1
|
Lin Z, Rong B, Lyu R, Zheng Y, Chen Y, Yan J, Wu M, Gao X, Tang F, Lan F, Tong MH. SETD1B-mediated broad H3K4me3 controls proper temporal patterns of gene expression critical for spermatid development. Cell Res 2025; 35:345-361. [PMID: 40033033 PMCID: PMC12012180 DOI: 10.1038/s41422-025-01080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Epigenetic programming governs cell fate determination during development through intricately controlling sequential gene activation and repression. Although H3K4me3 is widely recognized as a hallmark of gene activation, its role in modulating transcription output and timing within a continuously developing system remains poorly understood. In this study, we provide a detailed characterization of the epigenomic landscapes in developing male germ cells. We identified thousands of spermatid-specific broad H3K4me3 domains regulated by the SETD1B-RFX2 axis, representing a previously underappreciated form of H3K4me3. These domains, overlapping with H3K27ac-marked enhancers and promoters, play critical roles in orchestrating robust transcription and accurate temporal control of gene expression. Mechanistically, these broad H3K4me3 compete effectively with regular H3K4me3 for transcriptional machinery, thereby ensuring robust levels and precise timing of master gene expression in mouse spermiogenesis. Disruption of this mechanism compromises the accuracy of transcription dosage and timing, ultimately impairing spermiogenesis. Additionally, we unveil remarkable changes in the distribution of heterochromatin marks, including H3K27me3 and H3K9me2, during the mitosis-to-meiosis transition and completion of meiotic recombination, which closely correlates with gene silencing. This work underscores the highly orchestrated epigenetic regulation in spermatogenesis, highlighting the previously unrecognized role of Setd1b in the formation of broad H3K4me3 domains and transcriptional control, and provides an invaluable resource for future studies toward the elucidation of spermatogenesis.
Collapse
Affiliation(s)
- Zhen Lin
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruitu Lyu
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yao Chen
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junyi Yan
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Meixia Wu
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaogang Gao
- Department of Organ Transplantation, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ming-Han Tong
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Wang W, Xing J, Zhang X, Liu H, Liu X, Jiang H, Xu C, Zhao X, Hu Z. Control of ciliary transcriptional programs during spermatogenesis by antagonistic transcription factors. eLife 2025; 13:RP94754. [PMID: 40009443 PMCID: PMC11864758 DOI: 10.7554/elife.94754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.
Collapse
Affiliation(s)
- Weihua Wang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Junqiao Xing
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xiqi Zhang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Hongni Liu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xingyu Liu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- No.1 Middle School Affiliated to Central China Normal UniversityWuhanChina
| | - Haochen Jiang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Cheng Xu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xue Zhao
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Zhangfeng Hu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan UniversityWuhanChina
| |
Collapse
|
3
|
Bonefas KM, Venkatachalam I, Iwase S. KDM5C is a sex-biased brake against germline gene expression programs in somatic lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622665. [PMID: 39574581 PMCID: PMC11581037 DOI: 10.1101/2024.11.08.622665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The division of labor among cellular lineages is a pivotal step in the evolution of multicellularity. In mammals, the soma-germline boundary is formed during early embryogenesis, when genes that drive germline identity are repressed in somatic lineages through DNA and histone modifications at promoter CpG islands (CGIs). Somatic misexpression of germline genes is a signature of cancer and observed in select neurodevelopmental disorders. However, it is currently unclear if all germline genes use the same repressive mechanisms and if factors like development and sex influence their dysregulation. Here, we examine how cellular context influences the formation of somatic tissue identity in mice lacking lysine demethylase 5c (KDM5C), an X chromosome eraser of histone 3 lysine 4 di and tri-methylation (H3K4me2/3). We found male Kdm5c knockout (-KO) mice aberrantly express many tissue-specific genes within the brain, the majority of which are unique to the germline. By developing a comprehensive list of mouse germline-enriched genes, we observed Kdm5c-KO cells aberrantly express key drivers of germline fate during early embryogenesis but late-stage spermatogenesis genes within the mature brain. KDM5C binds CGIs within germline gene promoters to facilitate DNA CpG methylation as embryonic stem cells differentiate into epiblast-like cells (EpiLCs). However, the majority of late-stage spermatogenesis genes expressed within the Kdm5c-KO brain did not harbor promoter CGIs. These CGI-free germline genes were not bound by KDM5C and instead expressed through ectopic activation by RFX transcription factors. Furthermore, germline gene repression is sexually dimorphic, as female EpiLCs require a higher dose of KDM5C to maintain germline silencing. Altogether, these data revealed distinct regulatory classes of germline genes and sex-biased silencing mechanisms in somatic cells.
Collapse
Affiliation(s)
- Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ilakkiya Venkatachalam
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Brattig-Correia R, Almeida JM, Wyrwoll MJ, Julca I, Sobral D, Misra CS, Di Persio S, Guilgur LG, Schuppe HC, Silva N, Prudêncio P, Nóvoa A, Leocádio AS, Bom J, Laurentino S, Mallo M, Kliesch S, Mutwil M, Rocha LM, Tüttelmann F, Becker JD, Navarro-Costa P. The conserved genetic program of male germ cells uncovers ancient regulators of human spermatogenesis. eLife 2024; 13:RP95774. [PMID: 39388236 PMCID: PMC11466473 DOI: 10.7554/elife.95774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Male germ cells share a common origin across animal species, therefore they likely retain a conserved genetic program that defines their cellular identity. However, the unique evolutionary dynamics of male germ cells coupled with their widespread leaky transcription pose significant obstacles to the identification of the core spermatogenic program. Through network analysis of the spermatocyte transcriptome of vertebrate and invertebrate species, we describe the conserved evolutionary origin of metazoan male germ cells at the molecular level. We estimate the average functional requirement of a metazoan male germ cell to correspond to the expression of approximately 10,000 protein-coding genes, a third of which defines a genetic scaffold of deeply conserved genes that has been retained throughout evolution. Such scaffold contains a set of 79 functional associations between 104 gene expression regulators that represent a core component of the conserved genetic program of metazoan spermatogenesis. By genetically interfering with the acquisition and maintenance of male germ cell identity, we uncover 161 previously unknown spermatogenesis genes and three new potential genetic causes of human infertility. These findings emphasize the importance of evolutionary history on human reproductive disease and establish a cross-species analytical pipeline that can be repurposed to other cell types and pathologies.
Collapse
Affiliation(s)
- Rion Brattig-Correia
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Department of Systems Science and Industrial Engineering, Binghamton UniversityNew YorkUnited States
| | - Joana M Almeida
- Instituto Gulbenkian de CiênciaOeirasPortugal
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Margot Julia Wyrwoll
- Centre of Medical Genetics, Institute of Reproductive Genetics, University and University Hospital of MünsterMünsterGermany
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University LisbonLisbonPortugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University LisbonCaparicaPortugal
| | - Chandra Shekhar Misra
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | | | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-UniversityGiessenGermany
| | - Neide Silva
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Pedro Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Ana Nóvoa
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - Joana Bom
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | | | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Luis M Rocha
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Department of Systems Science and Industrial Engineering, Binghamton UniversityNew YorkUnited States
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University and University Hospital of MünsterMünsterGermany
| | - Jörg D Becker
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
| | - Paulo Navarro-Costa
- Instituto Gulbenkian de CiênciaOeirasPortugal
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of LisbonLisbonPortugal
| |
Collapse
|
5
|
Cao W, Fan Q, Amparado G, Begic D, Godini R, Gopal S, Pocock R. A nucleic acid binding protein map of germline regulation in Caenorhabditis elegans. Nat Commun 2024; 15:6884. [PMID: 39128930 PMCID: PMC11317507 DOI: 10.1038/s41467-024-51212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Fertility requires the faithful proliferation of germ cells and their differentiation into gametes. Controlling these cellular states demands precise timing and expression of gene networks. Nucleic acid binding proteins (NBPs) play critical roles in gene expression networks that influence germ cell development. There has, however, been no functional analysis of the entire NBP repertoire in controlling in vivo germ cell development. Here, we analyzed germ cell states and germline architecture to systematically investigate the function of 364 germline-expressed NBPs in the Caenorhabditis elegans germ line. Using germline-specific knockdown, automated germ cell counting, and high-content analysis of germ cell nuclei and plasma membrane organization, we identify 156 NBPs with discrete autonomous germline functions. By identifying NBPs that control the germ cell cycle, proliferation, differentiation, germline structure and fertility, we have created an atlas for mechanistic dissection of germ cell behavior and gamete production.
