1
|
Burraco P, Gabor C, Bryant A, Gardette V, Lengagne T, Bonzom JM, Orizaola G. Ionizing radiation has negligible effects on the age, telomere length and corticosterone levels of Chornobyl tree frogs. Biol Lett 2024; 20:20240287. [PMID: 39500371 PMCID: PMC11537762 DOI: 10.1098/rsbl.2024.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/09/2024] Open
Abstract
The accident that occurred at the Chornobyl nuclear power plant (Ukraine, 1986) contaminated a large extension of territory after the deposition of radioactive material. It is still under debate whether the chronic exposure to the radiation levels currently present in the area has long-term effects on organisms, such as decreases in longevity. Here, we investigate whether current levels of radiation in Chornobyl negatively impact the age of the Eastern tree frog Hyla orientalis. We also explore whether radiation induces changes in an ageing marker, telomere length or the stress hormone corticosterone. We found no effect of total individual absorbed radiation (including both external and internal exposure) on frog age (n = 197 individuals sampled in 3 consecutive years). We also did not find any relationship between individual absorbed radiation and telomere length, nor between individual absorbed radiation and corticosterone levels. Our results suggest that radiation levels currently experienced by Chornobyl tree frogs may not be high enough to cause severe chronic damage to semi-aquatic vertebrates such as this species. This is the first study addressing age and stress hormones in Chornobyl wildlife, and thus future research will confirm if these results can be extended to other taxa.
Collapse
Affiliation(s)
- Pablo Burraco
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), Sevilla41092, Spain
| | - Caitlin Gabor
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Amanda Bryant
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Vanessa Gardette
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR 5023, CNRS, ENTPE, Université Claude Bernard Lyon 1, VilleurbanneF-69622, France
| | - Thierry Lengagne
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR 5023, CNRS, ENTPE, Université Claude Bernard Lyon 1, VilleurbanneF-69622, France
| | - Jean Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance13115, France
| | - Germán Orizaola
- Biodiversity Research Institute (IMIB), CSIC—University of Oviedo—Principality of Asturias, Mieres, Asturias33600, Spain
- Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, Oviedo, Asturias33071, Spain
| |
Collapse
|
2
|
Hinton TG, Anderson D, Bæk E, Baranwal VC, Beasley JC, Bontrager HL, Broggio D, Brown J, Byrne ME, Gerke HC, Ishiniwa H, Lance SL, Lind OC, Love CN, Nagata H, Nanba K, Okuda K, Salbu B, Shamovich D, Skuterud L, Trompier F, Webster SC, Zabrotski V. Fundamentals of wildlife dosimetry and lessons learned from a decade of measuring external dose rates in the field. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 278:107472. [PMID: 38905881 DOI: 10.1016/j.jenvrad.2024.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Methods for determining the radiation dose received by exposed biota require major improvements to reduce uncertainties and increase precision. We share our experiences in attempting to quantify external dose rates to free-ranging wildlife using GPS-coupled dosimetry methods. The manuscript is a primer on fundamental concepts in wildlife dosimetry in which the complexities of quantifying dose rates are highlighted, and lessons learned are presented based on research with wild boar and snakes at Fukushima, wolves at Chornobyl, and reindeer in Norway. GPS-coupled dosimeters produced empirical data to which numerical simulations of external dose using computer software were compared. Our data did not support a standing paradigm in risk analyses: Using averaged soil contaminant levels to model external dose rates conservatively overestimate the dose to individuals within a population. Following this paradigm will likely lead to misguided recommendations for risk management. The GPS-dosimetry data also demonstrated the critical importance of how modeled external dose rates are impacted by the scale at which contaminants are mapped. When contaminant mapping scales are coarse even detailed knowledge about each animal's home range was inadequate to accurately predict external dose rates. Importantly, modeled external dose rates based on a single measurement at a trap site did not correlate to actual dose rates measured on free ranging animals. These findings provide empirical data to support published concerns about inadequate dosimetry in much of the published Chernobyl and Fukushima dose-effects research. Our data indicate that a huge portion of that literature should be challenged, and that improper dosimetry remains a significant source of controversy in radiation dose-effect research.
Collapse
Affiliation(s)
- Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan; CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Donovan Anderson
- Institute of Radiation Emergency Medicine, Hirosaki University, Aomori, Japan.
| | - Edda Bæk
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway.
| | | | - James C Beasley
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Helen L Bontrager
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - David Broggio
- Institute for Radiation Protection and Nuclear Safety, Fontenay-aux-Roses, France.
| | - Justin Brown
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway.
| | - Michael E Byrne
- School of Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Hannah C Gerke
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Ole C Lind
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Cara N Love
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Hiroko Nagata
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Kei Okuda
- Faculty of Human Environmental Sciences, Hiroshima Shudo University, Hiroshima, Japan.
| | - Brit Salbu
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | | | | | - François Trompier
- Institute for Radiation Protection and Nuclear Safety, Fontenay-aux-Roses, France.
| | - Sarah C Webster
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Viachaslau Zabrotski
- Republican Center for Hydrometeorology, Control of Radioactive Contamination and Environmental Monitoring (Belhydromet), Minsk, Belarus.
| |
Collapse
|
3
|
Bontrager HL, Hinton TG, Okuda K, Beasley JC. The impact of sampling scale: A comparison of methods for estimating external contaminant exposure in free-ranging wildlife. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171012. [PMID: 38369157 DOI: 10.1016/j.scitotenv.2024.171012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The impacts of contaminants on wildlife are dose dependent, and thus being able to track or predict exposure following contamination events is important for monitoring ecosystem health. However, the ability to track exposure in free-ranging wildlife is often severely limited. Consequently, researchers have predominantly relied on simple methods for estimating contaminant exposures in wildlife with little regard for spatial contaminant heterogeneity or an animal's use of diverse habitats. We evaluated the influence sampling scale (i.e., how finely contaminant distribution and organism's spatial use of the landscape is mapped) has on (1) realism and (2) conservativeness of exposure estimates. To do this, we monitored the actual exposure of wild boar (Sus scrofa) in Fukushima, Japan to radioactive contamination using GPS-coupled contaminant monitors placed on individual animals. We compared empirical exposures to estimates generated by combining varying amounts of information about an individual boar's location and/or movement, with the distribution of contamination on the landscape. We found that the most realistic exposure estimates were produced when finer-scale contaminant distribution surveys (e.g., airborne surveys) were combined with more accurate estimates of an individual's space use (e.g., home ranges or core areas). Importantly, estimates of exposure based on single point surveys at a trap site (a simple method commonly used in the literature), did not correlate with actual exposure rates, suggesting dose-effects studies using this method may result in spurious conclusions. These results suggest that researchers seeking realistic estimates of exposure, such as in dose-effect studies, should ensure they have adequately accounted for fine-scale contaminant distribution patterns and areas of higher use by study organisms. However, conservative estimates of exposure (i.e., intentionally over-predicting exposure as is done in initial tiers of ecological risk analyses) were not as scale sensitive and could be achieved with a single known location and coarse contaminant distribution maps.
