1
|
Konosu A, Matsuki Y, Fukuhara K, Funato T, Yanagihara D. Roles of the cerebellar vermis in predictive postural controls against external disturbances. Sci Rep 2024; 14:3162. [PMID: 38326369 PMCID: PMC10850480 DOI: 10.1038/s41598-024-53186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
The central nervous system predictively controls posture against external disturbances; however, the detailed mechanisms remain unclear. We tested the hypothesis that the cerebellar vermis plays a substantial role in acquiring predictive postural control by using a standing task with floor disturbances in rats. The intact, lesioned, and sham groups of rats sequentially underwent 70 conditioned floor-tilting trials, and kinematics were recorded. Six days before these recordings, only the lesion group underwent focal suction surgery targeting vermal lobules IV-VIII. In the naïve stage of the sequential trials, the upright postures and fluctuations due to the disturbance were mostly consistent among the groups. Although the pattern of decrease in postural fluctuation due to learning corresponded among the groups, the learning rate estimated from the lumbar displacement was significantly lower in the lesion group than in the intact and sham groups. These results suggest that the cerebellar vermis contributes to predictive postural controls.
Collapse
Affiliation(s)
- Akira Konosu
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| | - Yuma Matsuki
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Kaito Fukuhara
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Dai Yanagihara
- Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
2
|
Schellen SJ, Zeidan P, Ernst TM, Thieme A, Nicksirat SA, Merz CJ, Nitsche MA, Yavari F, Timmann D, Batsikadze G. Absence of modulatory effects of 6Hz cerebellar transcranial alternating current stimulation on fear learning in men. Front Hum Neurosci 2024; 17:1328283. [PMID: 38264350 PMCID: PMC10803490 DOI: 10.3389/fnhum.2023.1328283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Fear is a vital defense mechanism to potential threats, which is influenced by the cerebellum. While the cerebellum's role in acquiring fear responses is well understood, limited knowledge exists about its involvement in fear extinction. In this study, we investigated the effects of cerebellar theta band transcranial alternating current stimulation (ctACS) administered during fear extinction training, based on previous evidence from animal studies suggesting a role of cerebellar theta oscillations in associative memory formation. To this end, thirty-seven healthy right-handed male participants were recruited for a two-day differential fear renewal paradigm. On day 1, they underwent acquisition training in context A followed by extinction training in context B. On day 2, recall was tested in contexts A and B. One group of participants received ctACS in the theta band (6 Hz) during extinction training. The other group received sham ctACS. Although both groups demonstrated the ability to recall previously learned fear and distinguish between low and high threat stimuli, no significant differences were observed between the ctACS and sham groups, indicating that ctACS at this theta frequency range did not impact extinction and recall of previously acquired fear in this study. Nevertheless, using ctACS could still be useful in future research, including brain imaging studies, to better understand how the cerebellum is involved in fear and extinction processes.
Collapse
Affiliation(s)
- Sarah Johanna Schellen
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Philip Zeidan
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Thomas M. Ernst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Seyed Ali Nicksirat
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Christian J. Merz
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Fatemeh Yavari
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| |
Collapse
|
3
|
Li R, Zhang W, Zhang J, Zhang H, Chen H, Hu Z, Yao Z, Chen H, Hu B. Sustained Activity of Hippocampal Parvalbumin-Expressing Interneurons Supports Trace Eyeblink Conditioning in Mice. J Neurosci 2022; 42:8343-8360. [PMID: 36167784 PMCID: PMC9653279 DOI: 10.1523/jneurosci.0834-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Although recent studies have revealed an involvement of hippocampal interneurons in learning the association among time-separated events, its underlying cellular mechanisms remained not fully clarified. Here, we combined multichannel recording and optogenetics to elucidate how the hippocampal parvalbumin-expressing interneurons (PV-INs) support associative learning. To address this issue, we trained the mice (both sexes) to learn hippocampus-dependent trace eyeblink conditioning (tEBC) in which they associated a light flash conditioned stimulus (CS) with a corneal air puff unconditioned stimuli (US) separated by a 250 ms time interval. We found that the hippocampal PV-INs exhibited learning-associated sustained activity at the early stage of tEBC acquisition. Moreover, the PV-IN sustained activity was positively correlated with the occurrence of conditioned eyeblink responses at the early learning stage. Suppression of the PV-IN sustained activity impaired the acquisition of tEBC, whereas the PV-IN activity