1
|
Guruvayurappan GK, Frankenbach-Désor T, Laubach M, Klein A, von Bergwelt-Baildon M, Cusan M, Aszodi A, Holzapfel BM, Böcker W, Mayer-Wagner S. Clinical challenges in prostate cancer management: Metastatic bone-tropism and the role of circulating tumor cells. Cancer Lett 2024; 606:217310. [PMID: 39486571 DOI: 10.1016/j.canlet.2024.217310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Prostate cancer (PCa) metastasis is one of the leading causes of cancer-related mortality in men worldwide, primarily due to its tendency to metastasize, with bones of axial skeleton being the favored target-site. PCa bone-metastasis (PCa-BM) presents significant clinical challenges, especially by the weakening of bone architecture, majorly due to the formation of osteoblastic lesions, leading to severe bone fractures. Another complication is that the disease predominantly affects elderly men. Further exploration is required to understand how the circulating tumor cells (CTCs) adapt to varying microenvironments and other biomechanical stresses encountered during the sequential steps in metastasis, finally resulting in colonization specifically in the bone niche, in PCa-BM. Deciphering how CTCs encounter and adapt to different biochemical, biomechanical and microenvironmental factors may improve the prospects of PCa diagnosis, development of novel therapeutics and prognosis. Moreover, the knowledge developed is expected to have broader implications for cancer research, paving the way for better therapeutic strategies and targeted therapies in the realm of metastatic cancer progression across different types of cancers. Our review begins with analyzing the challenges in PCa diagnosis, treatment and management, and delves into the formation and dynamics of CTCs, highlighting their role in PCa metastasis and bone-tropism. We further explore the pivotal role of individual factors in dictating the predisposition of tumors to metastasize to specific secondary sites, such as the noteworthy tendency of PCa bone-metastasis. Finally, we highlight the unresolved questions and potential avenues for further exploration.
Collapse
Affiliation(s)
- Gayathri K Guruvayurappan
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Tina Frankenbach-Désor
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Klein
- Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Monica Cusan
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Attila Aszodi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris M Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Böcker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
2
|
Zhao Y, Li Y, Zou J, Guo T, Zhong Z, Li Y, Chen S, Li J, Huang K, Lian G, Huang Y. Low-dose arsenic trioxide inhibits pancreatic stellate cell activation via LOXL3 expression to enhance immunotherapy in pancreatic cancer. Br J Cancer 2024; 131:1928-1941. [PMID: 39501090 PMCID: PMC11628614 DOI: 10.1038/s41416-024-02880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is characterized by abnormally fibrotic mesenchyme, which notably influences on the effectiveness of immunotherapy. Low-dose arsenic trioxide (ATO, 1.0 μM) can inhibit the activation of pancreatic stellate cells (PSCs) and affect fibrosis, which is a potential strategy for enhancing the sensitivity to immunotherapy. METHODS Extracellular matrix (ECM) models were employed to assess the regulatory effects of ATO on ECM and peripheral blood mononuclear cells. Orthotopic C57BL/6J models were utilized to evaluate the influence of ATO on CD8+T cell infiltration and immunotherapy in PC. Additionally, nanomaterials loaded with ATO designed to specifically target PSCs (scAbFAP-α-HMSNs-PAA-ATO) were produced to enhance targeting effects of ATO. RESULTS Low-dose ATO (1.0 μM) suppressed PSCs activation, exhibiting potential for synergistic immunotherapy. Under low-dose ATO intervention, ECM underwent remodeling, leading to increases in CD8+T cell infiltration, thereby enhancing anti-PD-L1 therapy effect. We further demonstrated that low-dose ATO remodeled ECM by regulating the expression of LOXL3 in PSCs. scAbFAP-α-HMSNs-PAA-ATO exhibited improved targeting capabilities, and enhanced capacity to inhibit fibrosis and sensitize immunotherapy. CONCLUSIONS Our research reveals that low-dose ATO, by regulating LOXL3, remodels the ECM and enhances CD8+T cell infiltration, thus sensitizing the efficacy of immunotherapy, which provides a novel strategy for comprehensive treatment to PC.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunlong Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinmao Zou
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tairan Guo
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaqing Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaojie Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiajia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Guoda Lian
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yuzhou Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
3
|
Bugajova M, Raudenska M, Masarik M, Kalfert D, Betka J, Balvan J. RNAs in tumour-derived extracellular vesicles and their significance in the tumour microenvironment. Int J Cancer 2024; 155:1147-1161. [PMID: 38845351 DOI: 10.1002/ijc.35035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 08/03/2024]
Abstract
Small extracellular vesicles (sEVs) secreted by various types of cells serve as crucial mediators of intercellular communication within the complex tumour microenvironment (TME). Tumour-derived small extracellular vesicles (TDEs) are massively produced and released by tumour cells, recapitulating the specificity of their cell of origin. TDEs encapsulate a variety of RNA species, especially messenger RNAs, microRNAs, long non-coding RNAs, and circular RNAs, which release to the TME plays multifaced roles in cancer progression through mediating cell proliferation, invasion, angiogenesis, and immune evasion. sEVs act as natural delivery vehicles of RNAs and can serve as useful targets for cancer therapy. This review article provides an overview of recent studies on TDEs and their RNA cargo, with emphasis on the role of these RNAs in carcinogenesis.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Cao L, Zhong J, Liu Z, Jiang J, Zhu C, Liu F, Wang B. Increased LOXL2 expression is related to poor prognosis in lung squamous cell carcinoma. J Thorac Dis 2024; 16:581-592. [PMID: 38410543 PMCID: PMC10894394 DOI: 10.21037/jtd-23-1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
Background The lysyl oxidate-like (LOXL) family was reported to be involved in the process of cancer development. However, the prognostic value of LOXL in lung cancer is unknown. We aimed to study the expression pattern and prognostic value of LOXL family members in lung squamous cell carcinoma (LUSC). Methods The Wilcoxon test and logistic regression analysis were used to study the expression level of LOXLs and its correlation with clinical characteristics. The Kaplan-Meier method and Cox regression analysis were performed to estimate the correlation of LOXsL expression with the survival of LUSC patients. Receiver operator characteristic (ROC) curves were plotted, and areas under the curves (AUCs) were calculated to estimate the diagnostic and prognostic power of LOXL. Cell Counting Kit-8 (CCK-8) assays, wound healing assays and Transwell assays were used to estimate the impact of LOXL2 on LUSC cells. Results LOXL1 and LOXL2 expression was upregulated in LUSC tissues (P<0.001). LOXL1 and LOXL2 showed high diagnostic power in LUSC patients, with AUCs of 0.784 and 0.751, respectively. Patients with high LOXL2 expression levels showed poor overall survival (OS) (P=0.019) and progression-free survival (PFS) (P=0.015). High LOXL2 expression was an independent prognostic factor for poor survival (P=0.026). Inhibition of LOXL2 suppressed proliferation, migration and invasion in LUSC cell lines. Conclusions Increased LOXL2 was related to poor survival in LUSC. LOXL2 may be a potential prognostic biomarker and therapeutic target in LUSC.
Collapse
Affiliation(s)
- Lei Cao
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| | - Jian Zhong
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| | - Zicheng Liu
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| | - Jie Jiang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| | - Chenyao Zhu
- Shenzhen Yuce Biotechnology Co., Ltd., Shenzhen, China
| | - Feng Liu
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| | - Bo Wang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Zheng C, Chu Y, Zhang N, Jia T, Li Y, Jiang T, Sun J. Pan-Cancer Analysis of the LOX Family Reveals that LOX Affects Tumor Prognosis by Affecting Immune Infiltration. Crit Rev Eukaryot Gene Expr 2024; 34:87-100. [PMID: 38073445 DOI: 10.1615/critreveukaryotgeneexpr.2023049049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The lysyl oxidase (LOX) gene family encodes for a group of copper-dependent enzymes that play a crucial role in the cross-linking of collagen and elastin fibers in the extracellular matrix (ECM). Dysregulation of LOX gene expression has been implicated in various pathological conditions, including cancer. Several studies have shown that the LOX gene family is involved in cancer progression and metastasis. The goal of this article is to conduct a comprehensive analysis of the LOX family's role in pan-cancer multiplexes. We utilized pan-cancer multi-omics sequencing data from TCGA to investigate the relationship between LOX family genes and tumors at four different levels: mutation, copy number variation, methylation, and gene expression. In addition, we also examined the relationship between LOX family genes and tumors at the cell line level using tumor cell line sequencing data from CCLE. Taking into account the impact of LOX family genes on lung cancer, we developed a LOX family lung cancer prognostic model to forecast the disease's prognosis. Our findings revealed that LOXL2 had the highest mutation frequency in tumors, while all four LOX family genes experienced some degree of copy number variation in diverse tumors. We observed that LOX, LOXL1 to LOXL3 were predominantly highly expressed in tumors including LUAD. The expression trends of LOX and LOXL1 to LOXL3 were consistent across tumor cell lines, but differed somewhat from LOXL4. Utilizing 25 LOX family-related genes, we constructed a LOX family prognostic model that performed well in predicting the prognosis of lung cancer. Through pan-cancer analysis, we gain further knowledge of the role of LOX family genes in different tumors, offering a novel pathway for future research into the relationship between LOX family genes and tumors.