Collapse
Affiliation(s)
- Helen L Bontrager
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Thomas G Hinton
- Centre of Excellence in Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1433 Ås, Norway; Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - Kei Okuda
- Faculty of Human Environmental Sciences, Hiroshima Shudo University, Hiroshima 731-3195, Japan
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA.
| |
Collapse
|
4
|
Jernfors T, Lavrinienko A, Vareniuk I, Landberg R, Fristedt R, Tkachenko O, Taskinen S, Tukalenko E, Mappes T, Watts PC. Association between gut health and gut microbiota in a polluted environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169804. [PMID: 38184263 DOI: 10.1016/j.scitotenv.2023.169804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Animals host complex bacterial communities in their gastrointestinal tracts, with which they share a mutualistic interaction. The numerous effects these interactions grant to the host include regulation of the immune system, defense against pathogen invasion, digestion of otherwise undigestible foodstuffs, and impacts on host behaviour. Exposure to stressors, such as environmental pollution, parasites, and/or predators, can alter the composition of the gut microbiome, potentially affecting host-microbiome interactions that can be manifest in the host as, for example, metabolic dysfunction or inflammation. However, whether a change in gut microbiota in wild animals associates with a change in host condition is seldom examined. Thus, we quantified whether wild bank voles inhabiting a polluted environment, areas where there are environmental radionuclides, exhibited a change in gut microbiota (using 16S amplicon sequencing) and concomitant change in host health using a combined approach of transcriptomics, histological staining analyses of colon tissue, and quantification of short-chain fatty acids in faeces and blood. Concomitant with a change in gut microbiota in animals inhabiting contaminated areas, we found evidence of poor gut health in the host, such as hypotrophy of goblet cells and likely weakened mucus layer and related changes in Clca1 and Agr2 gene expression, but no visible inflammation in colon tissue. Through this case study we show that inhabiting a polluted environment can have wide reaching effects on the gut health of affected animals, and that gut health and other host health parameters should be examined together with gut microbiota in ecotoxicological studies.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland.
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland; Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Igor Vareniuk
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Rikard Fristedt
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Olena Tkachenko
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Sara Taskinen
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014, Finland
| | - Eugene Tukalenko
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, 020000, Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| |
Collapse
|
5
|
Lerebours A, Regini J, Quinlan RA, Wada T, Pierscionek B, Devonshire M, Kalligeraki AA, Uwineza A, Young L, Girkin JM, Warwick P, Smith K, Hoshino M, Uesugi K, Yagi N, Terrill N, Shebanova O, Snow T, Smith JT. Evaluation of cataract formation in fish exposed to environmental radiation at Chernobyl and Fukushima. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165957. [PMID: 37543314 DOI: 10.1016/j.scitotenv.2023.165957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Recent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds and voles living near Chernobyl represent a major challenge to current radiation protection regulations. This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most advanced technologies available to assess the cataract status of lenses extracted from fish caught at both Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal positive correlations between radiation dose and early indicators of cataract formation. The structure, function and optical properties of lenses were analysed from atomic to millimetre length scales. We measured the short-range order of the lens crystallin proteins using Small Angle X-Ray Scattering (SAXS) at both the SPring-8 and DIAMOND synchrotrons, the profile of the graded refractive index generated by these proteins, the epithelial cell density and organisation and finally the focal length of each lens. The results showed no evidence of a difference between the focal length, the epithelial cell densities, the refractive indices, the interference functions and the short-range order of crystallin proteins (X-ray diffraction patterns) in lens from fish exposed to different radiation doses. It could be argued that animals in the natural environment which developed cataract would be more likely, for example, to suffer predation leading to survivor bias. But the cross-length scale study presented here, by evaluating small scale molecular and cellular changes in the lens (pre-cataract formation) significantly mitigates against this issue.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom; School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Justyn Regini
- School of Optometry and Vision Sciences, University of Cardiff, Cardiff CA10 3AT, United Kingdom
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Japan
| | - Barbara Pierscionek
- Medical Technology Research Centre, Anglia Ruskin University, Bishop Hall Lane, Chelmsford CM1 1SQ, United Kingdom
| | - Martin Devonshire
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Alexia A Kalligeraki
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Alice Uwineza
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Laura Young
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - John M Girkin
- Department of Physics, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Phil Warwick
- GAU-Radioanalytical, University of Southampton, NOCS, European way, SO14 6HT Southampton,United Kingdom
| | - Kurt Smith
- Centre for Radiochemistry Research, School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Nick Terrill
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Olga Shebanova
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Tim Snow
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Jim T Smith
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom.
| |
Collapse
|
6
|
Car C, Gilles A, Goujon E, Muller MLD, Camoin L, Frelon S, Burraco P, Granjeaud S, Baudelet E, Audebert S, Orizaola G, Armengaud J, Tenenhaus A, Garali I, Bonzom JM, Armant O. Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone. BMC Biol 2023; 21:164. [PMID: 37525144 PMCID: PMC10391870 DOI: 10.1186/s12915-023-01659-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Individual functional modifications shape the ability of wildlife populations to cope with anthropogenic environmental changes. But instead of adaptive response, human-altered environments can generate a succession of deleterious functional changes leading to the extinction of the population. To study how persistent anthropogenic changes impacted local species' population status, we characterised population structure, genetic diversity and individual response of gene expression in the tree frog Hyla orientalis along a gradient of radioactive contamination around the Chernobyl nuclear power plant. RESULTS We detected lower effective population size in populations most exposed to ionizing radiation in the Chernobyl Exclusion Zone that is not compensated by migrations from surrounding areas. We also highlighted a decreased body condition of frogs living in the most contaminated area, a distinctive transcriptomics signature and stop-gained mutations in genes involved in energy metabolism. While the association with dose will remain correlational until further experiments, a body of evidence suggests the direct or indirect involvement of radiation exposure in these changes. CONCLUSIONS Despite ongoing migration and lower total dose rates absorbed than at the time of the accident, our results demonstrate that Hyla orientalis specimens living in the Chernobyl Exclusion Zone are still undergoing deleterious changes, emphasizing the long-term impacts of the nuclear disaster.
Collapse
Affiliation(s)
- Clément Car
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France
| | - André Gilles
- UMR 1467 RECOVER, Aix-Marseille Université, INRAE, Centre Saint-Charles, Marseille, France.
| | - Elen Goujon
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France
- Laboratoire Des Signaux Et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec, 91190, Gif-Sur-Yvette, France
| | - Marie-Laure Delignette Muller
- Laboratoire de Biométrie Et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Luc Camoin
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Sandrine Frelon
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France
| | - Pablo Burraco
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Centre, Uppsala University, 75236, Uppsala, Sweden
- Doñana Biological Station (CSIC), Seville, Spain
| | - Samuel Granjeaud
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Emilie Baudelet
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Germán Orizaola
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Centre, Uppsala University, 75236, Uppsala, Sweden
- IMIB-Biodiversity Research Institute, University of Oviedo, 33600, Mieres-Asturias, Spain
- Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, 33071, Oviedo-Asturias, Spain
| | - Jean Armengaud
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-Sur-Cèze, France
| | - Arthur Tenenhaus
- Laboratoire Des Signaux Et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec, 91190, Gif-Sur-Yvette, France
| | - Imène Garali
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France
| | - Olivier Armant
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France.
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France.
| |
Collapse
|
7
|
Spatola GJ, Buckley RM, Dillon M, Dutrow EV, Betz JA, Pilot M, Parker HG, Bogdanowicz W, Thomas R, Chyzhevskyi I, Milinevsky G, Kleiman N, Breen M, Ostrander EA, Mousseau TA. The dogs of Chernobyl: Demographic insights into populations inhabiting the nuclear exclusion zone. SCIENCE ADVANCES 2023; 9:eade2537. [PMID: 36867701 PMCID: PMC9984172 DOI: 10.1126/sciadv.ade2537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The 1986 Chernobyl nuclear disaster initiated a series of catastrophic events resulting in long-term and widespread environmental contamination. We characterize the genetic structure of 302 dogs representing three free-roaming dog populations living within the power plant itself, as well as those 15 to 45 kilometers from the disaster site. Genome-wide profiles from Chernobyl, purebred and free-breeding dogs, worldwide reveal that the individuals from the power plant and Chernobyl City are genetically distinct, with the former displaying increased intrapopulation genetic similarity and differentiation. Analysis of shared ancestral genome segments highlights differences in the extent and timing of western breed introgression. Kinship analysis reveals 15 families, with the largest spanning all collection sites within the radioactive exclusion zone, reflecting migration of dogs between the power plant and Chernobyl City. This study presents the first characterization of a domestic species in Chernobyl, establishing their importance for genetic studies into the effects of exposure to long-term, low-dose ionizing radiation.
