1
|
Ardakani SK, Mahmoudi S, Rahmani K, Shamsalizadeh N. Memory function in patients with opioid dependence treated with buprenorphine and methadone in comparison with healthy persons. Sci Rep 2025; 15:17780. [PMID: 40404776 PMCID: PMC12098730 DOI: 10.1038/s41598-025-02832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025] Open
Abstract
Methadone and buprenorphine are commonly used for drug abuse treatment but may impair cognitive function. This study assessed memory performance in patients receiving these treatments compared to healthy controls. A cross-sectional study was conducted on 93 buprenorphine- and 120 methadone-treated patients, compared with 120 healthy controls. The Wechsler Memory Scale was used, and scores were compared among the study groups using Kruskal-Wallis with Tukey's post-hoc test. Maintenance therapy duration was compared between case groups using an independent t-test or Mann-Whitney U test. Healthy controls were superior to both treatment groups in mental control. The methadone group surpassed controls in personal and general information (P < 0.05), while buprenorphine-treated patients scored lower in associate learning. Patients receiving methadone for > 2 years had a higher mean score of awareness of place and time than those on long-term buprenorphine (P = 0.034). Longer buprenorphine treatment correlated with improved total memory scores (P = 0.03). The mental test showed no significant adverse effect for either medication on most mental aspects, except for mental control, which was worse than the control group in both medications. In some aspects, treated patients even outperformed controls. Buprenorphine preserves memory function better than methadone over time.
Collapse
Affiliation(s)
- Sara Kamali Ardakani
- Neurosciences Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sara Mahmoudi
- Department of Student Research, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Khaled Rahmani
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Narges Shamsalizadeh
- Department of Psychiatry, Neurosciences Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
2
|
Martucci KT. Neuroimaging of opioid effects in humans across conditions of acute administration, chronic pain therapy, and opioid use disorder. Trends Neurosci 2024; 47:418-431. [PMID: 38762362 PMCID: PMC11168870 DOI: 10.1016/j.tins.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/20/2024]
Abstract
Evidence of central nervous system (CNS) exogenous opioid effects in humans has been primarily gained through neuroimaging of three participant populations: individuals after acute opioid administration, those with opioid use disorder (OUD), and those with chronic pain receiving opioid therapy. In both the brain and spinal cord, opioids alter processes of pain, cognition, and reward. Opioid-related CNS effects may persist and accumulate with longer opioid use duration. Meanwhile, opioid-induced benefits versus risks to brain health remain unclear. This review article highlights recent accumulating evidence for how exogenous opioids impact the CNS in humans. While investigation of CNS opioid effects has remained largely disparate across contexts of opioid acute administration, OUD, and chronic pain opioid therapy, integration across these contexts may enable advancement toward effective interventions.
Collapse
Affiliation(s)
- Katherine T Martucci
- Human Affect and Pain Neuroscience Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
McCurdy LY, DeVito EE, Loya JM, Nich C, Zhai ZW, Kiluk BD, Potenza MN. Structural brain changes associated with cocaine use and digital cognitive behavioral therapy in cocaine use disorder treatment. DRUG AND ALCOHOL DEPENDENCE REPORTS 2024; 11:100246. [PMID: 38966567 PMCID: PMC11222934 DOI: 10.1016/j.dadr.2024.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
Background Few studies have investigated changes in brain structure and function associated with recovery from cocaine use disorder (CUD), and fewer still have identified brain changes associated with specific CUD treatments, which could inform treatment development and optimization. Methods In this longitudinal study, T1-weighted magnetic resonance imaging scans were acquired from 41 methadone-maintained individuals with CUD (15 women) at the beginning of and after 12 weeks of outpatient treatment. As part of a larger randomized controlled trial, these participants were randomly assigned to receive (or not) computer-based training for cognitive behavioral therapy (CBT4CBT), and galantamine (or placebo). Results Irrespective of treatment condition, whole-brain voxel-based morphometry analyses revealed a significant decrease in right caudate body, bilateral cerebellum, and right middle temporal gyrus gray matter volume (GMV) at post-treatment relative to the start of treatment. Subsequent region of interest analyses found that greater reductions in right caudate and bilateral cerebellar GMV were associated with higher relative and absolute levels of cocaine use during treatment, respectively. Participants who completed more CBT4CBT modules had a greater reduction in right middle temporal gyrus GMV. Conclusions These results extend previous findings regarding changes in caudate and cerebellar GMV as a function of cocaine use and provide the first evidence of a change in brain structure as a function of engagement in digital CBT for addiction. These data suggest a novel potential mechanism underlying how CBT4CBT and CBT more broadly may exert therapeutic effects on substance-use-related behaviors through brain regions implicated in semantic knowledge.
Collapse
Affiliation(s)
- Li Yan McCurdy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Elise E. DeVito
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jennifer M. Loya
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Charla Nich
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Zu Wei Zhai
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Brian D. Kiluk
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Marc N. Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
- The Connecticut Mental Health Center, New Haven, CT 06519, USA
- The Connecticut Council on Problem Gambling, Wethersfield, CT 06109, USA
| |
Collapse
|
4
|
Dwivedi I, Caldwell AB, Zhou D, Wu W, Subramaniam S, Haddad GG. Methadone alters transcriptional programs associated with synapse formation in human cortical organoids. Transl Psychiatry 2023; 13:151. [PMID: 37147277 PMCID: PMC10163238 DOI: 10.1038/s41398-023-02397-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 05/07/2023] Open
Abstract
Opioid use disorder (OUD) among pregnant women has become an epidemic in the United States. Pharmacological interventions for maternal OUD most commonly involve methadone, a synthetic opioid analgesic that attenuates withdrawal symptoms and behaviors linked with drug addiction. However, evidence of methadone's ability to readily accumulate in neural tissue, and cause long-term neurocognitive sequelae, has led to concerns regarding its effect on prenatal brain development. We utilized human cortical organoid (hCO) technology to probe how this drug impacts the earliest mechanisms of cortico-genesis. Bulk mRNA sequencing of 2-month-old hCOs chronically treated with a clinically relevant dose of 1 μM methadone for 50 days revealed a robust transcriptional response to methadone associated with functional components of the synapse, the underlying extracellular matrix (ECM), and cilia. Co-expression network and predictive protein-protein interaction analyses demonstrated that these changes occurred in concert, centered around a regulatory axis of growth factors, developmental signaling pathways, and matricellular proteins (MCPs). TGFβ1 was identified as an upstream regulator of this network and appeared as part of a highly interconnected cluster of MCPs, of which thrombospondin 1 (TSP1) was most prominently downregulated and exhibited dose-dependent reductions in protein levels. These results demonstrate that methadone exposure during early cortical development alters transcriptional programs associated with synaptogenesis, and that these changes arise by functionally modulating extra-synaptic molecular mechanisms in the ECM and cilia. Our findings provide novel insight into the molecular underpinnings of methadone's putative effect on cognitive and behavioral development and a basis for improving interventions for maternal opioid addiction.
