtained when targeting the array's geometric focus was [Formula: see text] mm in water. The array can steer the FUS beam electronically over cylindrical volumes of 4.5 mm in diameter and 6 mm in height without introducing grating lobes. Insertion of a rat skullcap resulted in substantial distortion of the acoustic field ( [Formula: see text]% [Formula: see text]); however, phase corrections restored partial focal quality ( [Formula: see text]% [Formula: see text]). Using phase corrections, the array is capable of generating a trans-rat skull peak negative focal pressure of up to ~2.0 MPa, which is sufficient for microbubble-mediated blood-brain barrier permeabilization at this frequency.
Collapse
|
34
|
Poon C, Pellow C, Hynynen K. Neutrophil recruitment and leukocyte response following focused ultrasound and microbubble mediated blood-brain barrier treatments. Am J Cancer Res 2021; 11:1655-1671. [PMID: 33408773 PMCID: PMC7778596 DOI: 10.7150/thno.52710] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Delivery of therapeutic agents to the brain is limited by the presence of the blood-brain barrier (BBB). An emerging strategy to temporarily and locally increase the permeability of the BBB is the use of transcranial focused ultrasound (FUS) and systematically injected microbubbles (MBs). FUS+MB BBB treatments cause an acute inflammatory response, marked by a transient upregulation of pro-inflammatory genes; however, the cellular immune response remains unknown. Methods: FUS+MB BBB treatments were monitored in real-time using two-photon fluorescence microscopy and transgenic EGFP Wistar rats, which harbour several fluorescent cell types. Leukocyte identification and counts were confirmed using magnetic resonance imaging-guided FUS+MB BBB treatments. Participation of leukocytes in reducing β-amyloid pathology following repeated FUS+MB BBB treatments was investigated in the TgCRND8 mouse model of Alzheimer's disease. Results: Intravascular leukocyte activity indicative of acute inflammation were identified, including transendothelial migration, formation of cell aggregates, and cell masses capable of perturbing blood flow. Leukocyte responses were only observed after the onset of sonication. Neutrophils were identified to be a key participating leukocyte. Significantly more neutrophils were detected in the sonicated hemisphere compared to the contralateral hemisphere, and to untreated controls. Three to five biweekly FUS+MB BBB treatments did not induce significantly more neutrophil recruitment, nor neutrophil phagocytosis of β-amyloid plaques, in TgCRND8 mice compared to untreated controls. Conclusions: This study provides evidence that the cellular aspect of the peripheral immune response triggered by FUS+MB BBB treatments begins immediately after sonication, and emphasizes the importance for further investigations to be conducted to understand leukocyte dynamics and cerebral blood flow responses to FUS+MB BBB treatments.
Collapse
|
35
|
Jarrin S, Hakami A, Newland B, Dowd E. Growth Factor Therapy for Parkinson's Disease: Alternative Delivery Systems. JOURNAL OF PARKINSON'S DISEASE 2021; 11:S229-S236. [PMID: 33896851 PMCID: PMC8543245 DOI: 10.3233/jpd-212662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/30/2022]
Abstract
Despite decades of research and billions in global investment, there remains no preventative or curative treatment for any neurodegenerative condition, including Parkinson's disease (PD). Arguably, the most promising approach for neuroprotection and neurorestoration in PD is using growth factors which can promote the growth and survival of degenerating neurons. However, although neurotrophin therapy may seem like the ideal approach for neurodegenerative disease, the use of growth factors as drugs presents major challenges because of their protein structure which creates serious hurdles related to accessing the brain and specific targeting of affected brain regions. To address these challenges, several different delivery systems have been developed, and two major approaches-direct infusion of the growth factor protein into the target brain region and in vivo gene therapy-have progressed to clinical trials in patients with PD. In addition to these clinically evaluated approaches, a range of other delivery methods are in various degrees of development, each with their own unique potential. This review will give a short overview of some of these alternative delivery systems, with a focus on ex vivo gene therapy and biomaterial-aided protein and gene delivery, and will provide some perspectives on their potential for clinical development and translation.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Abrar Hakami