Collapse
Affiliation(s)
- Chunlong Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yan Chu
- School of Medicine, Xi'an Siyuan University,28 Shui'an Road, Xi'an, Shaanxi, 710038, China
| | - Nian Zhang
- Department of Anesthesia, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ting Jia
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yuanyuan Li
- School of Medicine, Xi'an Siyuan University, Xi'an, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jianyong Sun
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Zefferino R, Conese M. A Vaccine against Cancer: Can There Be a Possible Strategy to Face the Challenge? Possible Targets and Paradoxical Effects. Vaccines (Basel) 2023; 11:1701. [PMID: 38006033 PMCID: PMC10674257 DOI: 10.3390/vaccines11111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Is it possible to have an available vaccine that eradicates cancer? Starting from this question, this article tries to verify the state of the art, proposing a different approach to the issue. The variety of cancers and different and often unknown causes of cancer impede, except in some cited cases, the creation of a classical vaccine directed at the causative agent. The efforts of the scientific community are oriented toward stimulating the immune systems of patients, thereby preventing immune evasion, and heightening chemotherapeutic agents effects against cancer. However, the results are not decisive, because without any warning signs, metastasis often occurs. The purpose of this paper is to elaborate on a vaccine that must be administered to a patient in order to prevent metastasis; metastasis is an event that leads to death, and thus, preventing it could transform cancer into a chronic disease. We underline the fact that the field has not been studied in depth, and that the complexity of metastatic processes should not be underestimated. Then, with the aim of identifying the target of a cancer vaccine, we draw attention to the presence of the paradoxical actions of different mechanisms, pathways, molecules, and immune and non-immune cells characteristic of the tumor microenvironment at the primary site and pre-metastatic niche in order to exclude possible vaccine candidates that have opposite effects/behaviors; after a meticulous evaluation, we propose possible targets to develop a metastasis-targeting vaccine. We conclude that a change in the current concept of a cancer vaccine is needed, and the efforts of the scientific community should be redirected toward a metastasis-targeting vaccine, with the increasing hope of eradicating cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
8
|
Sharma RK, Kamble SH, Krishnan S, Gomes J, To B, Li S, Liu IC, Gumz ML, Mohandas R. Involvement of lysyl oxidase in the pathogenesis of arterial stiffness in chronic kidney disease. Am J Physiol Renal Physiol 2023; 324:F364-F373. [PMID: 36825626 PMCID: PMC10069822 DOI: 10.1152/ajprenal.00239.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk for adverse cardiovascular events. CKD is associated with increases in arterial stiffness, whereas improvements in arterial stiffness correlate with better survival. However, arterial stiffness is increased early in CKD, suggesting that there might be additional factors, unique to kidney disease, that increase arterial stiffness. Lysyl oxidase (LOX) is a key mediator of collagen cross linking and matrix remodeling. LOX is predominantly expressed in the cardiovascular system, and its upregulation has been associated with increased tissue stiffening and extracellular matrix remodeling. Thus, this study was designed to evaluate the role of increased LOX activity in inducing aortic stiffness in CKD and whether β-aminopropionitrile (BAPN), a LOX inhibitor, could prevent aortic stiffness by reducing collagen cross linking. Eight-week-old male C57BL/6 mice were subjected to 5/6 nephrectomy (Nx) or sham surgery. Two weeks after surgery, mice were randomized to BAPN (300 mg/kg/day in water) or vehicle treatment for 4 wk. Aortic stiffness was assessed by pulse wave velocity (PWV) using Doppler ultrasound. Aortic levels of LOX were assessed by ELISA, and cross-linked total collagen levels were analyzed by mass spectrometry and Sircol assay. Nx mice showed increased PWV and aortic wall remodeling compared with control mice. Collagen cross linking was increased in parallel with the increases in total collagen in the aorta of Nx mice. In contrast, Nx mice that received BAPN treatment showed decreased cross-linked collagens and PWV compared with that received vehicle treatment. Our results indicated that LOX might be an early and key mediator of aortic stiffness in CKD.NEW & NOTEWORTHY Arterial stiffness in CKD is associated with adverse cardiovascular outcomes. However, the mechanisms underlying increased aortic stiffness in CKD are unclear. Herein, we demonstrated that 1) increased aortic stiffness in CKD is independent of hypertension and calcification and 2) LOX-mediated changes in extracellular matrix are at least in part responsible for increased aortic stiffness in CKD. Prevention of excess LOX may have therapeutic potential in alleviating increased aortic stiffness and improving cardiovascular disease in CKD.
Collapse
Affiliation(s)
- Ravindra K Sharma
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Shyam H Kamble
- Department of Pharmacology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Suraj Krishnan
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Joshua Gomes
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Brandon To
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Shiyu Li
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - I-Chia Liu
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Rajesh Mohandas
- Division of Nephrology and Hypertension, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
9
|
Corder RD, Vachieri RB, Martin ME, Taylor DK, Fleming JM, Khan SA. Linear and nonlinear rheology of liberase-treated breast cancer tumors. Biomater Sci 2023; 11:2186-2199. [PMID: 36744734 PMCID: PMC10023448 DOI: 10.1039/d3bm00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular matrix (ECM) rigidity has been shown to increase the invasive properties of breast cancer cells, promoting transformation and metastasis through mechanotransduction. Reducing ECM stiffness via enzymatic digestion could be a promising approach to slowing breast cancer development by de-differentiation of breast cancer cells to less aggressive phenotypes and enhancing the effectiveness of existing chemotherapeutics via improved drug penetrance throughout the tumor. In this study, we examine the effects of injectable liberase (a blend of collagenase and thermolysin enzymes) treatments on the linear and nonlinear rheology of allograft 4T1 mouse mammary tumors. We perform two sets of in vivo mouse studies, in which either one or multiple treatment injections occur before the tumors are harvested for rheological analysis. The treatment groups in each study consist of a buffer control, free liberase enzyme in buffer, a thermoresponsive copolymer called LiquoGel (LQG) in buffer, and a combined, localized injection of LQG and liberase. All tumor samples exhibit gel-like linear rheological behavior with the elastic modulus significantly larger than the viscous modulus and both independent of frequency. Tumors that receive a single injection of localized liberase have significantly lower tumor volumes and lower tissue moduli at both the center and edge compared to buffer- and free liberase-injected control tumors, while tissue viscoelasticity remains relatively unaffected. Tumors injected multiple times with LQG and liberase also have lower tissue volumes but possess higher tissue moduli and lower viscoelasticities compared to the other treatment groups. We propose that a mechanotransductive mechanism could cause the formation of smaller but stiffer tumors after repeated, localized liberase injections. Large amplitude oscillatory shear (LAOS) experiments are also performed on tissues from the multiple injection study and the results are analyzed using MITlaos. LAOS analysis reveals that all 4T1 tumors from the multiple injection study exhibit nonlinear rheological behavior at high strains and strain rates. Examination of the Lissajous-Bowditch curves, Chebyshev coefficient ratios, elastic moduli, and dynamic viscosities demonstrate that the onset and type of nonlinear behavior is independent of treatment type and elastic modulus, suggesting that multiple liberase injections do not affect the nonlinear viscoelasticity of 4T1 tumors.
Collapse
Affiliation(s)
- Ria D Corder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Robert B Vachieri
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Megan E Martin
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| | - Darlene K Taylor
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Jodie M Fleming
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
10
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
11
|
Halloran K, Mackova M, Parkes MD, Hirji A, Weinkauf J, Timofte IL, Snell GI, Westall GP, Lischke R, Zajacova A, Havlin J, Hachem R, Kreisel D, Levine D, Kubisa B, Piotrowska M, Juvet S, Keshavjee S, Jaksch P, Klepetko W, Halloran PF. The molecular features of chronic lung allograft dysfunction in lung transplant airway mucosa. J Heart Lung Transplant 2022; 41:1689-1699. [PMID: 36163162 DOI: 10.1016/j.healun.2022.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Many lung transplants fail due to chronic lung allograft dysfunction (CLAD). We recently showed that transbronchial biopsies (TBBs) from CLAD patients manifest severe parenchymal injury and dedifferentiation, distinct from time-dependent changes. The present study explored time-selective and CLAD-selective transcripts in mucosal biopsies from the third bronchial bifurcation (3BMBs), compared to those in TBBs. METHODS We used genome-wide microarray measurements in 324 3BMBs to identify CLAD-selective changes as well as time-dependent changes and develop a CLAD classifier. CLAD-selective transcripts were identified with linear models for microarray data (limma) and were used to build an ensemble of 12 classifiers to predict CLAD. Hazard models and random forests were then used to predict the risk of graft loss using the CLAD classifier, transcript sets associated with rejection, injury, and time. RESULTS T cell-mediated rejection and donor-specific antibody were increased in CLAD 3BMBs but most had no rejection. Like TBBs, 3BMBs showed a time-dependent increase in transcripts expressed in inflammatory cells that was not associated with CLAD or survival. Also like TBBs, the CLAD-selective transcripts in 3BMBs reflected severe parenchymal injury and dedifferentiation, not inflammation or rejection. While 3BMBs and TBBs did not overlap in their top 20 CLAD-selective transcripts, many CLAD-selective transcripts were significantly increased in both for example LOXL1, an enzyme controlling matrix remodeling. In Cox models for one-year survival, the 3BMB CLAD-selective transcripts and CLAD classifier predicted graft loss and correlated with CLAD stage. Many 3BMB CLAD-selective transcripts were also increased by injury in kidney transplants and correlated with decreased kidney survival, including LOXL1. CONCLUSIONS Mucosal and transbronchial biopsies from CLAD patients reveal a diffuse molecular injury and dedifferentiation state that impacts prognosis and correlates with the physiologic disturbances. CLAD state in lung transplants shares features with failing kidney transplants, indicating elements shared by the injury responses of distressed organs.
Collapse
Affiliation(s)
| | | | | | - Alim Hirji
- University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Greg I Snell
- Alfred Hospital Lung Transplant Service, Melbourne, Victoria, Australia
| | - Glen P Westall
- Alfred Hospital Lung Transplant Service, Melbourne, Victoria, Australia
| | | | | | - Jan Havlin
- University Hospital Motol, Prague, Czech Republic
| | - Ramsey Hachem
- Washington University in St Louis, St. Louis, Missouri
| | | | | | | | | | - Stephen Juvet
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
12
|
Carlson AL, Carrazco-Carrillo J, Loder A, Elkhadragy L, Schachtschneider KM, Padilla-Benavides T. The Oncopig as an Emerging Model to Investigate Copper Regulation in Cancer. Int J Mol Sci 2022; 23:14012. [PMID: 36430490 PMCID: PMC9697225 DOI: 10.3390/ijms232214012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence points to several fundamental contributions that copper (Cu) has to promote the development of human pathologies such as cancer. These recent and increasing identification of the roles of Cu in cancer biology highlights a promising field in the development of novel strategies against cancer. Cu and its network of regulatory proteins are involved in many different contextual aspects of cancer from driving cell signaling, modulating cell cycle progression, establishing the epithelial-mesenchymal transition, and promoting tumor growth and metastasis. Human cancer research in general requires refined models to bridge the gap between basic science research and meaningful clinical trials. Classic studies in cultured cancer cell lines and animal models such as mice and rats often present caveats when extended to humans due to inherent genetic and physiological differences. However, larger animal models such as pigs are emerging as more appropriate tools for translational research as they present more similarities with humans in terms of genetics, anatomical structures, organ sizes, and pathological manifestations of diseases like cancer. These similarities make porcine models well-suited for addressing long standing questions in cancer biology as well as in the arena of novel drug and therapeutic development against human cancers. With the emergent roles of Cu in human health and pathology, the pig presents an emerging and valuable model to further investigate the contributions of this metal to human cancers. The Oncopig Cancer Model is a transgenic swine model that recapitulates human cancer through development of site and cell specific tumors. In this review, we briefly outline the relationship between Cu and cancer, and how the novel Oncopig Cancer Model may be used to provide a better understanding of the mechanisms and causal relationships between Cu and molecular targets involved in cancer.
