1
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Shi Y, Zhu N, Qiu Y, Tan J, Wang F, Qin L, Dai A. Resistin-like molecules: a marker, mediator and therapeutic target for multiple diseases. Cell Commun Signal 2023; 21:18. [PMID: 36691020 PMCID: PMC9869618 DOI: 10.1186/s12964-022-01032-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
Resistin-like molecules (RELMs) are highly cysteine-rich proteins, including RELMα, RELMβ, Resistin, and RELMγ. However, RELMs exhibit significant differences in structure, distribution, and function. The expression of RELMs is regulated by various signaling molecules, such as IL-4, IL-13, and their receptors. In addition, RELMs can mediate numerous signaling pathways, including HMGB1/RAGE, IL-4/IL-4Rα, PI3K/Akt/mTOR signaling pathways, and so on. RELMs proteins are involved in wide range of physiological and pathological processes, including inflammatory response, cell proliferation, glucose metabolism, barrier defense, etc., and participate in the progression of numerous diseases such as lung diseases, intestinal diseases, cardiovascular diseases, and cancers. Meanwhile, RELMs can serve as biomarkers, risk predictors, and therapeutic targets for these diseases. An in-depth understanding of the role of RELMs may provide novel targets or strategies for the treatment and prevention of related diseases. Video abstract.
Collapse
Affiliation(s)
- Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China
| | - Yun Qiu
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Junlan Tan
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China.
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China.
| |
Collapse
|
3
|
Ortiz-López N, Fuenzalida C, Dufeu MS, Pinto-León A, Escobar A, Poniachik J, Roblero JP, Valenzuela-Pérez L, Beltrán CJ. The immune response as a therapeutic target in non-alcoholic fatty liver disease. Front Immunol 2022; 13:954869. [PMID: 36300120 PMCID: PMC9589255 DOI: 10.3389/fimmu.2022.954869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 08/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex and heterogeneous disorder considered a liver-damaging manifestation of metabolic syndrome. Its prevalence has increased in the last decades due to modern-day lifestyle factors associated with overweight and obesity, making it a relevant public health problem worldwide. The clinical progression of NAFLD is associated with advanced forms of liver injury such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). As such, diverse pharmacological strategies have been implemented over the last few years, principally focused on metabolic pathways involved in NAFLD progression. However, a variable response rate has been observed in NAFLD patients, which is explained by the interindividual heterogeneity of susceptibility to liver damage. In this scenario, it is necessary to search for different therapeutic approaches. It is worth noting that chronic low-grade inflammation constitutes a central mechanism in the pathogenesis and progression of NAFLD, associated with abnormal composition of the intestinal microbiota, increased lymphocyte activation in the intestine and immune effector mechanisms in liver. This review aims to discuss the current knowledge about the role of the immune response in NAFLD development. We have focused mainly on the impact of altered gut-liver-microbiota axis communication on immune cell activation in the intestinal mucosa and the role of subsequent lymphocyte homing to the liver in NAFLD development. We further discuss novel clinical trials that addressed the control of the liver and intestinal immune response to complement current NAFLD therapies.
Collapse
Affiliation(s)
- Nicolás Ortiz-López
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Fuenzalida
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Soledad Dufeu
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Araceli Pinto-León
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Jaime Poniachik
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Roblero
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela-Pérez
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Hamada S, Takata T, Yamada K, Yamamoto M, Mae Y, Iyama T, Ikeda S, Kanda T, Sugihara T, Isomoto H. Steatosis is involved in the progression of kidney disease in a high-fat-diet-induced non-alcoholic steatohepatitis mouse model. PLoS One 2022; 17:e0265461. [PMID: 35294499 PMCID: PMC8926260 DOI: 10.1371/journal.pone.0265461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease (CKD) and non-alcoholic steatohepatitis (NASH) are major health issues associated with the metabolic syndrome. Although NASH is a known risk factor of CKD, the mechanisms linking these two diseases remain poorly understood. We aimed to investigate alterations in the kidney complicated with dyslipidemia in an established NASH mouse model. Male C57BL6/J mice were fed with control diet or high-fat diet (HFD), containing 40% fat, 22% fructose, and 2% cholesterol for 16 weeks. Metabolic characteristics, histological changes in the kidney, endoplasmic reticulum (ER) stress, apoptosis, and fibrosis were evaluated by histological analysis, immunoblotting, and quantitative reverse transcription-polymerase chain reaction. Levels of serum aspartate aminotransferase, alanine aminotransferase, alkali-phosphatase, total cholesterol, and urinary albumin were significantly higher in mice fed with HFD. Remarkable steatosis, glomerular hypertrophy, and interstitial fibrosis were also shown in in the kidney by leveraging HFD. Furthermore, HFD increased the mRNA expression levels of Casp3, Tgfb1, and Nfe2l2 and the protein level of BiP. We observed the early changes of CKD and speculate that the underlying mechanisms that link CKD and NASH are the induction of ER stress and apoptosis. Further, we observed the activation of Nfe2l2 in the steatosis-induced CKD mouse model. This NASH model holds implications in investigating the mechanisms linking dyslipidemia and CKD.