Collapse
Affiliation(s)
- Ila Dwivedi
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dan Zhou
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Gabriel G Haddad
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
5
|
Gaudreault PO, King SG, Malaker P, Alia-Klein N, Goldstein RZ. Whole-brain white matter abnormalities in human cocaine and heroin use disorders: association with craving, recency, and cumulative use. Mol Psychiatry 2023; 28:780-791. [PMID: 36369361 PMCID: PMC9911401 DOI: 10.1038/s41380-022-01833-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Neuroimaging studies in substance use disorder have shown widespread impairments in white matter (WM) microstructure suggesting demyelination and axonal damage. However, substantially fewer studies explored the generalized vs. the acute and/or specific drug effects on WM. Our study assessed whole-brain WM integrity in three subgroups of individuals addicted to drugs, encompassing those with cocaine (CUD) or heroin (HUD) use disorder, compared to healthy controls (CTL). Diffusion MRI was acquired in 58 CTL, 28 current cocaine users/CUD+, 32 abstinent cocaine users/CUD-, and 30 individuals with HUD (urine was positive for cocaine in CUD+ and opiates used for treatment in HUD). Tract-Based Spatial Statistics allowed voxelwise analyses of diffusion metrics [fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD)]. Permutation statistics (p-corrected < 0.05) were used for between-group t-tests. Compared to CTL, all individuals with addiction showed widespread decreases in FA, and increases in MD, RD, and AD (19-57% of WM skeleton, p < 0.05). The HUD group showed the most impairments, followed by the CUD+, with only minor FA reductions in CUD- (<0.2% of WM skeleton, p = 0.05). Longer periods of regular use were associated with decreased FA and AD, and higher subjective craving was associated with increased MD, RD, and AD, across all individuals with drug addiction (p < 0.05). These findings demonstrate extensive WM impairments in individuals with drug addiction characterized by decreased anisotropy and increased diffusivity, thought to reflect demyelination and lower axonal packing. Extensive abnormalities in both groups with positive urine status (CUD+ and HUD), and correlations with craving, suggest greater WM impairments with more recent use. Results in CUD-, and correlations with regular use, further imply cumulative and/or persistent WM damage.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreault
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sarah G King
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Pias Malaker
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nelly Alia-Klein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rita Z Goldstein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
6
|
Chen J, Wang S, Li Z, Li Y, Huang P, Zhu J, Wang F, Li Y, Liu W, Xue J, Shi H, Li W, Liang Z, Wang W, Li Q. The effect of long-term methadone maintenance treatment on coupling among three large-scale brain networks in male heroin-dependent individuals: A resting-state fMRI study. Drug Alcohol Depend 2022; 238:109549. [PMID: 35810622 DOI: 10.1016/j.drugalcdep.2022.109549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Methadone maintenance treatment (MMT) is considered as an effective and mainstream therapy for heroin dependence. However, whether long-term MMT would improve the coupling among the three core large-scale brain networks (salience, default mode, and executive control) and its relationship with the craving for heroin is unknown. METHODS Forty-four male heroin-dependent individuals during long-term MMT, 27 male heroin-dependent individuals after short-term detoxification/abstinence (SA), and 26 demographically matched healthy controls (HC) underwent resting-state functional magnetic resonance imaging. We analyzed the difference in coupling among the salience, default mode, and executive control networks among the three groups and examined how the coupling among these large-scale networks was associated with craving before and after drug-cue exposure. RESULTS Compared with the SA group, the MMT group showed lower craving before and after cue exposure and stronger connectivity between the dorsal anterior cingulate cortex (a key node of the salience network) and key regions of the bilateral executive control network, including the bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and dorsomedial prefrontal cortex. Among the heroin-dependent individuals, the functional connectivity was negatively correlated with the craving before and after heroin-cue exposure. CONCLUSION Our findings suggest that long-term MMT could increase the coupling between the salience and bilateral executive control networks and decrease craving for heroin. These findings contribute to the understanding of the neural mechanism of MMT, from the perspective of large-scale brain networks.
Collapse
Affiliation(s)
- Jiajie Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Shu Wang
- Biomedical Engineering, School of Life Science and Technology, Xi'an Jiao Tong University, Xi'an 710038, Shaanxi, China
| | - Zhe Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Yiyao Li
- School of basic medicine, Air Force Military Medical University, Xi 'an 710038, Shaanxi, China
| | - Peng Huang
- School of basic medicine, Air Force Military Medical University, Xi 'an 710038, Shaanxi, China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Fan Wang
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Yongbin Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Wei Liu
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Jiuhua Xue
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Hong Shi
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Zifei Liang
- Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York 10012, USA
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
7
|
Gasimova U, Afzal KM, Acharya AB. Neurological Manifestations of Chronic Methadone Maintenance Therapy: A Case Report and Literature Review. Cureus 2022; 14:e29534. [PMID: 36312663 PMCID: PMC9595224 DOI: 10.7759/cureus.29534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Methadone is a long-acting opioid medication that is used as maintenance therapy for heroin addiction. We present a case of a patient on methadone maintenance therapy for chronic back pain who developed neurological complications. The patient presented with mental status changes and choreiform movements. Workup revealed lesions involving the subcortical white matter and basal ganglia. Choreiform movements improved after the initiation of treatment with topiramate, clonazepam, and risperidone. This combination was chosen as several prior case reports published significant benefit and improvement in choreiform movements with the mentioned regimen.