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| |
Collapse
|
36
|
Thangudu S, Cheng FY, Su CH. Advancements in the Blood-Brain Barrier Penetrating Nanoplatforms for Brain Related Disease Diagnostics and Therapeutic Applications. Polymers (Basel) 2020; 12:E3055. [PMID: 33419339 PMCID: PMC7766280 DOI: 10.3390/polym12123055] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Noninvasive treatments to treat the brain-related disorders have been paying more significant attention and it is an emerging topic. However, overcoming the blood brain barrier (BBB) is a key obstacle to most of the therapeutic drugs to enter into the brain tissue, which significantly results in lower accumulation of therapeutic drugs in the brain. Thus, administering the large quantity/doses of drugs raises more concerns of adverse side effects. Nanoparticle (NP)-mediated drug delivery systems are seen as potential means of enhancing drug transport across the BBB and to targeted brain tissue. These systems offer more accumulation of therapeutic drugs at the tumor site and prolong circulation time in the blood. In this review, we summarize the current knowledge and advancements on various nanoplatforms (NF) and discusses the use of nanoparticles for successful cross of BBB to treat the brain-related disorders such as brain tumors, Alzheimer's disease, Parkinson's disease, and stroke.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei 112, Taiwan
| |
Collapse
|
37
|
Current Status and Challenges Associated with CNS-Targeted Gene Delivery across the BBB. Pharmaceutics 2020; 12:pharmaceutics12121216. [PMID: 33334049 PMCID: PMC7765480 DOI: 10.3390/pharmaceutics12121216] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
The era of the aging society has arrived, and this is accompanied by an increase in the absolute numbers of patients with neurological disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Such neurological disorders are serious costly diseases that have a significant impact on society, both globally and socially. Gene therapy has great promise for the treatment of neurological disorders, but only a few gene therapy drugs are currently available. Delivery to the brain is the biggest hurdle in developing new drugs for the central nervous system (CNS) diseases and this is especially true in the case of gene delivery. Nanotechnologies such as viral and non-viral vectors allow efficient brain-targeted gene delivery systems to be created. The purpose of this review is to provide a comprehensive review of the current status of the development of successful drug delivery to the CNS for the treatment of CNS-related disorders especially by gene therapy. We mainly address three aspects of this situation: (1) blood-brain barrier (BBB) functions; (2) adeno-associated viral (AAV) vectors, currently the most advanced gene delivery vector; (3) non-viral brain targeting by non-invasive methods.
Collapse
|
38
|
Shi L, Jiang Y, Zhang Y, Lan L, Huang Y, Cheng JX, Yang C. A fiber optoacoustic emitter with controlled ultrasound frequency for cell membrane sonoporation at submillimeter spatial resolution. PHOTOACOUSTICS 2020; 20:100208. [PMID: 33101926 PMCID: PMC7569214 DOI: 10.1016/j.pacs.2020.100208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 05/13/2023]
Abstract
Focused ultrasound has attracted great attention in minimally invasive therapeutic and mechanism studies. Frequency below 1 MHz is identified preferable for high-efficiency bio-modulation. However, the poor spatial confinement of several millimeters and large device diameter of ∼25 mm of typical sub-MHz ultrasound technology suffered from the diffraction limit, severely hindering its further applications. To address it, a fiber-based optoacoustic emitter (FOE) is developed, serving as a miniaturized ultrasound point source, with sub-millimeter confinement, composed of an optical diffusion layer and an expansion layer on an optical fiber. By modifying acoustic damping and light absorption performance, controllable frequencies in the range of 0.083 MHz-5.500 MHz are achieved and further induce cell membrane sonoporation with frequency dependent efficiency. By solving the problem of compromise between sub-MHz frequency and sub-millimeter precision via breaking the diffraction limit, the FOE shows a great potential in region-specific drug delivery, gene transfection and neurostimulation.