Collapse
Affiliation(s)
- Shintaro Hamada
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Tomoaki Takata
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
- * E-mail:
| | - Kentaro Yamada
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Marie Yamamoto
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Takuji Iyama
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Suguru Ikeda
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Tsutomu Kanda
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Takaaki Sugihara
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
5
|
Jian J, Nie MT, Xiang B, Qian H, Yin C, Zhang X, Zhang M, Zhu X, Xie WF. Rifaximin Ameliorates Non-alcoholic Steatohepatitis in Mice Through Regulating gut Microbiome-Related Bile Acids. Front Pharmacol 2022; 13:841132. [PMID: 35450049 PMCID: PMC9017645 DOI: 10.3389/fphar.2022.841132] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the progressive stage of non-alcoholic fatty liver disease (NAFLD). The non-absorbable antibiotic rifaximin has been used for treatment of irritable bowel syndrome, traveling diarrhea, and hepatic encephalopathy, but the efficacy of rifaximin in NASH patients remains controversial. This study investigated the effects and underlying mechanisms of rifaximin treatment in mice with methionine and choline deficient (MCD) diet-induced NASH. We found that rifaximin greatly ameliorated hepatic steatosis, lobular inflammation, and fibrogenesis in MCD-fed mice. Bacterial 16S rRNA sequencing revealed that the gut microbiome was significantly altered in MCD-fed mice. Rifaximin treatment enriched 13 amplicon sequence variants (ASVs) belonging to the groups Muribaculaceae, Parabacteroides, Coriobacteriaceae_UCG-002, uncultured Oscillospiraceae, Dubosiella, Rikenellaceae_RC9_gut_group, Mucispirillum, and uncultured Desulfovibrionaceae. However, rifaximin treatment also reduced seven ASVs in the groups Aerococcus, Oscillospiraceae, uncultured Ruminococcaceae, Bilophila, Muribaculaceae, Helicobacter, and Alistipes in MCD-fed mice. Bile acid-targeted metabolomic analysis indicated that the MCD diet resulted in accumulation of primary bile acids and deoxycholic acid (DCA) in the ileum. Rifaximin delivery reduced DCA levels in MCD-fed mice. Correlation analysis further showed that DCA levels were associated with differentially abundant ASVs modulated by rifaximin. In conclusion, rifaximin may ameliorate NASH by decreasing ileal DCA through alteration of the gut microbiome in MCD-fed mice. Rifaximin treatment may therefore be a promising approach for NASH therapy in humans.
Collapse
Affiliation(s)
- Jie Jian
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mei-Tong Nie
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Baoyu Xiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Zhu
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Yuan N, Li X, Wang M, Zhang Z, Qiao L, Gao Y, Xu X, Zhi J, Li Y, Li Z, Jia Y. Gut Microbiota Alteration Influences Colorectal Cancer Metastasis to the Liver by Remodeling the Liver Immune Microenvironment. Gut Liver 2022; 16:575-588. [PMID: 35318288 PMCID: PMC9289841 DOI: 10.5009/gnl210177] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/12/2021] [Accepted: 12/22/2021] [Indexed: 11/04/2022] Open
Abstract
Background/Aims This study aimed to explore the effect of gut microbiota-regulated Kupffer cells (KCs) on colorectal cancer (CRC) liver metastasis. Methods A series of in vivo and in vitro researches were showed to demonstrate the gut microbiota and its possible mechanism in CRC liver metastasis. Results Fewer liver metastases were identified in the ampicillin-streptomycin-colistin and colistin groups. Increased proportions of Parabacteroides goldsteinii, Bacteroides vulgatus, Bacteroides thetaiotaomicron, and Bacteroides uniformis were observed in the colistin group. The significant expansion of KCs was identified in the ampicillin-streptomycin-colistin and colistin groups. B. vulgatus levels were positively correlated with KC levels. More liver metastases were observed in the vancomycin group. An increased abundance of Parabacteroides distasonis and Proteus mirabilis and an obvious reduction of KCs were noted in the vancomycin group. P. mirabilis levels were negatively related to KC levels. The number of liver metastatic nodules was increased in the P. mirabilis group and decreased in the B. vulgatus group. The number of KCs decreased in the P. mirabilis group and increased in the B. vulgatus group. In vitro, as P. mirabilis or B. vulgatus doses increased, there was an opposite effect on KC proliferation in dose- and time-dependent manners. P. mirabilis induced CT26 cell migration by controlling KC proliferation, whereas B. vulgatus prevented this migration. Conclusions An increased abundance of P. mirabilis and decreased amount of B. vulgatus play key roles in CRC liver metastasis, which might be related to KC reductions in the liver.
Collapse
Affiliation(s)
- Na Yuan
- Department of Oncology, Hebei Medical University, Shijiazhuang, China.,The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China.,Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiaoyan Li
- The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Meng Wang
- Department of Clinical Psychology, Baoding No.1 Central Hospital, Baoding, China
| | - Zhilin Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Lu Qiao
- The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yamei Gao
- The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xinjian Xu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhi
- The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhongxin Li
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yitao Jia
- Department of Oncology, Hebei Medical University, Shijiazhuang, China.,The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
7
|
Zhou Y, Qiao Y, Adcock IM, Zhou J, Yao X. FIZZ2 as a Biomarker for Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Lung 2021; 199:629-638. [PMID: 34677666 DOI: 10.1007/s00408-021-00483-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Found in inflammatory zone 2 (FIZZ2) is associated with lung inflammation. The aim of the study was to investigate the expression and utility of FIZZ2 as a marker for chronic obstructive pulmonary disease (COPD). METHODS Immunohistochemistry was used to detect the expression of FIZZ2 in COPD. The serum concentration of FIZZ2 was measured by enzyme-linked immunosorbent assay and the episodes of acute exacerbations of COPD (AECOPD) in the following year were recorded. RESULTS FIZZ2 expression was elevated in bronchial epithelial cells (0.217 ± 0.021 vs 0.099 ± 0.010, p < 0.0001) and negatively correlated with the pulmonary function (FEV1/FVC%) (p = 0.0149) and positively correlated with the smoking index (p = 0.0241). Serum level of FIZZ2 in COPD were significantly higher than that in healthy controls (561.6 ± 70.71 vs 52.24 ± 20.52 pg/ml, p < 0.0001) and increased with the COPD severity. Serum levels of FIZZ2 negatively correlated with the pulmonary function [Forced Vital Capacity (FVC), Forced Expiratory Volume (FEV1), FEV1%, FEV1/FVC) (r = - 0.3086, - 0.3529, - 0.3343, and - 0.2676, respectively, p = 0.0003, p < 0.0001, p < 0.0001, p = 0.0014). The expression of human serum FIZZ2 was positively correlated with the smoking index (r = 0.2749, p = 0.0015). There was a positive correlation between the FIZZ2 concentration and the frequency of AECOPD episodes in the following year (r = 0.7291, p < 0.0001). CONCLUSION FIZZ2 expression was elevated in patients with COPD and its serum concentration might be a potential biomarker for AECOPD.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.,Department of Respiratory Medicine, Nanjing Gulou Group Anqing Petrochemical Hospital, 11 Shihua First Road, Anqing, 246002, China
| | - Yingying Qiao
- Department of Respiratory Medicine, The Third Affiliated Hospital of Suzhou University, 185 Juqian Street, Changzhou, 213003, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Jun Zhou
- Department of Respiratory Medicine, The Third Affiliated Hospital of Suzhou University, 185 Juqian Street, Changzhou, 213003, China.