Collapse
Affiliation(s)
- Ulviyya Gasimova
- Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Khurram M Afzal
- Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Aninda B Acharya
- Neurology, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
8
|
Xue J, Chen J, Wang S, Li W, Zhu J, Wang F, Li Z, Wang W, Li Q. Assessing brain activity in male heroin-dependent individuals under methadone maintenance treatment: A resting-state fMRI study. Psychiatry Res Neuroimaging 2022; 320:111431. [PMID: 35007942 DOI: 10.1016/j.pscychresns.2021.111431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Methadone maintenance treatment (MMT) is recognized as an effective and mainstream alternative treatment for heroin addiction. However, the effect of long-term MMT on the local and global brain activity of heroin-dependent individuals during resting state remains unknown. Twenty-five heroin-dependent individuals under MMT, 26 heroin-dependent individuals after short-term abstinence (HA) and 42 healthy controls (HC) were included in the resting-state functional magnetic resonance imaging study. The craving before and after heroin cue exposure were evaluated among HA and MMT subjects. The difference in craving, regional homogeneity (ReHo) and related functional connectivity were analyzed among the three groups. We found that the craving before and after heroin cue exposure of MMT group was significantly lower than that of HA group. Compared with HA group, the MMT group showed higher ReHo value in the right orbitofrontal cortex and bilateral posterior central cortex. No significant difference in global brain connectivity based on differential ReHo regions was found among the three groups. This study demonstrated the long-term MMT could improve the local activity of executive control and somatosensory brain regions in heroin-dependent individuals. It suggested that MMT might be beneficial to restoring executive control and somatosensory function in the direction towards that of healthy controls.
Collapse
Affiliation(s)
- Jiuhua Xue
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Radiology, xian NO.1 hospital, Xi'an, Shaanxi, China
| | - Jiajie Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shu Wang
- Canon Medical Systems (China) Co., LTD, MR Division, Xi'an, Shaanxi, China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Wang
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
ABDOLLAHIFARD S, KHESHTI F, INALOO S. Delayed hypoxic encephalopathy: a rare complication of methadone poisoning in two cases. IRANIAN JOURNAL OF CHILD NEUROLOGY 2022; 16:213-217. [PMID: 36204446 PMCID: PMC9531209 DOI: 10.22037/ijcn.v16i2.27372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/28/2021] [Indexed: 11/18/2022]
Abstract
Methadone is a kind of opioid that is used to reduce the pain of addicts who decide to withdraw drugs. Sometimes due to a lack of appropriate cautions, this drug will be accessible to children, and poisoning might occur. Methadone poisoning usually presents with the loss of consciousness and pinpoint pupils. Herein, we present two cases of delayed hypoxic encephalopathy that had been poisoned by methadone. Case Presentation The first case was a 4-year-old female patient who firstly presented with nausea and vomiting; then, the case was discharged; however, 1 week later, the case was returned with the loss of consciousness and poisoning by methadone confirmed in her urine. Again 2 weeks later, the case returned to the hospital, developing weakness of limbs, slurred speech, and abnormal movement of her limbs. The second case was an 11-year-old female patient who was admitted to an intensive care unit due to the loss of consciousness and methadone poisoning. After providing supporting care, she was discharged but returned to the hospital 5 days later. She developed weakness of limbs, abnormal movement of tongue and extremities, and slurred speech. In their last admission, the magnetic resonance imaging of the patients revealed hypoxic damage in the basal ganglia; therefore, delayed hypoxic encephalopathy was confirmed. Conclusion Patients with methadone poisoning should be observed for at least 1 and a half months after poisoning. Moreover, parents should notice that in the case of observing abnormal neurologic manifestations bring their child as soon as possible to a hospital to prevent irreversible damage to the brain.
Collapse
Affiliation(s)
- Saeed ABDOLLAHIFARD
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran,Universal scientific education and research network, Shiraz, Iran
| | - Fatemeh KHESHTI
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran,Universal scientific education and research network, Shiraz, Iran
| | - Soroor INALOO
- Neonatal research center, Shiraz university of medical sciences, Shiraz, Iran
| |
Collapse
|
10
|
Ahmad-Molaei L, Pourhamzeh M, Ahadi R, Khodagholi F, Hassanian-Moghaddam H, Haghparast A. Time-Dependent Changes in the Serum Levels of Neurobiochemical Factors After Acute Methadone Overdose in Adolescent Male Rat. Cell Mol Neurobiol 2021; 41:1635-1649. [PMID: 32712727 PMCID: PMC11444013 DOI: 10.1007/s10571-020-00931-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
Acute methadone toxicity is a major public health concern which has adverse effects on brain tissue and results in recurrent or delayed respiratory arrest. Our study aimed to investigate the time-dependent changes in several serum biochemical markers of brain damage, spatial working memory, and the brain tissue following acute methadone overdose. Adolescent male rats underwent an intraperitoneal (i.p.) injection of 15 mg/kg methadone. In case of apnea occurrence, resuscitation was performed by a ventilatory pump and administrating naloxone (2 mg/kg; i.p.). The animals were classified into groups of treated rats; methadone and naloxone-Apnea (M/N-Apnea), M/N-Sedate, Methadone, Naloxone, and control (saline) groups. The serum levels of S100B, neuron-specific enolase (NSE), myelin basic protein factors, and (Lactate/Pyruvate) L/P ratio were evaluated at the time-points of 6, 24, and 48 h (h). We found that the alterations of S100B and L/P ratio were considerable in the M/N-Apnea and Methadone groups from the early hours post-methadone overdose, while NSE serum levels elevation was observed only in M/N-Apnea group with a delay at 48 h. Further, we assessed the spatial working memory (Y-maze test), morphological changes, and neuronal loss. The impaired spontaneous alternation behavior was detected in the M/N-Apnea groups on days 5 and 10 post-methadone overdose. The morphological changes of neurons and the neuronal loss were detectable in the CA1, striatum, and cerebellum regions, which were pronounced in both M/N-Apnea and Methadone groups. Together, our findings suggest that alterations in the serum levels of S100B and NSE factors as well as L/P ratio could be induced by methadone overdose with the presence or absence of apnea before the memory impairment and tissue injury in adolescent male rats.