suppression had no effect on the acquisition of delay eyeblink conditioning, a hippocampus-independent learning task. Learning-associated augmentation in the excitatory pyramidal cell-to-PVIN drive may contribute to the formation of PV-IN sustained activity. Suppression of the PV-IN sustained activity disrupted hippocampal gamma but not theta band oscillation during the CS-US interval period. Gamma frequency (40 Hz) activation of the PV-INs during the CS-US interval period facilitated the acquisition of tEBC. Our current findings highlight the involvement of hippocampal PV-INs in tEBC acquisition and reveal insights into the PV-IN activity kinetics which are of key importance for the hippocampal involvement in associative learning.SIGNIFICANCE STATEMENT The cellular mechanisms underlying associative learning have not been fully clarified. Previous studies focused on the involvement of hippocampal pyramidal cells in associative learning, whereas the activity and function of hippocampal interneurons were largely neglected. We herein demonstrated the hippocampal PV-INs exhibited learning-associated sustained activity, which was required for the acquisition of tEBC. Furthermore, we showed evidence that the PV-IN sustained activity might have arisen from the learning-associated augmentation in excitatory pyramidal cell-to-PVIN drive and contributed to learning-associated augmentation in gamma band oscillation during tEBC acquisition. Our findings provide more mechanistic understanding of the cellular mechanisms underlying the hippocampal involvement in associative learning.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Weiwei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Haibo Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hui Chen
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhongxiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing 400038, China
| |
Collapse
|
4
|
Xie J, Yan T, Zhang J, Ma Z, Zhou H. Modulation of Neuronal Activity and Saccades at Theta Rhythm During Visual Search in Non-human Primates. Neurosci Bull 2022; 38:1183-1198. [PMID: 35608752 PMCID: PMC9554076 DOI: 10.1007/s12264-022-00884-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/18/2022] [Indexed: 10/18/2022] Open
Abstract
Active exploratory behaviors have often been associated with theta oscillations in rodents, while theta oscillations during active exploration in non-human primates are still not well understood. We recorded neural activities in the frontal eye field (FEF) and V4 simultaneously when monkeys performed a free-gaze visual search task. Saccades were strongly phase-locked to theta oscillations of V4 and FEF local field potentials, and the phase-locking was dependent on saccade direction. The spiking probability of V4 and FEF units was significantly modulated by the theta phase in addition to the time-locked modulation associated with the evoked response. V4 and FEF units showed significantly stronger responses following saccades initiated at their preferred phases. Granger causality and ridge regression analysis showed modulatory effects of theta oscillations on saccade timing. Together, our study suggests phase-locking of saccades to the theta modulation of neural activity in visual and oculomotor cortical areas, in addition to the theta phase locking caused by saccade-triggered responses.
Collapse
Affiliation(s)
- Jin Xie
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Yan
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jie Zhang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Research Center for Artificial Intelligence, Peng Cheng Laboratory, Shenzhen, 518000, China
| | - Zhengyu Ma
- The Research Center for Artificial Intelligence, Peng Cheng Laboratory, Shenzhen, 518000, China
| | - Huihui Zhou
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- The Research Center for Artificial Intelligence, Peng Cheng Laboratory, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Mavanji V, Georgopoulos AP, Kotz CM. Orexin enhances neuronal synchronization in adult rat hypothalamic culture: a model to study hypothalamic function. J Neurophysiol 2022; 127:1221-1229. [PMID: 35353632 PMCID: PMC9054260 DOI: 10.1152/jn.00041.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
The regulation of sleep/wake behavior and energy homeostasis is maintained in part by the hypothalamic neuropeptide orexin A (OXA, hypocretin). Reduction in orexin signaling is associated with sleep disorders and obesity, whereas higher lateral hypothalamic (LH) orexin signaling and sensitivity promotes obesity resistance. Similarly, dysregulation of hypothalamic neural networks is associated with onset of age-related diseases, including obesity and several neurological diseases. Despite the association of obesity and aging, and that adult populations are the target for the majority of pharmaceutical and obesity studies, conventional models for neuronal networks utilize embryonic neural cultures rather than adult neurons. Synchronous activity describes correlated changes in neuronal activity between neurons and is a feature of normal brain function, and is a measure of functional connectivity and final output from a given neural structure. Earlier studies show alterations in hypothalamic synchronicity following behavioral perturbations in embryonic