| | - Xin Yao
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
8
|
Han J, Guo X, Koyama T, Kawai D, Zhang J, Yamaguchi R, Zhou X, Motoo Y, Satoh T, Yamada S. Zonarol Protected Liver from Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Fatty Liver Disease in a Mouse Model. Nutrients 2021; 13:3455. [PMID: 34684455 PMCID: PMC8537643 DOI: 10.3390/nu13103455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/03/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with no approved treatment. Zonarol, an extract from brown algae, has been proven to have anti-inflammatory and antioxidant effects. In this study, we investigated the role of zonarol in the progression of methionine- and choline-deficiency (MCD) diet-induced NAFLD in mice. After oral treatment with zonarol, a lighter body weight was observed in zonarol group (ZG) mice in comparison to control group (CG) mice. The NAFLD scores of ZG mice were lower than those of CG mice. Hepatic and serum lipid levels were also lower in ZG mice with the reduced expression of lipid metabolism-related factors. Furthermore, ZG mice showed less lipid deposition, less inflammatory cell infiltration and lower inflammatory cytokine levels in comparison to CG mice. Moreover, the numbers of 8-hydroxy-20-deoxyguanosine (8-OHdG)-positive hepatocytes and levels of hepatic and serum thiobarbituric acid reactive substances (TBARS) were significantly lower in comparison to CG mice. The expression levels of nuclear factor erythroid 2 related factor 2 (Nrf2), as well as its upstream and downstream molecules, changed in ZG mice. Zonarol could prevent the progression of NAFLD by decreasing inflammatory responses, oxidative stress and improving lipid metabolism. Meanwhile the Nrf2 pathway may play an important role in these effects.
Collapse
Affiliation(s)
- Jia Han
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (J.H.); (J.Z.); (S.Y.)
- Department of Medical Oncology, Kanazawa Medical University, Ishikawa 920-0293, Japan;
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (J.H.); (J.Z.); (S.Y.)
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa 920-0293, Japan
| | - Tomoyuki Koyama
- Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and Technology, Tokyo 108-8477, Japan; (T.K.); (D.K.)
| | - Daichi Kawai
- Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and Technology, Tokyo 108-8477, Japan; (T.K.); (D.K.)
| | - Jing Zhang
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (J.H.); (J.Z.); (S.Y.)
| | - Reimon Yamaguchi
- Department of Dermatology, Kanazawa Medical University, Ishikawa 920-0293, Japan;
| | - Xiaolei Zhou
- College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
| | - Yoshiharu Motoo
- Department of Medical Oncology, Kanazawa Medical University, Ishikawa 920-0293, Japan;
| | - Takumi Satoh
- Department of Anti-Aging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (J.H.); (J.Z.); (S.Y.)
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa 920-0293, Japan
| |
Collapse
|
9
|
Wu Y, Wang CZ, Wan JY, Yao H, Yuan CS. Dissecting the Interplay Mechanism between Epigenetics and Gut Microbiota: Health Maintenance and Disease Prevention. Int J Mol Sci 2021; 22:6933. [PMID: 34203243 PMCID: PMC8267743 DOI: 10.3390/ijms22136933] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota exists throughout the full life cycle of the human body, and it has been proven to have extensive impacts on health and disease. Accumulating evidence demonstrates that the interplay between gut microbiota and host epigenetics plays a multifaceted role in health maintenance and disease prevention. Intestinal microflora, along with their metabolites, could regulate multiple epigenetic pathways; e.g., DNA methylation, miRNA, or histone modification. Moreover, epigenetic factors can serve as mediators to coordinate gut microbiota within the host. Aiming to dissect this interplay mechanism, the present review summarizes the research profile of gut microbiota and epigenetics in detail, and further interprets the biofunctions of this interplay, especially the regulation of intestinal inflammation, the improvement of metabolic disturbances, and the inhibition of colitis events. This review provides new insights into the interplay of epigenetics and gut microbiota, and attempts to reveal the mysteries of health maintenance and disease prevention from this new perspective.
Collapse
Affiliation(s)
- Yuqi Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; (C.-Z.W.); (C.-S.Y.)
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| | - Jin-Yi Wan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haiqiang Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; (C.-Z.W.); (C.-S.Y.)