Collapse
Affiliation(s)
- Linli Shi
- Department of Chemistry, Boston University, 580 Commonwealth Avenue, Boston, MA 02215, USA
| | - Ying Jiang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Yi Zhang
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Lu Lan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Yimin Huang
- Department of Chemistry, Boston University, 580 Commonwealth Avenue, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, 8 St. Mary’s Street, Boston, MA 02215, USA
- Corresponding authors at: Department of Electrical and Computer Engineering, 8 St. Mary’s Street, Boston, MA 02215, USA.
| | - Chen Yang
- Department of Chemistry, Boston University, 580 Commonwealth Avenue, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, 8 St. Mary’s Street, Boston, MA 02215, USA
- Corresponding authors at: Department of Electrical and Computer Engineering, 8 St. Mary’s Street, Boston, MA 02215, USA.
| |
Collapse
|
39
|
Recent Advances on Ultrasound Contrast Agents for Blood-Brain Barrier Opening with Focused Ultrasound. Pharmaceutics 2020; 12:pharmaceutics12111125. [PMID: 33233374 PMCID: PMC7700476 DOI: 10.3390/pharmaceutics12111125] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier is the primary obstacle to efficient intracerebral drug delivery. Focused ultrasound, in conjunction with microbubbles, is a targeted and non-invasive way to disrupt the blood-brain barrier. Many commercially available ultrasound contrast agents and agents specifically designed for therapeutic purposes have been investigated in ultrasound-mediated blood-brain barrier opening studies. The new generation of sono-sensitive agents, such as liquid-core droplets, can also potentially disrupt the blood-brain barrier after their ultrasound-induced vaporization. In this review, we describe the different compositions of agents used for ultrasound-mediated blood-brain barrier opening in recent studies, and we discuss the challenges of the past five years related to the optimal formulation of agents.
Collapse
|
40
|
Ohta S, Kikuchi E, Ishijima A, Azuma T, Sakuma I, Ito T. Investigating the optimum size of nanoparticles for their delivery into the brain assisted by focused ultrasound-induced blood-brain barrier opening. Sci Rep 2020; 10:18220. [PMID: 33106562 PMCID: PMC7588485 DOI: 10.1038/s41598-020-75253-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier (BBB) has hampered the efficiency of nanoparticle delivery into the brain via conventional strategies. The widening of BBB tight junctions via focused ultrasound (FUS) offers a promising approach for enhancing the delivery of nanoparticles into the brain. However, there is currently an insufficient understanding of how nanoparticles pass through the opened BBB gaps. Here we investigated the size-dependence of nanoparticle delivery into the brain assisted by FUS-induced BBB opening, using gold nanoparticles (AuNPs) of 3, 15, and 120 nm diameter. For 3- and 15-nm AuNPs, FUS exposure significantly increased permeation across an in vitro BBB model by up to 9.5 times, and the permeability was higher with smaller diameter. However, in vivo transcranial FUS exposure in mice demonstrated that smaller particles were not necessarily better for delivery into the brain. Medium-sized (15 nm) AuNPs showed the highest delivery efficiency (0.22% ID), compared with 3- and 120-nm particles. A computational model suggested that this optimum size was determined by the competition between their permeation through opened BBB gaps and their excretion from blood. Our results would greatly contribute to designing nanoparticles for their delivery into the brain for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Institute of Engineering Innovation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Emi Kikuchi
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ayumu Ishijima
- Department of Precision Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Azuma
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ichiro Sakuma
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Precision Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
41
|
Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 2020; 17:7-22. [PMID: 33106619 DOI: 10.1038/s41582-020-00418-z] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Focused ultrasound (FUS) is a disruptive medical technology, and its implementation in the clinic represents the culmination of decades of research. Lying at the convergence of physics, engineering, imaging, biology and neuroscience, FUS offers the ability to non-invasively and precisely intervene in key circuits that drive common and challenging brain conditions. The actions of FUS in the brain take many forms, ranging from transient blood-brain barrier opening and neuromodulation to permanent thermoablation. Over the past 5 years, we have seen a dramatic expansion of indications for and experience with FUS in humans, with a resultant exponential increase in academic and public interest in the technology. Applications now span the clinical spectrum in neurological and psychiatric diseases, with insights still emerging from preclinical models and human trials. In this Review, we provide a comprehensive overview of therapeutic ultrasound and its current and emerging indications in the brain. We examine the potential impact of FUS on the landscape of brain therapies as well as the challenges facing further advancement and broader adoption of this promising minimally invasive therapeutic alternative.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Sunnybrook Research Institute, Hurvitz Brain Sciences Program, Harquail Centre for Neuromodulation, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics and Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Sunnybrook Research Institute, Hurvitz Brain Sciences Program, Harquail Centre for Neuromodulation, Toronto, ON, Canada. .,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
42
|
Microbubbles and Nanobubbles with Ultrasound for Systemic Gene Delivery. Pharmaceutics 2020; 12:pharmaceutics12100964. [PMID: 33066531 PMCID: PMC7602142 DOI: 10.3390/pharmaceutics12100964] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of gene expression is a promising therapeutic approach for many intractable diseases. However, its use in clinical applications requires the efficient delivery of nucleic acids to target tissues, which is a major challenge. Recently, various delivery systems employing physical energy, such as ultrasound, magnetic force, electric force, and light, have been developed. Ultrasound-mediated delivery has particularly attracted interest due to its safety and low costs. Its delivery effects are also enhanced when combined with microbubbles or nanobubbles that entrap an ultrasound contrast gas. Furthermore, ultrasound-mediated nucleic acid delivery could be performed only in ultrasound exposed areas. In this review, we summarize the ultrasound-mediated nucleic acid systemic delivery system, using microbubbles or nanobubbles, and discuss its possibilities as a therapeutic tool.
Collapse
|
43
|
Zoumboulakis D, Cirella KR, Gougeon PY, Lourenssen SR, Blennerhassett MG. MMP-9 Processing of Intestinal Smooth Muscle-derived GDNF is Required for Neurotrophic Action on Enteric Neurons. Neuroscience 2020; 443:8-18. [PMID: 32682824 DOI: 10.1016/j.neuroscience.2020.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
The neurotrophin GDNF guides development of the enteric nervous system (ENS) in embryogenesis and directs survival and axon outgrowth in postnatal myenteric neurons in vitro. GDNF expression in intestinal smooth muscle cells is dynamic, with upregulation by inflammatory cytokines in vitro or intestinal inflammation in vivo, but the role of post-translational proteolytic cleavage is undefined. In a co-culture model of myenteric neurons, smooth muscle and glia, inhibition of serine or cysteine protease activity was ineffective against the >2-fold increase in axon density caused by TNFα. However, inhibitors of metalloproteinases (MMP) identified an essential role of MMP-9, and qPCR and western blotting showed that pro-inflammatory cytokines increased both mRNA and protein expression for MMP-9, in both cellular lysates and conditioned medium (CM). Inhibition of MMP-9 prevented the cytokine-induced increase in mature GDNF in CM or cellular lysates of co-cultures or cell lines of intestinal smooth muscle cells (ISMC) from adult rat colon. Western blotting showed parallel upregulation of mature GDNF and MMP-9 vs control in ISMC isolated on Day 2 of TNBS-induced colitis. Nonetheless, transfection of GDNF plasmid into HEK-293 cells as a carrier system, or directly into the co-culture model, conveyed a strong neurotrophic effect that was MMP-9 dependent. We conclude that MMP-9 activity is required for the neurotrophic effects of GDNF on myenteric neurons in vitro. However, the coordinated upregulation of GDNF and MMP-9 in intestinal smooth muscle by inflammatory cytokines provides a supportive, target cell-derived environment that limits inflammatory damage to the ENS.