Collapse
Affiliation(s)
- Wei Cao
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Qi Fan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Gemmarie Amparado
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Dean Begic
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rasoul Godini
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
6
|
Wang HQ, Wu XL, Zhang J, Wang ST, Sang YJ, Li K, Yang CF, Sun F, Li CJ. Meiotic transcriptional reprogramming mediated by cell-cell communications in humans and mice revealed by scATAC-seq and scRNA-seq. Zool Res 2024; 45:601-616. [PMID: 38766744 PMCID: PMC11188612 DOI: 10.24272/j.issn.2095-8137.2023.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Meiosis is a highly complex process significantly influenced by transcriptional regulation. However, studies on the mechanisms that govern transcriptomic changes during meiosis, especially in prophase I, are limited. Here, we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes. This event, conserved in mice, involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset. Furthermore, we identified 282 transcriptional regulators (TRs) that underwent activation or deactivation subsequent to this process. Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes, while secreted ENHO signals may alter metabolic patterns in these cells. Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia (NOA). This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.
Collapse
Affiliation(s)
- Hai-Quan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiao-Long Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Jing Zhang
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Si-Ting Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yong-Juan Sang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Nanjing, Jiangsu 210093, China
| | - Kang Li
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chao-Fan Yang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China
| | - Fei Sun
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China. E-mail:
| | - Chao-Jun Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China. E-mail:
| |
Collapse
|
7
|
An J, Wang J, Kong S, Song S, Chen W, Yuan P, He Q, Chen Y, Li Y, Yang Y, Wang W, Li R, Yan L, Yan Z, Qiao J. GametesOmics: A Comprehensive Multi-omics Database for Exploring the Gametogenesis in Humans and Mice. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad004. [PMID: 38862425 PMCID: PMC12012701 DOI: 10.1093/gpbjnl/qzad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 06/13/2024]
Abstract
Gametogenesis plays an important role in the reproduction and evolution of species. The transcriptomic and epigenetic alterations in this process can influence the reproductive capacity, fertilization, and embryonic development. The rapidly increasing single-cell studies have provided valuable multi-omics resources. However, data from different layers and sequencing platforms have not been uniformed and integrated, which greatly limits their use for exploring the molecular mechanisms that underlie oogenesis and spermatogenesis. Here, we develop GametesOmics, a comprehensive database that integrates the data of gene expression, DNA methylation, and chromatin accessibility during oogenesis and spermatogenesis in humans and mice. GametesOmics provides a user-friendly website and various tools, including Search and Advanced Search for querying the expression and epigenetic modification(s) of each gene; Tools with Differentially expressed gene (DEG) analysis for identifying DEGs, Correlation analysis for demonstrating the genetic and epigenetic changes, Visualization for displaying single-cell clusters and screening marker genes as well as master transcription factors (TFs), and MethylView for studying the genomic distribution of epigenetic modifications. GametesOmics also provides Genome Browser and Ortholog for tracking and comparing gene expression, DNA methylation, and chromatin accessibility between humans and mice. GametesOmics offers a comprehensive resource for biologists and clinicians to decipher the cell fate transition in germ cell development, and can be accessed at http://gametesomics.cn/.
Collapse
Affiliation(s)
- Jianting An
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jing Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Siming Kong
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shi Song
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Wei Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Peng Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Qilong He
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yidong Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ye Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yi Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Wei Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Zhiqiang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100191, China
| |
Collapse
|
8
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
9
|
Coschiera A, Yoshihara M, Lauter G, Ezer S, Pucci M, Li H, Kavšek A, Riedel CG, Kere J, Swoboda P. Primary cilia promote the differentiation of human neurons through the WNT signaling pathway. BMC Biol 2024; 22:48. [PMID: 38413974 PMCID: PMC10900739 DOI: 10.1186/s12915-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Primary cilia emanate from most human cell types, including neurons. Cilia are important for communicating with the cell's immediate environment: signal reception and transduction to/from the ciliated cell. Deregulation of ciliary signaling can lead to ciliopathies and certain neurodevelopmental disorders. In the developing brain cilia play well-documented roles for the expansion of the neural progenitor cell pool, while information about the roles of cilia during post-mitotic neuron differentiation and maturation is scarce. RESULTS We employed ciliated Lund Human Mesencephalic (LUHMES) cells in time course experiments to assess the impact of ciliary signaling on neuron differentiation. By comparing ciliated and non-ciliated neuronal precursor cells and neurons in wild type and in RFX2 -/- mutant neurons with altered cilia, we discovered an early-differentiation "ciliary time window" during which transient cilia promote axon outgrowth, branching and arborization. Experiments in neurons with IFT88 and IFT172 ciliary gene knockdowns, leading to shorter cilia, confirm these results. Cilia promote neuron differentiation by tipping WNT signaling toward the non-canonical pathway, in turn activating WNT pathway output genes implicated in cyto-architectural changes. CONCLUSIONS We provide a mechanistic entry point into when and how ciliary signaling coordinates, promotes and translates into anatomical changes. We hypothesize that ciliary alterations causing neuron differentiation defects may result in "mild" impairments of brain development, possibly underpinning certain aspects of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Andrea Coschiera
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba, Japan
- Chiba University, Chiba, Japan
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
- Uppsala University, Uppsala, Sweden
| | - Sini Ezer
- University of Helsinki, Stem Cells and Metabolism Research Program, and Folkhälsan Research Center, Helsinki, Finland
| | - Mariangela Pucci
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
- University of Teramo, Teramo, Italy
| | - Haonan Li
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Alan Kavšek
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- University of Helsinki, Stem Cells and Metabolism Research Program, and Folkhälsan Research Center, Helsinki, Finland
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
10
|
Säflund M, Özata DM. The MYBL1/TCFL5 transcription network: two collaborative factors with central role in male meiosis. Biochem Soc Trans 2023; 51:2163-2172. [PMID: 38015556 PMCID: PMC10754281 DOI: 10.1042/bst20231007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Male gametogenesis, spermatogenesis, is a stepwise developmental process to generate mature sperm. The most intricate process of spermatogenesis is meiosis during which two successive cell divisions ensue with dramatic cellular and molecular changes to produce haploid cells. After entry into meiosis, several forms of regulatory events control the orderly progression of meiosis and the timely entry into post-meiotic sperm differentiation. Among other mechanisms, changes to gene expression are controlled by key transcription factors. In this review, we will discuss the gene regulatory mechanisms underlying meiotic entry, meiotic progression, and post-meiotic differentiation with a particular emphasis on the MYBL1/TCFL5 regulatory architecture and how this architecture involves in various forms of transcription network motifs to regulate gene expression.
Collapse
Affiliation(s)
- Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Deniz M. Özata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Cumplido-Laso G, Benitez DA, Mulero-Navarro S, Carvajal-Gonzalez JM. Transcriptional Regulation of Airway Epithelial Cell Differentiation: Insights into the Notch Pathway and Beyond. Int J Mol Sci 2023; 24:14789. [PMID: 37834236 PMCID: PMC10573127 DOI: 10.3390/ijms241914789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The airway epithelium is a critical component of the respiratory system, serving as a barrier against inhaled pathogens and toxins. It is composed of various cell types, each with specific functions essential to proper airway function. Chronic respiratory diseases can disrupt the cellular composition of the airway epithelium, leading to a decrease in multiciliated cells (MCCs) and an increase in secretory cells (SCs). Basal cells (BCs) have been identified as the primary stem cells in the airway epithelium, capable of self-renewal and differentiation into MCCs and SCs. This review emphasizes the role of transcription factors in the differentiation process from BCs to MCCs and SCs. Recent advancements in single-cell RNA sequencing (scRNAseq) techniques have provided insights into the cellular composition of the airway epithelium, revealing specialized and rare cell types, including neuroendocrine cells, tuft cells, and ionocytes. Understanding the cellular composition and differentiation processes within the airway epithelium is crucial for developing targeted therapies for respiratory diseases. Additionally, the maintenance of BC populations and the involvement of Notch signaling in BC self-renewal and differentiation are discussed. Further research in these areas could provide valuable insights into the mechanisms underlying airway epithelial homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| |
Collapse
|
12
|
Padua MB, Helm BM, Wells JR, Smith AM, Bellchambers HM, Sridhar A, Ware SM. Congenital heart defects caused by FOXJ1. Hum Mol Genet 2023; 32:2335-2346. [PMID: 37158461 PMCID: PMC10321388 DOI: 10.1093/hmg/ddad065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/25/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
FOXJ1 is expressed in ciliated cells of the airways, testis, oviduct, central nervous system and the embryonic left-right organizer. Ablation or targeted mutation of Foxj1 in mice, zebrafish and frogs results in loss of ciliary motility and/or reduced length and number of motile cilia, affecting the establishment of the left-right axis. In humans, heterozygous pathogenic variants in FOXJ1 cause ciliopathy leading to situs inversus, obstructive hydrocephalus and chronic airway disease. Here, we report a novel truncating FOXJ1 variant (c.784_799dup; p.Glu267Glyfs*12) identified by clinical exome sequencing from a patient with isolated congenital heart defects (CHD) which included atrial and ventricular septal defects, double outlet right ventricle (DORV) and transposition of the great arteries. Functional experiments show that FOXJ1 c.784_799dup; p.Glu267Glyfs*12, unlike FOXJ1, fails to induce ectopic cilia in frog epidermis in vivo or to activate the ADGB promoter, a downstream target of FOXJ1 in cilia, in transactivation assays in vitro. Variant analysis of patients with heterotaxy or heterotaxy-related CHD indicates that pathogenic variants in FOXJ1 are an infrequent cause of heterotaxy. Finally, we characterize embryonic-stage CHD in Foxj1 loss-of-function mice, demonstrating randomized heart looping. Abnormal heart looping includes reversed looping (dextrocardia), ventral looping and no looping/single ventricle hearts. Complex CHDs revealed by histological analysis include atrioventricular septal defects, DORV, single ventricle defects as well as abnormal position of the great arteries. These results indicate that pathogenic variants in FOXJ1 can cause isolated CHD.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Benjamin M Helm
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Epidemiology, Indiana University Fairbanks School of Public Health, Indianapolis, IN 46202, USA
| | - John R Wells
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amanda M Smith
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Helen M Bellchambers
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arthi Sridhar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie M Ware
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
14
|
Alexander AK, Rice EJ, Lujic J, Simon LE, Tanis S, Barshad G, Zhu L, Lama J, Cohen PE, Danko CG. A-MYB and BRDT-dependent RNA Polymerase II pause release orchestrates transcriptional regulation in mammalian meiosis. Nat Commun 2023; 14:1753. [PMID: 36990976 PMCID: PMC10060231 DOI: 10.1038/s41467-023-37408-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
During meiotic prophase I, spermatocytes must balance transcriptional activation with homologous recombination and chromosome synapsis, biological processes requiring extensive changes to chromatin state. We explored the interplay between chromatin accessibility and transcription through prophase I of mammalian meiosis by measuring genome-wide patterns of chromatin accessibility, nascent transcription, and processed mRNA. We find that Pol II is loaded on chromatin and maintained in a paused state early during prophase I. In later stages, paused Pol II is released in a coordinated transcriptional burst mediated by the transcription factors A-MYB and BRDT, resulting in ~3-fold increase in transcription. Transcriptional activity is temporally and spatially segregated from key steps of meiotic recombination: double strand breaks show evidence of chromatin accessibility earlier during prophase I and at distinct loci from those undergoing transcriptional activation, despite shared chromatin marks. Our findings reveal mechanisms underlying chromatin specialization in either transcription or recombination in meiotic cells.