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Zhang Y, Ge X, Li Y, Zhang B, Wang P, Hao M, Gao P, Zhao Y, Sun T, Lu S, Ma W. TWIST2 and the PPAR signaling pathway are important in the progression of nonalcoholic steatohepatitis. Lipids Health Dis 2021; 20:39. [PMID: 33879188 PMCID: PMC8059034 DOI: 10.1186/s12944-021-01458-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To investigate the roles of the transcription factors twist family bHLH transcription factor 1 (TWIST1), twist family bHLH transcription factor 2 (TWIST2), and peroxisome proliferator activated receptor gamma (PPARγ) in the progression of nonalcoholic steatohepatitis. METHODS The protein levels of TWIST1, TWIST2 and PPARγ were determined in the serum of nonalcoholic fatty liver disease (NAFLD) patients and healthy controls by enzyme-linked immunosorbent assay (ELISA). An in vivo model for fatty liver was established by feeding C57BL/6 J mice a high-fat diet (HFD). An in vitro model of steatosis was established by treating LO-2 cells with oleic acid (OA). RNA sequencing was performed on untreated and OA-treated LO-2 cells followed by TWIST1, TWIST2 and PPARγ gene mRNA levels analysis, Gene Ontology (GO) enrichment and pathway analysis. RESULTS The TWIST2 serum protein levels decreased significantly in all fatty liver groups (P < 0.05), while TWIST1 varied. TWIST2 tended to be lower in mice fed an HFD and was significantly lower at 3 months. Similarly, in the in vitro model, the TWIST2 protein level was downregulated significantly at 48 and 72 h after OA treatment. RNA sequencing of LO-2 cells showed an approximately 2.3-fold decrease in TWIST2, with no obvious change in TWIST1 and PPARγ. The PPAR signaling pathway was enriched, with 4 genes upregulated in OA-treated cells (P = 0.0018). The interleukin (IL)-17 and tumor necrosis factor (TNF) signaling pathways were enriched in OA-treated cells. CONCLUSIONS The results provide evidence that the TWIST2 and PPAR signaling pathways are important in NAFLD and shed light on a potential mechanism of steatosis.
Collapse
Affiliation(s)
- Yanmei Zhang
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, P. R. China
- Department of Clinical Laboratory, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, P.R. China
| | - Xiaoxiao Ge
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, P. R. China
| | - Yongqing Li
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, P. R. China
| | - Bingyang Zhang
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, P. R. China
| | - Peijun Wang
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, P. R. China
| | - Mingju Hao
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, P. R. China
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, P. R. China
| | - Peng Gao
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, P. R. China
| | - Yueyi Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, P. R. China
| | - Tao Sun
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, P. R. China
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, P. R. China
| | - Sumei Lu
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, P. R. China.
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, P. R. China.
| | - Wanshan Ma
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, P. R. China.
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, P. R. China.
| |
Collapse
|
11
|
Pai S, Njoku DB. The Role of Hypoxia-Induced Mitogenic Factor in Organ-Specific Inflammation in the Lung and Liver: Key Concepts and Gaps in Knowledge Regarding Molecular Mechanisms of Acute or Immune-Mediated Liver Injury. Int J Mol Sci 2021; 22:ijms22052717. [PMID: 33800244 PMCID: PMC7962531 DOI: 10.3390/ijms22052717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/15/2023] Open
Abstract
Hypoxia-induced mitogenic factor (HIMF), which is also known as resistin-like molecule α (RELM-α), found in inflammatory zone 1 (FIZZ1), or resistin-like alpha (retlna), is a cysteine-rich secretory protein and cytokine. HIMF has been investigated in the lung as a mediator of pulmonary fibrosis, inflammation and as a marker for alternatively activated macrophages. Although these macrophages have been found to have a role in acute liver injury and acetaminophen toxicity, few studies have investigated the role of HIMF in acute or immune-mediated liver injury. The aim of this focused review is to analyze the literature and examine the effects of HIMF and its human homolog in organ-specific inflammation in the lung and liver. We followed the guidelines set by PRISMA in constructing this review. The relevant checklist items from PRISMA were included. Items related to meta-analysis were excluded because there were no randomized controlled clinical trials. We found that HIMF was increased in most models of acute liver injury and reduced damage from acetaminophen-induced liver injury. We also found strong evidence for HIMF as a marker for alternatively activated macrophages. Our overall risk of bias assessment of all studies included revealed that 80% of manuscripts demonstrated some concerns in the randomization process. We also demonstrated some concerns (54.1%) and high risk (45.9%) of bias in the selection of the reported results. The need for randomization and reduction of bias in the reported results was similarly detected in the studies that focused on HIMF and the liver. In conclusion, we propose that HIMF could be utilized as a marker for M2 macrophages in immune-mediated liver injury. However, we also detected the need for randomized clinical trials and additional experimental and human prospective studies in order to fully comprehend the role of HIMF in acute or immune-mediated liver injury.