Collapse
Affiliation(s)
- Alyssa L. Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Jaime Carrazco-Carrillo
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Aaron Loder
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | | |
Collapse
|
13
|
Liburkin-Dan T, Toledano S, Neufeld G. Lysyl Oxidase Family Enzymes and Their Role in Tumor Progression. Int J Mol Sci 2022; 23:6249. [PMID: 35682926 PMCID: PMC9181702 DOI: 10.3390/ijms23116249] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
The five genes of the lysyl oxidase family encode enzymes that covalently cross-link components of the extracellular matrix, such as various types of collagen and elastin, and, thus, promote the stabilization of extracellular matrixes. Several of these genes, in particular lysyl oxidase (LOX) and lysyl oxidase like-2 (LOXL2) were identified as genes that are upregulated by hypoxia, and promote tumor cells invasion and metastasis. Here, we focus on the description of the diverse molecular mechanisms by which the various lysyl oxidases affect tumor progression. We also describe attempts that have been made, and are still on-going, that focus on the development of efficient lysyl oxidase inhibitors for the treatment of various forms of cancer, and of diseases associated with abnormal fibrosis.
Collapse
Affiliation(s)
| | | | - Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel; (T.L.-D.); (S.T.)
| |
Collapse
|
14
|
Halin Bergström S, Lundholm M, Nordstrand A, Bergh A. Rat prostate tumors induce DNA synthesis in remote organs. Sci Rep 2022; 12:7908. [PMID: 35551231 PMCID: PMC9098422 DOI: 10.1038/s41598-022-12131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Advanced cancers induce systemic responses. However, if such systemic changes occur already when aggressive tumors are small, have not been thoroughly characterized. Here, we examined how localized prostate cancers of different sizes and metastatic potential affected DNA synthesis in the rest of the prostate and in various remote organs. Non-metastatic Dunning R-3327 G (G) tumor cells, metastatic MatLyLu (MLL) tumor cells, or vehicle were injected into the prostate of immunocompetent rats. All animals received daily injections of Bromodeoxyuridine (BrdU), to label cells/daughter cells with active DNA synthesis. Equal sized G- and MLL-tumors, similarly increased BrdU-labeling in the prostate, lymph nodes and liver compared to tumor-free controls. Prior to metastasis, MLL-tumors also increased BrdU-labeling in bone marrow and lungs compared to animals with G-tumors or controls. In animals with MLL-tumors, BrdU-labeling in prostate, lungs, brown adipose tissue and skeletal muscles increased in a tumor-size-dependent way. Furthermore, MLL-tumors induced increased signs of DNA damage (γH2AX staining) and accumulation of CD68 + macrophages in the lungs. In conclusion, small localized prostate cancers increased DNA synthesis in several remote tissues in a tumor type- and size-dependent way. This may suggest the possibility for early diagnosis of aggressive prostate cancer by examining tumor-induced effects in other tissues.
Collapse
Affiliation(s)
- Sofia Halin Bergström
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden.
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| | - Annika Nordstrand
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| |
Collapse
|
15
|
Alfano M, Locatelli I, D’Arrigo C, Mora M, Vozzi G, De Acutis A, Pece R, Tavella S, Costa D, Poggi A, Zocchi MR. Lysyl-Oxidase Dependent Extracellular Matrix Stiffness in Hodgkin Lymphomas: Mechanical and Topographical Evidence. Cancers (Basel) 2022; 14:259. [PMID: 35008423 PMCID: PMC8750937 DOI: 10.3390/cancers14010259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The biochemical composition and architecture of the extracellular matrix (ECM) is known to condition development and invasiveness of neoplasms. To clarify this point, we analyzed ECM stiffness, collagen cross-linking and anisotropy in lymph nodes (LN) of Hodgkin lymphomas (HL), follicular lymphomas (FL) and diffuse large B-cell lymphomas (DLBCL), compared with non-neoplastic LN (LDN). METHODS AND RESULTS We found increased elastic (Young's) modulus in HL and advanced FL (grade 3A) over LDN, FL grade 1-2 and DLBCL. Digital imaging evidenced larger stromal areas in HL, where increased collagen cross-linking was found; in turn, architectural modifications were documented in FL3A by scanning electron microscopy and enhanced anisotropy by polarized light microscopy. Interestingly, HL expressed high levels of lysyl oxidase (LOX), an enzyme responsible for collagen cross-linking. Using gelatin scaffolds fabricated with a low elastic modulus, comparable to that of non-neoplastic tissues, we demonstrated that HL LN-derived mesenchymal stromal cells and HL cells increased the Young's modulus of the extracellular microenvironment through the expression of LOX. Indeed, LOX inhibition by β-aminopropionitrile prevented the gelatin stiffness increase. CONCLUSIONS These data indicate that different mechanical, topographical and/or architectural modifications of ECM are detectable in human lymphomas and are related to their histotype and grading.
Collapse
Affiliation(s)
- Massimo Alfano
- Division of Experimental Oncology and Unit of Urology, Urologic Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (M.A.); (I.L.)
| | - Irene Locatelli
- Division of Experimental Oncology and Unit of Urology, Urologic Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (M.A.); (I.L.)
| | - Cristina D’Arrigo
- Department of Electron Microscopy, Institute for Chemical Science and Technologies-National Research Council (SCITEC-CNR), 16149 Genoa, Italy;
| | - Marco Mora
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Giovanni Vozzi
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy;
- Research Center E. Piaggio, University of Pisa, 56122 Pisa, Italy;
| | - Aurora De Acutis
- Research Center E. Piaggio, University of Pisa, 56122 Pisa, Italy;
| | - Roberta Pece
- Cellular Oncology Unit, Department of Experimental Medicine, IRCCS Ospedale Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (R.P.); (S.T.)
| | - Sara Tavella
- Cellular Oncology Unit, Department of Experimental Medicine, IRCCS Ospedale Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (R.P.); (S.T.)
| | - Delfina Costa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (D.C.); (A.P.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (D.C.); (A.P.)
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
16
|
Aghlara-Fotovat S, Nash A, Kim B, Krencik R, Veiseh O. Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Deliv Transl Res 2021; 11:2394-2413. [PMID: 34176099 DOI: 10.1007/s13346-021-01018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Host immune cells interact bi-directionally with their extracellular matrix (ECM) to receive and deposit molecular signals, which orchestrate cellular activation, proliferation, differentiation, and function to maintain healthy tissue homeostasis. In response to pathogens or damage, immune cells infiltrate diseased sites and synthesize critical ECM molecules such as glycoproteins, proteoglycans, and glycosaminoglycans to promote healing. When the immune system misidentifies pathogens or fails to survey damaged cells effectively, maladies such as chronic inflammation, autoimmune diseases, and cancer can develop. In these conditions, it is essential to restore balance to the body through modulation of the immune system and the ECM. This review details the components of dysregulated ECM implicated in pathogenic environments and therapeutic approaches to restore tissue homeostasis. We evaluate emerging strategies to overcome inflamed, immune inhibitory, and otherwise diseased microenvironments, including mechanical stimulation, targeted proteases, adoptive cell therapy, mechanomedicine, and biomaterial-based cell therapeutics. We highlight various strategies that have produced efficacious responses in both pre-clinical and human trials and identify additional opportunities to develop next-generation interventions. Significantly, we identify a need for therapies to address dense or fibrotic tissue for the treatment of organ tissue damage and various cancer subtypes. Finally, we conclude that therapeutic techniques that disrupt, evade, or specifically target the pathogenic microenvironment have a high potential for improving therapeutic outcomes and should be considered a priority for immediate exploration. A schematic showing the various methods of extracellular matrix disruption/targeting in both fibrotic and cancerous environments. a Biomaterial-based cell therapy can be used to deliver anti-inflammatory cytokines, chemotherapeutics, or other factors for localized, slow release of therapeutics. b Mechanotherapeutics can be used to inhibit the deposition of molecules such as collagen that affect stiffness. c Ablation of the ECM and target tissue can be accomplished via mechanical degradation such as focused ultrasound. d Proteases can be used to improve the distribution of therapies such as oncolytic virus. e Localization of therapeutics such as checkpoint inhibitors can be improved with the targeting of specific ECM components, reducing off-target effects and toxicity.