neurons obtained from obesity-resistant rats and following application of orexin onto embryonic hypothalamic cultures. Synchronous network dynamics in adult hypothalamic neurons remain largely undescribed. To address this, we established an adult rat hypothalamic culture in multi-electrode-array (MEA) dishes and recorded the field potentials. Then we studied the effect of exogenous orexin on network synchronization of these adult hypothalamic cultures. In addition, we studied the wake promoting effects of orexin in vivo when directly injected into the lateral hypothalamus (LH). Our results showed that the adult hypothalamic cultures are viable for nearly 3 mo in vitro, good quality MEA recordings can be obtained from these cultures in vitro, and finally, that cultured adult hypothalamus is responsive to orexin. These results support that adult rat hypothalamic cultures could be used as a model to study the neural mechanisms underlying obesity. In addition, LH administration of OXA enhanced wakefulness in rats, indicating that OXA enhances wakefulness partly by promoting neural synchrony in the hypothalamus.NEW & NOTEWORTHY This study, for the first time, demonstrates that adult hypothalamic cultures are viable in vitro for a prolonged duration and are electrophysiologically active. In addition, the study shows that orexin enhances neural synchronization in adult hypothalamic cultures.
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Apostolos P Georgopoulos
- Research Service, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Brain Sciences Center, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, Minnesota
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Catherine M Kotz
- Research Service, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Minnesota Nutrition and Obesity Research Center, St. Paul, Minnesota
- Geriatric Research Education Clinical Center, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
6
|
Baek SJ, Park JS, Kim J, Yamamoto Y, Tanaka-Yamamoto K. VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors. eLife 2022; 11:72981. [PMID: 35156922 PMCID: PMC8843095 DOI: 10.7554/elife.72981] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Although cerebellar alterations have been implicated in stress symptoms, the exact contribution of the cerebellum to stress symptoms remains to be elucidated. Here, we demonstrated the crucial role of cerebellar neurons projecting to the ventral tegmental area (VTA) in the development of chronic stress-induced behavioral alterations in mice. Chronic chemogenetic activation of inhibitory Purkinje cells in crus I suppressed c-Fos expression in the DN and an increase in immobility in the tail suspension test or forced swimming test, which were triggered by chronic stress application. The combination of adeno-associated virus-based circuit mapping and electrophysiological recording identified network connections from crus I to the VTA via the dentate nucleus (DN) of the deep cerebellar nuclei. Furthermore, chronic inhibition of specific neurons in the DN that project to the VTA prevented stressed mice from showing such depression-like behavior, whereas chronic activation of these neurons alone triggered behavioral changes that were comparable with the depression-like behaviors triggered by chronic stress application. Our results indicate that the VTA-projecting cerebellar neurons proactively regulate the development of depression-like behavior, raising the possibility that cerebellum may be an effective target for the prevention of depressive disorders in human.
Collapse
Affiliation(s)
- Soo Ji Baek
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Sung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
7
|
Ventromedial Thalamus-Projecting DCN Neurons Modulate Associative Sensorimotor Responses in Mice. Neurosci Bull 2022; 38:459-473. [PMID: 34989972 PMCID: PMC9106783 DOI: 10.1007/s12264-021-00810-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022] Open
Abstract
The deep cerebellar nuclei (DCN) integrate various inputs to the cerebellum and form the final cerebellar outputs critical for associative sensorimotor learning. However, the functional relevance of distinct neuronal subpopulations within the DCN remains poorly understood. Here, we examined a subpopulation of mouse DCN neurons whose axons specifically project to the ventromedial (Vm) thalamus (DCNVm neurons), and found that these neurons represent a specific subset of DCN units whose activity varies with trace eyeblink conditioning (tEBC), a classical associative sensorimotor learning task. Upon conditioning, the activity of DCNVm neurons signaled the performance of conditioned eyeblink responses (CRs). Optogenetic activation and inhibition of the DCNVm neurons in well-trained mice amplified and diminished the CRs, respectively. Chemogenetic manipulation of the DCNVm neurons had no effects on non-associative motor coordination. Furthermore, optogenetic activation of the DCNVm neurons caused rapid elevated firing activity in the cingulate cortex, a brain area critical for bridging the time gap between sensory stimuli and motor execution during tEBC. Together, our data highlights DCNVm neurons' function and delineates their kinematic parameters that modulate the strength of associative sensorimotor responses.