Collapse
Affiliation(s)
- Sananda Pai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Dolores B. Njoku
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA
- Correspondence:
| |
Collapse
|
12
|
Wei L, Yue F, Xing L, Wu S, Shi Y, Li J, Xiang X, Lam SM, Shui G, Russell R, Zhang D. Constant Light Exposure Alters Gut Microbiota and Promotes the Progression of Steatohepatitis in High Fat Diet Rats. Front Microbiol 2020; 11:1975. [PMID: 32973715 PMCID: PMC7472380 DOI: 10.3389/fmicb.2020.01975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) poses a significant health concern worldwide. With the progression of urbanization, light pollution may be a previously unrecognized risk factor for NAFLD/NASH development. However, the role of light pollution on NAFLD is insufficiently understood, and the underlying mechanism remains unclear. Interestingly, recent studies indicate the gut microbiota affects NAFLD/NASH development. Therefore, the present study explored effects of constant light exposure on NAFLD and its related microbiotic mechanisms. Materials and Methods Twenty-eight SD male rats were divided into four groups (n = 7 each): rats fed a normal chow diet, and exposed to standard light-dark cycle (ND-LD); rats fed a normal chow diet, and exposed to constant light (ND-LL); rats fed a high fat diet, and exposed to standard light-dark cycle (HFD-LD); and rats on a high fat diet, and exposed to constant light (HFD-LL). Body weight, hepatic pathophysiology, gut microbiota, and short/medium chain fatty acids in colon contents, serum lipopolysaccharide (LPS), and liver LPS-binding protein (LBP) mRNA expression were documented post intervention and compared among groups. Result In normal chow fed groups, rats exposed to constant light displayed glucose abnormalities and dyslipidemia. In HFD-fed rats, constant light exposure exacerbated glucose abnormalities, insulin resistance, inflammation, and liver steatohepatitis. Constant light exposure altered composition of gut microbiota in both normal chow and HFD fed rats. Compared with HFD-LD group, HFD-LL rats displayed less Butyricicoccus, Clostridium, and Turicibacter, butyrate levels in colon contents, decreased colon expression of occludin-1 and zonula occluden−1 (ZO-1), and increased serum LPS and liver LBP mRNA expression. Conclusion Constant light exposure impacts gut microbiota and its metabolic products, impairs gut barrier function and gut-liver axis, promotes NAFLD/NASH progression in HFD rats.
Collapse
Affiliation(s)
- Lin Wei
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Fangzhi Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanyu Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ryan Russell
- Cardiomatabolic Exercise Lab Director, Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Babbar A, Hitch TCA, Pabst O, Clavel T, Hübel J, Eswaran S, Wagner N, Schippers A. The Compromised Mucosal Immune System of β7 Integrin-Deficient Mice Has Only Minor Effects on the Fecal Microbiota in Homeostasis. Front Microbiol 2019; 10:2284. [PMID: 31636620 PMCID: PMC6787405 DOI: 10.3389/fmicb.2019.02284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract is an ideal habitat for diverse bacterial species that reside in a homeostatic balance with local tissue and significantly contribute to host health. Negative shifts in gut microbiota profiles, also known as dysbiosis, may be implicated in the development of chronic disorders such as inflammatory bowel diseases (IBD). Adhesion molecule-dependent recruitment of immune cells to the gut is an important step in IBD pathogenesis. The adhesion molecule β7 integrin contributes to the development of the gut-associated lymphoid tissue (GALT), intestinal immune cell homing, and immune responses and is known to promote intestinal inflammation. Although many studies underlined the role of the gut microbiota in shaping the mucosal immune system, studies on the influence of the host immune system on the microbiota are rare, especially in homeostasis. We addressed this question via comparative 16S rRNA gene amplicon analysis of fecal microbial communities from wild-type and β7 integrin-deficient mice, the latter being characterized by a compromised GALT. Besides subtle changes in relative abundances of Muribaculaceae spp. and unknown members of the families Ruminococcaceae and Lachnospiraceae, there was altogether no major difference in microbiota profiles in β7 integrin-deficient mice vs. wild-type littermates. This indicates that, in conditions of homeostasis, there is only a minor influence of the host immune system on the fecal microbiota in our mouse model, stressing the potential importance of pathological factors for dysbiosis development.
Collapse
Affiliation(s)
- Anshu Babbar
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jessica Hübel
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Sreepradha Eswaran
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Dietary methionine increased the lipid accumulation in juvenile tiger puffer Takifugu rubripes. Comp Biochem Physiol B Biochem Mol Biol 2019; 230:19-28. [PMID: 30677513 DOI: 10.1016/j.cbpb.2019.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/25/2022]
Abstract
Methionine (Met) is one of the most important amino acids in fish feed. The effects of dietary Met on lipid deposition in fish varied a lot among different studies. The present study was aimed at investigating the effects of dietary Met supplementation on the lipid accumulation in tiger puffer, which have a unique lipid storage pattern. Crystalline L-Met was supplemented to a low-fishmeal control diet to obtain two experimental diets with a low (1.1% of dry weight, L-MET) or high Met level (1.6% of dry weight, H-MET). A 67-day feeding trial was conducted with juvenile tiger puffer (average initial weight, 13.83 g). Each diet was fed to triplicate tanks (30 fish in each tank). The results showed that the total lipid contents in whole-body and liver significantly increased with increasing dietary Met levels. The hepatosomatic index, weight gain, and total bile acid content in serum showed similar patterns in response to dietary Met treatments, while the lipid content in muscle was not affected. The hepatic contents of 18-carbon fatty acids were elevated by dietary Met supplementation. The Hepatic mRNA expression of lipogenetic gene such as FAS, GPAT, PPARγ, ACLY, and SCD1 was down-regulated, while the gene expression of lipolytic genes ACOX1 and HSL, as well as that of ApoB100, were up-regulated by increasing dietary Met levels. The hepatic lipidomics of experimental fish was also analyzed. In conclusion, increasing dietary Met levels (0.61%, 1.10%, and 1.60%) increased the hepatic lipid accumulation in tiger puffer. The mechanisms involved warrant further studies.