Collapse
Affiliation(s)
- Adriana K Alexander
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jelena Lujic
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leah E Simon
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Stephanie Tanis
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Lina Zhu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jyoti Lama
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Paula E Cohen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, 14853, USA.
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
15
|
Liu Z, Dai H, Huo H, Li W, Jiang Y, Zhang X, Huo J. Molecular characteristics and transcriptional regulatory of spermatogenesis-related gene RFX2 in adult Banna mini-pig inbred line (BMI). Anim Reprod 2023; 20:e20220090. [PMID: 36922987 PMCID: PMC10010159 DOI: 10.1590/1984-3143-ar2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 03/08/2023] Open
Abstract
RFX2 plays critical roles in mammalian spermatogenesis and cilium maturation. Here, the testes of 12-month-old adult boars of Banna mini-pig inbred line (BMI) were subjected to whole-transcriptome sequencing. The results indicated that the average expression (raw count) of RFX2 gene in BMI testes was 16138.25, and the average expression value of the corresponding transcript ENSSSCT00000043271.2 was 123.1898. The CDS of RFX2 obtained from BMI testes was 2,817 bp (GenBank accession number: OL362242). Gene structure analysis showed that RFX2 was located on chromosome 2 of the pig genome with 19 exons. Protein structure analysis indicated that RFX2 contains 728 amino acids with two conserved domains. Phylogenetic analysis revealed that RFX2 was highly conserved with evolutionary homologies among mammalian species. Other analyses, including PPI networks, KEGG, and GO, indicated that BMI RFX2 had interactions with 43 proteins involving various functions, such as in cell cycle, spermatid development, spermatid differentiation, cilium assembly, and cilium organization, etc. Correlation analysis between these proteins and the transcriptome data implied that RFX2 was significantly associated with FOXJ1, DNAH9, TMEM138, E2F7, and ATR, and particularly showed the highest correlation with ATR, demonstrating the importance of RFX2 and ART in spermatogenesis. Functional annotation implied that RFX2 was involved in 17 GO terms, including three cellular components (CC), six molecular functions (MF), and eight biological processes (BP). The analysis of miRNA-gene targeting indicated that BMI RFX2 was mainly regulated by two miRNAs, among which four lncRNAs and five lncRNAs competitively bound ssc-miR-365-5p and ssc-miR-744 with RFX2, respectively. Further, the dual-luciferase report assay indicated that the ssc-miR-365-5p and ssc-miR-744 significantly reduced luciferase activity of RFX2 3'UTR in the 293T cells, suggesting that these two miRNAs regulated the expression of RFX2. Our results revealed the important role of RFX2 in BMI spermatogenesis, making it an intriguing candidate for follow-up studies.
Collapse
Affiliation(s)
- Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hongmei Dai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hailong Huo
- Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yun Jiang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xia Zhang
- College of Life Science, Lyuliang University, Lvliang, Shanxi, China
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.,Department of Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
16
|
scATAC-Seq reveals heterogeneity associated with spermatogonial differentiation in cultured male germline stem cells. Sci Rep 2022; 12:21482. [PMID: 36509798 PMCID: PMC9744833 DOI: 10.1038/s41598-022-25729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Spermatogonial stem cells are the most primitive spermatogonia in testis, which can self-renew to maintain the stem cell pool or differentiate to give rise to germ cells including haploid spermatids. All-trans-retinoic acid (RA), a bioactive metabolite of vitamin A, plays a fundamental role in initiating spermatogonial differentiation. In this study, single-cell ATAC-seq (scATAC-seq) was used to obtain genome-wide chromatin maps of cultured germline stem cells (GSCs) that were in control and RA-induced differentiation states. We showed that different subsets of GSCs can be distinguished based on chromatin accessibility of self-renewal and differentiation signature genes. Importantly, both progenitors and a subset of stem cells are able to respond to RA and give rise to differentiating cell subsets with distinct chromatin accessibility profiles. In this study, we identified regulatory regions that undergo chromatin remodeling and are associated with the retinoic signaling pathway. Moreover, we reconstructed the differentiation trajectory and identified novel transcription factor candidates enriched in different spermatogonia subsets. Collectively, our work provides a valuable resource for understanding the heterogeneity associated with differentiation and RA response in GSCs.
Collapse
|
17
|
She ZY, Xu MF, Jiang SY, Wei YL. Kinesin-7 CENP-E is essential for chromosome alignment and spindle assembly of mouse spermatocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119306. [PMID: 35680098 DOI: 10.1016/j.bbamcr.2022.119306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Genome stability depends on chromosome congression and alignment during cell division. Kinesin-7 CENP-E is critical for kinetochore-microtubule attachment and chromosome alignment, which contribute to genome stability in mitosis. However, the functions and mechanisms of CENP-E in the meiotic division of male spermatocytes remain largely unknown. In this study, by combining the use of chemical inhibitors, siRNA-mediated gene knockdown, immunohistochemistry, and high-resolution microscopy, we have found that CENP-E inhibition results in chromosome misalignment and metaphase arrest in dividing spermatocyte during meiosis. Strikingly, we have revealed that CENP-E regulates spindle organization in metaphase I spermatocytes and cultured GC-2 spd cells. CENP-E depletion leads to spindle elongation, chromosome misalignment, and chromosome instability in spermatocytes. Together, these findings indicate that CENP-E mediates the kinetochore recruitment of BubR1, spindle assembly checkpoint and chromosome alignment in dividing spermatocytes, which finally contribute to faithful chromosome segregation and chromosome stability in the male meiotic division.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China.
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China
| | - Sun-Ying Jiang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian 350011, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
18
|
In Silico Identification of lncRNAs Regulating Sperm Motility in the Turkey (Meleagris gallopavo L.). Int J Mol Sci 2022; 23:ijms23147642. [PMID: 35887003 PMCID: PMC9324027 DOI: 10.3390/ijms23147642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts not translated into proteins with a length of more than 200 bp. LncRNAs are considered an important factor in the regulation of countless biological processes, mainly through the regulation of gene expression and interactions with proteins. However, the detailed mechanism of interaction as well as functions of lncRNAs are still unclear and therefore constitute a serious research challenge. In this study, for the first time, potential mechanisms of lncRNA regulation of processes related to sperm motility in turkey were investigated and described. Customized bioinformatics analysis was used to detect and identify lncRNAs, and their correlations with differentially expressed genes and proteins were also investigated. Results revealed the expression of 863 new/unknown lncRNAs in ductus deferens, testes and epididymis of turkeys. Moreover, potential relationships of the lncRNAs with the coding mRNAs and their products were identified in turkey reproductive tissues. The results obtained from the OMICS study may be useful in describing and characterizing the way that lncRNAs regulate genes and proteins as well as signaling pathways related to sperm motility.