Collapse
|
8
|
Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021; 15:759948. [PMID: 34975418 PMCID: PMC8716603 DOI: 10.3389/fnana.2021.759948] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a long history in terms of research on its network structures and motor functions, yet our understanding of them has further advanced in recent years owing to technical developments, such as viral tracers, optogenetic and chemogenetic manipulation, and single cell gene expression analyses. Specifically, it is now widely accepted that the cerebellum is also involved in non-motor functions, such as cognitive and psychological functions, mainly from studies that have clarified neuronal pathways from the cerebellum to other brain regions that are relevant to these functions. The techniques to manipulate specific neuronal pathways were effectively utilized to demonstrate the involvement of the cerebellum and its pathways in specific brain functions, without altering motor activity. In particular, the cerebellar efferent pathways that have recently gained attention are not only monosynaptic connections to other brain regions, including the periaqueductal gray and ventral tegmental area, but also polysynaptic connections to other brain regions, including the non-primary motor cortex and hippocampus. Besides these efferent pathways associated with non-motor functions, recent studies using sophisticated experimental techniques further characterized the historically studied efferent pathways that are primarily associated with motor functions. Nevertheless, to our knowledge, there are no articles that comprehensively describe various cerebellar efferent pathways, although there are many interesting review articles focusing on specific functions or pathways. Here, we summarize the recent findings on neuronal networks projecting from the cerebellum to several brain regions. We also introduce various techniques that have enabled us to advance our understanding of the cerebellar efferent pathways, and further discuss possible directions for future research regarding these efferent pathways and their functions.
Collapse
Affiliation(s)
- Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soo Ji Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
9
|
Baumel Y, Cohen D. State-dependent entrainment of cerebellar nuclear neurons to the local field potential during voluntary movements. J Neurophysiol 2021; 126:112-122. [PMID: 34107223 DOI: 10.1152/jn.00551.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding the relationship between the local field potential (LFP) and single neurons is essential if we are to understand network dynamics and the entrainment of neuronal activity. Here, we investigated the interaction between the LFP and single neurons recorded in the rat cerebellar nuclei (CN), which are part of the sensorimotor network, in freely moving rats. During movement, the LFP displayed persistent oscillations in the theta band frequency, whereas CN neurons displayed intermittent oscillations in the same frequency band contingent on the instantaneous LFP power; the neurons oscillated primarily when the concurrent LFP power was either high or low. Quantification of the relative instantaneous frequency and phase locking showed that CN neurons exhibited phase locked rhythmic activity at a frequency similar to that of the LFP or at a shifted frequency during high and low LFP power, respectively. We suggest that this nonlinear interaction between cerebellar neurons and the LFP power, which occurs solely during movement, contributes to the shaping of cerebellar output patterns.NEW & NOTEWORTHY We studied the interaction between single neurons and the LFP in the cerebellar nuclei of freely moving rats. We show that during movement, the neurons oscillated in the theta frequency band contingent on the concurrent LFP oscillation power in the same band; the neurons oscillated primarily when the LFP power was either high or low. We are the first to demonstrate a nonlinear, state-dependent entrainment of single neurons to the LFP.
Collapse
Affiliation(s)
- Yuval Baumel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
10
|
Zhang WW, Li RR, Zhang J, Yan J, Zhang QH, Hu ZA, Hu B, Yao ZX, Chen H. Hippocampal Interneurons are Required for Trace Eyeblink Conditioning in Mice. Neurosci Bull 2021; 37:1147-1159. [PMID: 33991316 PMCID: PMC8353031 DOI: 10.1007/s12264-021-00700-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
While the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Rong-Rong Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Yan
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Qian-Hui Zhang
- Department of Foreign Language, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China. .,Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, 400038, China.