Collapse
|
15
|
Dornas W, Lagente V. Intestinally derived bacterial products stimulate development of nonalcoholic steatohepatitis. Pharmacol Res 2019; 141:418-428. [PMID: 30658094 DOI: 10.1016/j.phrs.2019.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Fatty livers are susceptible to factors that cause inflammation and fibrosis, but fat deposition and the inflammatory response can be dissociated. While nonalcoholic fatty liver disease (NAFLD), caused by pathologic fat accumulation inside the liver, can remain stable for several years, in other cases NAFLD progresses to nonalcoholic steatohepatitis (NASH), which is characterized by fat accumulation and inflammation and is not a benign condition. In this review, we discuss the NASH host cells and microbial mechanisms that stimulate inflammation and predispose the liver to hepatocyte injury and fibrotic stages via increased lipid deposition. We highlight the interactions between intestine-derived bacterial products, such as lipopolysaccharide, and nutritional models of NAFLD and/or obese individuals. The results of modulating enteric microbiota suggest that gut-derived endotoxins may be essential determinants of fibrotic progression and regression in NASH.
Collapse
Affiliation(s)
- Waleska Dornas
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| |
Collapse
|
16
|
Zhang YH, Ma DQ, Ding DP, Li J, Chen LL, Ao KJ, Tian YY. S100A4 Gene is Crucial for Methionine-Choline-Deficient Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice. Yonsei Med J 2018; 59:1064-1071. [PMID: 30328321 PMCID: PMC6192886 DOI: 10.3349/ymj.2018.59.9.1064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To explore the influence of S100 calcium binding protein A4 (S100A4) knockout (KO) on methionine-choline-deficient (MCD) diet-induced non-alcoholic fatty liver disease (NAFLD) in mice. MATERIALS AND METHODS S100A4 KO mice (n=20) and their wild-type (WT) counterparts (n=20) were randomly divided into KO/MCD, Ko/methionine-choline-sufficient (MCS), WT/MCD, and WT/MCS groups. After 8 weeks of feeding, blood lipid and liver function-related indexes were measured. HE, Oil Red O, and Masson stainings were used to observe the changes of liver histopathology. Additionally, expressions of S100A4 and proinflammatory and profibrogenic cytokines were detected by qRT-PCR and Western blot, while hepatocyte apoptosis was revealed by TUNEL staining. RESULTS Serum levels of aminotransferase, aspartate aminotransferase, triglyceride, and total cholesterol in mice were increased after 8-week MCD feeding, and hepatocytes performed varying balloon-like changes with increased inflammatory cell infiltration and collagen fibers; however, these effects were improved in mice of KO/MCD group. Meanwhile, total NAFLD activity scores and fibrosis were lower compared to WT+MCD group. Compared to WT/MCS group, S100A4 expression in liver tissue of WT/MCD group was enhanced. The expression of proinflammatory (TNF-α, IL-1β, IL-6) and profibrogenic cytokines (TGF-β1, COL1A1, α-SMA) in MCD-induced NAFLD mice were increased, as well as apoptotic index (AI). For MCD group, the expressions of proinflammatory and profibrogenic cytokines and AI in KO mice were lower than those of WT mice. CONCLUSION S100A4 was detected to be upregulated in NAFLD, while S100A4 KO alleviated liver fibrosis and inflammation, in addition to inhibiting hepatocyte apoptosis.
Collapse
Affiliation(s)
- Yin Hua Zhang
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - De Qiang Ma
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - De Ping Ding
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Juan Li
- Maternal and Child Health-Care Hospital, Shiyan, Hubei, China
| | - Lin Li Chen
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Kang Jian Ao
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - You You Tian
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
17
|
Roles of Gut-Derived Secretory Factors in the Pathogenesis of Non-Alcoholic Fatty Liver Disease and Their Possible Clinical Applications. Int J Mol Sci 2018; 19:ijms19103064. [PMID: 30297626 PMCID: PMC6213237 DOI: 10.3390/ijms19103064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023] Open
Abstract
The rising prevalence of non-alcoholic fatty liver disease (NAFLD) parallels the global increase in the number of people diagnosed with obesity and metabolic syndrome. The gut-liver axis (GLA) plays an important role in the pathogenesis of NAFLD/non-alcoholic steatohepatitis (NASH). In this review, we discuss the clinical significance and underlying mechanisms of action of gut-derived secretory factors in NAFLD/NASH, focusing on recent human studies. Several studies have identified potential causal associations between gut-derived secretory factors and NAFLD/NASH, as well as the underlying mechanisms. The effects of gut-derived hormone-associated drugs, such as glucagon-like peptide-1 analog and recombinant variant of fibroblast growth factor 19, and other new treatment strategies for NAFLD/NASH have also been reported. A growing body of evidence highlights the role of GLA in the pathogenesis of NAFLD/NASH. Larger and longitudinal studies as well as translational research are expected to provide additional insights into the role of gut-derived secretory factors in the pathogenesis of NAFLD/NASH, possibly providing novel markers and therapeutic targets in patients with NAFLD/NASH.
Collapse
|
18
|
Chronic features of allergic asthma are enhanced in the absence of resistin-like molecule-beta. Sci Rep 2018; 8:7061. [PMID: 29728628 PMCID: PMC5935686 DOI: 10.1038/s41598-018-25321-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
Asthma is characterized by inflammation and architectural changes in the lungs. A number of immune cells and mediators are recognized as initiators of asthma, although therapeutics based on these are not always effective. The multifaceted nature of this syndrome necessitate continued exploration of immunomodulators that may play a role in pathogenesis. We investigated the role of resistin-like molecule-beta (RELM-β), a gut antibacterial, in the development and pathogenesis of Aspergillus-induced allergic airways disease. Age and gender matched C57BL/6J and Retnlb−/− mice rendered allergic to Aspergillus fumigatus were used to measure canonical markers of allergic asthma at early and late time points. Inflammatory cells in airways were similar, although Retnlb−/− mice had reduced tissue inflammation. The absence of RELM-β elevated serum IgA and pro-inflammatory cytokines in the lungs at homeostasis. Markers of chronic disease including goblet cell numbers, Muc genes, airway wall remodelling, and hyperresponsiveness were greater in the absence RELM-β. Specific inflammatory mediators important in antimicrobial defence in allergic asthma were also increased in the absence of RELM-β. These data suggest that while characteristics of allergic asthma develop in the absence of RELM-β, that RELM-β may reduce the development of chronic markers of allergic airways disease.