Collapse
|
19
|
Juárez OE, Arreola-Meraz L, Sánchez-Castrejón E, Avila-Poveda OH, López-Galindo LL, Rosas C, Galindo-Sánchez CE. Oviducal gland transcriptomics of Octopus maya through physiological stages and the negative effects of temperature on fertilization. PeerJ 2022; 10:e12895. [PMID: 35378931 PMCID: PMC8976471 DOI: 10.7717/peerj.12895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/16/2022] [Indexed: 01/11/2023] Open
Abstract
Background Elevated temperatures reduce fertilization and egg-laying rates in the octopus species. However, the molecular mechanisms that control the onset of fertilization and egg-laying in the octopus' oviducal gland are still unclear; and the effect of temperature on the expression of key reproductive genes is unknown. This study aims to better understand the molecular bases of octopus fertilization and egg-laying, and how they are affected by elevated temperatures. Method RNA-seq of oviducal glands was performed for samples before, during, and after fertilization and their transcriptomic profiles were compared. Also, at the fertilization stage, the optimal and thermal-stress conditions were contrasted. Expression levels of key reproductive genes were validated via RT-qPCR. Results In mated females before egg-laying, genes required for the synthesis of spermine, spermidine, which may prevent premature fertilization, and the myomodulin neuropeptide were upregulated. Among the genes with higher expression at the fertilization stage, we found those encoding the receptors of serotonin, dopamine, and progesterone; genes involved in the assembly and motility of the sperm flagellum; genes that participate in the interaction between male and female gametes; and genes associated with the synthesis of eggshell mucoproteins. At temperatures above the optimal range for reproduction, mated females reduced the fertilization rate. This response coincided with the upregulation of myomodulin and APGW-amide neuropeptides. Also, genes associated with fertilization like LGALS3, VWC2, and Pcsk1 were downregulated at elevated temperatures. Similarly, in senescent females, genes involved in fertilization were downregulated but those involved in the metabolism of steroid hormones like SRD5A1 were highly expressed.
Collapse
Affiliation(s)
- Oscar E. Juárez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| | - Lousiana Arreola-Meraz
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| | - Edna Sánchez-Castrejón
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| | - Omar Hernando Avila-Poveda
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, México,Programa Investigadoras e Investigadores por México, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Laura L. López-Galindo
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación - Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Clara E. Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| |
Collapse
|
20
|
Khan SA, Khan S, Muhammad N, Rehman ZU, Khan MA, Nasir A, Kalsoom UE, Khan AK, Khan H, Wasif N. The First Report of a Missense Variant in RFX2 Causing Non-Syndromic Tooth Agenesis in a Consanguineous Pakistani Family. Front Genet 2022; 12:782653. [PMID: 35145545 PMCID: PMC8822170 DOI: 10.3389/fgene.2021.782653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The syndromic and non-syndromic congenital missing teeth phenotype is termed tooth agenesis. Since tooth agenesis is a heterogeneous disorder hence, the patients show diverse absent teeth phenotypes. Thus identifying novel genes involved in the morphogenesis of ectodermal appendages, including teeth, paves the way for establishing signaling pathways.Methods and Results: We have recruited an autosomal recessive non-syndromic tooth agenesis family with two affected members. The exome sequencing technology identified a novel missense sequence variant c.1421T > C; p.(Ile474Thr) in a regulatory factor X (RFX) family member (RFX2, OMIM: 142,765). During the data analysis eight rare variants on various chromosomal locations were identified, but the co-segregation analysis using Sanger sequencing confirmed the segregation of only two variants RFX2: c.1421T > C; p.(Ile474Thr), DOHH: c.109C > G; p.(Pro37Ala) lying in a common 7.1 MB region of homozygosity on chromosome 19p13.3. Furthermore, the online protein prediction algorithms and protein modeling analysis verified the RFX2 variant as a damaging genetic alteration and ACMG pathogenicity criteria classified it as likely pathogenic. On the other hand, the DOHH variant showed benign outcomes.Conclusion:RFX2 regulates the Hedgehog and fibroblast growth factor signaling pathways, which are involved in the epithelial and mesenchymal interactions during tooth development. Prior animal model studies have confirmed the expression of rfx2 at a developmental stage governing mouth formation. Moreover, its regulatory role and close association with ciliary and non-ciliary genes causing various dental malformations makes it a potential candidate gene for tooth agenesis phenotype. Further studies will contribute to exploring the direct role of RFX2 in human tooth development.
Collapse
Affiliation(s)
- Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
- *Correspondence: Saadullah Khan, ; Naveed Wasif,
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Muhammad Adnan Khan
- Dental Material, Institute of Basic Medical Sciences, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Umm-e- Kalsoom
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Anwar Kamal Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Hassan Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Naveed Wasif
- Institute of Human Genetics, University of Ulm, Ulm, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- *Correspondence: Saadullah Khan, ; Naveed Wasif,
| |
Collapse
|
21
|
Novel variations in spermatogenic transcription regulators RFX2 and TAF7 increase risk of azoospermia. J Assist Reprod Genet 2021; 38:3195-3212. [PMID: 34762273 DOI: 10.1007/s10815-021-02352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Genetic etiology of idiopathic male infertility is enigmatic owing to involvement of multiple gene regulatory networks in spermatogenesis process. Any change in optimal function of the transcription factors involved in this process owing to polymorphisms/mutations may increase the risk of infertility. We investigated polymorphisms/mutations of spermatogenic transcription regulators TAF7 and RFX2 and analysed their association with incidence of azoospermia among the men from West Bengal, India. METHODS Genotyping was carried by Sanger's dideoxy sequencing of 130 azoospermic men who were detected negative in Y chromosome microdeletion screening and 140 healthy controls. Association study was done by suitable statistical methods. In silico analysis was performed to infer the intuitive damaging effects of detected variants at transcripts and protein level. RESULTS We found significant association of TAF7 C16T (MW827584 G > A), RFX2 562delT (MZ560629delA), rs11547633 A > C, rs17606721 A > G, MW827583 C > T, and MZ379836 C > T variants with the incidence of azoospermia. In silico analysis predicted that the variants either alter the natural splice junctions of the transcript or cause probable damage in the structure of proteins of respective genes. CONCLUSION Polymorphisms/mutations of TAF7 and RFX2 genes increase risk of male infertility in Bengali population. The novel variants may be used as markers for male infertility screening in ART practise.
Collapse
|
22
|
Liu N, Qadri F, Busch H, Huegel S, Sihn G, Chuykin I, Hartmann E, Bader M, Rother F. Kpna6 deficiency causes infertility in male mice by disrupting spermatogenesis. Development 2021; 148:272018. [PMID: 34473250 PMCID: PMC8513612 DOI: 10.1242/dev.198374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
Spermatogenesis is driven by an ordered series of events, which rely on trafficking of specific proteins between nucleus and cytoplasm. The karyopherin α family of proteins mediates movement of specific cargo proteins when bound to karyopherin β. Karyopherin α genes have distinct expression patterns in mouse testis, implying they may have unique roles during mammalian spermatogenesis. Here, we use a loss-of-function approach to determine specifically the role of Kpna6 in spermatogenesis and male fertility. We show that ablation of Kpna6 in male mice leads to infertility and has multiple cumulative effects on both germ cells and Sertoli cells. Kpna6-deficient mice exhibit impaired Sertoli cell function, including loss of Sertoli cells and a compromised nuclear localization of the androgen receptor. Furthermore, our data demonstrate devastating defects on spermiogenesis, including incomplete sperm maturation and a massive reduction in sperm number, accompanied by disturbed histone-protamine exchange, differential localization of the transcriptional regulator BRWD1 and altered expression of RFX2 target genes. Our work uncovers an essential role of Kpna6 in spermatogenesis and, hence, in male fertility. Summary: Two different mouse models delineate the morphological and functional impact of Kpna6 on spermatogenesis and Sertoli cell function and show that this protein is crucial for fertility in male mice.
Collapse
Affiliation(s)
- Na Liu
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | | | - Hauke Busch
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Lübeck 23562, Germany
| | - Stefanie Huegel
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Gabin Sihn
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Ilya Chuykin
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Enno Hartmann
- Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Franziska Rother
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
23
|
Khoyratty TE, Ai Z, Ballesteros I, Eames HL, Mathie S, Martín-Salamanca S, Wang L, Hemmings A, Willemsen N, von Werz V, Zehrer A, Walzog B, van Grinsven E, Hidalgo A, Udalova IA. Distinct transcription factor networks control neutrophil-driven inflammation. Nat Immunol 2021; 22:1093-1106. [PMID: 34282331 PMCID: PMC7611586 DOI: 10.1038/s41590-021-00968-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Neutrophils display distinct gene expression patters depending on their developmental stage, activation state and tissue microenvironment. To determine the transcription factor networks that shape these responses in a mouse model, we integrated transcriptional and chromatin analyses of neutrophils during acute inflammation. We showed active chromatin remodeling at two transition stages: bone marrow-to-blood and blood-to-tissue. Analysis of differentially accessible regions revealed distinct sets of putative transcription factors associated with control of neutrophil inflammatory responses. Using ex vivo and in vivo approaches, we confirmed that RUNX1 and KLF6 modulate neutrophil maturation, whereas RELB, IRF5 and JUNB drive neutrophil effector responses and RFX2 and RELB promote survival. Interfering with neutrophil activation by targeting one of these factors, JUNB, reduced pathological inflammation in a mouse model of myocardial infarction. Therefore, our study represents a blueprint for transcriptional control of neutrophil responses in acute inflammation and opens possibilities for stage-specific therapeutic modulation of neutrophil function in disease.