Collapse
Affiliation(s)
- Gabriella J Spatola
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan Dillon
- North Carolina State University, Raleigh NC 27695, USA
| | - Emily V Dutrow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Rachel Thomas
- North Carolina State University, Raleigh NC 27695, USA
| | | | - Gennadi Milinevsky
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- International Center of Future Science, College of Physics, Jilin University, Changchun 130012, China
| | | | - Matthew Breen
- North Carolina State University, Raleigh NC 27695, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Abstract
PURPOSE Cataract (opacification of the ocular lens) is a typical tissue reaction (deterministic effect) following ionizing radiation exposure, for which prevention dose limits have been recommended in the radiation protection system. Manifestations of radiation cataracts can vary among individuals, but such potential individual responses remain uncharacterized. Here we review relevant literature and discuss implications for radiation protection. This review assesses evidence for significant modification of radiation-induced cataractogenesis by age at exposure, sex and genetic factors based on current scientific literature. CONCLUSIONS In addition to obvious physical factors (e.g. dose, dose rate, radiation quality, irradiation volume), potential factors modifying individual responses for radiation cataracts include sex, age and genetics, with comorbidity and coexposures also having important roles. There are indications and preliminary data identifying such potential modifiers of radiation cataract incidence or risk, although no firm conclusions can yet be drawn. Further studies and a consensus on the evidence are needed to gain deeper insights into factors determining individual responses regarding radiation cataracts and the implications for radiation protection.
Collapse
Affiliation(s)
- Stephen G R Barnard
- UK Health Security Agency (UKHSA), Radiation, Chemical and Environmental Hazards Division (RCEHD), Didcot, UK
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
9
|
Pohjoismäki JLO, Goffart S. Adaptive and Pathological Outcomes of Radiation Stress-Induced Redox Signaling. Antioxid Redox Signal 2022; 37:336-348. [PMID: 35044250 DOI: 10.1089/ars.2021.0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Ionizing radiation can damage cells either directly or through oxidative damage caused by ionization. Although radiation exposure from natural sources is very limited, ionizing radiation in nuclear disaster zones and long spaceflights causes inconspicuous, yet measurable physiological effects in men and animals, whose significance remains poorly known. Understanding the physiological impacts of ionizing radiation has a wide importance due to the increased use of medical imaging and radiotherapy. Recent Advances: Radiation exposure has been traditionally investigated from the perspective of DNA damage and its consequences. However, recent studies from Chernobyl as well as spaceflights have provided interesting insights into oxidative stress-induced metabolic alterations and disturbances in the circadian regulation. Critical Issues: In this review, we discuss the physiological consequences of radiation exposure in the light of oxidative stress signaling. Radiation exposure likely triggers many converging or interconnecting signaling pathways, some of which mimic mitochondrial dysfunction and might explain the observed metabolic changes. Future Directions: Better understanding of the different radiation-induced signaling pathways might help to devise strategies for mitigation of the long-term effects of radiation exposure. The utility of fibroblast growth factor 21 (FGF21) as a radiation exposure biomarker and the use of radiation hormesis as a method to protect astronauts on a prolonged spaceflight, such as a mission to Mars, should be investigated. Antioxid. Redox Signal. 37, 336-348.
Collapse
Affiliation(s)
- Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
10
|
Jackson JA, Antwis RE, Beresford NA, Wood MD. Some observations on meaningful and objective inference in radioecological field studies. J Anim Ecol 2022; 91:1546-1553. [PMID: 35694769 DOI: 10.1111/1365-2656.13743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
Abstract
Anthropogenic releases of radiation are of ongoing importance for environmental protection, but the radiation doses at which natural systems begin to show effects are controversial. More certainty is required in this area to achieve optimal regulation for radioactive substances. We recently carried out a large survey (268 sampled animals and 20 sites) of the association between environmental radiation exposures and small mammal gut-associated microbiomes (fungal and bacterial) in the Chornobyl Exclusion zone (CEZ). Using individual measurements of total absorbed dose rates and a study design and analyses that accounted for spatial non-independence, we found no, or only limited, association. Watts et al. have criticised our study: for not filtering candidate non-resident components prior to our fungal microbiome analyses, for our qualified speculations on the relative merits of faecal and gut samples, and for the design of our study which they felt lacked sufficient replication. The advantage of filtering non-resident-fungal taxa is not clear and it would not have changed the null (spatially adjusted) association we found between radioactive dose and mycobiome composition because the most discriminatory fungal taxa with regard to dose were non-resident taxa. We maintain that it was legitimate for us to make qualified discussion comments on the differences in results between our faecal and gut microbiome analyses and on the relative merits of these sample types. Most importantly, the criticism of our study design by Watts et al. and the designs and analysis of their recent studies in the CEZ show a misunderstanding of the true nature of independent replication in field studies. Recognising the importance of spatial non-independence is essential in the design and analysis of radioecological field surveys.
Collapse
Affiliation(s)
- Joseph A Jackson
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | | | - Michael D Wood
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| |
Collapse
|
11
|
Beresford NA, Wood MD, Gashchak S, Barnett CL. Current ionising radiation doses in the Chernobyl Exclusion Zone do not directly impact on soil biological activity. PLoS One 2022; 17:e0263600. [PMID: 35196340 PMCID: PMC8865656 DOI: 10.1371/journal.pone.0263600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/22/2022] [Indexed: 11/18/2022] Open
Abstract
Although soil organisms are essential for ecosystem function, the impacts of radiation on soil biological activity at highly contaminated sites has been relatively poorly studied. In April-May 2016, we conducted the first largescale deployment of bait lamina to estimate soil organism (largely soil invertebrate) feeding activity in situ at study plots in the Chernobyl Exclusion Zone (CEZ). Across our 53 study plots, estimated weighted absorbed dose rates to soil organisms ranged from 0.7 μGy h-1 to 1753 μGy h-1. There was no significant relationship between soil organism feeding activity and estimated weighted absorbed dose rate. Soil biological activity did show significant relationships with soil moisture content, bulk density (used as a proxy for soil organic matter) and pH. At plots in the Red Forest (an area of coniferous plantation where trees died because of high radiation exposure in 1986) soil biological activity was low compared to plots elsewhere in the CEZ. It is possible that the lower biological activity observed in the Red Forest is a residual consequence of what was in effect an acute high exposure to radiation in 1986.