Collapse
Affiliation(s)
| | - Amanda Nash
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Wang X, Pierre V, Senapati S, Park PSH, Senyo SE. Microenvironment Stiffness Amplifies Post-ischemia Heart Regeneration in Response to Exogenous Extracellular Matrix Proteins in Neonatal Mice. Front Cardiovasc Med 2021; 8:773978. [PMID: 34805326 PMCID: PMC8602555 DOI: 10.3389/fcvm.2021.773978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The cardiogenesis of the fetal heart is absent in juveniles and adults. Cross-transplantation of decellularized extracellular matrix (dECM) can stimulate regeneration in myocardial infarct (MI) models. We have previously shown that dECM and tissue stiffness have cooperative regulation of heart regeneration in transiently regenerative day 1 neonatal mice. To investigate underlying mechanisms of mechano-signaling and dECM, we pharmacologically altered heart stiffness and administered dECM hydrogels in non-regenerative mice after MI. The dECM combined with softening exhibits preserved cardiac function, LV geometry, increased cardiomyocyte mitosis and lowered fibrosis while stiffening further aggravated ischemic damage. Transcriptome analysis identified a protein in cardiomyocytes, CLCA2, confirmed to be upregulated after MI and downregulated by dECM in a mechanosensitive manner. Synthetic knock-down of CLCA2 expression induced mitosis in primary rat cardiomyocytes in the dish. Together, our results indicate that therapeutic efficacy of extracellular molecules for heart regeneration can be modulated by heart microenvironment stiffness in vivo.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Valinteshley Pierre
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Paul S.-H. Park
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
18
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
19
|
Nicolas-Boluda A, Vaquero J, Vimeux L, Guilbert T, Barrin S, Kantari-Mimoun C, Ponzo M, Renault G, Deptula P, Pogoda K, Bucki R, Cascone I, Courty J, Fouassier L, Gazeau F, Donnadieu E. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 2021; 10:58688. [PMID: 34106045 PMCID: PMC8203293 DOI: 10.7554/elife.58688] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing five preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tumor stiffening with the remodeling of ECM architecture and to determine how these features affect intratumoral T cell migration. An ECM-targeted strategy, based on the inhibition of lysyl oxidase, was used. In vivo stiffness measurements were found to be strongly correlated with tumor growth and ECM crosslinking but negatively correlated with T cell migration. Interfering with collagen stabilization reduces ECM content and tumor stiffness leading to improved T cell migration and increased efficacy of anti-PD-1 blockade. This study highlights the rationale of mechanical characterizations in solid tumors to understand resistance to immunotherapy and of combining treatment strategies targeting the ECM with anti-PD-1 therapy.
Collapse
Affiliation(s)
- Alba Nicolas-Boluda
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Laboratoire Matière et Systèmes Complexes (MSC), CNRS, Université de Paris, Paris, France
| | - Javier Vaquero
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,LPP (Laboratoire de physique des plasmas, UMR 7648), Sorbonne Université, Centre national de la recherche scientifique (CNRS), Ecole Polytechnique, Paris, France.,Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Lene Vimeux
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Thomas Guilbert
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| | - Sarah Barrin
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Chahrazade Kantari-Mimoun
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Matteo Ponzo
- CNRS ERL 9215, CRRET laboratory, University of Paris-Est Créteil (UPEC), Paris, France
| | - Gilles Renault
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| | - Piotr Deptula
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Ilaria Cascone
- CNRS ERL 9215, CRRET laboratory, University of Paris-Est Créteil (UPEC), Paris, France
| | - José Courty
- CNRS ERL 9215, CRRET laboratory, University of Paris-Est Créteil (UPEC), Paris, France
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS, Université de Paris, Paris, France
| | - Emmanuel Donnadieu
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
20
|
von Kleeck R, Roberts E, Castagnino P, Bruun K, Brankovic SA, Hawthorne EA, Xu T, Tobias JW, Assoian RK. Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Sci Alliance 2021; 4:4/5/e202000997. [PMID: 33687998 PMCID: PMC8008950 DOI: 10.26508/lsa.202000997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
The findings show that increased lysyl oxidase abundance is causal for the elevated arterial stiffness present in the arteries of Hutchinson–Gilford Progeria Syndrome mice. Pharmacologic inhibition of lysyl oxidase improves cardiac dysfunction and restores arterial compliance. Arterial stiffening and cardiac dysfunction are hallmarks of premature aging in Hutchinson–Gilford Progeria Syndrome (HGPS), but the molecular regulators remain unknown. Here, we show that the LaminAG609G mouse model of HGPS recapitulates the premature arterial stiffening and early diastolic dysfunction seen in human HGPS. Lysyl oxidase (LOX) is up-regulated in the arteries of these mice, and treatment with the LOX inhibitor, β-aminopropionitrile, improves arterial mechanics and cardiac function. Genome-wide and mechanistic analysis revealed reduced expression of the LOX-regulator, miR-145, in HGPS arteries, and forced expression of miR-145 restores normal LOX gene expression in HGPS smooth muscle cells. LOX abundance is also increased in the carotid arteries of aged wild-type mice, but its spatial expression differs from HGPS and its up-regulation is independent of changes in miR-145 abundance. Our results show that miR-145 is selectively misregulated in HGPS and that the consequent up-regulation of LOX is causal for premature arterial stiffening and cardiac dysfunction.
Collapse
Affiliation(s)
- Ryan von Kleeck
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Emilia Roberts
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Translational Medicine and Therapeutics and University of Pennsylvania, Philadelphia, PA, USA
| | - Paola Castagnino
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Translational Medicine and Therapeutics and University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle Bruun
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonja A Brankovic
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Hawthorne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Tina Xu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomic Analysis Core and University of Pennsylvania, Philadelphia, PA, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA .,Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Translational Medicine and Therapeutics and University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Yuan R, Li Y, Yang B, Jin Z, Xu J, Shao Z, Miao H, Ren T, Yang Y, Li G, Song X, Hu Y, Wang X, Huang Y, Liu Y. LOXL1 exerts oncogenesis and stimulates angiogenesis through the LOXL1-FBLN5/αvβ3 integrin/FAK-MAPK axis in ICC. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:797-810. [PMID: 33614230 PMCID: PMC7868718 DOI: 10.1016/j.omtn.2021.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Aberrant expression of lysyl oxidase-like 1 (LOXL1) reportedly leads to fibrous diseases. Recent studies have revealed its role in cancers. In this study, we observed an elevated level of LOXL1 in the tissues and sera of patients with intrahepatic cholangiocarcinoma (ICC) compared with levels in nontumor tissues and sera of unaffected individuals. Overexpression of LOXL1 in RBE and 9810 cell lines promoted cell proliferation, colony formation, and metastasis in vivo and in vitro and induced angiogenesis. In contrast, depletion of LOXL1 showed the opposite effects. We further showed that LOXL1 interacted with fibulin 5 (FBLN5), which regulates angiogenesis, through binding to the αvβ3 integrin in an arginine-glycine-aspartic (Arg-Gly-Asp) domain-dependent mechanism and enhanced the focal adhesion kinase (FAK)-mitogen-activated protein kinase (MAPK) signaling pathway inside vascular endothelial cells. Our findings shed light on the molecular mechanism underlying LOXL1 regulation of angiogenesis in ICC development and indicate that the LOXL1-FBLN5/αvβ3 integrin/FAK-MAPK axis might be the critical pathological link leading to angiogenesis in ICC.
Collapse
Affiliation(s)
- Ruiyan Yuan
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yang Li
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bo Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Baixiang Road, Wenzhou 325000, China
| | - Zhaohui Jin
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiacheng Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Ziyu Shao
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huijie Miao
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tai Ren
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guoqiang Li
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoling Song
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yunping Hu
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xu’an Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Ying Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| |
Collapse
|
22
|
Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Sci Rep 2021; 11:5107. [PMID: 33658580 PMCID: PMC7930284 DOI: 10.1038/s41598-021-84492-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
In the field of oncology research, a deeper understanding of tumor biology has shed light on the role of environmental conditions surrounding cancer cells. In this regard, targeting the tumor microenvironment has recently emerged as a new way to access this disease. In this work, a novel extracellular matrix (ECM)-targeting nanotherapeutic was engineered using a lipid-based nanoparticle chemically linked to an inhibitor of the ECM-related enzyme, lysyl oxidase 1 (LOX), that inhibits the crosslinking of elastin and collagen fibers. We demonstrated that, when the conjugated vesicles were loaded with the chemotherapeutic epirubicin, superior inhibition of triple negative breast cancer (TNBC) cell growth was observed both in vitro and in vivo. Moreover, in vivo results displayed prolonged survival, minimal cytotoxicity, and enhanced biocompatibility compared to free epirubicin and epirubicin-loaded nanoparticles. This all-in-one nano-based ECM-targeting chemotherapeutic may provide a key-enabling technology for the treatment of TNBC.
Collapse
|
23
|
Wang H, Pan J, Barsky L, Jacob JC, Zheng Y, Gao C, Wang S, Zhu W, Sun H, Lu L, Jia H, Zhao Y, Bruns C, Vago R, Dong Q, Qin L. Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways. MOLECULAR BIOMEDICINE 2021; 2:3. [PMID: 35006432 PMCID: PMC8607426 DOI: 10.1186/s43556-020-00022-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis is a major contributor to cancer-associated deaths. It involves complex interactions between primary tumorigenic sites and future metastatic sites. Accumulation studies have revealed that tumour metastasis is not a disorderly spontaneous incident but the climax of a series of sequential and dynamic events including the development of a pre-metastatic niche (PMN) suitable for a subpopulation of tumour cells to colonize and develop into metastases. A deep understanding of the formation, characteristics and function of the PMN is required for developing new therapeutic strategies to treat tumour patients. It is rapidly becoming evident that therapies targeting PMN may be successful in averting tumour metastasis at an early stage. This review highlights the key components and main characteristics of the PMN and describes potential therapeutic strategies, providing a promising foundation for future studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Junjie Pan
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Livnat Barsky
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Haoting Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Razi Vago
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| |
Collapse
|
24
|
Roles of Lysyl Oxidase Family Members in the Tumor Microenvironment and Progression of Liver Cancer. Int J Mol Sci 2020; 21:ijms21249751. [PMID: 33371259 PMCID: PMC7766343 DOI: 10.3390/ijms21249751] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
The lysyl oxidase (LOX) family members are secreted copper-dependent amine oxidases, comprised of five paralogues: LOX and LOX-like l-4 (LOXL1-4), which are characterized by catalytic activity contributing to the remodeling of the cross-linking of the structural extracellular matrix (ECM). ECM remodeling plays a key role in the angiogenesis surrounding tumors, whereby a corrupt tumor microenvironment (TME) takes shape. Primary liver cancer includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), ranked as the seventh most common cancer globally, with limited therapeutic options for advanced stages. In recent years, a growing body of evidence has revealed the key roles of LOX family members in the pathogenesis of liver cancer and the shaping of TME, indicating their notable potential as therapeutic targets. We herein review the clinical value and novel biological roles of LOX family members in tumor progression and the TME of liver cancers. In addition, we highlight recent insights into their mechanisms and their potential involvement in the development of target therapy for liver cancer.