Collapse
Affiliation(s)
| | - Zhichao Ai
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ivan Ballesteros
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Hayley L Eames
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Sara Mathie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Sandra Martín-Salamanca
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Lihui Wang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Nicola Willemsen
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Annette Zehrer
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center and Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center and Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Andres Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Rivero-Hinojosa S, Pugacheva EM, Kang S, Méndez-Catalá CF, Kovalchuk AL, Strunnikov AV, Loukinov D, Lee JT, Lobanenkov VV. The combined action of CTCF and its testis-specific paralog BORIS is essential for spermatogenesis. Nat Commun 2021; 12:3846. [PMID: 34158481 PMCID: PMC8219828 DOI: 10.1038/s41467-021-24140-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.
| | - Elena M Pugacheva
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sungyun Kang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Claudia Fabiola Méndez-Catalá
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Genetics and Molecular Oncology, Building A4, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, State of Mexico, Mexico
| | - Alexander L Kovalchuk
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, Guangzhou, China
| | - Dmitri Loukinov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Victor V Lobanenkov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Ho UY, Feng CWA, Yeap YY, Bain AL, Wei Z, Shohayeb B, Reichelt ME, Homer H, Khanna KK, Bowles J, Ng DCH. WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis. Commun Biol 2021; 4:645. [PMID: 34059773 PMCID: PMC8167107 DOI: 10.1038/s42003-021-02171-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
WDR62 is a scaffold protein involved in centriole duplication and spindle assembly during mitosis. Mutations in WDR62 can cause primary microcephaly and premature ovarian insufficiency. We have generated a genetrap mouse model deficient in WDR62 and characterised the developmental effects of WDR62 deficiency during meiosis in the testis. We have found that WDR62 deficiency leads to centriole underduplication in the spermatocytes due to reduced or delayed CEP63 accumulation in the pericentriolar matrix. This resulted in prolonged metaphase that led to apoptosis. Round spermatids that inherited a pair of centrioles progressed through spermiogenesis, however, manchette removal was delayed in WDR62 deficient spermatids due to delayed Katanin p80 accumulation in the manchette, thus producing misshapen spermatid heads with elongated manchettes. In mice, WDR62 deficiency resembles oligoasthenoteratospermia, a common form of subfertility in men that is characterised by low sperm counts, poor motility and abnormal morphology. Therefore, proper WDR62 function is necessary for timely spermatogenesis and spermiogenesis during male reproduction. Uda Ho et al find that loss of centriolar scaffold protein WDR62 in mouse testis leads to defects in spermatogenesis. They find that WDR62 deficiency leads to centriole underduplication in spermatocytes and delayed manchette removal in spermatids due to delayed Katanin p80 accumulation.
Collapse
Affiliation(s)
- Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Chun-Wei Allen Feng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Y Yeap
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda L Bain
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Zhe Wei
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hayden Homer
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
26
|
Dong F, Chen M, Chen M, Jiang L, Shen Z, Ma L, Han C, Guo X, Gao F. PRMT5 Is Involved in Spermatogonial Stem Cells Maintenance by Regulating Plzf Expression via Modulation of Lysine Histone Modifications. Front Cell Dev Biol 2021; 9:673258. [PMID: 34113620 PMCID: PMC8185031 DOI: 10.3389/fcell.2021.673258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of mono- or symmetric dimethylarginine residues on histones and non-histone substrates and has been demonstrated to play important roles in many biological processes. In the present study, we observed that PRMT5 is abundantly expressed in spermatogonial stem cells (SSCs) and that Prmt5 deletion results in a progressive loss of SSCs and male infertility. The proliferation of Prmt5-deficient SSCs cultured in vitro exhibited abnormal proliferation, cell cycle arrest in G0/G1 phase and a significant increase in apoptosis. Furthermore, PLZF expression was dramatically reduced in Prmt5-deficient SSCs, and the levels of H3K9me2 and H3K27me2 were increased in the proximal promoter region of the Plzf gene in Prmt5-deficient SSCs. Further study revealed that the expression of lysine demethylases (JMJD1A, JMJD1B, JMJD1C, and KDM6B) was significantly reduced in Prmt5-deficient SSCs and that the level of permissive arginine methylation H3R2me2s was significantly decreased at the upstream promoter region of these genes in Prmt5-deficient SSCs. Our results demonstrate that PRMT5 regulates spermatogonial stem cell development by modulating histone H3 lysine modifications.
Collapse
Affiliation(s)
- Fangfang Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Lin Jiang
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xudong Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Yokota S, Sekine N, Wakayama T, Oshio S. Impact of chronic vitamin A excess on sperm morphogenesis in mice. Andrology 2021; 9:1579-1592. [PMID: 33818007 DOI: 10.1111/andr.13013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The increasing availability of fortified foods and supplements has caused an overconsumption of vitamin A (VA), above the recommended level. To date, the effects of chronic VA excess (VAE) on spermatogenesis remain unclear. OBJECTIVE This study aims to investigate the long-term excessive intake of VA effects on spermatogenesis in mice. MATERIALS AND METHODS Dams were initially fed a control diet (4 IU/g) or a VAE diet (250 IU/g), 4 weeks prior to mating and during pregnancy. Dams and their male pups continued this diet regimen until the offspring reached 12 weeks of age. At 12 weeks of age, epididymis caudal spermatozoa and testes were collected. For histological analysis, sections were stained with periodic acid-Schiff-hematoxylin, and quantitative PCR was used to detect changes in gene expression in the testes of the VAE mice. Sperm motility and morphology were evaluated to detect the endpoint of VAE toxicity. RESULTS Body weights were not significantly different between the control and VAE groups. Testicular cross-sections from the control and VAE mice contained a normal array of germ cells, and the daily sperm production was similar between the two groups. However, the percentage of seminiferous tubules in stages VII and VIII was significantly lower in the VAE mice than in the control. In addition, significant changes in the expression of genes involved in retinoid metabolism, spermatogenesis, and spermiogenesis were detected in the testes of the VAE mice. Consistently, sperm motility and head morphology were significantly impaired in the VAE mice. DISCUSSION AND CONCLUSION Our findings suggest that long-term dietary intake of VAE was able to influence both pre- and post-meiotic spermatogenesis. As a result of testicular toxicity, we demonstrated, to the best of our knowledge, for the first time that long-term VAE caused sperm-head abnormalities.
Collapse
Affiliation(s)
- Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan.,Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| | - Nao Sekine
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeru Oshio
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
28
|
Kim D, Hong SH, Han G, Cho C. Analysis of mouse male germ cell-specific or -predominant Tex13 family genes encoding proteins with transcriptional repressor activity. Mol Biol Rep 2021; 48:3017-3022. [PMID: 33811575 DOI: 10.1007/s11033-021-06265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Mammalian spermatogenesis is a highly organized process with successive mitotic, meiotic, and postmeiotic phases. This unique developmental process is characterized by the involvement of spermatogenic cell-specific genes. In this study, we identified and investigated testis expressed gene 13 (Tex13) family genes, consisting of Tex13a, Tex13b, Tex13c1, and Tex13d, in mice. All of these genes were transcribed specifically or predominantly in male germ cells, and their transcription was developmentally regulated. Proteins encoded by the Tex13 genes were predicted to have a conserved domain of ~ 145 amino acids. Tex13a, Tex13c1, and Tex13d encode additional C-terminal regions containing a short conserved sequence termed a zinc finger-RAN binding protein 2 (zf-RanBP2) or zf-RanBP2-like domain. As TEX13B reportedly has transcriptional repressor activity, we examined the effect of the TEX13 proteins on transcriptional regulation using a reporter assay. All of the TEX13 proteins exhibited transcriptional repressor activity. This activity was revealed to reside in the TEX13B-corresponding regions of TEX13A, TEX13C1, and TEX13D. Further, we found that the C-terminal regions of TEX13A, TEX13C1, and TEX13D also have inhibitory activities. These results suggest that male germ cell-specific or -predominant TEX13 proteins commonly function in transcriptional repression as transcription cofactors and/or RNA binding proteins.