Collapse
Affiliation(s)
- Leila Ahmad-Molaei
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- Department of Clinical Toxicology, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
11
|
Akbari P, Najafi M, Rezaei AM, Miladi-Gorji H. Enriched Environment Ameliorates Cognitive Deficits and Locomotor Sensitization in Morphine-Withdrawn Rats Receiving Methadone Maintenance Treatment. Neuropsychobiology 2021; 79:437-444. [PMID: 32248192 DOI: 10.1159/000506598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/15/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was designed to examine whether enriched environments (EE) would attenuate object recognition and spatial learning and memory deficits and locomotor sensitization induced by methadone maintenance treatment (MMT) in morphine-withdrawn rats. METHODS Male Wistar rats (170 ± 10 g) were injected with bi-daily doses (10 mg/kg, 12-h intervals) of morphine for 14 days. Rats receiving MMT were reared in the standard environment (SE) or EE during 30 days of morphine withdrawal. Then, the rats were tested for object recognition (the object recognition memory test, ORMT) and spatial learning and memory (the water maze) and then challenged with morphine (1 mg/kg, i.p.) and evaluated for locomotor activity (open-field box). RESULTS The results revealed that the dependent/saline/EE (D/Sal/EE) and D/methadone/EE (D/Meth/EE) rats exhibited significant preference for the new object (p = 0.006 and p = 0.049), spent more time in the target zone (p = 0.045 and p = 0.005) on the water maze, and displayed a lower level of distance traveled (p = 0.002 and p = 0.0001) compared to their control groups reared in SE. CONCLUSIONS We conclude that exposure to EE could ameliorate the object recognition and spatial memory deficits and also decrease locomotor sensitivity in morphine-withdrawn rats receiving MMT. Thus, EE may be beneficial in the treatment of addiction during MMT.
Collapse
Affiliation(s)
- Parastoo Akbari
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Mahmoud Najafi
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Ali-Mohammad Rezaei
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Hossein Miladi-Gorji
- Laboratory of Animal Addiction Models, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran, .,Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran,
| |
Collapse
|
12
|
Marks WD, Paris JJ, Barbour AJ, Moon J, Carpenter VJ, McLane VD, Lark ARS, Nass SR, Zhang J, Yarotskyy V, McQuiston AR, Knapp PE, Hauser KF. HIV-1 Tat and Morphine Differentially Disrupt Pyramidal Cell Structure and Function and Spatial Learning in Hippocampal Area CA1: Continuous versus Interrupted Morphine Exposure. eNeuro 2021; 8:ENEURO.0547-20.2021. [PMID: 33782102 PMCID: PMC8146490 DOI: 10.1523/eneuro.0547-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
About half the people infected with human immunodeficiency virus (HIV) have neurocognitive deficits that often include memory impairment and hippocampal deficits, which can be exacerbated by opioid abuse. To explore the effects of opioids and HIV on hippocampal CA1 pyramidal neuron structure and function, we induced HIV-1 transactivator of transcription (Tat) expression in transgenic mice for 14 d and co-administered time-release morphine or vehicle subcutaneous implants during the final 5 d (days 9-14) to establish steady-state morphine levels. Morphine was withheld from some ex vivo slices during recordings to begin to assess the initial pharmacokinetic consequences of opioid withdrawal. Tat expression reduced hippocampal CA1 pyramidal neuronal excitability at lower stimulating currents. Pyramidal cell firing rates were unaffected by continuous morphine exposure. Behaviorally, exposure to Tat or high dosages of morphine impaired spatial memory Exposure to Tat and steady-state levels of morphine appeared to have largely independent effects on pyramidal neuron structure and function, a response that is distinct from other vulnerable brain regions such as the striatum. By contrast, acutely withholding morphine (from morphine-tolerant ex vivo slices) revealed unique and selective neuroadaptive shifts in CA1 pyramidal neuronal excitability and dendritic plasticity, including some interactions with Tat. Collectively, the results show that opioid-HIV interactions in hippocampal area CA1 are more nuanced than previously assumed, and appear to vary depending on the outcome assessed and on the pharmacokinetics of morphine exposure.
Collapse
Affiliation(s)
- William D Marks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Jason J Paris
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848
| | - Aaron J Barbour
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Jean Moon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Valerie J Carpenter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Arianna R S Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Sara R Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Jingli Zhang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0709
| |
Collapse
|
13
|
Wei X, Li Q, Chen J, Shen B, Wang W, Li W. Differences in cue-induced brain activation between long-term methadone maintenance treatment and protracted abstinence in heroin use disorder patients: a functional magnetic resonance imaging study. Quant Imaging Med Surg 2021; 11:2104-2113. [PMID: 33936991 DOI: 10.21037/qims-20-1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Heroin use disorder (HUD) remains one of the gravest public health issues in China. Methadone maintenance treatment (MMT) and protracted abstinence (PA) are the most commonly used treatments for HUD. Although both treatment approaches can alleviate heroin cravings, a previous study found that MMT patients had stronger cue-induced brain activation than patients undergoing PA; however, the changes associated with long-term treatment are unclear. Methods Male patients with HUD who had been undergoing either PA (n=24) or MTT (n=21) for approximately 12 months, together with 20 demographically matched healthy controls, completed an event-related functional magnetic resonance imaging (fMRI) task. The subjective craving for heroin was evaluated using a visual analog scale. Results Compared to the healthy controls, the MMT and PA groups demonstrated significantly higher brain activation in the left pallidum, middle occipital gyrus, postcentral gyrus, anterior cingulate cortex, middle cingulate cortex, inferior parietal lobule, superior parietal lobule, amygdala, hippocampus, right inferior temporal gyrus, inferior frontal gyrus triangularis, and caudate during exposure to heroin-related cues. Compared to those undergoing PA, patients in the MMT group demonstrated significantly higher brain activation in all of these regions. Except for the left inferior parietal lobule and left superior parietal lobule, there were no statistically significant differences between the PA and healthy control groups. The MMT patients showed significantly higher subjective cravings before and after exposure to heroin cues than the PA group, but there was no significant difference in the change in subjective cravings between the 2 groups. Conclusions The results suggested that although the HUD patients receiving long-term MMT complied with the treatment, they still had higher subjective cravings and cue-induced brain activation than those undergoing PA. Therefore, long-term PA appears to be more beneficial than MMT in reducing the salience value of drug cues in patients with HUD.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China.,Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiajie Chen
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Baorui Shen
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China.,Basic Medical College, Air Force Medical University, Xi'an, China
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
14
|
Rizk MM, Herzog S, Dugad S, Stanley B. Suicide Risk and Addiction: The Impact of Alcohol and Opioid Use Disorders. CURRENT ADDICTION REPORTS 2021; 8:194-207. [PMID: 33747710 PMCID: PMC7955902 DOI: 10.1007/s40429-021-00361-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 01/05/2023]
Abstract
Purpose of Review Suicide is a major public health concern and a leading cause of death in the US. Alcohol and opioid use disorders (AUD/OUD) significantly increase risk for suicidal ideation, attempts, and death, and are the two most frequently implicated substances in suicide risk. We provide a brief overview of shared risk factors and pathways in the pathogenesis of AUD/OUD and suicidal thoughts and behaviors. We also review clinical recommendations on inpatient care, pharmacotherapy, and psychotherapeutic interventions for people with AUD/OUD and co-occurring suicidal ideation and behavior. Recent Findings Among people with an underlying vulnerability to risk-taking and impulsive behaviors, chronic alcohol intoxication can increase maladaptive coping behaviors and hinder self-regulation, thereby increasing the risk of suicide. Additionally, chronic opioid use can result in neurobiological changes that lead to increases in negative affective states, jointly contributing to suicide risk and continued opioid use. Despite significantly elevated suicide risk in individuals with AUD/OUD, there is a dearth of research on pharmacological and psychosocial interventions for co-occurring AUD/OUD and suicidal ideation and behavior. Summary Further research is needed to understand the effects of alcohol and opioid use on suicide risk, as well as address notable gaps in the literature on psychosocial and pharmacological interventions to lower risk for suicide among individuals with AUD/OUD.