Collapse
Affiliation(s)
- Demetri Zoumboulakis
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, ON K7L 2V7, Canada
| | - Kirsten R Cirella
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, ON K7L 2V7, Canada
| | - Pierre-Yves Gougeon
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, ON K7L 2V7, Canada
| | - Sandra R Lourenssen
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, ON K7L 2V7, Canada
| | | |
Collapse
|
44
|
TRPV4 promotes acoustic wave-mediated BBB opening via Ca 2+/PKC-δ pathway. J Adv Res 2020; 26:15-28. [PMID: 33133680 PMCID: PMC7584681 DOI: 10.1016/j.jare.2020.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Numerous studies have shown the ability of low-energy acoustic waves such as focused ultrasound or shockwave to transiently open blood-brain barrier (BBB) and facilitate drug delivery to the brain. Preclinical and clinical evidences have well demonstrated the efficacy and safety in treating various brain disorders. However, the molecular mechanisms of acoustic waves on the BBB are still not fully understood. Objectives The present study aimed at exploring the possible molecular mechanisms of acoustic wave stimulation on brains. Methods: Briefly describe the experimental design The left hemisphere of the rat‘s brain was treated with pulsed ultrasound from a commercial focused shockwave or a planar ultrasound device, and the right hemisphere served as a control. One hour after the mechanical wave stimulation or overnight, the rats were sacrificed and the brains were harvested for protein or histological analysis. Agonists and antagonists related to the signal transduction pathways of tight junction proteins were used to investigate the possible intracellular mechanisms. Results Intracellular signal transduction analysis shows calcium influx through transient receptor potential vanilloid 4 (TRPV4) channels, and the activation of PKC-δ pathway to mediate dissociation of ZO-1 and occludin after acoustic wave stimulation. The activation of TRPV4 or PKC-δ signaling further increased the expression level of TRPV4, suggesting a feedback loop to regulate BBB permeability. Moreover, the tight junction proteins dissociation can be reversed by administration of PKC-δ inhibitor and TRPV4 antagonist. Conclusion The present study shows the crucial role of TRPV4 in acoustic wave-mediated BBB permeability, specifically its effect on compromising tight junction proteins, ZO-1 and occludin. Our findings provide a new molecular perspective to explain acoustic wave-mediated BBB opening. Moreover, activation of TRPV4 by agonists may reduce the threshold intensity level of acoustic waves for BBB opening, which may prevent undesirable mechanical damages while maintaining efficient BBB opening.
Collapse
|
45
|
Shen Y, Ma J, Jiang J, Chen Z, Yan W, Wang Y, Wang F, Liu L. Treatment of adhesions after Achilles tendon injury using focused ultrasound with targeted bFGF plasmid-loaded cationic microbubbles. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractNonviral targeting technology has become promising as a form of gene therapy for diseases and injuries, such as Achilles tendon injuries. In this study, we used avidin–biotin bridge and positive–negative charge attractions to load the intercellular adhesion molecule-1 (ICAM-1) antibody and the basic fibroblast growth factor (bFGF) plasmid onto the surface of the microbubbles. The saturated loading capacity for 1.1 × 108 microbubble was 6.55 ± 0.53 µg. We established the ICAM-1 antigen microenvironment using tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells and found the targeting ability of the prepared microbubbles in vitro. In vivo, we also found that the injected targeted bFGF gene microbubbles expressed the bFGF gene better when compared with that of the control group. Furthermore, we evaluated adhesions after Achilles tendon injuries in rabbits using hematoxylin and eosin and immunohistochemical (IHC) staining methods. The collagen fibers were properly arranged in the tendon, and there was greater cellularity inside the tendon sheath and a clearer boundary between the internal and external tendon sheath than that of the control group. IHC staining showed greater ICAM-1 expression inside the tendon sheath when compared with outside the tendon sheath. In conclusion, targeted microbubbles can be a useful carrier of genes to provide gene therapy for the prevention of adhesions after tendon injury.