Collapse
Affiliation(s)
- Nicholas A. Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster, United Kingdom
- School of Science, Engineering & Environment, University of Salford, Manchester, United Kingdom
- * E-mail:
| | - Michael D. Wood
- School of Science, Engineering & Environment, University of Salford, Manchester, United Kingdom
| | - Sergey Gashchak
- International Radioecology Laboratory, Chornobyl Center for Nuclear Safety, Radioactive Waste & Radioecology, Slavutych, Kyiv Region, Ukraine
| | - Catherine L. Barnett
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster, United Kingdom
| |
Collapse
|
12
|
Kivisaari K, Calhim S, Lehmann P, Boratyński Z, Mousseau TA, Møller AP, Mappes T. Chronic Background Radiation Correlates With Sperm Swimming Endurance in Bank Voles From Chernobyl. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.736389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sperm quantity and quality are key features explaining intra- and interspecific variation in male reproductive success. Spermatogenesis is sensitive to ionizing radiation and laboratory studies investigating acute effects of ionizing radiation have indeed found negative effects of radiation on sperm quantity and quality. In nature, levels of natural background radiation vary dramatically, and chronic effects of low-level background radiation exposure on spermatogenesis are poorly understood. The Chernobyl region offers a unique research opportunity for investigating effects of chronic low-level ionizing radiation on reproductive properties of wild organisms. We captured male bank voles (Myodes glareolus) from 24 locations in the Chernobyl exclusion zone in 2011 and 2015 and collected information on sperm morphology and kinetics. The dataset is limited in size and there overall was a relatively weak correlation between background radiation and sperm quality. Still, some correlations are worth discussing. First, mid-piece segments of spermatozoa tended to be smaller in bank vole males from areas with elevated background radiation levels. Second, we demonstrated a significant positive relationship between background radiation dose rates and the proportion of static spermatozoa among males within and among study locations after 10 as well as 60 min of incubation. Our results provide novel evidence of damaging effects of low dose ionizing radiation on sperm performance in wild rodent populations, and highlight that this topic requires further study across the natural gradients of background radiation that exist in nature.
Collapse
|
13
|
Abstract
Environmental disasters offer the unique opportunity for landscape-scale ecological and evolutionary studies that are not possible in the laboratory or small experimental plots. The nuclear accident at Chernobyl (1986) allows for rigorous analyses of radiation effects on individuals and populations at an ecosystem scale. Here, the current state of knowledge related to populations within the Chernobyl region of Ukraine and Belarus following the largest civil nuclear accident in history is reviewed. There is now a significant literature that provides contrasting and occasionally conflicting views of the state of animals and how they are affected by this mutagenic stressor. Studies of genetic and physiological effects have largely suggested significant injuries to individuals inhabiting the more radioactive areas of the Chernobyl region. Most population censuses for most species suggest that abundances are reduced in the more radioactive areas.
Collapse
Affiliation(s)
- Timothy A. Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
14
|
Cunningham K, Hinton TG, Luxton JJ, Bordman A, Okuda K, Taylor LE, Hayes J, Gerke HC, Chinn SM, Anderson D, Laudenslager ML, Takase T, Nemoto Y, Ishiniwa H, Beasley JC, Bailey SM. Evaluation of DNA damage and stress in wildlife chronically exposed to low-dose, low-dose rate radiation from the Fukushima Dai-ichi Nuclear Power Plant accident. ENVIRONMENT INTERNATIONAL 2021; 155:106675. [PMID: 34120002 DOI: 10.1016/j.envint.2021.106675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The health effects associated with chronic low-dose, low-dose rate (LD-LDR) exposures to environmental radiation are uncertain. All dose-effect studies conducted outside controlled laboratory conditions are challenged by inherent complexities of ecological systems and difficulties quantifying dose to free-ranging organisms in natural environments. Consequently, the effects of chronic LD-LDR radiation exposures on wildlife health remain poorly understood and much debated. Here, samples from wild boar (Sus scrofa leucomystax) and rat snakes (Elaphe spp.) were collected between 2016 and 2018 across a gradient of radiation exposures in Fukushima, Japan. In vivo biomarkers of DNA damage and stress were evaluated as a function of multiple measurements of radiation dose. Specifically, we assessed frequencies of dicentric chromosomes (Telomere-Centromere Fluorescence in situ Hybridization: TC-FISH), telomere length (Telo-FISH, qPCR), and cortisol hormone levels (Enzyme Immunoassay: EIA) in wild boar, and telomere length (qPCR) in snakes. These biological parameters were then correlated to robust calculations of radiation dose rate at the time of capture and plausible upper bound lifetime dose, both of which incorporated internal and external dose. No significant relationships were observed between dicentric chromosome frequencies or telomere length and dose rate at capture or lifetime dose (p value range: 0.20-0.97). Radiation exposure significantly associated only with cortisol, where lower concentrations were associated with higher dose rates (r2 = 0.58; p < 0.0001), a relationship that was likely due to other (unmeasured) factors. Our results suggest that wild boar and snakes chronically exposed to LD-LDR radiation sufficient to prohibit human occupancy were not experiencing significant adverse health effects as assessed by biomarkers of DNA damage and stress.
Collapse
Affiliation(s)
- Kelly Cunningham
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Thomas G Hinton
- Centre for Environmental Radioactivity, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1433 Ås, Norway; Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan.
| | - Jared J Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Aryn Bordman
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Kei Okuda
- Faculty of Human Environmental Studies, Hiroshima Shudo University, Hiroshima 731-3195, Japan
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Josh Hayes
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Hannah C Gerke
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Sarah M Chinn
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Donovan Anderson
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima, Fukushima City, Kanayagawa 960-1248, Japan
| | - Mark L Laudenslager
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tsugiko Takase
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - Yui Nemoto
- Fukushima Prefectural Centre for Environmental Creation, 2-10 Fukasaku, Miharu, Fukushima 963-7799, Japan
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| |
Collapse
|
15
|
Jernfors T, Danforth J, Kesäniemi J, Lavrinienko A, Tukalenko E, Fajkus J, Dvořáčková M, Mappes T, Watts PC. Expansion of rDNA and pericentromere satellite repeats in the genomes of bank voles Myodes glareolus exposed to environmental radionuclides. Ecol Evol 2021; 11:8754-8767. [PMID: 34257925 PMCID: PMC8258220 DOI: 10.1002/ece3.7684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Altered copy number of certain highly repetitive regions of the genome, such as satellite DNA within heterochromatin and ribosomal RNA loci (rDNA), is hypothesized to help safeguard the genome against damage derived from external stressors. We quantified copy number of the 18S rDNA and a pericentromeric satellite DNA (Msat-160) in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone (CEZ), an area that is contaminated by radionuclides and where organisms are exposed to elevated levels of ionizing radiation. We found a significant increase in 18S rDNA and Msat-160 content in the genomes of bank voles from contaminated locations within the CEZ compared with animals from uncontaminated locations. Moreover, 18S rDNA and Msat-160 copy number were positively correlated in the genomes of bank voles from uncontaminated, but not in the genomes of animals inhabiting contaminated, areas. These results show the capacity for local-scale geographic variation in genome architecture and are consistent with the genomic safeguard hypothesis. Disruption of cellular processes related to genomic stability appears to be a hallmark effect in bank voles inhabiting areas contaminated by radionuclides.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - John Danforth
- Department of Biochemistry & Molecular BiologyRobson DNA Science CentreArnie Charbonneau Cancer InstituteCumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Jenni Kesäniemi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anton Lavrinienko
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Eugene Tukalenko
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- National Research Center for Radiation Medicine of the National Academy of Medical ScienceKyivUkraine
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
- Laboratory of Functional Genomics and ProteomicsNCBRFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of Cell Biology and RadiobiologyInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Tapio Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Phillip C. Watts
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
16
|
Boratyński Z, Mousseau TA, Møller AP. Individual quality and phenology mediate the effect of radioactive contamination on body temperature in Chernobyl barn swallows. Ecol Evol 2021; 11:9039-9048. [PMID: 34257943 PMCID: PMC8258232 DOI: 10.1002/ece3.7742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Anthropogenic stressors, such as radioactive contaminants released from the Chernobyl and Fukushima Daiichi accidents, deteriorate ecological and evolutionary processes, as evidence for damaging effects of radioactive contamination on wildlife is accumulating. Yet little is known about physiological traits of animals inhabiting contaminated areas, and how those are affected by individual quality and phenology. We investigated variation in body temperature of wild barn swallows, Hirundo rustica, exposed to radioactive contamination from the Chernobyl accident in Ukraine and Belarus. We tested whether exposure to variable levels of radioactive contamination modified core body temperature of birds, and whether individual and phenological characteristics modulated radiosensitivity of body temperature. We showed that barn swallow body temperature varied with exposure to environmental radioactive contamination and that individual characteristics and phenology affected radioactive exposure. Increased radiosensitivity and up-regulation of body temperature were detected in birds of low body condition, high risk of capture, and in animals captured late during the day but early during the season. These results highlight the complex ways that the body temperature of a wild bird is impacted by exposure to increased radioactive contamination in natural habitats. By impacting body temperature, increased radioactive contamination may compromise energetic balance, jeopardize responsiveness to global warming, and increase risk of overheating.