Collapse
|
19
|
Bluemel S, Wang L, Martino C, Lee S, Wang Y, Williams B, Horvath A, Stadlbauer V, Zengler K, Schnabl B. The Role of Intestinal C-type Regenerating Islet Derived-3 Lectins for Nonalcoholic Steatohepatitis. Hepatol Commun 2018; 2:393-406. [PMID: 29619418 PMCID: PMC5880191 DOI: 10.1002/hep4.1165] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/15/2018] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
C-type regenerating islet derived-3 (Reg3) lectins defend against pathogens and keep commensal bacteria at a distance. Deficiency of Reg3g and Reg3b facilitates alcohol-induced bacterial translocation and alcoholic liver disease. Intestinal Reg3g is down-regulated in animal models of diet-induced obesity, but the functional consequences for nonalcoholic steatohepatitis (NASH) are unknown. The aim of this study was to investigate the role of Reg3 lectins in NASH. NASH was induced by a Western-style fast-food diet in mice deficient for Reg3g or Reg3b and in transgenic mice overexpressing Reg3g in intestinal epithelial cells (Reg3gTg). Glucose tolerance was assessed after 18 weeks and insulin resistance after 19 weeks of feeding. After 20 weeks, mice were assessed for features of the metabolic syndrome. Obesity was not different in genetically modified mice compared with their respective wild-type littermates. Glucose intolerance, liver injury, hepatic inflammation, steatosis, fibrosis, and bacterial translocation to mesenteric lymph nodes and to the liver were not different in Reg3g-deficient mice compared with wild-type littermates. Plasma endotoxin levels were higher in Reg3g-deficient mice. Reg3b deficiency protected against glucose intolerance, but liver disease, bacterial translocation, and plasma endotoxin levels were similar to wild-type littermates. Absence of either REG3G or REG3B protein in the ileum was not compensated for by up-regulation of the respective other REG3 protein. Transgenic Reg3g mice also developed liver injury, steatosis, and fibrosis similar to their wild-type littermates. Conclusion: In contrast to alcoholic liver disease, loss of intestinal Reg3 lectins is not sufficient to aggravate diet-induced obesity and NASH. This supports a multi-hit pathogenesis in NASH. Only glucose metabolism is affected by Reg3b deficiency. (Hepatology Communications 2018;2:393-406).
Collapse
Affiliation(s)
- Sena Bluemel
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Lirui Wang
- Department of MedicineUniversity of California San DiegoLa JollaCA
- Department of MedicineVA San Diego Healthcare SystemSan DiegoCA
| | - Cameron Martino
- Department of PediatricsDivision of Host‐Microbe Systems and TherapeuticsSan DiegoCA
| | - Suhan Lee
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Yanhan Wang
- Department of MedicineUniversity of California San DiegoLa JollaCA
- Department of MedicineVA San Diego Healthcare SystemSan DiegoCA
| | - Brandon Williams
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and HepatologyMedical University of GrazGrazAustria
- Center of Biomarker Research in MedicineGrazAustria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and HepatologyMedical University of GrazGrazAustria
| | - Karsten Zengler
- Department of PediatricsDivision of Host‐Microbe Systems and TherapeuticsSan DiegoCA
- Center for Microbiome InnovationUniversity of California San DiegoLa JollaCA
| | - Bernd Schnabl
- Department of MedicineUniversity of California San DiegoLa JollaCA
- Department of MedicineVA San Diego Healthcare SystemSan DiegoCA
| |
Collapse
|
20
|
Qin Y, Wade PA. Crosstalk between the microbiome and epigenome: messages from bugs. J Biochem 2018; 163:105-112. [PMID: 29161429 PMCID: PMC5892391 DOI: 10.1093/jb/mvx080] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023] Open
Abstract
Mammals exist in a complicated symbiotic relationship with their gut microbiome, which is postulated to have broad impacts on host health and disease. As omics-based technologies have matured, the potential mechanisms by which the microbiome affects host physiology are being addressed. The gut microbiome, which provides environmental cues, can modify host cell responses to stimuli through alterations in the host epigenome and, ultimately, gene expression. Increasing evidence highlights microbial generation of bioactive compounds that impact the transcriptional machinery in host cells. Here, we review current understanding of the crosstalk between gut microbiota and the host epigenome, including DNA methylation, histone modification and non-coding RNAs. These studies are providing insights into how the host responds to microbial signalling and are predicted to provide information for the application of precision medicine.
Collapse
Affiliation(s)
- Yufeng Qin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
21
|
Trk-fused gene (TFG) regulates pancreatic β cell mass and insulin secretory activity. Sci Rep 2017; 7:13026. [PMID: 29026155 PMCID: PMC5638802 DOI: 10.1038/s41598-017-13432-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
The Trk-fused gene (TFG) is reportedly involved in the process of COPII-mediated vesicle transport and missense mutations in TFG cause several neurodegenerative diseases including hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P). The high coincidence ratio between HMSN-P and diabetes mellitus suggests TFG to have an important role(s) in glucose homeostasis. To examine this possibility, β-cell specific TFG knockout mice (βTFG KO) were generated. Interestingly, βTFG KO displayed marked glucose intolerance with reduced insulin secretion. Immunohistochemical analysis revealed smaller β-cell masses in βTFG KO than in controls, likely attributable to diminished β-cell proliferation. Consistently, β-cell expansion in response to a high-fat, high-sucrose (HFHS) diet was significantly impaired in βTFG KO. Furthermore, glucose-induced insulin secretion was also markedly impaired in islets isolated from βTFG KO. Electron microscopic observation revealed endoplasmic reticulum (ER) dilatation, suggestive of ER stress, and smaller insulin crystal diameters in β-cells of βTFG KO. Microarray gene expression analysis indicated downregulation of NF-E2 related factor 2 (Nrf2) and its downstream genes in TFG depleted islets. Collectively, TFG in pancreatic β-cells plays a vital role in maintaining both the mass and function of β-cells, and its dysfunction increases the tendency to develop glucose intolerance.