Collapse
Affiliation(s)
- Donghyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Pharmbio Korea Inc, Seoul, 06775, Republic of Korea
| | - Seong Hyeon Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gwidong Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
29
|
Lewis M, Stracker TH. Transcriptional regulation of multiciliated cell differentiation. Semin Cell Dev Biol 2021; 110:51-60. [DOI: 10.1016/j.semcdb.2020.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023]
|
30
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Gustafson EA, Seymour KA, Sigrist K, Rooij DGDE, Freiman RN. ZFP628 Is a TAF4b-Interacting Transcription Factor Required for Mouse Spermiogenesis. Mol Cell Biol 2020; 40:e00228-19. [PMID: 31932482 PMCID: PMC7076252 DOI: 10.1128/mcb.00228-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
TAF4b is a subunit of the TFIID complex that is highly expressed in the ovary and testis and required for mouse fertility. TAF4b-deficient male mice undergo a complex series of developmental defects that result in the inability to maintain long-term spermatogenesis. To decipher the transcriptional mechanisms upon which TAF4b functions in spermatogenesis, we used two-hybrid screening to identify a novel TAF4b-interacting transcriptional cofactor, ZFP628. Deletion analysis of both proteins reveals discrete and novel domains of ZFP628 and TAF4b protein that function to bridge their direct interaction in vitro Moreover, coimmunoprecipitation of ZFP628 and TAF4b proteins in testis-derived protein extracts supports their endogenous association. Using CRISPR-Cas9, we disrupted the expression of ZFP628 in the mouse and uncovered a postmeiotic germ cell arrest at the round spermatid stage in the seminiferous tubules of the testis in ZFP628-deficient mice that results in male infertility. Coincident with round spermatid arrest, we find reduced mRNA expression of transition protein (Tnp1 and Tnp2) and protamine (Prm1 and Prm2) genes, which are critical for the specialized maturation of haploid male germ cells called spermiogenesis. These data delineate a novel association of two transcription factors, TAF4b and ZFP628, and identify ZFP628 as a novel transcriptional regulator of stage-specific spermiogenesis.
Collapse
Affiliation(s)
- Eric A Gustafson
- Brown University, Department of Molecular and Cell Biology and Biochemistry, Providence, Rhode Island, USA
| | - Kimberly A Seymour
- Brown University, Department of Molecular and Cell Biology and Biochemistry, Providence, Rhode Island, USA
| | - Kirsten Sigrist
- Brown University, Department of Molecular and Cell Biology and Biochemistry, Providence, Rhode Island, USA
| | - Dirk G D E Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard N Freiman
- Brown University, Department of Molecular and Cell Biology and Biochemistry, Providence, Rhode Island, USA
| |
Collapse
|
32
|
Goodnight AV, Kremsky I, Khampang S, Jung YH, Billingsley JM, Bosinger SE, Corces VG, Chan AWS. Chromatin accessibility and transcription dynamics during in vitro astrocyte differentiation of Huntington's Disease Monkey pluripotent stem cells. Epigenetics Chromatin 2019; 12:67. [PMID: 31722751 PMCID: PMC6852955 DOI: 10.1186/s13072-019-0313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion, resulting in a mutant huntingtin protein. While it is now clear that astrocytes are affected by HD and significantly contribute to neuronal dysfunction and pathogenesis, the alterations in the transcriptional and epigenetic profiles in HD astrocytes have yet to be characterized. Here, we examine global transcription and chromatin accessibility dynamics during in vitro astrocyte differentiation in a transgenic non-human primate model of HD. RESULTS We found global changes in accessibility and transcription across different stages of HD pluripotent stem cell differentiation, with distinct trends first observed in neural progenitor cells (NPCs), once cells have committed to a neural lineage. Transcription of p53 signaling and cell cycle pathway genes was highly impacted during differentiation, with depletion in HD NPCs and upregulation in HD astrocytes. E2F target genes also displayed this inverse expression pattern, and strong associations between E2F target gene expression and accessibility at nearby putative enhancers were observed. CONCLUSIONS The results suggest that chromatin accessibility and transcription are altered throughout in vitro HD astrocyte differentiation and provide evidence that E2F dysregulation contributes to aberrant cell-cycle re-entry and apoptosis throughout the progression from NPCs to astrocytes.
Collapse
Affiliation(s)
- Alexandra V Goodnight
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA
| | - Isaac Kremsky
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Sujittra Khampang
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Embryonic Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yoon Hee Jung
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - James M Billingsley
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA.
| |
Collapse
|
33
|
Pandey A, Yadav SK, Vishvkarma R, Singh B, Maikhuri JP, Rajender S, Gupta G. The dynamics of gene expression during and post meiosis sets the sperm agenda. Mol Reprod Dev 2019; 86:1921-1939. [DOI: 10.1002/mrd.23278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Aastha Pandey
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | | | - Rahul Vishvkarma
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | - Bineta Singh
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | | | - Singh Rajender
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | - Gopal Gupta
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
34
|
Momose T, De Cian A, Shiba K, Inaba K, Giovannangeli C, Concordet JP. High doses of CRISPR/Cas9 ribonucleoprotein efficiently induce gene knockout with low mosaicism in the hydrozoan Clytia hemisphaerica through microhomology-mediated deletion. Sci Rep 2018; 8:11734. [PMID: 30082705 PMCID: PMC6078951 DOI: 10.1038/s41598-018-30188-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Targeted mutagenesis using CRISPR/Cas9 technology has been shown to be a powerful approach to examine gene function in diverse metazoan species. One common drawback is that mixed genotypes, and thus variable phenotypes, arise in the F0 generation because incorrect DNA repair produces different mutations amongst cells of the developing embryo. We report here an effective method for gene knockout (KO) in the hydrozoan Clytia hemisphaerica, by injection into the egg of Cas9/sgRNA ribonucleoprotein complex (RNP). Expected phenotypes were observed in the F0 generation when targeting endogenous GFP genes, which abolished fluorescence in embryos, or CheRfx123 (that codes for a conserved master transcriptional regulator for ciliogenesis) which caused sperm motility defects. When high concentrations of Cas9 RNP were used, the mutations in target genes at F0 polyp or jellyfish stages were not random but consisted predominantly of one or two specific deletions between pairs of short microhomologies flanking the cleavage site. Such microhomology-mediated (MM) deletion is most likely caused by microhomology-mediated end-joining (MMEJ), which may be favoured in early stage embryos. This finding makes it very easy to isolate uniform, largely non-mosaic mutants with predictable genotypes in the F0 generation in Clytia, allowing rapid and reliable phenotype assessment.
Collapse
Affiliation(s)
- Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV) 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France.
| | - Anne De Cian
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle 43 rue Cuvier, 75005, Paris, France
| | - Kogiku Shiba
- Shimoda Marine Research Centre, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Centre, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Carine Giovannangeli
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle 43 rue Cuvier, 75005, Paris, France
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle 43 rue Cuvier, 75005, Paris, France
| |
Collapse
|
35
|
Bai S, Fu K, Yin H, Cui Y, Yue Q, Li W, Cheng L, Tan H, Liu X, Guo Y, Zhang Y, Xie J, He W, Wang Y, Feng H, Xin C, Zhang J, Lin M, Shen B, Sun Z, Guo X, Zheng K, Ye L. Sox30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development 2018; 145:dev.164855. [PMID: 29866902 DOI: 10.1242/dev.164855] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022]
Abstract
Transcription factors of the Sox protein family contain a DNA-binding HMG box and are key regulators of progenitor cell fate. Here, we report that expression of Sox30 is restricted to meiotic spermatocytes and postmeiotic haploids. Sox30 mutant males are sterile owing to spermiogenic arrest at the early round spermatid stage. Specifically, in the absence of Sox30, proacrosomic vesicles fail to form a single acrosomal organelle, and spermatids arrest at step 2-3. Although most Sox30 mutant spermatocytes progress through meiosis, accumulation of diplotene spermatocytes indicates a delayed or impaired transition from meiotic to postmeiotic stages. Transcriptome analysis of isolated stage-specific spermatogenic cells reveals that Sox30 controls a core postmeiotic gene expression program that initiates as early as the late meiotic cell stage. ChIP-seq analysis shows that Sox30 binds to specific DNA sequences in mouse testes, and its genomic occupancy correlates positively with expression of many postmeiotic genes including Tnp1, Hils1, Ccdc54 and Tsks These results define Sox30 as a crucial transcription factor that controls the transition from a late meiotic to a postmeiotic gene expression program and subsequent round spermatid development.
Collapse
Affiliation(s)
- Shun Bai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Huiqi Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Wenbo Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Le Cheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yingwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Wenxiu He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Hua Feng
- Omics Core of Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Changpeng Xin
- Omics Core of Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
36
|
Zhang D, Xie D, Lin X, Ma L, Chen J, Zhang D, Wang Y, Duo S, Feng Y, Zheng C, Jiang B, Ning Y, Han C. The transcription factor SOX30 is a key regulator of mouse spermiogenesis. Development 2018; 145:145/11/dev164723. [PMID: 29848638 DOI: 10.1242/dev.164723] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023]
Abstract
The postmeiotic development of male germ cells, also known as spermiogenesis, features the coordinated expression of a large number of spermatid-specific genes. However, only a limited number of key transcription factors have been identified and the underlying regulatory mechanisms remain largely unknown. Here, we report that SOX30, the most-divergent member of the Sry-related high-motility group box (SOX) family of transcription factors, is essential for mouse spermiogenesis. The SOX30 protein was predominantly expressed in spermatids, while its transcription was regulated by retinoic acid and by MYBL1 before and during meiosis. Sox30 knockout mice arrested spermiogenesis at step 3 round spermatids, which underwent apoptosis and abnormal chromocenter formation. We also determined that SOX30 regulated the expression of hundreds of spermatid-specific protein-coding and long non-coding RNA genes. SOX30 bound to the proximal promoter of its own gene and activated its transcription. These results reveal SOX30 as a novel key regulator of spermiogenesis that regulates its own transcription to enforce and activate this meiotic regulatory pathway.