Collapse
Affiliation(s)
- Zbyszek Boratyński
- CIBIO/InBioResearch Centre in Biodiversity and Genetic ResourcesUniversity of PortoPortoPortugal
| | - Timothy A. Mousseau
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- SURA/LASSO/NASAISS Utilization and Life Sciences DivisionKennedy Space CenterCape CanaveralFLUSA
| | - Anders Pape Møller
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijingChina
- Ecologie Systematique EvolutionCNRSAgroParisTechUniversite Paris‐SaclayOrsayFrance
| |
Collapse
|
17
|
Spatola GJ, Ostrander EA, Mousseau TA. The effects of ionizing radiation on domestic dogs: a review of the atomic bomb testing era. Biol Rev Camb Philos Soc 2021; 96:1799-1815. [PMID: 33987930 PMCID: PMC8429057 DOI: 10.1111/brv.12723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Dogs were frequently employed as laboratory subjects during the era of atomic bomb testing (1950–1980), particularly in studies used to generate predictive data regarding the expected effects of accidental human occupational exposure to radiation. The bulk of these studies were only partly reported in the primary literature, despite providing vital information regarding the effects of radiation exposure on a model mammalian species. Herein we review this literature and summarize the biological effects in relation to the isotopes used and the method of radionuclide exposure. Overall, these studies demonstrate the wide range of developmental and physiological effects of exposure to radiation and radionuclides in a mid‐sized mammal.
Collapse
Affiliation(s)
- Gabriella J Spatola
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, U.S.A.,Graduate Partnerships Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, U.S.A.,SURA/LASSO/NASA, ISS Utilization and Life Sciences Division, Kennedy Space Center, Cape Canaveral, FL, 32899, U.S.A
| |
Collapse
|
18
|
Kunze S, Cecil A, Prehn C, Möller G, Ohlmann A, Wildner G, Thurau S, Unger K, Rößler U, Hölter SM, Tapio S, Wagner F, Beyerlein A, Theis F, Zitzelsberger H, Kulka U, Adamski J, Graw J, Dalke C. Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice. Int J Radiat Biol 2021; 97:529-540. [PMID: 33464160 DOI: 10.1080/09553002.2021.1876951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The long-term effect of low and moderate doses of ionizing radiation on the lens is still a matter of debate and needs to be evaluated in more detail. MATERIAL AND METHODS We conducted a detailed histological analysis of eyes from B6C3F1 mice cohorts after acute gamma irradiation (60Co source; 0.063 Gy/min) at young adult age of 10 weeks with doses of 0.063, 0.125, and 0.5 Gy. Sham irradiated (0 Gy) mice were used as controls. To test for genetic susceptibility heterozygous Ercc2 mutant mice were used and compared to wild-type mice of the same strain background. Mice of both sexes were included in all cohorts. Eyes were collected 4 h, 12, 18 and 24 months after irradiation. For a better understanding of the underlying mechanisms, metabolomics analyses were performed in lenses and plasma samples of the same mouse cohorts at 4 and 12 h as well as 12, 18 and 24 months after irradiation. For this purpose, a targeted analysis was chosen. RESULTS This analysis revealed histological changes particularly in the posterior part of the lens that rarely can be observed by using Scheimpflug imaging, as we reported previously. We detected a significant increase of posterior subcapsular cataracts (PSCs) 18 and 24 months after irradiation with 0.5 Gy (odds ratio 9.3; 95% confidence interval 2.1-41.3) independent of sex and genotype. Doses below 0.5 Gy (i.e. 0.063 and 0.125 Gy) did not significantly increase the frequency of PSCs at any time point. In lenses, we observed a clear effect of sex and aging but not of irradiation or genotype. While metabolomics analyses of plasma from the same mice showed only a sex effect. CONCLUSIONS This article demonstrates a significant radiation-induced increase in the incidence of PSCs, which could not be identified using Scheimpflug imaging as the only diagnostic tool.
Collapse
Affiliation(s)
- Sarah Kunze
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Stephan Thurau
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ute Rößler
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wagner
- Institute of Radiation Medicine, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Fabian Theis
- Institute of Computational Biology, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrike Kulka
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technical University of Munich, Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
19
|
Modelling the effects of ionising radiation on a vole population from the Chernobyl Red forest in an ecological context. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Lavrinienko A, Tukalenko E, Kesäniemi J, Kivisaari K, Masiuk S, Boratyński Z, Mousseau TA, Milinevsky G, Mappes T, Watts PC. Applying the Anna Karenina principle for wild animal gut microbiota: Temporal stability of the bank vole gut microbiota in a disturbed environment. J Anim Ecol 2020; 89:2617-2630. [DOI: 10.1111/1365-2656.13342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Affiliation(s)
| | - Eugene Tukalenko
- Ecology and Genetics University of Oulu Oulu Finland
- National Research Center for Radiation Medicine of the National Academy of Medical Science Kyiv Ukraine
| | | | - Kati Kivisaari
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Sergii Masiuk
- National Research Center for Radiation Medicine of the National Academy of Medical Science Kyiv Ukraine
- Ukrainian Radiation Protection Institute Kyiv Ukraine
| | - Zbyszek Boratyński
- CIBIO‐InBIO Associate Laboratory Research Center in Biodiversity and Genetic ResourcesUniversity of Porto Vairão Portugal
| | - Timothy A. Mousseau
- Department of Biological Sciences University of South Carolina Columbia SC USA
| | - Gennadi Milinevsky
- Space Physics Laboratory Taras Shevchenko National University of Kyiv Kyiv Ukraine
- College of Physics International Center of Future Science Jilin University Changchun China
| | - Tapio Mappes
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Phillip C. Watts
- Ecology and Genetics University of Oulu Oulu Finland
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| |
Collapse
|
21
|
Kivisaari K, Boratyński Z, Lavrinienko A, Kesäniemi J, Lehmann P, Mappes T. The effect of chronic low-dose environmental radiation on organ mass of bank voles in the Chernobyl exclusion zone. Int J Radiat Biol 2020; 96:1254-1262. [PMID: 32658635 DOI: 10.1080/09553002.2020.1793016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Animals are exposed to environmental ionizing radiation (IR) externally through proximity to contaminated soil and internally through ingestion and inhalation of radionuclides. Internal organs can respond to radioactive contamination through physiological stress. Chronic stress can compromise the size of physiologically active organs, but studies on wild mammal populations are scarce. The effects of environmental IR contamination on organ masses were studied by using a wild rodent inhabiting the Chernobyl exclusion zone (CEZ). MATERIAL AND METHODS The masses of brain, heart, kidney, spleen, liver and lung were assessed from bank voles (Myodes glareolus) captured from areas across radioactive contamination gradient within the CEZ. Relative organ masses were used to correct for the body mass of an individual. RESULTS Results showed a significant negative correlation between IR level in the environment and relative brain and kidney mass. A significant positive correlation between IR and relative heart mass was also found. Principal component analysis (PCA) also suggested positive relationship between IR and relative spleen mass; however, this relationship was not significant when spleen was analyzed separately. There was no apparent relationship between IR and relative liver or lung mass. CONCLUSIONS Results suggest that in the wild populations even low but chronic doses of IR can lead to changes in relative organ mass. The novelty of these result is showing that exposure to low doses can affect the organ masses in similar fashion as previously shown on high, acute, radiation doses. These data support the hypothesis that wildlife might be more sensitive to IR than animals used in laboratory studies. However, more research is needed to rule out the other indirect effects such as radiosensitivity of the food sources or possible combined stress effects from e.g. infections.