Collapse
Affiliation(s)
- Yuzhou Shen
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| | - Jiancheng Ma
- Department of Ultrasound, Huizhou Municipal Central Hospital, Huizhou 516002, China
| | - Junsheng Jiang
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| | - Zhilin Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| | - Wenzhu Yan
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| | - Yue Wang
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| | - Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Henan, Xinxiang 453002, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| |
Collapse
|
46
|
Han H, Kim D, Jang Y, Seo M, Kim K, Lee JB, Kim H. Focused ultrasound-triggered chemo-gene therapy with multifunctional nanocomplex for enhancing therapeutic efficacy. J Control Release 2020; 322:346-356. [DOI: 10.1016/j.jconrel.2020.03.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/08/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
|
47
|
Wu CY, Fan CH, Chiu NH, Ho YJ, Lin YC, Yeh CK. Targeted delivery of engineered auditory sensing protein for ultrasound neuromodulation in the brain. Am J Cancer Res 2020; 10:3546-3561. [PMID: 32206107 PMCID: PMC7069068 DOI: 10.7150/thno.39786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/08/2020] [Indexed: 12/26/2022] Open
Abstract
Sonogenetics is a promising approach for in vivo neuromodulation using ultrasound (US) to non-invasively stimulate cells in deep tissue. However, sonogenetics requires accurate transduction of US-responsive proteins into target cells. Here, we introduce a non-invasive and non-viral approach for intracerebral gene delivery. This approach utilizes temporary ultrasonic disruption of the blood-brain barrier (BBB) to transfect neurons at specific sites in the brain via DNA that encodes engineered US-responsive protein (murine Prestin (N7T, N308S))-loaded microbubbles (pPrestin-MBs). Prestin is a transmembrane protein that exists in the mammalian auditory system and functions as an electromechanical transducer. We further improved the US sensitivity of Prestin by introducing specific amino acid substitutions that frequently occur in sonar species into the mouse Prestin protein. We demonstrated this concept in mice using US with pPrestin-MBs to non-invasively modify and activate neurons within the brain for spatiotemporal neuromodulation. Method: MBs composed of cationic phospholipid and C3F8 loaded with mouse Prestin plasmid (pPrestin) via electrostatic interactions. The mean concentration and size of the pPrestin-MBs were (16.0 ± 0.2) × 109 MBs/mL and 1.1 ± 0.2 μm, respectively. SH-SY5Y neuron-like cells and C57BL mice were used in this study. We evaluated the gene transfection efficiency and BBB-opening region resulting from pPrestin-MBs with 1-MHz US (pressure = 0.1-0.5 MPa, cycle = 50-10000, pulse repetition frequency (PRF): 0.5-5 Hz, sonication time = 60 s) using green fluorescence protein (Venus) and Evans blue staining. Results: The maximum pPrestin expression with the highest cell viability occurred at a pressure of 0.5 MPa, cycle number of 5000, and PRF of 1 Hz. The cellular transfection rate with pPrestin-MBs and US was 20.2 ± 2.5%, which was 1.5-fold higher than that of commercial transfection agents (LT-1). In vivo data suggested that the most profound expression of pPrestin occurred at 2 days after performing pPrestin-MBs with US (0.5 MPa, 240 s sonication time). In addition, no server erythrocyte extravasations and apoptosis cells were observed at US-sonicated region. We further found that with 0.5-MHz US stimulation, cells with Prestin expression were 6-fold more likely to exhibit c-Fos staining than cells without Prestin expression. Conclusion: Successful activation of Prestin-expressing neurons suggests that this technology provides non-invasive and spatially precise selective modulation of one or multiple specific brain regions.