Collapse
Affiliation(s)
- Mina M. Rizk
- Department of Psychiatry, Columbia University Irving Medical Center, Columbia University, New York, NY USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Dr., Unit 42, New York, NY 10032 USA
- Department of Psychiatry, Faculty of Medicine, Minia University, Egypt, Egypt
| | - Sarah Herzog
- Department of Psychiatry, Columbia University Irving Medical Center, Columbia University, New York, NY USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Dr., Unit 42, New York, NY 10032 USA
| | - Sanjana Dugad
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Dr., Unit 42, New York, NY 10032 USA
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Barbara Stanley
- Department of Psychiatry, Columbia University Irving Medical Center, Columbia University, New York, NY USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Dr., Unit 42, New York, NY 10032 USA
| |
Collapse
|
15
|
Vasan V, Kitase Y, Newville JC, Robinson S, Gerner G, Burton VJ, Jantzie LL. Neonatal opioid exposure: public health crisis and novel neuroinflammatory disease. Neural Regen Res 2021; 16:430-432. [PMID: 32985461 PMCID: PMC7996018 DOI: 10.4103/1673-5374.293136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 11/04/2022] Open
Abstract
Substance use, specifically the use of prescription and non-prescription opioids among pregnant women, is a major public health issue and chief contributor to the opioid crisis. The prevalence of Neonatal Opioid Withdrawal Syndrome has risen 5-fold in the past decade, and is a well-recognized consequence of perinatal opioid exposure. By contrast, the long-term damage to the developing brain from opioid medications is just beginning to be recognized as a serious concern. Published data suggest that opioid exposure commencing in utero negatively affects the maturation of the neural-immune system, and trajectory of central nervous system development. Methadone induces peripheral immune hyper-reactivity, lasting structural and microstructural brain injury, and significant deficits in executive function and cognitive control in adult animals following in utero exposure. Thus, to address the cascading public health crisis stemming from the multitude of infants with in utero opioid exposure who will grow up with altered neurodevelopmental trajectories, rigorous preclinical, mechanistic studies are required. Such studies will define the long-term sequelae of prenatal opioid exposure in an effort to develop appropriate and targeted interventions. Specifically, the development of novel fluid, neuroimaging and biobehavioral biomarkers will be the most useful to aid in early identification and treatment of opioid exposed infants with the greatest risk of poor clinical outcomes. These studies will be essential to understand how in utero insults determine brain structure and function in adulthood, and what targeted interventions will be required to improve long-term outcomes in the countless children being born exposed to opioids each year.
Collapse
Affiliation(s)
- Vikram Vasan
- Department of Pediatrics, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Kennedy Krieger Institute, Baltimore, MD; Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yuma Kitase
- Department of Pediatrics, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Kennedy Krieger Institute, Baltimore, MD; Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jessie C. Newville
- Department of Pediatrics, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Kennedy Krieger Institute, Baltimore, MD; Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Shenandoah Robinson
- Department of Pediatrics, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Kennedy Krieger Institute, Baltimore, MD; Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Gwendolyn Gerner
- Department of Pediatrics, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Kennedy Krieger Institute, Baltimore, MD; Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - V. Joanna Burton
- Department of Pediatrics, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Kennedy Krieger Institute, Baltimore, MD; Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lauren L. Jantzie
- Department of Pediatrics, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Kennedy Krieger Institute, Baltimore, MD; Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
16
|
Radhakrishnan R, Grecco G, Stolze K, Atwood B, Jennings SG, Lien IZ, Saykin AJ, Sadhasivam S. Neuroimaging in infants with prenatal opioid exposure: Current evidence, recent developments and targets for future research. J Neuroradiol 2021; 48:112-120. [PMID: 33065196 PMCID: PMC7979441 DOI: 10.1016/j.neurad.2020.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Prenatal opioid exposure (POE) has shown to be a risk factor for adverse long-term cognitive and behavioral outcomes in offspring. However, the neural mechanisms of these outcomes remain poorly understood. While preclinical and human studies suggest that these outcomes may be due to opioid-mediated changes in the fetal and early postnatal brain, other maternal, social, and environmental factors are also shown to play a role. Recent neuroimaging studies reveal brain alterations in children with POE. Early neuroimaging and novel methodology could provide an in vivo mechanistic understanding of opioid mediated alterations in developing brain. However, this is an area of ongoing research. In this review we explore recent imaging developments in POE, with emphasis on the neonatal and infant brain, and highlight some of the challenges of imaging the developing brain in this population. We also highlight evidence from animal models and imaging in older children and youth to understand areas where future research may be targeted in infants with POE.