| | - Zhong-Xiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
11
|
Tauffer L, Kumar A. Short-Term Synaptic Plasticity Makes Neurons Sensitive to the Distribution of Presynaptic Population Firing Rates. eNeuro 2021; 8:ENEURO.0297-20.2021. [PMID: 33579731 PMCID: PMC8035045 DOI: 10.1523/eneuro.0297-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to discriminate spikes that encode a particular stimulus from spikes produced by background activity is essential for reliable information processing in the brain. We describe how synaptic short-term plasticity (STP) modulates the output of presynaptic populations as a function of the distribution of the spiking activity and find a strong relationship between STP features and sparseness of the population code, which could solve this problem. Furthermore, we show that feedforward excitation followed by inhibition (FF-EI), combined with target-dependent STP, promote substantial increase in the signal gain even for considerable deviations from the optimal conditions, granting robustness to this mechanism. A simulated neuron driven by a spiking FF-EI network is reliably modulated as predicted by a rate analysis and inherits the ability to differentiate sparse signals from dense background activity changes of the same magnitude, even at very low signal-to-noise conditions. We propose that the STP-based distribution discrimination is likely a latent function in several regions such as the cerebellum and the hippocampus.
Collapse
Affiliation(s)
- Luiz Tauffer
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Arvind Kumar
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
12
|
Synchronous neuronal interactions in rat hypothalamic culture: a novel model for the study of network dynamics in metabolic disorders. Exp Brain Res 2021; 239:755-764. [PMID: 33388905 DOI: 10.1007/s00221-020-05977-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022]
Abstract
Synchronous neural activity is a feature of normal brain function, and altered synchronization is observed in several neurological diseases. Dysfunction in hypothalamic pathways leads to obesity, suggesting that hypothalamic neural synchrony is critical for energy homeostasis. The lateral hypothalamic orexin neurons are extensively interconnected with other brain structures and are important for energy balance. Earlier studies show that rats with higher orexin sensitivity are obesity resistant. Similarly, topiramate, an anti-epileptic drug, has been shown to reduce weight in humans. Since orexin enhances neuronal excitation, we hypothesized that obesity-resistant rats with higher orexin sensitivity may exhibit enhanced hypothalamic synchronization. We further hypothesized that anti-obesity agents such as orexin and topiramate will enhance hypothalamic synchronization. To test this, we examined neural synchronicity in primary embryonic hypothalamic cell cultures, obtained from embryonic day 18 (E18) obesity-susceptible Sprague-Dawley (SD) and obesity-resistant rats. Hypothalamic tissue was cultured in multielectrode array (MEA), and recordings were performed twice weekly, from 4th to 32nd day in vitro (DIV). Next, we tested the effects of orexin and topiramate application on neural synchronicity of hypothalamic cultures obtained from SD rat embryos. Signals were analyzed for synchronization using cross correlation. Our results showed that (1) obesity-resistant hypothalamus exhibits significantly higher synchronization compared to obesity-sensitive hypothalamus; and (2) orexin and topiramate enhance hypothalamic synchronization. These results support that enhanced orexin sensitivity is associated with greater neural synchronization, and that anti-obesity treatments enhance network synchronization, thus constrain variability in hypothalamic output signals, to extrahypothalamic structures involved in energy homeostasis.
Collapse
|
13
|
Caligiore D, Mirino P. How the Cerebellum and Prefrontal Cortex Cooperate During Trace Eyeblinking Conditioning. Int J Neural Syst 2020; 30:2050041. [PMID: 32618205 DOI: 10.1142/s0129065720500410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several data have demonstrated that during the widely used experimental paradigm for studying associative learning, trace eye blinking conditioning (TEBC), there is a strong interaction between cerebellum and medial prefrontal cortex (mPFC). Despite this evidence, the neural mechanisms underlying this interaction are still not clear. Here, we propose a neurophysiologically plausible computational model to address this issue. The model is constrained on the basis of two critical anatomo-physiological features: (i) the cerebello-cortical organization through two circuits, respectively, targeting M1 and mPFC; (ii) the different timing in the plasticity mechanisms of these parallel circuits produced by the granule cells time sensitivity according to which different subpopulations are active at different moments during conditioned stimuli. The computer simulations run with the model suggest that these features are critical to understand how the cooperation between cerebellum and mPFC supports motor areas during TEBC. In particular, a greater trace interval produces greater plasticity changes at the slow path synapses involving mPFC with respect to plasticity changes at the fast path involving M1. As a consequence, the greater is the trace interval, the stronger is the mPFC involvement. The model has been validated by reproducing data collected through recent real mice experiments.