Collapse
|
25
|
Hernandez DR, Applewhite B, Martinez L, Laurito T, Tabbara M, Rojas MG, Wei Y, Selman G, Knysheva M, Velazquez OC, Salman LH, Andreopoulos FM, Shiu YT, Vazquez-Padron RI. Inhibition of Lysyl Oxidase with β-aminopropionitrile Improves Venous Adaptation after Arteriovenous Fistula Creation. KIDNEY360 2020; 2:270-278. [PMID: 34322674 PMCID: PMC8315119 DOI: 10.34067/kid.0005012020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The arteriovenous fistula (AVF) is the preferred hemodialysis access for end-stage renal disease (ESRD) patients. Yet, establishment of a functional AVF presents a challenge, even for the most experienced surgeons, since postoperative stenosis frequently occludes the AVF. Stenosis results from the loss of compliance in fibrotic areas of the fistula which turns intimal hyperplasia into an occlusive feature. Fibrotic remodeling depends on deposition and crosslinking of collagen by lysyl oxidase (LOX), an enzyme that catalyzes the deamination of lysine and hydroxylysine residues, facilitating intra/intermolecular covalent bonds. We postulate that pharmacological inhibition of lysyl oxidase (LOX) increases postoperative venous compliance and prevents stenosis in a rat AVF model. METHODS LOX gene expression and vascular localization were assayed in rat AVFs and human pre-access veins, respectively. Collagen crosslinking was measured in humans AVFs that matured or failed, and in rat AVFs treated with β-aminopropionitrile (BAPN), an irreversible LOX inhibitor. BAPN was either injected systemically or delivered locally around rat AVFs using nanofiber scaffolds. The major endpoints were AVF blood flow, wall fibrosis, collagen crosslinking, and vascular distensibility. RESULTS Non-maturation of human AVFs was associated with higher LOX deposition in pre-access veins (N=20, P=0.029), and increased trivalent crosslinks (N=18, P=0.027) in human AVF tissues. Systemic and local inhibition of LOX increased AVF distensibility, while reducing wall fibrosis and collagen crosslinking in rat fistulas. CONCLUSIONS Our results demonstrate that BAPN-mediated inhibition of LOX significantly improves vascular remodeling in experimental fistulas.
Collapse
Affiliation(s)
- Diana R. Hernandez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Brandon Applewhite
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida,Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Tyler Laurito
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Miguel G. Rojas
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Yuntao Wei
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Guillermo Selman
- Division of Nephrology and Hypertension, Albany Medical College, Albany, New York
| | - Marina Knysheva
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Loay H. Salman
- Division of Nephrology and Hypertension, Albany Medical College, Albany, New York
| | - Fotios M. Andreopoulos
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
26
|
Ye M, Song Y, Pan S, Chu M, Wang ZW, Zhu X. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy. Pharmacol Ther 2020; 215:107633. [PMID: 32693113 DOI: 10.1016/j.pharmthera.2020.107633] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The lysyl oxidase (LOX) family is comprised of LOX and four LOX-like proteins (LOXL1, LOXL2, LOXL3, and LOXL4), and mainly functions in the remodeling of extracellular matrix (ECM) and the cross-linking of collagen and elastic fibers. Recently, a growing body of research has demonstrated that LOX family is critically involved in the regulation of cancer cell proliferation, migration, invasion and metastasis. In this review, we discuss the roles of LOX family members in the development and progression of different types of human cancers. Furthermore, we also describe the potential inhibitors of LOX family proteins and highlight that LOX family might be an important therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Miaomiao Ye
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yizuo Song
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China..
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
27
|
Sistigu A, Musella M, Galassi C, Vitale I, De Maria R. Tuning Cancer Fate: Tumor Microenvironment's Role in Cancer Stem Cell Quiescence and Reawakening. Front Immunol 2020; 11:2166. [PMID: 33193295 PMCID: PMC7609361 DOI: 10.3389/fimmu.2020.02166] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cell dormancy is a common feature of human tumors and represents a major clinical barrier to the long-term efficacy of anticancer therapies. Dormant cancer cells, either in primary tumors or disseminated in secondary organs, may reawaken and relapse into a more aggressive disease. The mechanisms underpinning dormancy entry and exit strongly resemble those governing cancer cell stemness and include intrinsic and contextual cues. Cellular and molecular components of the tumor microenvironment persistently interact with cancer cells. This dialog is highly dynamic, as it evolves over time and space, strongly cooperates with intrinsic cell nets, and governs cancer cell features (like quiescence and stemness) and fate (survival and outgrowth). Therefore, there is a need for deeper insight into the biology of dormant cancer (stem) cells and the mechanisms regulating the equilibrium quiescence-versus-proliferation are vital in our pursuit of new therapeutic opportunities to prevent cancer from recurring. Here, we review and discuss microenvironmental regulations of cancer dormancy and its parallels with cancer stemness, and offer insights into the therapeutic strategies adopted to prevent a lethal recurrence, by either eradicating resident dormant cancer (stem) cells or maintaining them in a dormant state.
Collapse
Affiliation(s)
- Antonella Sistigu
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Martina Musella
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Galassi
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo (TO), Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| |
Collapse
|
28
|
Wang X, Senapati S, Akinbote A, Gnanasambandam B, Park PSH, Senyo SE. Microenvironment stiffness requires decellularized cardiac extracellular matrix to promote heart regeneration in the neonatal mouse heart. Acta Biomater 2020; 113:380-392. [PMID: 32590172 PMCID: PMC7428869 DOI: 10.1016/j.actbio.2020.06.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
The transient period of regeneration potential in the postnatal heart suggests molecular changes with maturation influence the cardiac response to damage. We have previously demonstrated that injury and exercise can stimulate cardiomyocyte proliferation in the adult heart suggesting a sensitivity to exogenous signals. Here, we consider whether exogenous fetal ECM and mechanically unloading interstitial matrix can drive regeneration after myocardial infarction (MI) surgery in low-regenerative hearts of day5 mice. Compared to controls, exogenous fetal ECM increases cardiac function and lowers fibrosis at 3 weeks post-injury and this effect can be augmented by softening heart tissue. In vitro experiments support a mechano-sensitivity to exogenous ECM signaling. We tested potential mechanisms and observed that fetal ECM increases nuclear YAP localization which could be enhanced by pharmacological stabilization of the cytoskeleton. Blocking YAP expression lowered fetal ECM effects though not completely. Lastly we observed mechanically unloading heart interstitial matrix increased agrin expression, an extracellular node in the YAP signaling pathway. Collectively, these data support a combined effect of exogenous factors and mechanical activity in altering agrin expression, cytoskeletal remodeling, and YAP signaling in driving cardiomyocyte cell cycle activity and regeneration in postnatal non-regenerative mice. STATEMENT OF SIGNIFICANCE: With the purpose of developing regenerative strategies, we investigate the influence of the local niche on the cardiac injury response. We conclude tissue stiffness, as anticipated in aging or disease, impairs regenerative therapeutics. Most novel, mechanical unloading facilitates enhanced cardiac regeneration only after cells are pushed into a permissive state by fetal biomolecules. Specifically, mechanical unloading appears to increase extracellular agrin expression that amplifies fetal-stimulation of nuclear YAP signaling which correlates with observed increases of cell cycle activity in cardiomyocytes. The results further suggest the cytoskeleton is critical to this interaction between mechanical unloading and independently actived YAP signaling. Using animal models, tissue explants, and cells, this work indicates that local mechanical stimuli can augment proliferating-permissive cardiomyocytes in the natural cardiac niche.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Subhadip Senapati
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, United States
| | - Akinola Akinbote
- Department of Macromolecular Science & Engineering, Case Western Reserve University, United States
| | - Bhargavee Gnanasambandam
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Paul S-H Park
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, United States
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States.
| |
Collapse
|
29
|
Tschumperlin DJ, Lagares D. Mechano-therapeutics: Targeting Mechanical Signaling in Fibrosis and Tumor Stroma. Pharmacol Ther 2020; 212:107575. [PMID: 32437826 DOI: 10.1016/j.pharmthera.2020.107575] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Pathological remodeling of the extracellular matrix (ECM) by activated myofibroblasts is a hallmark of fibrotic diseases and desmoplastic tumors. Activation of myofibroblasts occurs in response to fibrogenic tissue injury as well as in tumor-associated fibrotic reactions. The molecular determinants of myofibroblast activation in fibrosis and tumor stroma have traditionally been viewed to include biochemical agents, such as dysregulated growth factor and cytokine signaling, which profoundly alter the biology of fibroblasts, ultimately leading to overexuberant matrix deposition and fibrosis. More recently, compelling evidence has shown that altered mechanical properties of the ECM such as matrix stiffness are major drivers of tissue fibrogenesis by promoting mechano-activation of fibroblasts. In this Review, we discuss new insights into the role of the biophysical microenvironment in the amplified activation of fibrogenic myofibroblasts during the development and progression of fibrotic diseases and desmoplastic tumors. We also summarize novel therapeutic targets for anti-fibrotic therapy based on the mechanobiology of tissue fibrosis and tumor stroma, a class of drugs known as "mechano-therapeutics".
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Tissue Repair and Mechanobiology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1(st) St SW, Rochester, MN 55905, USA.
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Greene AG, Eivers SB, Dervan EWJ, O'Brien CJ, Wallace DM. Lysyl Oxidase Like 1: Biological roles and regulation. Exp Eye Res 2020; 193:107975. [PMID: 32070696 DOI: 10.1016/j.exer.2020.107975] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/12/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Lysyl Oxidase Like 1 (LOXL1) is a gene that encodes for the LOXL1 enzyme. This enzyme is required for elastin biogenesis and collagen cross-linking, polymerising tropoelastin monomers into elastin polymers. Its main role is in elastin homeostasis and matrix remodelling during injury, fibrosis and cancer development. Because of its vast range of biological functions, abnormalities in LOXL1 underlie many disease processes. Decreased LOXL1 expression is observed in disorders of elastin such as Cutis Laxa and increased expression is reported in fibrotic disease such as Idiopathic Pulmonary Fibrosis. LOXL1 is also downregulated in the lamina cribrosa in pseudoexfoliation glaucoma and genetic variants in the LOXL1 gene have been linked with an increased risk of developing pseudoexfoliation glaucoma and pseudoexfoliation syndrome. However the two major risk alleles are reversed in certain ethnic groups and are present in a large proportion of the normal population, implying complex genetic and environmental regulation is involved in disease pathogenesis. It also appears that the non-coding variants in intron 1 of LOXL1 may be involved in the regulation of LOXL1 expression. Gene alteration may occur via a number of epigenetic and post translational mechanisms such as DNA methylation, long non-coding RNAs and microRNAs. These may represent future therapeutic targets for disease. Environmental factors such as hypoxia, oxidative stress and ultraviolet radiation exposure alter LOXL1 expression, and it is likely a combination of these genetic and environmental factors that influence disease development and progression. In this review, we discuss LOXL1 properties, biological roles and regulation in detail with a focus on pseudoexfoliation syndrome and glaucoma.