Collapse
Affiliation(s)
- Kati Kivisaari
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Zbyszek Boratyński
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jenni Kesäniemi
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
22
|
Arnaise S, Shykoff JA, Møller AP, Mousseau TA, Giraud T. Anther-smut fungi from more contaminated sites in Chernobyl show lower infection ability and lower viability following experimental irradiation. Ecol Evol 2020; 10:6409-6420. [PMID: 32724522 PMCID: PMC7381591 DOI: 10.1002/ece3.6376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 11/07/2022] Open
Abstract
The long-term contamination that followed the nuclear disaster at Chernobyl provides a case study for the effects of chronic ionizing radiation on living organisms and on their ability to tolerate or evolve resistance to such radiation. Previously, we studied the fertility and viability of early developmental stages of a castrating plant pathogen, the anther-smut fungus Microbotryum lychnidis-dioicae, isolated from field sites varying over 700-fold in degree of radioactive contamination. Neither the budding rate of haploid spores following meiosis nor the karyotype structure varied with increasing radiation levels at sampling sites. Here, we assessed the ability of the same M. lychnidis-dioicae strains to perform their whole life cycle, up to the production of symptoms in the plants, that is, the development of anthers full of fungal spores; we also assessed their viability under experimental radiation. Fungal strains from more contaminated sites had no lower spore numbers in anthers or viability, but infected host plants less well, indicating lower overall fitness due to radioactivity exposure. These findings improve our understanding of the previous field data, in which the anther-smut disease prevalence on Silene latifolia plants caused by M. lychnidis-dioicae was lower at more contaminated sites. Although the fungus showed relatively high resistance to experimental radiation, we found no evidence that increased resistance to radiation has evolved in populations from contaminated sites. Fungal strains from more contaminated sites even tolerated or repaired damage from a brief acute exposure to γ radiation less well than those from non- or less contaminated sites. Our results more generally concur with previous studies in showing that the fitness of living organisms is affected by radiation after nuclear disasters, but that they do not rapidly evolve higher tolerance.
Collapse
Affiliation(s)
- Sylvie Arnaise
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| | - Jacqui A. Shykoff
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| | - Anders P. Møller
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| | | | - Tatiana Giraud
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| |
Collapse
|
23
|
Laskowski L, Williams D, Seymour C, Mothersill C. Environmental and industrial developments in radiation cataractogenesis. Int J Radiat Biol 2020; 98:1074-1082. [PMID: 32396040 DOI: 10.1080/09553002.2020.1767820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This review discusses recent developments in our understanding of biological and physiological mechanisms underlying radiation cataractogenesis. The areas discussed include effects of low-dose exposures to the lens including potential relevance of non-targeted effects, the development of new personal-protective equipment (PPE) and standards in clinical and nuclear settings motivated by the updated ICRP recommendations to mitigate exposures to the lens of the eye. The review also looks at evidence from the field linking cataracts in birds and mammals to low dose exposures.Conclusions: The review suggests that there is evidence that cataractogenesis is not a tissue reaction (deterministic effect) but rather is a low dose effect which shows a saturable dose response relationship similar to that seen for non-targeted effects in general. The review concludes that new research is needed to determine the dose response relationship in environmental studies where field data are contradictory and lab studies confined to rodent models for human exposure studies.
Collapse
Affiliation(s)
- Lukasz Laskowski
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - David Williams
- Department of Veterinary Medicine, University of Cambridge, Cambrige, UK
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
24
|
Du S, Shao J, Qi Y, Liu X, Liu J, Zhang F. Long non-coding RNA ANRIL alleviates H 2O 2-induced injury by up-regulating microRNA-21 in human lens epithelial cells. Aging (Albany NY) 2020; 12:6543-6557. [PMID: 32310822 PMCID: PMC7202488 DOI: 10.18632/aging.102800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/19/2020] [Indexed: 12/22/2022]
Abstract
The accurate role of ANRIL in cataract is poorly understood. We aimed to reveal the effects of ANRIL on H2O2-treated HLECs, SRA01/04, as well as the regulatory mechanisms. Oxidative stress model of HLECs was induced by H2O2. Cell injury was evaluated according to cell proliferation, apoptosis and DNA damage using CCK-8 assay/flow cytometry and TUNEL assays/γH2AX staining. Expressions of ANRIL and miR-21 in HLECs were determined by RT-qPCR. The effects of miR-21, miR-34a and miR-122-5p inhibition as well as AMPK and β-catenin on HLECs with ANRIL overexpression and H2O2 stimulation were analyzed. In vivo experiment was performed via RT-qPCR. H2O2 repressed proliferation and induced apoptosis or DNA damage in HLECs. Those alterations induced by H2O2 were attenuated by ANRIL overexpression. MiR-21 was positively regulated by ANRIL, and both of them were repressed in H2O2-induced HLECs and cataract patient tissues. Inhibition of miR-21 but not miR-34a or miR-122-5p reversed the effects of ANRIL on H2O2-treated HLECs. Phosphorylation of AMPK and expression of β-catenin were increased by ANRIL via regulating miR-21. AMPK and β-catenin affected beneficial function of ANRIL-miR-21 axis.Therefore, lncRNA ANRIL attenuated H2O2-induced cell injury in HELCs via up-regulating miR-21 via the activation of AMPK and β-catenin.
Collapse
Affiliation(s)
- Shanshan Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingzhi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ying Qi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xuhui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingjing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
25
|
Pederson SL, Li Puma MC, Hayes JM, Okuda K, Reilly CM, Beasley JC, Li Puma LC, Hinton TG, Johnson TE, Freeman KS. Effects of chronic low-dose radiation on cataract prevalence and characterization in wild boar (Sus scrofa) from Fukushima, Japan. Sci Rep 2020; 10:4055. [PMID: 32132563 PMCID: PMC7055243 DOI: 10.1038/s41598-020-59734-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/03/2022] Open
Abstract
This study evaluated cataracts in wild boar exposed to chronic low-dose radiation. We examined wild boar from within and outside the Fukushima Exclusion Zone for nuclear, cortical, and posterior subcapsular (PSC) cataracts in vivo and photographically. Plausible upper-bound, lifetime radiation dose for each boar was estimated from radioactivity levels in each animal's home range combined with tissue concentrations of 134+137Cesium. Fifteen exposed and twenty control boar were evaluated. There were no significant differences in overall prevalence or score for cortical or PSC cataracts between exposed and control animals. Nuclear (centrally located) cataracts were significantly more prevalent in exposed boar (p < 0.05) and had statistically higher median scores. Plausible upper-bound, lifetime radiation dose ranged from 1 to 1,600 mGy in exposed animals, with no correlation between dose and cortical or PSC score. While radiation dose and nuclear score were positively associated, the impact of age could not be completely separated from the relationship. Additionally, the clinical significance of even the highest scoring nuclear cataract was negligible. Based on the population sampled, wild boar in the Fukushima Exclusion Zone do not have a significantly higher prevalence or risk of cortical or PSC cataracts compared to control animals.