Collapse
Affiliation(s)
- Daniele Caligiore
- Computational and Translational Neuroscience Laboratory (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, Rome, 00185, Italy
| | - Pierandrea Mirino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, Rome, 00185, Italy
| |
Collapse
|
14
|
Modi ME, Sahin M. A unified circuit for social behavior. Neurobiol Learn Mem 2019; 165:106920. [PMID: 30149055 PMCID: PMC6387844 DOI: 10.1016/j.nlm.2018.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Recent advances in circuit manipulation technologies have enabled the association of distinct neural circuits with complex social behaviors. The brain areas identified through historical anatomical characterizations as mediators of sexual and parental behaviors can now be functionally linked to adult social behaviors within a unified circuit. In vivo electrophysiology, optogenetics and chemogenetics have been used to follow the processing of social sensory stimuli from perception by the olfactory system to valence detection by the amygdala and mesolimbic dopamine system to integration by the cerebral and cerebellar cortices under modulation of hypothalamic neuropeptides. Further, these techniques have been able to identify the distinct functional changes induced by social as opposed to non-social stimuli. Together this evidence suggests that there is a distinct, functionally coupled circuit that is selectively activated by social stimuli. A unified social circuit provides a new framework against which synaptopathic autism related mutations can be considered and novel pharmacotherapeutic strategies can be developed.
Collapse
Affiliation(s)
- Meera E Modi
- Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, United States
| | - Mustafa Sahin
- Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, United States.
| |
Collapse
|
15
|
Tremblay SA, Chapman CA, Courtemanche R. State-Dependent Entrainment of Prefrontal Cortex Local Field Potential Activity Following Patterned Stimulation of the Cerebellar Vermis. Front Syst Neurosci 2019; 13:60. [PMID: 31736718 PMCID: PMC6828963 DOI: 10.3389/fnsys.2019.00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/08/2019] [Indexed: 11/24/2022] Open
Abstract
The cerebellum is involved in sensorimotor, cognitive, and emotional functions through cerebello-cerebral connectivity. Cerebellar neurostimulation thus likely affects cortical circuits, as has been shown in studies using cerebellar stimulation to treat neurological disorders through modulation of frontal EEG oscillations. Here we studied the effects of different frequencies of cerebellar stimulation on oscillations and coherence in the cerebellum and prefrontal cortex in the urethane-anesthetized rat. Local field potentials were recorded in the right lateral cerebellum (Crus I/II) and bilaterally in the prefrontal cortex (frontal association area, FrA) in adult male Sprague-Dawley rats. Stimulation was delivered to the cerebellar vermis (lobule VII) using single pulses (0.2 Hz for 60 s), or repeated pulses at 1 Hz (30 s), 5 Hz (10 s), 25 Hz (2 s), and 50 Hz (1 s). Effects of stimulation were influenced by the initial state of EEG activity which varies over time during urethane-anesthesia; 1 Hz stimulation was more effective when delivered during the slow-wave state (Stage 1), while stimulation with single-pulse, 25, and 50 Hz showed stronger effects during the activated state (Stage 2). Single-pulses resulted in increases in oscillatory power in the delta and theta bands for the cerebellum, and in frequencies up to 80 Hz in cortical sites. 1 Hz stimulation induced a decrease in 0–30 Hz activity and increased activity in the 30–200 Hz range, in the right FrA. 5 Hz stimulation reduced power in high frequencies in Stage 1 and induced mixed effects during Stage 2.25 Hz stimulation increased cortical power at low frequencies during Stage 2, and increased power in higher frequency bands during Stage 1. Stimulation at 50 Hz increased delta-band power in all recording sites, with the strongest and most rapid effects in the cerebellum. 25 and 50 Hz stimulation also induced state-dependent effects on cerebello-cortical and cortico-cortical coherence at high frequencies. Cerebellar stimulation can therefore entrain field potential activity in the FrA and drive synchronization of cerebello-cortical and cortico-cortical networks in a frequency-dependent manner. These effects highlight the role of the cerebellar vermis in modulating large-scale synchronization of neural networks in non-motor frontal cortex.