Collapse
Affiliation(s)
- Alison G Greene
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland.
| | - Sarah B Eivers
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| | - Edward W J Dervan
- Dept. of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Colm J O'Brien
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland; Dept. of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Deborah M Wallace
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| |
Collapse
|
31
|
Wasinski B, Sohail A, Bonfil RD, Kim S, Saliganan A, Polin L, Bouhamdan M, Kim HRC, Prunotto M, Fridman R. Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts. Sci Rep 2020; 10:2309. [PMID: 32047176 PMCID: PMC7012844 DOI: 10.1038/s41598-020-59028-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site. However, implantation of DDR1b- or DDR2-expressing HT1080 cells with collagen I significantly accelerated tumour growth rate, an effect that could not be observed with collagen I in the absence of DDR induction. Interestingly, DDR1b, but not DDR2, completely hindered the ability of HT1080 cells to form lung colonies after intravenous inoculation, suggesting a differential role for DDR1b in primary tumour growth and lung colonization. Analyses of tumour extracts revealed specific alterations in Hippo pathway core components, as a function of DDR and collagen expression, that were associated with stimulation of tumour growth by DDRs and collagen I. Collectively, these findings identified divergent effects of DDRs on primary tumour growth and experimental lung metastasis in the HT1080 xenograft model and highlight the critical role of fibrillar collagen and DDRs in supporting the growth of tumours thriving within a collagen-rich stroma.
Collapse
Affiliation(s)
- Benjamin Wasinski
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Anjum Sohail
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - R Daniel Bonfil
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Pathology, College of Medical Sciences and Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Allen Saliganan
- Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Mohamad Bouhamdan
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Hyeong-Reh C Kim
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Marco Prunotto
- Hoffmann-La Roche, Basel, Switzerland.,School of Pharmaceutical Sciences, Geneva, Switzerland
| | - Rafael Fridman
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|
32
|
Chopra V, Sangarappillai RM, Romero‐Canelón I, Jones AM. Lysyl Oxidase Like‐2 (LOXL2): An Emerging Oncology Target. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vriddhi Chopra
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| | | | | | - Alan M. Jones
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
33
|
Lysyl oxidases: linking structures and immunity in the tumor microenvironment. Cancer Immunol Immunother 2019; 69:223-235. [PMID: 31650200 PMCID: PMC7000489 DOI: 10.1007/s00262-019-02404-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
The lysyl oxidases (LOXs) are a family of enzymes deputed to cross-link collagen and elastin, shaping the structure and strength of the extracellular matrix (ECM). However, many novel “non-canonical” functions, alternative substrates, and regulatory mechanisms have been described and are being continuously elucidated. The activity of LOXs, therefore, appears to be integrated into a complex network of signals regulating many cell functions, including survival/proliferation/differentiation. Among these signaling pathways, TGF-β and PI3K/Akt/mTOR, in particular, cross-talk extensively with each other and with LOXs also initiating complex feedback loops which modulate the activity of LOXs and direct the remodeling of the ECM. A growing body of evidence indicates that LOXs are not only important in the homeostasis of the normal structure of the ECM, but are also implicated in the establishment and maturation of the tumor microenvironment. LOXs’ association with advanced and metastatic cancer is well established; however, there is enough evidence to support a significant role of LOXs in the transformation of normal epithelial cells, in the accelerated tumor development and the induction of invasion of the premalignant epithelium. A better understanding of LOXs and their interactions with the different elements of the tumor immune microenvironment will prove invaluable in the design of novel anti-tumor strategies.
Collapse
|
34
|
Martinez B, Yang Y, Harker DMR, Farrar C, Mukundan H, Nath P, Mascareñas D. YAP/TAZ Related BioMechano Signal Transduction and Cancer Metastasis. Front Cell Dev Biol 2019; 7:199. [PMID: 31637239 PMCID: PMC6788381 DOI: 10.3389/fcell.2019.00199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
Mechanoreciprocity refers to a cell's ability to maintain tensional homeostasis in response to various types of forces. Physical forces are continually being exerted upon cells of various tissue types, even those considered static, such as the brain. Through mechanoreceptors, cells sense and subsequently respond to these stimuli. These forces and their respective cellular responses are prevalent in regulating everything from embryogenic tissue-specific differentiation, programmed cell death, and disease progression, the last of which being the subject of extensive attention. Abnormal mechanical remodeling of cells can provide clues as to the pathological status of tissues. This becomes particularly important in cancer cells, where cellular stiffness has been recently accepted as a novel biomarker for cancer metastasis. Several studies have also elucidated the importance of cell stiffness in cancer metastasis, with data highlighting that a reversal of tumor stiffness has the capacity to revert the metastatic properties of cancer. In this review, we summarize our current understanding of extracellular matrix (ECM) homeostasis, which plays a prominent role in tissue mechanics. We also describe pathological disruption of the ECM, and the subsequent implications toward cancer and cancer metastasis. In addition, we highlight the most novel approaches toward understanding the mechanisms which generate pathogenic cell stiffness and provide potential new strategies which have the capacity to advance our understanding of one of human-kinds' most clinically significant medical pathologies. These new strategies include video-based techniques for structural dynamics, which have shown great potential for identifying full-field, high-resolution modal properties, in this case, as a novel application.
Collapse
Affiliation(s)
- Bridget Martinez
- Engineering Institute, Los Alamos National Laboratory, Los Alamos, NM, United States
- Applied Modern Physics, Los Alamos National Laboratory, Los Alamos, NM, United States
- Department of Medicine, St. George’s University School of Medicine, St. George’s, Grenada
- Chemistry Division, Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Yongchao Yang
- Energy and Global Security, Argonne National Laboratory, Lemont, IL, United States
| | | | - Charles Farrar
- Engineering Institute, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Harshini Mukundan
- Engineering Institute, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Pulak Nath
- Applied Modern Physics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - David Mascareñas
- Engineering Institute, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
35
|
Bai T, Liu Y, Li B. LncRNA LOXL1‐AS1/miR‐let‐7a‐5p/
EGFR
‐related pathway regulates the doxorubicin resistance of prostate cancer DU‐145 cells. IUBMB Life 2019; 71:1537-1551. [PMID: 31188543 DOI: 10.1002/iub.2075] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Tianliang Bai
- Department of Gastrointestinal SurgeryAffiliated Hospital of Hebei University Baoding Hebei P.R.China
- Department of General SurgeryFourth Hospital of Hebei Medical University (Tumor Hospital of Hebei Province) Shijiiazhuang Hebei China
| | - Yabin Liu
- Department of Gastrointestinal SurgeryAffiliated Hospital of Hebei University Baoding Hebei P.R.China
- Department of General SurgeryFourth Hospital of Hebei Medical University (Tumor Hospital of Hebei Province) Shijiiazhuang Hebei China
| | - Binghui Li
- Department of Gastrointestinal SurgeryAffiliated Hospital of Hebei University Baoding Hebei P.R.China
- Department of General SurgeryFourth Hospital of Hebei Medical University (Tumor Hospital of Hebei Province) Shijiiazhuang Hebei China
| |
Collapse
|
36
|
Liu T, Zhou L, Li D, Andl T, Zhang Y. Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment. Front Cell Dev Biol 2019; 7:60. [PMID: 31106200 PMCID: PMC6492564 DOI: 10.3389/fcell.2019.00060] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells reside in a highly complex and heterogeneous tumor microenvironment (TME), which is composed of a myriad of genetically stable non-cancer cells, including fibroblasts, immune cells, endothelial cells, and epithelial cells, and a tumor-specific extracellular matrix (ECM). Cancer-associated fibroblasts (CAFs), as an abundant and active stromal cell population in the TME, function as the signaling center and remodeling machine to aid the creation of a desmoplastic tumor niche. Although there is no denial that the TME and CAFs may have anti-tumor effects as well, a great deal of findings reported in recent years have convincingly revealed the tumor-promoting effects of CAFs and CAF-derived ECM proteins, enzymes, chemical factors and other downstream effectors. While there is growing enthusiasm for the development of CAF-targeting therapies, a better understanding of the complexities of CAF-ECM and CAF-cancer cell interactions is necessary before novel therapeutic strategies targeting the malignant tumor “soil” can be successfully implemented in the clinic.
Collapse
Affiliation(s)
- Tianyi Liu
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Danni Li
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
37
|
Varona S, Orriols M, Galán M, Guadall A, Cañes L, Aguiló S, Sirvent M, Martínez-González J, Rodríguez C. Lysyl oxidase (LOX) limits VSMC proliferation and neointimal thickening through its extracellular enzymatic activity. Sci Rep 2018; 8:13258. [PMID: 30185869 PMCID: PMC6125287 DOI: 10.1038/s41598-018-31312-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Lysyl oxidase (LOX) plays a critical role in extracellular matrix maturation and limits VSMC proliferation and vascular remodeling. We have investigated whether this anti-proliferative effect relies on the extracellular catalytically active LOX or on its biologically active propeptide (LOX-PP). High expression levels of both LOX and LOX-PP were detected in the vascular wall from transgenic mice over-expressing the full-length human LOX cDNA under the control of SM22α promoter (TgLOX), which targets the transgene to VSMC without affecting the expression of mouse LOX isoenzymes. TgLOX VSMC also secrete high amounts of both mature LOX and LOX-PP. Wild-type (WT) mouse VSMC exposed to VSMC supernatants from transgenic animals showed reduced proliferative rates (low [3H]-thymidine uptake and expression of PCNA) than those incubated with conditioned media from WT cells, effect that was abrogated by β-aminopropionitrile (BAPN), an inhibitor of LOX activity. Lentiviral over-expression of LOX, but not LOX-PP, decreased human VSMC proliferation, effect that was also prevented by BAPN. LOX transgenesis neither impacted local nor systemic inflammatory response induced by carotid artery ligation. Interestingly, in this model, BAPN normalized the reduced neointimal thickening observed in TgLOX mice. Therefore, extracellular enzymatically active LOX is required to limit both VSMC proliferation and vascular remodeling.