Collapse
Affiliation(s)
- Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoqi Zhang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuguang Duo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanmin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binjie Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Sugiaman-Trapman D, Vitezic M, Jouhilahti EM, Mathelier A, Lauter G, Misra S, Daub CO, Kere J, Swoboda P. Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics 2018; 19:181. [PMID: 29510665 PMCID: PMC5838959 DOI: 10.1186/s12864-018-4564-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Evolutionarily conserved RFX transcription factors (TFs) regulate their target genes through a DNA sequence motif called the X-box. Thereby they regulate cellular specialization and terminal differentiation. Here, we provide a comprehensive analysis of all the eight human RFX genes (RFX1-8), their spatial and temporal expression profiles, potential upstream regulators and target genes. RESULTS We extracted all known human RFX1-8 gene expression profiles from the FANTOM5 database derived from transcription start site (TSS) activity as captured by Cap Analysis of Gene Expression (CAGE) technology. RFX genes are broadly (RFX1-3, RFX5, RFX7) and specifically (RFX4, RFX6) expressed in different cell types, with high expression in four organ systems: immune system, gastrointestinal tract, reproductive system and nervous system. Tissue type specific expression profiles link defined RFX family members with the target gene batteries they regulate. We experimentally confirmed novel TSS locations and characterized the previously undescribed RFX8 to be lowly expressed. RFX tissue and cell type specificity arises mainly from differences in TSS architecture. RFX transcript isoforms lacking a DNA binding domain (DBD) open up new possibilities for combinatorial target gene regulation. Our results favor a new grouping of the RFX family based on protein domain composition. We uncovered and experimentally confirmed the TFs SP2 and ESR1 as upstream regulators of specific RFX genes. Using TF binding profiles from the JASPAR database, we determined relevant patterns of X-box motif positioning with respect to gene TSS locations of human RFX target genes. CONCLUSIONS The wealth of data we provide will serve as the basis for precisely determining the roles RFX TFs play in human development and disease.
Collapse
Affiliation(s)
| | - Morana Vitezic
- Department of Biology, Bioinformatics Centre, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eeva-Mari Jouhilahti
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anthony Mathelier
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Sougat Misra
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Basic and Medical Biosciences, King's College London, London, UK
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
38
|
Yu CH, Xie T, Zhang RP, A ZC. Association of the common SNPs in RNF212, STAG3 and RFX2 gene with male infertility with azoospermia in Chinese population. Eur J Obstet Gynecol Reprod Biol 2017; 221:109-112. [PMID: 29277047 DOI: 10.1016/j.ejogrb.2017.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/08/2017] [Accepted: 12/14/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of this study was to explore the association between the SNP rs4045481 in RNF212 gene, rs1050482 and rs11531577 in STAG3 gene as well as rs2288846 in RFX2 gene and male infertility with azoospermia in Chinese population. STUDY DESIGN Two hundreds and twenty infertile patients with azoospermia and 248 fertile men were recruited in the present study. The four SNPs investigated were genotyped using polymerase chain reaction and restriction fragment length polymorphism assay. The differences in allelic and genotypic frequencies between patients and controls were evaluated by chi-square test. RESULTS No significant differences in allele and genotype frequencies of SNP rs1050482 and rs11531577 in STAG3 gene as well as rs2288846 in RFX2 gene between patients with azoospermia and controls were observed. However, the frequencies of allele C(43.6% vs. 34.1%, P = 0.003, OR = 1.498, 95% CI 1.150-1.192) and genotype CC (24.6% vs. 12.0%, P = 0.001, OR = 2.346, 95% CI 1.448-3.858) were significantly higher in patients with azoospermia than those in controls at the rs4045481 locus in RNF212 gene. CONCULUSION The polymorphism of SNP rs4045481 in RNF212 gene might be associated with azoospermia and genotype CC of this SNP may be a risk factor of azoospermia.
Collapse
Affiliation(s)
- Cheng-He Yu
- College of Basic Medicine, Dali University, Dali, 671000, China; Department of Reproductive Medicine, Affiliated Hospital of Dali University, Dali, 671000, China
| | - Ting Xie
- College of Basic Medicine, Dali University, Dali, 671000, China
| | - Ruo-Peng Zhang
- Department of Reproductive Medicine, Affiliated Hospital of Dali University, Dali, 671000, China
| | - Zhou-Cun A
- College of Basic Medicine, Dali University, Dali, 671000, China; Department of Genetics, College of Agriculture and Biology, Dali University, Dali, 671003, China.
| |
Collapse
|
39
|
Liu L, He Y, Guo K, Zhou L, Li X, Tseng M, Cai L, Lan ZJ, Zhou J, Wang H, Lei Z. Ggnbp2-Null Mutation in Mice Leads to Male Infertility due to a Defect at the Spermiogenesis Stage. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2508-2519. [PMID: 28823874 PMCID: PMC5809596 DOI: 10.1016/j.ajpath.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022]
Abstract
Gametogenetin binding protein 2 (GGNBP2) is an evolutionarily conserved zinc finger protein. Although Ggnbp2-null embryos in the B6 background died because of a defective placenta, 6.8% of Ggnbp2-null mice in the B6/129 mixed background were viable and continued to adulthood. Adult Ggnbp2-null males were sterile, with smaller testes and an azoospermic phenotype, whereas mutant females were fertile. Histopathological analysis of 2-month-old Ggnbp2-null testes revealed absence of mature spermatozoa in the seminiferous tubules and epididymides and reduction of the number of spermatids. Ultrastructural analysis indicated dramatic morphological defects of developing spermatids in the Ggnbp2-null testes, including irregularly shaped acrosomes, acrosome detachment, cytoplasmic remnant, ectopic manchette, and ill-formed head shape in both elongating and elongated spermatids. However, the numbers of spermatogonia, spermatocytes, Leydig cells, and Sertoli cells in Ggnbp2-null testes did not significantly differ from the wild-type siblings. Gonadotropins, testosterone, and the blood-testis barrier were essentially unaffected. Western blot analyses showed increases in α-E-catenin, β-catenin, and N-cadherin, decreases in E-cadherin, afadin, and nectin-3, and no changes in vinculin, nectin-2, focal adhesion kinase, and integrin-β1 protein levels in Ggnbp2-null testes compared to wild-type siblings. Together, this study demonstrates that GGNBP2 is critically required for maintenance of the adhesion integrity of the adlumenal germ epithelium and is indispensable for normal spermatid transformation into mature spermatozoa in mice.
Collapse
Affiliation(s)
- Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Yan He
- Department of Obstetrics, Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Linying Zhou
- Department of Obstetrics, Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Xian Li
- Department of Obstetrics, Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Michael Tseng
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Lu Cai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Zi-Jian Lan
- Division of Life Sciences and Center for Nutrigenomics and Applied Animal Nutrition, Alltech Inc., Nicholasville, Kentucky
| | - Junmei Zhou
- Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China.
| | - Zhenmin Lei
- Department of Obstetrics, Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, Kentucky.
| |
Collapse
|
40
|
Tan YQ, Tu C, Meng L, Yuan S, Sjaarda C, Luo A, Du J, Li W, Gong F, Zhong C, Deng HX, Lu G, Liang P, Lin G. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genet Med 2017; 21:1209-1217. [PMID: 31048812 DOI: 10.1038/gim.2017.130] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/19/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Comorbid familial nonobstructive azoospermia (NOA) and congenital cataract (CC) have not been reported previously, and no single human gene has been associated with both diseases in humans. Our purpose was to uncover novel human mutations and genes causing familial NOA and CC. METHODS We performed whole-exome sequencing for two brothers with both NOA and CC from a consanguineous family. Mutation screening of TDRD7 was performed in another similar consanguineous family and 176 patients with azoospermia or CC alone and 520 healthy controls. Histological analysis was performed for the biopsied testicle sample in one patient, and knockout mice were constructed to verify the phenotype of the mutation in TDRD7. RESULTS Two novel loss-of-function mutations (c.324_325insA (T110Nfs*30) and c.688_689insA (p.Y230X), respectively) of TDRD7 were found in the affected patients from the two unrelated consanguineous families. Histological analysis demonstrated a lack of mature sperm in the male patient's seminiferous tubules. The mutations were not detected in patients with CC or NOA alone. Mice with Tdrd7 gene disrupted at a similar position precisely replicated the human syndrome. CONCLUSION We identified TDRD7 causing CC as a new pathogenic gene for male azoospermia in human, with an autosomal recessive mode of inheritance.