Collapse
Affiliation(s)
- Samantha L Pederson
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Margaret C Li Puma
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Joshua M Hayes
- Environmental Radiological and Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Kei Okuda
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan
| | | | - James C Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, South Carolina, United States
| | - Lance C Li Puma
- Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan
| | - Thomas E Johnson
- Environmental Radiological and Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Kate S Freeman
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States.
| |
Collapse
|
26
|
Beaugelin-Seiller K, Garnier-Laplace J, Beresford NA. Estimating radiological exposure of wildlife in the field. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105830. [PMID: 30385053 DOI: 10.1016/j.jenvrad.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/31/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
The assessment of the ecological impact due to radionuclides at contaminated sites requires estimation of the exposure of wildlife, in order to correlate radiation dose with known radiological effects. The robust interpretation of field data requires consideration of possible confounding effects (e.g., from the tsunami at Fukushima) and an accurate and relevant quantification of radiation doses to biota. Generally, in field studies the exposure of fauna and flora has often been characterised as measurements of the ambient dose rate or activity concentrations in some components of the environment. The use of such data does not allow the establishment of a robust dose-effect relationship for wildlife exposed to ionising radiation in the field. Effects of exposure to radioactivity depend on the total amount of energy deposited into exposed organisms, which is estimated by adding doses (or dose rates) for all radionuclides and exposure pathways. Realistic dose estimation needs to reflect the entire story of the organisms of interest during their whole exposure period. The process of identifying and collecting all the related information should allow the "W" questions (Which organisms are exposed, Where, When and hoW) to be answered. Some parameters are well known to influence dose (rate): the organism life stage, its ecological characteristics (e.g. habitat, behaviour), the source term properties (e.g. discharging facility, nature of radiation), etc. The closer the collated data are to the ideal data set, the more accurate and realistic the dose (rate) assessment will be. This means characterising each exposure pathway (internal and external), the activity concentration in each exposure source, the time each organism spends in a given place, as well as the associated dose. In this paper the process of data collation in view of dose reconstruction is illustrated for Japanese birds exposed to radioactive deposition following the Fukushima accident. With respect to the Chernobyl Exclusion Zone we will also consider variability under field conditions, availability of relevant datasets and options for better estimating internal and external doses received by wildlife.
Collapse
|
27
|
Beresford NA, Horemans N, Copplestone D, Raines KE, Orizaola G, Wood MD, Laanen P, Whitehead HC, Burrows JE, Tinsley MC, Smith JT, Bonzom JM, Gagnaire B, Adam-Guillermin C, Gashchak S, Jha AN, de Menezes A, Willey N, Spurgeon D. Towards solving a scientific controversy - The effects of ionising radiation on the environment. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106033. [PMID: 31451195 DOI: 10.1016/j.jenvrad.2019.106033] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 05/12/2023]
Affiliation(s)
- N A Beresford
- Centre for Ecology & Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP, United Kingdom; School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom.
| | - N Horemans
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - K E Raines
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - G Orizaola
- Universidad de Oviedo - Campus de Mieres, Edificio de Investigación 5a Planta, C/ Gonzalo Gutiérrez Quirós s/n, 33600, Mieres-Asturias, Spain
| | - M D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - P Laanen
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium; University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - H C Whitehead
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - J E Burrows
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - M C Tinsley
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - J T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom
| | - J-M Bonzom
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | - B Gagnaire
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | | | - S Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste & Radioecology, International Radioecology Laboratory, 77th Gvardiiska Dyviiya Str.11, P.O. Box 151, 07100, Slavutych, Kiev Region, Ukraine
| | - A N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | - A de Menezes
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - N Willey
- Centre for Research in Bioscience, Dept. of Applied Sciences, University of the West of England, Frenchay, BS16 1QY, Bristol, United Kingdom
| | - D Spurgeon
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| |
Collapse
|
28
|
Smith J. Field evidence of significant effects of radiation on wildlife at chronic low dose rates is weak and often misleading. A comment on "Is non-human species radiosensitivity in the lab a good indicator of that in the field? Making the comparison more robust" by Beaugelin-Seiller et al. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105895. [PMID: 30773307 DOI: 10.1016/j.jenvrad.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Jim Smith
- School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire, PO1 3QL, UK.
| |
Collapse
|
29
|
Beresford NA, Scott EM, Copplestone D. Field effects studies in the Chernobyl Exclusion Zone: Lessons to be learnt. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105893. [PMID: 30718022 DOI: 10.1016/j.jenvrad.2019.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
In the initial aftermath of the 1986 Chernobyl accident there were detrimental effects recorded on wildlife, including, mass mortality of pine trees close to the reactor, reduced pine seed production, reductions in soil invertebrate abundance and diversity and likely death of small mammals. More than 30 years after the Chernobyl accident there is no consensus on the longer-term impact of the chronic exposure to radiation on wildlife in what is now referred to as the Chernobyl Exclusion Zone. Reconciling this lack of consensus is one of the main challenges for radioecology. With the inclusion of environmental protection in, for instance, the recommendations of the International Commission on Radiological Protection (ICRP), we need to be able to incorporate knowledge of the potential effects of radiation on wildlife within the regulatory process (e.g. as a basis on which to define benchmark dose rates). In this paper, we use examples of reported effects on different wildlife groups inhabiting the Chernobyl Exclusion Zone (CEZ) as a framework to discuss potential reasons for the lack of consensus, consider important factors influencing dose rates organisms receive and make some recommendations on good practice.
Collapse
Affiliation(s)
- N A Beresford
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - E M Scott
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QW, UK
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
30
|
Nogueira P, Hiller M, Aust MO. Monte Carlo simulation of dose coefficients for a fish eye lens model exposed to monoenergetic electrons. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 199-200:7-15. [PMID: 30641398 DOI: 10.1016/j.jenvrad.2018.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Vision is an important sense for the majority of the wildlife species, affecting their ability to find food and escape predation. Currently, no study on radiation induced cataract frequency on the fish eyes lens has been done. However, any thorough future study of this subject will require more accurate dose estimates for the fish eye lens than those currently available. For this purpose, the eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using the MCNPX Monte Carlo radiation transport code package. All results were validated against three different fish voxel models. The discrepancies between model results mainly originate from the different fish eye dimensions used in the different studies and in two of the cases the lack of a defined eye lens region. The dose conversion coefficients calculated in this work can be used to estimate the dose to the fish eye lens based on the activity concentration of the surrounding water. The model developed in this work has also demonstrated that the mathematical models still have several advantages over the voxel models.
Collapse
Affiliation(s)
- P Nogueira
- Thünen Institute of Fisheries Ecology, Herwigstrasse 31, 27572, Bremerhaven, Germany.