Collapse
|
22
|
Lyall MJ, Cartier J, Richards JA, Cobice D, Thomson JP, Meehan RR, Anderton SM, Drake AJ. Methyl donor deficient diets cause distinct alterations in lipid metabolism but are poorly representative of human NAFLD. Wellcome Open Res 2017; 2:67. [PMID: 29707653 PMCID: PMC5887079 DOI: 10.12688/wellcomeopenres.12199.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a global health issue. Dietary methyl donor restriction is used to induce a NAFLD/non-alcoholic steatohepatitis (NASH) phenotype in rodents, however the extent to which this model reflects human NAFLD remains incompletely understood. To address this, we undertook hepatic transcriptional profiling of methyl donor restricted rodents and compared these to published human NAFLD datasets. Methods: Adult C57BL/6J mice were maintained on control, choline deficient (CDD) or methionine/choline deficient (MCDD) diets for four weeks; the effects on methyl donor and lipid biology were investigated by bioinformatic analysis of hepatic gene expression profiles followed by a cross-species comparison with human expression data of all stages of NAFLD. Results: Compared to controls, expression of the very low density lipoprotein (VLDL) packaging carboxylesterases (
Ces1d,
Ces1f,
Ces3b) and the NAFLD risk allele
Pnpla3 were suppressed in MCDD; with
Pnpla3 and the liver predominant
Ces isoform,
Ces3b, also suppressed in CDD. With respect to 1-carbon metabolism, down-regulation of
Chka,
Chkb,
Pcty1a,
Gnmt and
Ahcy with concurrent upregulation of
Mat2a suggests a drive to maintain S-adenosylmethionine levels. There was minimal similarity between global gene expression patterns in either dietary intervention and any stage of human NAFLD, however some common transcriptomic changes in inflammatory, fibrotic and proliferative mediators were identified in MCDD, NASH and HCC. Conclusions: This study suggests suppression of VLDL assembly machinery may contribute to hepatic lipid accumulation in these models, but that CDD and MCDD rodent diets are minimally representative of human NAFLD at the transcriptional level.
Collapse
Affiliation(s)
- Marcus J Lyall
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jessy Cartier
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - James A Richards
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Diego Cobice
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,School of Biomedical Sciences, Biomedical Sciences Research Institute, University of Ulster, Coleraine, County Londonderry, UK
| | - John P Thomson
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh, UK
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Immunity, Infection and Evolution, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Amanda J Drake
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Shea-Donohue T, Qin B, Smith A. Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunol 2017; 39. [PMID: 28235148 DOI: 10.1111/pim.12422] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Nutritional immunology, immunometabolism and identification of novel immunotherapeutic targets are areas of active investigation in parasitology. There is a well-documented crosstalk among immune cells and cells in metabolically active tissues that is important for homeostasis. The numbers and function of these cells are altered by obesity leading to inflammation. A variety of helminths spend some part of their life cycle in the gastrointestinal tract and even entirely enteral nematode infections exert beneficial effects on glucose and lipid metabolism. The foundation of this review is the ability of enteric nematode infections to improve obesity-induced type 2 diabetes and the metabolic syndrome, which are significant health issues in developed areas. It considers the impact of nutrition and specific nutritional deficiencies, which are occur in both undeveloped and developed areas, on the host's ability mount a protective immune response against parasitic nematodes. There are a number of proposed mechanisms by which parasitic nematodes can impact metabolism including effects gastrointestinal hormones, altering epithelial function and changing the number and/or phenotype of immune cells in metabolic tissues. Nematodes can also exert their beneficial effects through Th2 cytokines that activate the transcription factor STAT6, which upregulates genes that regulate glucose and lipid metabolism.
Collapse
Affiliation(s)
- T Shea-Donohue
- Department of Radiation Oncology & Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - B Qin
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA
| | - A Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA
| |
Collapse
|
24
|
Betrapally NS, Gillevet PM, Bajaj JS. Gut microbiome and liver disease. Transl Res 2017; 179:49-59. [PMID: 27477080 PMCID: PMC5164947 DOI: 10.1016/j.trsl.2016.07.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
Gut microbiota changes are important in determining the occurrence and progression of chronic liver disease related to alcohol, nonalcoholic fatty liver disease, and cirrhosis. Specifically, the systemic inflammation, endotoxemia, and the vasodilation that leads to complications such as spontaneous bacterial peritonitis and hepatic encephalopathy could be related to the gut milieu. Given the poor prognosis of these events, their prevention and early management are essential. Microbiota may be an essential component of the gut milieu that can impact these clinical events, and the study of their composition and function in a culture-independent manner could help understand the prognosis. Recent human and animal studies have shown that the relative abundance and the functional changes of microbiota in the stool, colonic mucosa, and saliva have varying consequences on the presence and prognosis of chronic liver disease and cirrhosis. The impact of therapies on the microbiota is slowly being understood and will likely lead to a more targeted approach to gut microbiota modification in chronic liver disease and cirrhosis.
Collapse
Affiliation(s)
| | | | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Va.
| |
Collapse
|