Collapse
Affiliation(s)
- Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Gregory Grecco
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Brady Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Samuel G Jennings
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Izlin Z Lien
- Department of Pediatrics, Division of Neonatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
17
|
Wei X, Chen J, Zhu J, Li Q, Li W, Wang W. Functional connectivity of posterior cingulate gyrus in heroin dependents treated by methadone maintenance and protracted abstinence measures: an event-related fMRI study. Brain Imaging Behav 2021; 15:2472-2480. [PMID: 33502720 DOI: 10.1007/s11682-020-00447-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
Protracted abstinence (PA) and Methadone maintenance treatment (MMT) are two main types of heroin addiction treatment, however, the effects of both measures on the functional connectivity (FC) of the brain in heroin dependents in the drug cue event-related response are unclear. Functional magnetic resonance imaging (fMRI) based drug cue-reactivity task has been widely used in addiction research, which may provide a new way to understand the change of brain function during a certain period of treatment. The default function network (DMN) with posterior cingulate cortex (PCC) as the core is generally involved in the process of addiction. The aim of the present study was to explore the brain response of FC in patients with heroin-dependent during PA, MMT treatment under task-fMRI. Twenty-two heroin-dependent patients during PA, 18 heroin-dependent patients during MMT and 16 healthy control (HC) individuals were included to conduct the heroin cue-reactivity task during fMRI. The MMT and PA patients' subjective craving for heroin was evaluated. The psychophysiological interaction (PPI) analysis of SPM12 was used to get FC during the task state. There was a significant difference on FC between PCC and the right medial Prefrontal Cortex (mPFC) in three groups. The post-hoc analysis showed that there was a significant difference of brain regions between the MMT and the PA group. The FC of PCC-mPFC in the MMT group was significantly stronger than that in the PA group. Compared with the PA group, the FC of the DMN in the MMT group was significantly increased under drug cue response. Therefore, PA is more beneficial for the heroin-dependent patients to lower the salience value of drug related cues, in turn to reduce relapse risks. It also reflected the important role of PCC-mPFC pathway in heroin dependents induced by heroin cues.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China.,Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Jiajie Chen
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China.
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China.
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China
| |
Collapse
|
18
|
Johnson D, Santos E, Kim K, Ponzini MD, McLennan YA, Schneider A, Tassone F, Hagerman RJ. Increased Pain Symptomatology Among Females vs. Males With Fragile X-Associated Tremor/Ataxia Syndrome. Front Psychiatry 2021; 12:762915. [PMID: 35126193 PMCID: PMC8811376 DOI: 10.3389/fpsyt.2021.762915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with the fragile X premutation report symptoms of chronic pain from multiple systems, have increased incidence of comorbid conditions where pain is a prominent feature, and pathophysiology that supports disrupted pain regulation, inflammation, and energy imbalance. Less is known about how pain manifests for the subpopulation of carriers that develop the motor and cognitive changes of fragile X-associated tremor and ataxia syndrome (FXTAS), and how pain may differ between men and women. We gathered data collected from 104 males and females with FXTAS related to chronic pain, comorbid conditions related to pain, and medications used for pain control to further explore the types of pain experienced and to better characterize how individuals with the fragile X premutation experience pain sensation across genders. We found that women experience significantly more pain symptoms than men, particularly allodynia (20 vs. 2.0%, p = 0.008), peripheral neuropathy pain (43.9 vs. 25.4%, p = 0.0488), migraine (43.9 vs. 14.5%, p = 0.0008), fibromyalgia (26.8 vs. 0%, p = 0.0071) and back pain (48.5 vs. 23.4%, p = 0.008). We found onset of peripheral neuropathy predicts the onset of ataxia (β = 0.63 ± 0.25, p = 0.019) and tremor (β = 0.56 ± 0.17, p = 0.004) across gender. Women also report significantly more anxiety (82.9 vs. 39.7%, p < 0.001), which has implications for ideal pain treatment. These pain symptoms need to be recognized in the medical history and treated appropriately, with consideration for overlapping comorbidities.
Collapse
Affiliation(s)
- Devon Johnson
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Ellery Santos
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Matthew D Ponzini
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Yingratana A McLennan
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Blackwood CA, Cadet JL. The molecular neurobiology and neuropathology of opioid use disorder. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35548327 PMCID: PMC9090195 DOI: 10.1016/j.crneur.2021.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The number of people diagnosed with opioid use disorder has skyrocketed as a consequence of the opioid epidemic and the increased prescribing of opioid drugs for chronic pain relief. Opioid use disorder is characterized by loss of control of drug taking, continued drug use in the presence of adverse consequences, and repeated relapses to drug taking even after long periods of abstinence. Patients who suffer from opioid use disorder often present with cognitive deficits that are potentially secondary to structural brain abnormalities that vary according to the chemical composition of the abused opioid. This review details the neurobiological effects of oxycodone, morphine, heroin, methadone, and fentanyl on brain neurocircuitries by presenting the acute and chronic effects of these drugs on the human brain. In addition, we review results of neuroimaging in opioid use disorder patients and/or histological studies from brains of patients who had expired after acute intoxication following long-term use of these drugs. Moreover, we include relevant discussions of the neurobiological mechanisms involved in promoting abnormalities in the brains of opioid-exposed patients. Finally, we discuss how novel strategies could be used to provide pharmacological treatment against opioid use disorder. Brain abnormalities caused by opioid intoxication. Intoxication of opioids leads to defects in brain neurocircuitries. Insight into the molecular mechanisms associated with craving in heroin addicts.