| | | | - M-O Aust
- Thünen Institute of Fisheries Ecology, Herwigstrasse 31, 27572, Bremerhaven, Germany
| |
Collapse
|
31
|
Mustonen V, Kesäniemi J, Lavrinienko A, Tukalenko E, Mappes T, Watts PC, Jurvansuu J. Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses. BMC Cell Biol 2018; 19:17. [PMID: 30157751 PMCID: PMC6114495 DOI: 10.1186/s12860-018-0169-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background Elevated levels of environmental ionizing radiation can be a selective pressure for wildlife by producing reactive oxygen species and DNA damage. However, the underlying molecular mechanisms that are affected are not known. Results We isolated skin fibroblasts from bank voles (Myodes glareolus) inhabiting the Chernobyl nuclear power plant accident site where background radiation levels are about 100 times greater than in uncontaminated areas. After a 10 Gy dose of gamma radiation fibroblasts from Chernobyl animals recovered faster than fibroblasts isolated from bank voles living in uncontaminated control area. The Chernobyl fibroblasts were able to sustain significantly higher doses of an oxidant and they had, on average, a higher total antioxidant capacity than the control fibroblasts. Furthermore, the Chernobyl fibroblasts were also significantly more resistant than the control fibroblasts to continuous exposure to three DNA damaging drugs. After drug treatment transcription of p53-target gene pro-apoptotic Bax was higher in the control than in the Chernobyl fibroblasts. Conclusion Fibroblasts isolated from bank voles inhabiting Chernobyl nuclear power plant accident site show elevated antioxidant levels, lower sensitivity to apoptosis, and increased resistance against oxidative and DNA stresses. These cellular qualities may help bank voles inhabiting Chernobyl to cope with environmental radioactivity. Electronic supplementary material The online version of this article (10.1186/s12860-018-0169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venla Mustonen
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Jenni Kesäniemi
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Anton Lavrinienko
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Eugene Tukalenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, UA-03022, Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Phillip C Watts
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Jaana Jurvansuu
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland.
| |
Collapse
|
32
|
Morelli F, Benedetti Y, Mousseau TA, Møller AP. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 220:183-190. [PMID: 29778954 DOI: 10.1016/j.jenvman.2018.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 05/24/2023]
Abstract
Ionizing radiation from nuclear accidents at Chernobyl, Fukushima and elsewhere has reduced the abundance, species richness and diversity of ecosystems. Here we analyzed the taxonomic, functional and evolutionary diversity of bird communities in forested areas around Chernobyl. Species richness decreased with increasing radiation, mainly in 2007. Functional richness, but not functional evenness and divergence, decreased with increasing level of ionizing radiation. Evolutionary distinctiveness of bird communities was higher in areas with higher levels of ionizing radiation. Regression tree models revealed that species richness was higher in bird communities in areas with radiation levels lower than 0.7 μSv/h. In contrast, when radiation levels were higher than 16.67 μSv/h, bird species richness reached a minimum. Functional richness was affected by two variables: Forest cover and radiation level. Higher functional richness was found in bird communities in areas with forest cover lower than 50%. In the areas with forest cover higher than 50%, the functional richness was lower when radiation level was higher than 0.91 μSv/h. Finally, the average evolutionary distinctiveness of bird communities was higher in areas with forest cover exceeding 50%. These findings imply that level of ionizing radiation interacted with forest cover to affect species richness and its component parts, i.e. taxonomic, functional, and evolutionary diversity.
Collapse
Affiliation(s)
- Federico Morelli
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcká 129, 165 00 Prague 6, Czech Republic.
| | - Yanina Benedetti
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| |
Collapse
|
33
|
Kesäniemi J, Boratyński Z, Danforth J, Itam P, Jernfors T, Lavrinienko A, Mappes T, Møller AP, Mousseau TA, Watts PC. Analysis of heteroplasmy in bank voles inhabiting the Chernobyl exclusion zone: A commentary on Baker et al. (2017) "Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent.". Evol Appl 2018; 11:820-826. [PMID: 29875822 PMCID: PMC5978973 DOI: 10.1111/eva.12578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jenni Kesäniemi
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Zbyszek Boratyński
- CIBIO/InBIO, Research Center in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
| | - John Danforth
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Prince Itam
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Toni Jernfors
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | | | - Tapio Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anders Pape Møller
- Ecologie Systématique EvolutionUniversité Paris‐Sud, CNRS, AgroParisTechUniversité Paris‐SaclayOrsay CedexFrance
| | | | | |
Collapse
|
34
|
Mothersill C, Abend M, Bréchignac F, Iliakis G, Impens N, Kadhim M, Møller AP, Oughton D, Powathil G, Saenen E, Seymour C, Sutcliffe J, Tang FR, Schofield PN. When a duck is not a duck; a new interdisciplinary synthesis for environmental radiation protection. ENVIRONMENTAL RESEARCH 2018; 162:318-324. [PMID: 29407763 DOI: 10.1016/j.envres.2018.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
This consensus paper presents the results of a workshop held in Essen, Germany in September 2017, called to examine critically the current approach to radiological environmental protection. The meeting brought together participants from the field of low dose radiobiology and those working in radioecology. Both groups have a common aim of identifying radiation exposures and protecting populations and individuals from harmful effects of ionising radiation exposure, but rarely work closely together. A key question in radiobiology is to understand mechanisms triggered by low doses or dose rates, leading to adverse outcomes of individuals while in radioecology a key objective is to recognise when harm is occurring at the level of the ecosystem. The discussion provided a total of six strategic recommendations which would help to address these questions.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - François Bréchignac
- Institute for Radioprotection and Nuclear Safety (IRSN) & International Union of Radioecology (IUR), Centre du Cadarache, Bldg 229, St Paul-lez-Durance, France.
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen, Medical School, Hufeland Str. 55, 45122 Essen, Germany.
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Boeretang 200, 2400 Mol, Belgium.
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Equipe Diversité, Ecologie et Evolution Microbiennes Université Paris-Sud, CNRS, and AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France.
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Campus Ås, Universitetstunet 3, 1432 Ås, Norway.
| | - Gibin Powathil
- Department of Mathematics, College of Science, Swansea University, Singleton Park, Swansea Wales SA2 8PP, UK.
| | - Eline Saenen
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Boeretang 200, 2400 Mol, Belgium.
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Jill Sutcliffe
- Low Level Radiation and Health Group, Ingrams Farm Fittleworth Road, Wisborough Green RH14 0JA, West Sussex, UK.
| | - Fen-Ru Tang
- National University of Singapore, Radiobiology Research Laboratory, Singapore Nuclear, Research and Safety Initiative, Singapore.
| | - Paul N Schofield
- Dept of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
35
|
Samet JM, Berrington de González A, Dauer LT, Hatch M, Kosti O, Mettler FA, Satyamitra MM. Gilbert W. Beebe Symposium on 30 Years after the Chernobyl Accident: Current and Future Studies on Radiation Health Effects. Radiat Res 2017; 189:5-18. [PMID: 29136393 DOI: 10.1667/rr14791.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This commentary summarizes the presentations and discussions from the 2016 Gilbert W. Beebe symposium "30 years after the Chernobyl accident: Current and future studies on radiation health effects." The symposium was hosted by the National Academies of Sciences, Engineering, and Medicine (the National Academies). The symposium focused on the health consequences of the Chernobyl accident, looking retrospectively at what has been learned and prospectively at potential future discoveries using emerging 21st Century research methodologies.
Collapse
Affiliation(s)
- Jonathan M Samet
- a Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | - Ourania Kosti
- d National Academies of Sciences, Engineering, and Medicine, Washington, DC
| | - Fred A Mettler
- e University of New Mexico School of Medicine, Albuquerque, New Mexico
| | | |
Collapse
|
36
|
Are Organisms Adapting to Ionizing Radiation at Chernobyl? Trends Ecol Evol 2016; 31:281-289. [PMID: 26868287 DOI: 10.1016/j.tree.2016.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/01/2016] [Accepted: 01/12/2016] [Indexed: 11/23/2022]
Abstract
Numerous organisms have shown an ability to survive and reproduce under low-dose ionizing radiation arising from natural background radiation or from nuclear accidents. In a literature review, we found a total of 17 supposed cases of adaptation, mostly based on common garden experiments with organisms only deriving from typically two or three sampling locations. We only found one experimental study showing evidence of improved resistance to radiation. Finally, we examined studies for the presence of hormesis (i.e., superior fitness at low levels of radiation compared with controls and high levels of radiation), but found no evidence to support its existence. We conclude that rigorous experiments based on extensive sampling from multiple sites are required.
Collapse
|