Collapse
Affiliation(s)
- Saray Varona
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Mar Orriols
- CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - María Galán
- CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, Barcelona, Spain
| | - Anna Guadall
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Silvia Aguiló
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, Barcelona, Spain
| | - Marc Sirvent
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain. .,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain. .,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain.
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain. .,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain. .,Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, Barcelona, Spain.
| |
Collapse
|
38
|
Celià-Terrassa T, Kang Y. Metastatic niche functions and therapeutic opportunities. Nat Cell Biol 2018; 20:868-877. [PMID: 30050120 DOI: 10.1038/s41556-018-0145-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
Metastasis is an inefficient process, especially during colonization at a distant organ. This bottleneck underlies the importance of the metastatic niche for seeding and outgrowth of metastases. Here, we classify the common functions of different metastatic niches: anchorage, survival support, protection from external insults, licensing proliferation and outgrowth. We highlight the emerging role of the metastatic niche in maintaining cancer stemness and promoting immune evasion, and discuss therapeutic opportunities against the metastatic niche.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
39
|
de la Cueva A, Emmerling M, Lim SL, Yang S, Trackman PC, Sonenshein GE, Kirsch KH. A polymorphism in the lysyl oxidase propeptide domain accelerates carcinogen-induced cancer. Carcinogenesis 2018; 39:921-930. [PMID: 29579155 PMCID: PMC6692853 DOI: 10.1093/carcin/bgy045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/17/2018] [Accepted: 03/20/2018] [Indexed: 01/19/2023] Open
Abstract
The propeptide (LOX-PP) domain of the lysyl oxidase proenzyme was shown to inhibit the transformed phenotype of breast, lung and pancreatic cells in culture and the formation of Her2/neu-driven breast cancer in a xenograft model. A single nucleotide polymorphism (SNP, rs1800449) positioned in a highly conserved region of LOX-PP results in an Arg158Gln substitution (humans). This arginine (Arg)→glutamine (Gln) substitution profoundly impaired the ability of LOX-PP to inhibit the invasive phenotype and xenograft tumor formation. To study the effect of the SNP in vivo, here we established a knock in (KI) mouse line (LOX-PPGln mice) expressing an Arg152Gln substitution corresponding to the human Arg158Gln polymorphism. Breast cancer was induced in wild-type (WT) and LOX-PPGln female mice beginning at 6 weeks of age by treatment with 7,12-dimethylbenz(a)anthracene (DMBA) in combination with progesterone. Time course analysis of tumor development demonstrated earlier tumor onset and shorter overall survival in LOX-PPGln versus WT mice. To further compare the tumor burden in WT and LOX-PPGln mice, inguinal mammary glands from both groups of mice were examined for microscopic lesion formation. LOX-PPGln glands contained more lesions (9.6 versus 6.9 lesions/#4 bilateral). In addition, more DMBA-treated LOX-PPGln mice had increased leukocyte infiltrations in their livers and were moribund compared with DMBA-treated WT mice. Thus, these data indicate that the Arg→Gln substitution in LOX-PP could be an important marker associated with a more aggressive cancer phenotype and that this KI model is ideal for further mechanistic studies regarding the tumor suppressor function of LOX-PP.
Collapse
Affiliation(s)
- Ana de la Cueva
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Michael Emmerling
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Sarah L Lim
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Shi Yang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Philip C Trackman
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Gail E Sonenshein
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Kathrin H Kirsch
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
40
|
Cha YJ, Jung WH, Koo JS. Site-specific expression of amine oxidases in breast cancer metastases. Tumour Biol 2018; 40:1010428318776822. [DOI: 10.1177/1010428318776822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We aimed to evaluate the expression of amine oxidase-related proteins in metastatic breast cancer tissue and determine its clinical implication. A tissue microarray was constructed from a total of 126 metastatic breast tumors (31 bone metastases (24.6%), 36 brain metastases (28.6%), 11 liver metastases (8.7%), and 48 lung metastases (38.1%)). Immunohistochemical staining for amine oxidase-related proteins (lysyl oxidase, diamine oxidase, and monoamine oxidase A and B) was performed. In metastatic breast cancer tissue, lysyl oxidase ( p = 0.001), tumoral diamine oxidase ( p = 0.003), stromal diamine oxidase ( p = 0.047), and stromal monoamine oxidase B ( p = 0.002) were differentially expressed in different metastatic sites. Bone metastases showed low expression of lysyl oxidase, tumoral diamine oxidase, and stromal diamine oxidase. We observed high expression of lysyl oxidase in brain metastases, tumoral diamine oxidase in liver metastases, stromal diamine oxidase in lung metastases, and stromal monoamine oxidase B in bone metastases. Lysyl oxidase positivity was associated with progesterone receptor negativity ( p = 0.001), and monoamine oxidase A positivity was associated with human epidermal growth factor receptor-2 negativity ( p = 0.003) and the luminal A subtype ( p = 0.003). On univariate analysis shorter overall survival was associated with stromal diamine oxidase negativity ( p = 0.008), especially in lung metastases ( p = 0.025), and stromal monoamine oxidase B positivity ( p < 0.001). Stromal monoamine oxidase B positivity was an independent prognostic factor for shorter overall survival in multivariate Cox analysis (hazard ratio, 4.069; 95% confidence interval, 1.649–10.04; p = 0.002). Finally, in metastatic breast cancer, amine oxidase-related proteins were differentially expressed in a manner specific to metastatic site, and stromal monoamine oxidase B expression was correlated with prognosis.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, College of Medicine and Severance Hospital, Yonsei University, Seoul, South Korea
| | - Woo Hee Jung
- Department of Pathology, College of Medicine and Severance Hospital, Yonsei University, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, College of Medicine and Severance Hospital, Yonsei University, Seoul, South Korea
| |
Collapse
|
41
|
Li T, Wu C, Gao L, Qin F, Wei Q, Yuan J. Lysyl oxidase family members in urological tumorigenesis and fibrosis. Oncotarget 2018; 9:20156-20164. [PMID: 29732010 PMCID: PMC5929453 DOI: 10.18632/oncotarget.24948] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/11/2018] [Indexed: 02/05/2023] Open
Abstract
Lysyl oxidase (LOX) is an extracellular copper-dependent monoamine oxidase that catalyzes crosslinking of soluble collagen and elastin into insoluble, mature fibers. Lysyl oxidase-like proteins (LOXL), LOX isozymes with partial structural homology, exhibit similar catalytic activities. This review summarizes recent findings describing the roles of LOX family members in urological cancers and fibrosis. LOX/LOXL play key roles in extracellular matrix stability and integrity, which is essential for normal female pelvic floor function. LOX/LOXL inhibition may reverse kidney fibrosis and ischemic priapism. LOX and LOXL2 reportedly promote kidney carcinoma tumorigenesis, while LOX, LOXL1 and LOXL4 suppress bladder cancer growth. Multiple studies agree that the LOX propeptide may suppress tumor growth, but the role of LOX in prostate cancer remains controversial. Further studies are needed to clarify the exact effects and mechanism of LOX/LOXL on urological malignancies.
Collapse
Affiliation(s)
- Tao Li
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changjing Wu
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Gao
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Qin
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong Yuan
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Wei L, Chintala S, Ciamporcero E, Ramakrishnan S, Elbanna M, Wang J, Hu Q, Glenn ST, Murakami M, Liu L, Gomez EC, Sun Y, Conroy J, Miles KM, Malathi K, Ramaiah S, Anbarasu A, Woloszynska-Read A, Johnson CS, Conroy J, Liu S, Morrison CD, Pili R. Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts. Oncotarget 2018; 7:76374-76389. [PMID: 27823983 PMCID: PMC5363516 DOI: 10.18632/oncotarget.13062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose Effective systemic therapeutic options are limited for bladder cancer. In this preclinical study we tested whether bladder cancer gene alterations may be predictive of treatment response. Experimental design We performed genomic profiling of two bladder cancer patient derived tumor xenografts (PDX). We optimized the exome sequence analysis method to overcome the mouse genome interference. Results We identified a number of somatic mutations, mostly shared by the primary tumors and PDX. In particular, BLCAb001, which is less responsive to cisplatin than BLCAb002, carried non-sense mutations in several genes associated with cisplatin resistance, including MLH1, BRCA2, and CASP8. Furthermore, RNA-Seq analysis revealed the overexpression of cisplatin resistance associated genes such as SLC7A11, TLE4, and IL1A in BLCAb001. Two different PIK3CA mutations, E542K and E545K, were identified in BLCAb001 and BLCAb002, respectively. Thus, we tested whether the genomic profiling was predictive of response to a dual PI3K/mTOR targeting agent, LY3023414. Despite harboring similar PIK3CA mutations, BLCAb001 and BLCAb002 exhibited differential response, both in vitro and in vivo. Sustained target modulation was observed in the sensitive model BLCAb002 but not in BLCAb001, as well as decreased autophagy. Interestingly, computational modelling of mutant structures and affinity binding to PI3K revealed that E542K mutation was associated with weaker drug binding than E545K. Conclusions Our results suggest that the presence of activating PIK3CA mutations may not necessarily predict in vivo treatment response to PI3K targeted therapies, while specific gene alterations may be predictive for cisplatin response in bladder cancer models and, potentially, in patients as well.