Collapse
Affiliation(s)
| | - Jean Lud Cadet
- Corresponding author.Molecular Neuropsychiatry Research Branch NIH/NIDA Intramural Research Program 251 Bayview Boulevard Baltimore, MD, USA
| |
Collapse
|
20
|
Fitting S, McRae M, Hauser KF. Opioid and neuroHIV Comorbidity - Current and Future Perspectives. J Neuroimmune Pharmacol 2020; 15:584-627. [PMID: 32876803 PMCID: PMC7463108 DOI: 10.1007/s11481-020-09941-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and μ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
21
|
Zhao X, Wang L, Maes JH. Training and transfer effects of working memory training in male abstinent long-term heroin users. Addict Behav Rep 2020; 12:100310. [PMID: 33364318 PMCID: PMC7752720 DOI: 10.1016/j.abrep.2020.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 10/26/2022] Open
|
22
|
Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM, Zhang K, Jin Z, Ramakrishna S, Shokouhimehr M. High gravity-assisted green synthesis of ZnO nanoparticles via Allium ursinum: Conjoining nanochemistry to neuroscience. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abac4d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Zhang P, Cui J, Mansooridara S, Kalantari AS, Zangeneh A, Zangeneh MM, Sadeghian N, Taslimi P, Bayat R, Şen F. Suppressor capacity of copper nanoparticles biosynthesized using Crocus sativus L. leaf aqueous extract on methadone-induced cell death in adrenal phaeochromocytoma (PC12) cell line. Sci Rep 2020; 10:11631. [PMID: 32669563 PMCID: PMC7363853 DOI: 10.1038/s41598-020-68142-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/18/2020] [Indexed: 12/29/2022] Open
Abstract
In this research, we prepared and formulated a neuroprotective supplement (copper nanoparticles in aqueous medium utilizing Crocus sativus L. Leaf aqueous extract) for determining its potential against methadone-induced cell death in PC12. The results of chemical characterization tests i.e., FE-SEM, FT-IR, XRD, EDX, TEM, and UV–Vis spectroscopy revealed that the study showed that copper nanoparticles were synthesized in the perfect way possible. In the TEM and FE-SEM images, the copper nanoparticles were in the mean size of 27.5 nm with the spherical shape. In the biological part of the present research, the Rat inflammatory cytokine assay kit was used to measure the concentrations of inflammatory cytokines. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test was used to show DNA fragmentation and apoptosis. Caspase-3 activity was assessed by the caspase activity colorimetric assay kit and mitochondrial membrane potential was studied by Rhodamine123 fluorescence dye. Also, the cell viability of PC12 was measured by trypan blue assay. Copper nanoparticles-treated cell cutlers significantly (p ≤ 0.01) decreased the inflammatory cytokines concentrations, caspase-3 activity, and DNA fragmentation and they raised the cell viability and mitochondrial membrane potential in the high concentration of methadone-treated PC12 cells. The best result of neuroprotective properties was seen in the high dose of copper nanoparticles i.e., 4 µg. According to the above results, copper nanoparticles containing C. sativus leaf aqueous extract can be used in peripheral nervous system treatment as a neuroprotective promoter and central nervous system after approving in the clinical trial studies in humans.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Medical College of Henan University, Zhengzhou, 450003, Henan, China
| | - Jian Cui
- Department of Neurosurgery, Xi'an No. 1 Hospital, No. 30 South Street Powder Lane, Beilin District, Xi'an, 710002, Shaanxi, China.
| | - Shirin Mansooridara
- Medical Sciences Research Center, Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Atoosa Shahriyari Kalantari
- Department of Neurology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.,Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.,Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Ramazan Bayat
- Sen Research Group, Department of Biochemistry, University of Dumlupınar, 43000, Kütahya, Turkey
| | - Fatih Şen
- Sen Research Group, Department of Biochemistry, University of Dumlupınar, 43000, Kütahya, Turkey
| |
Collapse
|
24
|
Ahmeda A, Zangeneh MM, Mansooridara S, Malek Z, Zangeneh A. Suppressor capacity of iron nanoparticles biosynthesized using
Salvia chloroleuca
leaf aqueous extract on methadone‐induced cell death in PC12: Formulation a new drug from relationship between the nanobiotechnology and neurology sciences. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ahmad Ahmeda
- College of MedicineQU Health, Qatar University Doha Qatar
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Shirin Mansooridara
- Medical Sciences Research Center, Faculty of Medicine, Tehran Medical Sciences BranchIslamic Azad University Tehran Iran
| | - Zahra Malek
- Medical Sciences Research Center, Faculty of Medicine, Tehran Medical Sciences BranchIslamic Azad University Tehran Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
25
|
Haghighi-Morad M, Naseri Z, Jamshidi N, Hassanian-Moghaddam H, Zamani N, Ahmad-Molaei L. Methadone-induced encephalopathy: a case series and literature review. BMC Med Imaging 2020; 20:6. [PMID: 31952488 PMCID: PMC6969410 DOI: 10.1186/s12880-020-0410-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Accidental ingestion or consumption of supra-therapeutic doses of methadone can result in neurological sequelae in humans. We aimed to determine the neurological deficits of methadone-poisoned patients admitted to a referral poisoning hospital using brain magnetic resonance (MR) and diffusion weighted (DW) imaging. METHODS In this retrospective study, brain MRIs of the patients admitted to our referral center due to methadone intoxication were reviewed. Methadone intoxication was confirmed based on history, congruent clinical presentation, and confirmatory urine analysis. Each patient had an MRI with Echo planar T1, T2, FLAIR, and DWI and apparent deficient coefficient (ADC) sequences without contrast media. Abnormalities were recorded and categorized based on their anatomic location and sequence. RESULTS Ten patients with abnormal MRI findings were identified. Eight had acute- and two had delayed-onset encephalopathy. Imaging findings included bilateral confluent or patchy T2 and FLAIR high signal intensity in cerebral white matter, cerebellar involvement, and bilateral occipito-parietal cortex diffusion restriction in DWI. Internal capsule involvement was identified in two patients while abnormality in globus pallidus and head of caudate nuclei were reported in another. Bilateral cerebral symmetrical confluent white matter signal abnormality with sparing of subcortical U-fibers on T2 and FLAIR sequences were observed in both patients with delayed-onset encephalopathy. CONCLUSIONS Acute- and delayed-onset encephalopathies are two rare adverse events detected in methadone-intoxicated patients. Brain MRI findings can be helpful in detection of methadone-induced encephalopathy.