Collapse
Affiliation(s)
- Stéfanie A Tremblay
- Department of Health, Kinesiology, and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - C Andrew Chapman
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Richard Courtemanche
- Department of Health, Kinesiology, and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
16
|
Watson TC, Obiang P, Torres-Herraez A, Watilliaux A, Coulon P, Rochefort C, Rondi-Reig L. Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife 2019; 8:e41896. [PMID: 31205000 PMCID: PMC6579515 DOI: 10.7554/elife.41896] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Multiple lines of evidence suggest that functionally intact cerebello-hippocampal interactions are required for appropriate spatial processing. However, how the cerebellum anatomically and physiologically engages with the hippocampus to sustain such communication remains unknown. Using rabies virus as a retrograde transneuronal tracer in mice, we reveal that the dorsal hippocampus receives input from topographically restricted and disparate regions of the cerebellum. By simultaneously recording local field potential from both the dorsal hippocampus and anatomically connected cerebellar regions, we additionally suggest that the two structures interact, in a behaviorally dynamic manner, through subregion-specific synchronization of neuronal oscillations in the 6-12 Hz frequency range. Together, these results reveal a novel neural network macro-architecture through which we can understand how a brain region classically associated with motor control, the cerebellum, may influence hippocampal neuronal activity and related functions, such as spatial navigation.
Collapse
Affiliation(s)
- Thomas Charles Watson
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Pauline Obiang
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Arturo Torres-Herraez
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Aurélie Watilliaux
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Patrice Coulon
- Institut de Neurosciences de la TimoneCNRS and Aix Marseille UniversitéMarseilleFrance
| | - Christelle Rochefort
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Laure Rondi-Reig
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| |
Collapse
|
17
|
A method for combining multiple-units readout of optogenetic control with natural stimulation-evoked eyeblink conditioning in freely-moving mice. Sci Rep 2019; 9:1857. [PMID: 30755637 PMCID: PMC6372581 DOI: 10.1038/s41598-018-37885-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023] Open
Abstract
A growing pool of transgenic mice expressing Cre-recombinases, together with Cre-dependent opsin viruses, provide good tools to manipulate specific neural circuits related to eyeblink conditioning (EBC). However, currently available methods do not enable to get fast and precise readout of optogenetic control when the freely-moving mice are receiving EBC training. In the current study, we describe a laser diode (LD)-optical fiber (OF)-Tetrode assembly that allows for simultaneous multiple units recording and optical stimulation. Since the numbers of various cables that require to be connected are minimized, the LD-OF-Tetrode assembly can be combined with CS-US delivery apparatus for revealing the effects of optical stimulation on EBC in freely- moving mice. Moreover, this combination of techniques can be utilized to optogenetically intervene in hippocampal neuronal activities during the post-conditioning sleep in a closed-loop manner. This novel device thus enhances our ability to explore how specific neuronal assembly contributes to associative motor memory in vivo.
Collapse
|
18
|
Nonlinear analysis of local field potentials and motor cortex EEG in spinocerebellar ataxia 3. J Clin Neurosci 2019; 59:298-304. [PMID: 30352763 DOI: 10.1016/j.jocn.2018.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/21/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
This study explores the potential usefulness of EEG for patient diagnosis by analyzing SCA3 and wt mice. Self-made implantable electrodes were constructed and implanted to extract EEG signals from the cerebral motor cortex and the cerebellar areas that are affected by the disease. Nonlinear dynamic analysis and EEG energy were used to distinguish between SCA3 and WT mice, and we found that all four were increased in SCA3 mice. The alpha and theta bands of LZ complexity were significantly higher in SCA3 mice than in the control group. Therefore, it was possible to distinguish between the two groups by the LZ complexity of their alpha and theta bands. Analysis of C0 complexity and approximate entropy showed that the random part in the disease group was larger than in the control group, and that in addition the randomness was increased in SCA3 mice. The spatial learning and memory were analyzed by means of the Morris water maze test (MWM), The results showed that the swimming velocity, distance traveled and latency to reach the platform in SCA3 mice were increased when compared with WT mice during the 4 training days (p < 0.05, 0.01 or 0.001). And the results are conform to the results of EEG signals. In conclusion, EEG signals could be used to identify SCA3 in mice. They may also be clinically useful for the diagnosis of cerebellar ataxia in patients, and for additional studies aimed at gaining a deeper understanding of spinal cerebral ataxia.