Collapse
Affiliation(s)
- Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Shimin Yuan
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Calvin Sjaarda
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Aixiang Luo
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Wen Li
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Changgao Zhong
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Han-Xiang Deng
- Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guangxiu Lu
- Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China. .,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China. .,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China.
| |
Collapse
|
41
|
Zhang L, Liu Y, Li W, Zhang Q, Li Y, Liu J, Min J, Shuang C, Song S, Zhang Z. Transcriptional regulation of human sperm-associated antigen 16 gene by S-SOX5. BMC Mol Biol 2017; 18:2. [PMID: 28137312 PMCID: PMC5282894 DOI: 10.1186/s12867-017-0082-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 11/12/2022] Open
Abstract
Background The mammalian sperm-associated antigen 16 gene (Spag16) uses alternative promoters to produce two major transcript isoforms (Spag16L and Spag16S) and encode proteins that are involved in the cilia/flagella formation and motility. In silico analysis of both mouse and human SPAG16L promoters reveals the existence of multiple putative SOX5 binding sites. Given that the SOX5 gene encodes a 48-kDa transcription factor (S-SOX5) and the presence of putative SOX5 binding sites at the SPAG16L promoter, regulation of SPAG16L expression by S-SOX5 was studied in the present work. Results S-SOX5 activated human SPAG16L promoter activity in the human bronchial epithelia cell line BEAS-2B cells. Mutation of S-SOX5 binding sites abolished the stimulatory effect. Overexpression of S-SOX5 resulted in a significant increase in the abundance of SPAG16L transcripts whereas silencing of S-SOX5 by RNAi largely reduced the SPAG16L expression. Chromatin immunoprecipitation assays showed that S-SOX5 directly interacts with the SPAG16L promoter. Conclusion S-SOX5 regulates transcription of human SPAG16L gene via directly binding to the promoter of SPAG16L. It has been reported that expression of sperm-associated antigen 6 (SPAG6), encoding another axonemal protein, is activated by S-SOX5. Therefore, S-SOX5 may regulate formation of motile cilia/flagella through globally mediating expression of genes encoding axonemal proteins.
Collapse
Affiliation(s)
- Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China. .,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Yunhao Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qiaoling Zhang
- Central China Normal University, Wuhan, Hubei, 430000, China
| | - Yanwei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Department of Computer Science, Wellesley College, Wellesley, MA, 02481-5701, USA
| | - Junpin Liu
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, 430000, Hubei, China
| | - Jie Min
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Chaofan Shuang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Shizheng Song
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
42
|
The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail. Cell Death Dis 2016; 7:e2472. [PMID: 27831554 PMCID: PMC5260884 DOI: 10.1038/cddis.2016.344] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms 'spermiogenesis failure', 'globozoospermia', 'spermatid-specific', 'acrosome', 'infertile', 'manchette', 'sperm connecting piece', 'sperm annulus', 'sperm ADAMs', 'flagellar abnormalities', 'sperm motility loss', 'sperm ion exchanger' and 'contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific factors in controlling fertility. Although a male contraceptive 'pill' is still many years away, research into the production of new small-molecule contraceptives targeting spermatid-specific proteins is the right avenue.
Collapse
|
43
|
Ni L, Xie H, Tan L. Multiple roles of FOXJ3 in spermatogenesis: A lesson from Foxj3 conditional knockout mouse models. Mol Reprod Dev 2016; 83:1060-1069. [PMID: 27739607 DOI: 10.1002/mrd.22750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023]
Abstract
The transcription factor FOXJ3 (Forkhead box J3) is highly expressed in spermatogonia and meiotic spermatocytes within mouse testes. Here, we addressed how FOXJ3 might participate in spermatogenesis using two conditional knockout mouse models in which Foxj3 was deleted from either spermatogonia or meiotic spermatocytes. Both models exhibited complete male sterility, but distinct etiologies: Deleting FOXJ3 from spermatogonia using Foxj3flox/flox , Mvh-Cre mice caused Sertoli-cell-only syndrome in males. Foxj3-deficient spermatogonia were lost as early as postnatal Day 4, partially due to the accumulation of DNA double-stranded breaks. In contrast, loss of FOXJ3 in spermatocytes using Foxj3flox/flox , Stra8-Cre mice led to meiotic arrest. Indeed, the mRNA abundance of meiotic arrest-related proteins (Rad51, Dmc1, Brca1, Brca2, Brit1, Eif4g3, Hop2, Hormad1, and Rnf212) was significantly reduced in Foxj3flox/flox , Stra8-Cre spermatocytes. Thus, we conclude that FOXJ3 is required for the survival of spermatogonia and participates in spermatocyte meiosis. Mol. Reprod. Dev. 83: 1060-1069, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lili Ni
- Reproductive Medical Department of The Second Affiliated Hospital of Zhengzhou University, Zhenghou, Henan Province, China
| | - Hongchang Xie
- Kidney Transplant Department of The First Affiliated Hospital of Zhengzhou University, Zhenghou, Henan Province, China
| | - Li Tan
- Reproductive Medical Department of The Second Affiliated Hospital of Zhengzhou University, Zhenghou, Henan Province, China
| |
Collapse
|
44
|
Lin X, Han M, Cheng L, Chen J, Zhang Z, Shen T, Wang M, Wen B, Ni T, Han C. Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biol 2016; 13:1011-1024. [PMID: 27560004 DOI: 10.1080/15476286.2016.1218588] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Among all tissues of the metazoa, the transcritpome of testis displays the highest diversity and specificity. However, its composition and dynamics during spermatogenesis have not been fully understood. Here, we have identified 20,639 message RNAs (mRNAs), 7,168 long non-coding RNAs (lncRNAs) and 15,101 circular RNAs (circRNAs) in mouse spermatogenic cells, and found many of them were specifically expressed in testes. lncRNAs are significantly more testis-specific than mRNAs. At all stages, mRNAs are generally more abundant than lncRNAs, and linear transcripts are more abundant than circRNAs. We showed that the productions of circRNAs and piRNAs were highly regulated instead of random processes. Based on the results of a small-scale functional screening experiment using cultured mouse spermatogonial stem cells, many evolutionarily conserved lncRNAs are likely to play roles in spermatogenesis. Typical classes of transcription factor binding sites are enriched in the promoters of testis-specific m/lncRNA genes. Target genes of CREM and RFX2, 2 key TFs for spermatogenesis, were further validated by using ChIP-chip assays and RNA-seq on RFX2-knockout spermatogenic cells. Our results contribute to the current understanding of the transcriptomic complexity of spermatogenic cells and provide a valuable resource from which many candidate genes may be selected for further functional studies.
Collapse
Affiliation(s)
- Xiwen Lin
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Miao Han
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Lu Cheng
- c Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China
| | - Jian Chen
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d Graduate University of Chinese Academy of Sciences , Beijing , China
| | - Zhuqiang Zhang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d Graduate University of Chinese Academy of Sciences , Beijing , China
| | - Ting Shen
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Min Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Bo Wen
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China.,c Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China
| | - Ting Ni
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Chunsheng Han
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
45
|
Wang B, Qi T, Chen SQ, Ye L, Huang ZS, Li H. RFX1 maintains testis cord integrity by regulating the expression of Itga6 in male mouse embryos. Mol Reprod Dev 2016; 83:606-14. [PMID: 27228460 DOI: 10.1002/mrd.22660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/21/2016] [Indexed: 01/13/2023]
Abstract
Formation and maintenance of testis cords during embryogenesis are essential for establishing testicular structure and function in adults. At least five genes (Wt1, Dhh, Sox8/Sox9, and Dax1) appear to be required for the maintenance of testis cord integrity in mice. Here, we report that RFX1 is specifically expressed in fetal Sertoli cells. Mouse embryos conditionally deficient in Rfx1 (Rfx1(flox/flox) , Amh-Cre) possessed disrupted testis cords, as the basal lamina lining was fragmented or completely absent in some areas of the testes. Spermatogenesis was blocked, leading to complete infertility. Expression of integrin alpha-6 was significantly decreased in Rfx1-deficient testes compared to control testes; indeed, luciferase and chromatin immunoprecipitation assays indicated that RFX1 directly activates transcription of Itga6 (the gene coding for integrin alpha-6). Taken together, RFX1 transcriptionally targets Itga6 in Sertoli cells, thereby, helping maintain the integrity of the basal lamina during testis cord development. Mol. Reprod. Dev. 83: 606-614, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bo Wang
- Department of Infertility and Sexual Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| | - Tao Qi
- Department of Infertility and Sexual Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| | - Shi-Qin Chen
- Assisted Reproductive Center, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Lei Ye
- Department of Infertility and Sexual Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| | - Zhan-Sen Huang
- Department of Infertility and Sexual Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| | - Hao Li
- Department of Infertility and Sexual Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| |
Collapse
|