Collapse
Affiliation(s)
- Maryam Haghighi-Morad
- Department of Radiology, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Naseri
- Department of Radiology, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazila Jamshidi
- Drug Health Services, Sydney Local Health District, Sydney, NSW, Australia
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nasim Zamani
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ahmad-Molaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Gutiérrez-Cáceres S, Pedraz-Marcos A, Serrano-Gallardo P. [Aging in a methadone maintenance program. A perspective from the framework of social determinants of health]. Rev Esp Salud Publica 2019; 93:e201908048. [PMID: 31447482 PMCID: PMC11582910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/28/2019] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVE People on methadone treatment have increased their life expectancy, aging prematurely with comorbidities. The objective of this study was to know the sociodemographic and clinical profile of these people in the Center for Addiction Care in the district of Latina (belonging to Madrid Salud), as well as the perception of the influence of the treatment on their aging. The Social Determinants of Health Model was used as a framework. METHODS A mixed methodology was used in two phases: a quantitative one, to describe the sociodemographic and clinical characteristics of the study population; and another qualitative one, through semi-structured interviews to an intentional sample, to explore the history of life and the perception of future needs regarding the health of the participants. RESULTS The results highlighted that the average age of the sample was 48.28 years, that they were mostly men (81.25%), of Spanish origin, with a low level of education and economics and with a medium stay in treatment with methadone of ± 13 years. An increase in mental pathologies was found the more years they had been in the program, as well as, at a lower age of onset in consumption, the presence of HIV and Hepatitis C virus increased. In their speeches it was found that the social determinants of Health have conditioned its vital history. CONCLUSIONS Both consumption and methadone contribute to its stigmatization, not favoring its normalized inclusion in society and determining a high state of vulnerability. This increases as age does, not receive adequate resources to meet their future needs.
Collapse
Affiliation(s)
- Sonsoles Gutiérrez-Cáceres
- Centro de Atención a las Adicciones de Latina. Instituto de Adicciones. Madrid Salud. Madrid. España
- Departamento de Enfermería. Facultad de Medicina de la Universidad Autónoma de Madrid. Madrid. España
| | - Azucena Pedraz-Marcos
- Departamento de Enfermería. Facultad de Medicina de la Universidad Autónoma de Madrid. Madrid. España
- Instituto de Investigación Sanitaria Puerta de Hierro (IDIPHISA). Majadahonda. Madrid. España
- Grupo de Investigación Cualitativa en Salud. Universidad Autónoma de Madrid (GIQS-UAM). Madrid. España
| | - Pilar Serrano-Gallardo
- Departamento de Enfermería. Facultad de Medicina de la Universidad Autónoma de Madrid. Madrid. España
- Instituto de Investigación Sanitaria Puerta de Hierro (IDIPHISA). Majadahonda. Madrid. España
- Instituto Interuniversitario "Investigación avanzada sobre evaluación de la Ciencia y la Universidad (INAECU). Getafe. Madrid. España
| |
Collapse
|
27
|
Assessing drug cue-induced brain response in heroin dependents treated by methadone maintenance and protracted abstinence measures. Brain Imaging Behav 2019; 14:1221-1229. [DOI: 10.1007/s11682-019-00051-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Palma-Álvarez RF, Ros-Cucurull E, Amaro-Hosey K, Rodriguez-Cintas L, Grau-López L, Corominas-Roso M, Sánchez-Mora C, Roncero C. Peripheral levels of BDNF and opiate-use disorder: literature review and update. Rev Neurosci 2018; 28:499-508. [PMID: 28306543 DOI: 10.1515/revneuro-2016-0078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Several neurobiological factors are related to opiate-use disorder (OUD), and among them, neurotrophins have a relevant role. Brain-derived neurotrophic factor (BDNF) is a central neurotrophin involved in many neuronal processes, and it has been related to several psychiatric diseases and addictive disorders. BDNF can be measured in plasma and serum; its levels may reflect BDNF concentrations in the central nervous system (CNS) and, indirectly, CNS processes. Hence, peripheral BDNF could be a biomarker in clinical practice. This manuscript explores the findings about peripheral BDNF and OUD in humans. Opiates induce neurotoxicity in the CNS, which may be correlated with modifications in BDNF expression. Thus, basal levels of peripheral BDNF in OUD patients may be altered, which could be modified with abstinence. Also, opiates may modify epigenetic processes that may be associated with peripheral concentrations of BDNF, and in this line, withdrawal could reflect recovering processes in the CNS. Additionally, treatment modifies the peripheral concentrations of BDNF, but the clinical implications of those changes are yet not elucidated. No specific conclusion can be performed and more investigation in this area is necessary to elucidate the real potential of peripheral BDNF as a biomarker.
Collapse
|
29
|
Frontal cortex dysfunction as a target for remediation in opiate use disorder: Role in cognitive dysfunction and disordered reward systems. PROGRESS IN BRAIN RESEARCH 2018; 239:179-227. [DOI: 10.1016/bs.pbr.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Hauser KF, Knapp PE. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System. Front Pediatr 2017; 5:294. [PMID: 29410949 PMCID: PMC5787058 DOI: 10.3389/fped.2017.00294] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| |
Collapse
|
31
|
Biernacki K, McLennan SN, Terrett G, Labuschagne I, Rendell PG. Decision-making ability in current and past users of opiates: A meta-analysis. Neurosci Biobehav Rev 2016; 71:342-351. [DOI: 10.1016/j.neubiorev.2016.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/04/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
|
32
|
Wollman SC, Alhassoon OM, Hall MG, Stern MJ, Connors EJ, Kimmel CL, Allen KE, Stephan RA, Radua J. Gray matter abnormalities in opioid-dependent patients: A neuroimaging meta-analysis. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:505-517. [DOI: 10.1080/00952990.2016.1245312] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Scott C. Wollman
- California School of Professional Psychology, San Diego, CA, USA
| | - Omar M. Alhassoon
- California School of Professional Psychology, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Matthew G. Hall
- California School of Professional Psychology, San Diego, CA, USA
| | - Mark J. Stern
- California School of Professional Psychology, San Diego, CA, USA
| | - Eric J. Connors
- California School of Professional Psychology, San Diego, CA, USA
| | | | - Kenneth E. Allen
- California School of Professional Psychology, San Diego, CA, USA
| | - Rick A. Stephan
- California School of Professional Psychology, San Diego, CA, USA
| | - Joaquim Radua
- FIDMAG Germanes Hospitalàries – CIBERSAM, Barcelona, Spain
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|