Collapse
Affiliation(s)
- Lei Wei
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sreenivasulu Chintala
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Eric Ciamporcero
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Swathi Ramakrishnan
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - May Elbanna
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, USA.,Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jianmin Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Qiang Hu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sean T Glenn
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mitsuko Murakami
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lu Liu
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Eduardo Cortes Gomez
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Yuchen Sun
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jacob Conroy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kiersten Marie Miles
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kullappan Malathi
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Anna Woloszynska-Read
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Candace S Johnson
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jeffrey Conroy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Carl D Morrison
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roberto Pili
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, USA.,Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
43
|
Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, Farge E. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol 2018; 217:1571-1587. [PMID: 29467174 PMCID: PMC5940296 DOI: 10.1083/jcb.201701039] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Broders-Bondon et al. review the pathological mechanical properties of tumor tissues and how abnormal mechanical signals result in oncogenic biochemical signals during tumor progression. Cancer has been characterized as a genetic disease, associated with mutations that cause pathological alterations of the cell cycle, adhesion, or invasive motility. Recently, the importance of the anomalous mechanical properties of tumor tissues, which activate tumorigenic biochemical pathways, has become apparent. This mechanical induction in tumors appears to consist of the destabilization of adult tissue homeostasis as a result of the reactivation of embryonic developmental mechanosensitive pathways in response to pathological mechanical strains. These strains occur in many forms, for example, hypervascularization in late tumors leads to high static hydrodynamic pressure that can promote malignant progression through hypoxia or anomalous interstitial liquid and blood flow. The high stiffness of tumors directly induces the mechanical activation of biochemical pathways enhancing the cell cycle, epithelial–mesenchymal transition, and cell motility. Furthermore, increases in solid-stress pressure associated with cell hyperproliferation activate tumorigenic pathways in the healthy epithelial cells compressed by the neighboring tumor. The underlying molecular mechanisms of the translation of a mechanical signal into a tumor inducing biochemical signal are based on mechanically induced protein conformational changes that activate classical tumorigenic signaling pathways. Understanding these mechanisms will be important for the development of innovative treatments to target such mechanical anomalies in cancer.
Collapse
Affiliation(s)
- Florence Broders-Bondon
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Thanh Huong Nguyen Ho-Bouldoires
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| |
Collapse
|
44
|
Abstract
Cell migration is an adaptive process that depends on and responds to physical and molecular triggers. Moving cells sense and respond to tissue mechanics and induce transient or permanent tissue modifications, including extracellular matrix stiffening, compression and deformation, protein unfolding, proteolytic remodelling and jamming transitions. Here we discuss how the bi-directional relationship of cell-tissue interactions (mechanoreciprocity) allows cells to change position and contributes to single-cell and collective movement, structural and molecular tissue organization, and cell fate decisions.
Collapse
|
45
|
Sun WY, Choi J, Cha YJ, Koo JS. Evaluation of the Expression of Amine Oxidase Proteins in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122775. [PMID: 29261141 PMCID: PMC5751373 DOI: 10.3390/ijms18122775] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
We aimed to evaluate the expression of amine oxidase proteins in breast cancer and their clinical implications. We performed immunohistochemical staining of amine oxidase proteins (LOX, lysyl oxidase, AOC3, amine oxidase, MAOA, monoamine oxidase A, MAOB, monoamine oxidase B). Based on their hormone receptors, such as estrogen receptor (ER) and progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and Ki-67 immunohistochemical staining, breast cancer was divided into four molecular subtypes: luminal A, luminal B, HER-2 type, and triple-negative breast cancer (TNBC). Luminal A was observed in 380 cases (49.4%), luminal B in 224 (29.1%), HER-2 type in 68 (8.8%), and TNBC in 98 (12.7%). Stromal AOC3, MAO-A, and MAO-B expression varied according to molecular subtypes. Stromal AOC3 expression was high in luminal B and HER-2 type and MAO-A expression was high in luminal A and luminal B (p < 0.001). MAO-B expression was higher in TNBC than in other subtypes (p = 0.020). LOX positivity was associated with high histological grade (p < 0.001) and high Ki-67 labeling index (LI) (p = 0.009), and stromal AOC3 positivity was associated with high histological grade (p = 0.001), high Ki-67 LI (p < 0.001), and HER-2 positivity (p = 0.002). MAO-A positivity was related to low histological grade (p < 0.001), ER positivity, PR positivity (p < 0.001), and low Ki-67 LI (p < 0.001). In univariate analysis, MAO-A positivity was related to short disease-free survival in HER-2 type (p = 0.013), AOC3 negativity was related to short disease-free survival and overall survival in ER-positive breast cancer, PR-positive breast cancer, HER-2-negative breast cancer, and lymph node metastasis. In conclusion, the expression of amine oxidase proteins varies depending on the molecular subtype of breast cancer. Stromal AOC3 expression was high in luminal B and HER-2 type, and MAO-A expression was high in luminal A and luminal B.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal/enzymology
- Carcinoma, Ductal/genetics
- Carcinoma, Ductal/metabolism
- Carcinoma, Ductal/pathology
- Female
- Humans
- Middle Aged
- Monoamine Oxidase/genetics
- Monoamine Oxidase/metabolism
- Protein-Lysine 6-Oxidase/genetics
- Protein-Lysine 6-Oxidase/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Woo Young Sun
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Cathololic University of Korea, Seoul 06591, Korea.
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21988, Korea.
| | - Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
46
|
High sensitivity HPLC method for determination of the allysine concentration in tissue by use of a naphthol derivative. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:7-13. [PMID: 28886479 DOI: 10.1016/j.jchromb.2017.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
Abstract
Common to all fibrotic and metastatic diseases is the uncontrollable remodeling of tissue that leads to the accumulation of fibrous connective tissue components such as collagen and elastin. Build-up of fibrous tissue occurs through the cross-linking of collagen or elastin monomers, which is initiated through the oxidation of lysine residues to form α-aminoadipic-δ-semialdehyde (allysine). To provide a measure of the extent of collagen oxidation in disease models of fibrosis or metastasis, a rapid, sensitive HPLC method was developed to quantify the amount of allysine present in tissue. Allysine was reacted with sodium 2-naphthol-7-sulfonate under conditions typically applied for acid hydrolysis of tissues (6M HCl, 110°C, 24h) to prepare AL-NP, a fluorescent bis-naphthol derivative of allysine. High performance liquid chromatography was applied for analysis of allysine content. Under optimal reaction and detection conditions, successful separation of AL-NP was achieved with excellent analytical performance attained. Good linear relationship (R2=0.994) between peak area and concentration for AL-NP was attained for 0.35-175pmol of analyte. A detection limit of 0.02pmol in the standard sample with a 20μL injection was achieved for AL-NP, with satisfactory recovery from 88 to 100% determined. The method was applied in the quantification of allysine in healthy and fibrotic mouse lung tissue, with the fibrotic tissue showing a 2.5 fold increase in the content of allysine.
Collapse
|
47
|
Inhibition of Lysyl Oxidases Impairs Migration and Angiogenic Properties of Tumor-Associated Pericytes. Stem Cells Int 2017; 2017:4972078. [PMID: 28553358 PMCID: PMC5434472 DOI: 10.1155/2017/4972078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/05/2017] [Indexed: 12/30/2022] Open
Abstract
Pericytes are important cellular components of the tumor microenviroment with established roles in angiogenesis and metastasis. These two cancer hallmarks are modulated by enzymes of the LOX family, but thus far, information about LOX relevance in tumor-associated pericytes is lacking. Here, we performed a comparative characterization of normal and tumoral pericytes and report for the first time the modulatory effects of LOX enzymes on activated pericyte properties. Tumoral pericytes isolated from childhood ependymoma and neuroblastoma specimens displayed angiogenic properties in vitro and expressed typical markers, including CD146, NG2, and PDGFRβ. Expression of all LOX family members could be detected in both normal and tumor-associated pericytes. In most pericyte samples, LOXL3 was the family member displaying the highest transcript levels. Inhibition of LOX/LOXL activity with the inhibitor β-aminopropionitrile (βAPN) significantly reduced migration of pericytes, while proliferation rates were kept unaltered. Formation of tube-like structures in vitro by pericytes was also significantly impaired upon inhibition of LOX/LOXL activity with βAPN, which induced more prominent effects in tumor-associated pericytes. These findings reveal a novel involvement of the LOX family of enzymes in migration and angiogenic properties of pericytes, with implications in tumor development and in therapeutic targeting tumor microenvironment constituents.
Collapse
|
48
|
Investigating the Mechanobiology of Cancer Cell-ECM Interaction Through Collagen-Based 3D Scaffolds. Cell Mol Bioeng 2017; 10:223-234. [PMID: 31719861 DOI: 10.1007/s12195-017-0483-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/25/2017] [Indexed: 10/25/2022] Open
Abstract
Deregulated dynamics of the extracellular matrix (ECM) are one of the hallmarks of cancer. Studies on tumor mechanobiology are thus expected to provide an insight into the disease pathogenesis as well as potentially useful biomarkers. Type I collagen is among the major determinants of breast ECM structural and tensile properties, and collagen modifications during tumor evolution drive a number of disease-related processes favoring cancer progression and invasion. We investigated the use of 3D collagen-based scaffolds to identify the modifications induced by cancer cells on the mechanical and structural properties of the matrix, comparing cell lines from two breast tumor subtypes with different clinical aggressiveness. Orthotopic implantation was used to investigate the collagen content and architecture of in vivo breast tumors generated by the two cell lines. MDA-MB-231, which belongs to the aggressive basal-like subtype, increased scaffold stiffness and overexpressed the matrix-modifying enzyme, lysyl oxidase (LOX), whereas luminal A MCF-7 cells did not significantly alter the mechanical characteristics of extracellular collagen. This replicates the behavior of in vivo tumors generated by MDA-MB-231, characterized by a higher collagen content and higher LOX levels than MCF-7. When LOX activity was blocked, the ability of MDA-MB-231 to alter scaffold stiffness was impaired. Our model could constitute a relevant in vitro tool to reproduce and investigate the biomechanical interplay subsisting between cancer cells and the surrounding ECM and its impact on tumor phenotype and behavior.
Collapse
|
49
|
Halin Bergström S, Nilsson M, Adamo H, Thysell E, Jernberg E, Stattin P, Widmark A, Wikström P, Bergh A. Extratumoral Heme Oxygenase-1 (HO-1) Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth. PLoS One 2016; 11:e0157280. [PMID: 27280718 PMCID: PMC4900522 DOI: 10.1371/journal.pone.0157280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 01/06/2023] Open
Abstract
Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1). To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer.
Collapse
Affiliation(s)
- Sofia Halin Bergström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- * E-mail:
| | - Maria Nilsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Hanibal Adamo
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pär Stattin
- Department of Surgical and Perioperative Sciences, Urology, Umeå University, Umeå, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|