Collapse
|
48
|
Izadifar Z, Izadifar Z, Chapman D, Babyn P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J Clin Med 2020; 9:jcm9020460. [PMID: 32046072 PMCID: PMC7073974 DOI: 10.3390/jcm9020460] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/22/2022] Open
Abstract
Ultrasound can penetrate deep into tissues and interact with human tissue via thermal and mechanical mechanisms. The ability to focus an ultrasound beam and its energy onto millimeter-size targets was a significant milestone in the development of therapeutic applications of focused ultrasound. Focused ultrasound can be used as a non-invasive thermal ablation technique for tumor treatment and is being developed as an option to standard oncologic therapies. High-intensity focused ultrasound has now been used for clinical treatment of a variety of solid malignant tumors, including those in the pancreas, liver, kidney, bone, prostate, and breast, as well as uterine fibroids and soft-tissue sarcomas. Magnetic resonance imaging and Ultrasound imaging can be combined with high intensity focused ultrasound to provide real-time imaging during ablation. Magnetic resonance guided focused ultrasound represents a novel non-invasive method of treatment that may play an important role as an alternative to open neurosurgical procedures for treatment of a number of brain disorders. This paper briefly reviews the underlying principles of HIFU and presents current applications, outcomes, and complications after treatment. Recent applications of Focused ultrasound for tumor treatment, drug delivery, vessel occlusion, histotripsy, movement disorders, and vascular, oncologic, and psychiatric applications are reviewed, along with clinical challenges and potential future clinical applications of HIFU.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-7827; Fax: +1-306-966-4651
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Dean Chapman
- Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada
| |
Collapse
|
49
|
Liufu C, Li Y, Tu J, Zhang H, Yu J, Wang Y, Huang P, Chen Z. Echogenic PEGylated PEI-Loaded Microbubble As Efficient Gene Delivery System. Int J Nanomedicine 2019; 14:8923-8941. [PMID: 31814720 PMCID: PMC6863126 DOI: 10.2147/ijn.s217338] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are responsible for cancer therapeutic resistance and metastasis. To date, in addition to surgery, chemotherapy, and radiotherapy, gene delivery has emerged as a potential therapeutic modality for ovarian cancer. Efficient and safe targeted gene delivery is complicated due to the tumor heterogeneity barrier. Ultrasound (US)-stimulated microbubbles (MBs) have demonstrated a method of enabling non-invasive targeted gene delivery. PURPOSE The purpose of our study was to show the utility of poly(ethylene glycol)-SS-polyethylenimine-loaded microbubbles (PSP@MB) as an ultrasound theranostic and redox-responsive agent in a gene delivery system. PATIENTS AND METHODS PSP nanoparticles were conjugated to the MB surface through biotin-avidin linkage, increasing the gene-loading efficiency of MB. The significant increase in the release of genes from the PSP@MB complexes was achieved upon ultrasound exposure. The positive surface charge in PSP@MB can condense the plasmid through electrostatic interactions; agarose-gel electrophoresis further confirmed the ability of PSP@MB to condense plasmids. The morphology, particle sizes and zeta potential of PSP@MB were characterized by transmission electron microscopy and dynamic light scattering. RESULTS Laser confocal microscopy showed that the combination of ultrasound with PSP@MB could promote the cellular uptake of plasmids. Plasmids which encode enhanced green fluorescence protein (EGFP) reporter genes or luciferase reporter genes were delivered to CSCs in vitro and to subcutaneous xenografts in vivo via the combination of ultrasound with PSP@MB. Gene transfection efficiency was evaluated by fluorescence microscopy and In Vivo Imaging Systems. This study demonstrated that the combination of ultrasound with PSP@MB can remarkably promote gene delivery to solid tumors as well as diminishing the toxicity towards normal tissues in vivo. The combination of PSP@MB and the use of ultrasound can efficiently enhance accumulation, extravasation and penetration into solid tumors. CONCLUSION Taken together, our study showed that this novel PSP@MB and ultrasound-mediated gene delivery system could efficiently target CSCs.
Collapse
Affiliation(s)
- Chun Liufu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Jiawei Tu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Hui Zhang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Yi Wang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Pintong Huang
- Department of Ultrasound, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| |
Collapse
|
50
|
Jiang X, Savchenko O, Li Y, Qi S, Yang T, Zhang W, Chen J. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans Biomed Eng 2019; 66:2704-2718. [DOI: 10.1109/tbme.2018.2889669] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|