Collapse
|
19
|
Abstract
Rhythmicity and oscillations are common features in nature, and can be seen in phenomena such as seasons, breathing, and brain activity. Despite the fact that a single neuron transmits its activity to its neighbor through a transient pulse, rhythmic activity emerges from large population-wide activity in the brain, and such rhythms are strongly coupled with the state and cognitive functions of the brain. However, it is still debated whether the oscillations of brain activity actually carry information. Here, we briefly introduce the biological findings of brain oscillations, and summarize the recent progress in understanding how oscillations mediate brain function. Finally, we examine the possible relationship between brain cognitive function and oscillation, focusing on how oscillation is related to memory, particularly with respect to state-dependent memory formation and memory retrieval under specific brain waves. We propose that oscillatory waves in the neocortex contribute to the synchronization and activation of specific memory trace ensembles in the neocortex by promoting long-range neural communication.
Collapse
Affiliation(s)
- Wenhan Luo
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ji-Song Guan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
20
|
Spontaneous recovery of conditioned eyeblink responses is associated with transiently decreased cerebellar theta activity in guinea pigs. Behav Brain Res 2018; 359:457-466. [PMID: 30468789 DOI: 10.1016/j.bbr.2018.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Behavioral studies have demonstrated that extinguished conditioned eyeblink responses (CR) can spontaneously recover after extinction. However, the neural mechanisms underlying this process are still unclear. We have shown that spontaneous cerebellar theta activity was predictive of subsequent CR extinction. Here, we sought to further evaluate the association between spontaneous recovery and cerebellar theta activity in behaving guinea pigs. It was found that trace conditioning training significantly diminished the degree of spontaneous recovery during extinction sessions as compared to delay training. Moreover, by recording local field potential in the cerebellum of guinea pigs undergoing an eyeblink conditioning extinction task, we found that spontaneous recovery of delay-paradigm CRs was associated with transiently decreased CS-evoked theta activity in the cerebellum. These findings suggest that decreased CS-evoked cerebellar theta activity may contribute to the neural process that is important for the spontaneous recovery of extinguished motor memory. Future studies are needed to clarify the neural mechanism underlying changed cerebellar theta activity during altered behavioral contingencies.
Collapse
|
21
|
Huguet G, Kadar E, Temel Y, Lim LW. Electrical Stimulation Normalizes c-Fos Expression in the Deep Cerebellar Nuclei of Depressive-like Rats: Implication of Antidepressant Activity. THE CEREBELLUM 2017; 16:398-410. [PMID: 27435250 DOI: 10.1007/s12311-016-0812-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The electrical stimulation of specific brain targets has been shown to induce striking antidepressant effects. Despite that recent data have indicated that cerebellum is involved in emotional regulation, the mechanisms by which stimulation improved mood-related behaviors in the cerebellum remained largely obscure. Here, we investigated the stimulation effects of the ventromedial prefrontal cortex (vmPFC), nucleus accumbens (NAc), and lateral habenular nucleus on the c-Fos neuronal activity in various deep cerebellar and vestibular nuclei using the unpredictable chronic mild stress (CMS) animal model of depression. Our results showed that stressed animals had increased number of c-Fos cells in the cerebellar dentate and fastigial nuclei, as well as in the spinal vestibular nucleus. To examine the stimulation effects, we found that vmPFC stimulation significantly decreased the c-Fos activity within the cerebellar fastigial nucleus as compared to the CMS sham. Similarly, there was also a reduction of c-Fos expression in the magnocellular part of the medial vestibular nucleus in vmPFC- and NAc core-stimulated animals when compared to the CMS sham. Correlational analyses showed that the anxiety measure of home-cage emergence escape latency was positively correlated with the c-Fos neuronal activity of the cerebellar fastigial and magnocellular and parvicellular parts of the interposed nuclei in CMS vmPFC-stimulated animals. Interestingly, there was a strong correlation among activation in these cerebellar nuclei, indicating that the antidepressant-like behaviors were possibly mediated by the vmPFC stimulation-induced remodeling within the forebrain-cerebellar neurocircuitry.
Collapse
Affiliation(s)
- Gemma Huguet
- Department of Biology, University of Girona, Girona, Spain
| | - Elisabet Kadar
- Department of Biology, University of Girona, Girona, Spain.
| | - Yasin Temel
- Departments of Neuroscience and Neurosurgery, Maastricht University, Maastricht, The Netherlands
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China. .,Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.
| |
Collapse
|