1
|
Ripellino P, Schreiner B, Latorre D. Expanding our understanding of Guillain-Barré syndrome: Recent advances and clinical implications. Eur J Immunol 2024; 54:e2250336. [PMID: 39188201 DOI: 10.1002/eji.202250336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Guillain-Barré syndrome (GBS) is a rare yet potentially life-threatening disorder of the peripheral nervous system (PNS), characterized by substantial clinical heterogeneity. Although classified as an autoimmune disease, the immune mechanisms underpinning distinct GBS subtypes remain largely elusive. Traditionally considered primarily antibody-mediated, the pathophysiology of GBS lacks clarity, posing challenges in the development of targeted and effective treatments. Nevertheless, recent investigations have substantially expanded our understanding of the disease, revealing an involvement of autoreactive T cell immunity in a major subtype of GBS patients and opening new biomedical perspectives. This review highlights these discoveries and offers a comprehensive overview of current knowledge about GBS, including ongoing challenges in disease management.
Collapse
Affiliation(s)
- Paolo Ripellino
- Department of Neurology, Neurocenter of Southern Switzerland EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Bettina Schreiner
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Frischmeyer-Guerrerio PA, Young FD, Aktas ON, Haque T. Insights into the clinical, immunologic, and genetic underpinnings of food allergy. Immunol Rev 2024; 326:162-172. [PMID: 39034662 PMCID: PMC11436304 DOI: 10.1111/imr.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The last few decades have seen striking changes in the field of food allergy. The prevalence of the disease has risen dramatically in many parts of the globe, and management of the condition has undergone major revision. While delayed introduction of common allergenic foods during infancy was advised for many years, the learning early about peanut allergy (LEAP) trial and other studies led to a major shift in infant feeding practices, with deliberate early introduction of these foods now recommended. Additionally, the Food and Drug Administration approved the first treatment for food allergy in 2020-a peanut oral immunotherapy (OIT) product that likely represents just the beginning of new immunotherapy-based and other treatments for food allergy. Our knowledge of the environmental and genetic factors contributing to the pathogenesis of food allergy has also undergone transformational advances. Here, we will discuss our efforts to improve the clinical care of patients with food allergy and our understanding of the immunological mechanisms contributing to this common disease.
Collapse
Affiliation(s)
- Pamela A Frischmeyer-Guerrerio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Fernanda D Young
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ozge N Aktas
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamara Haque
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Mohammad Piri S, Amin Habibi M, Shool S, Khazaeli Najafabadi M, Ahmadpour S, Alemi F, Aria Nejadghaderi S, Shokri P, Abdi M, Asghari N, Amir Asef-Agah S, Tavakolpour S. Role of T follicular helper cells in autoimmune rheumatic Diseases: A systematic review on immunopathogenesis and response to treatment. Hum Immunol 2024; 85:110838. [PMID: 38970880 DOI: 10.1016/j.humimm.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND T follicular helper (Tfh) cells are a subdivision of T helper cells involved in antigen-specific B cell immunity. Tfh cells play an essential role in the interaction of T cells/B cells in the germinal centers (GC), and dysregulation of Tfh actions can offer pathogenic autoantibody formation and lead to the development of autoimmune diseases. This study seeks to evaluate changes in Tfh frequency and its related cytokines in autoimmune disease, its association with disease phase, severity, prognosis, and the effect of immunosuppressive treatment on the Tfh population. METHOD The study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Statement. Electronic databases, including PubMed, Scopus, Web of Science, and Embase, were systematically searched for potentially eligible studies up to January 1, 2024. RESULTS We identified 4998 articles in the initial search, from which 1686 similar titles were removed. A total of 3312 articles were initially screened, and 3051 articles were excluded by title/abstract screening. A total of 261 studies were considered for full-text assessment, and 205 articles were excluded by reason. Finally, a total of 56 studies were included in our review. CONCLUSION The population of Tfh cells is generally higher in autoimmune diseases versus Health control. Moreover, the number of Tfh cells is associated with the disease severity and can be considered for determining the prognosis of studies. Also, peripheral blood circulating Tfh (cTfh) cells are an available sample that can be used as an indicator for diagnosing diseases.
Collapse
Affiliation(s)
- Seyed Mohammad Piri
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sina Shool
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fakhroddin Alemi
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyed Aria Nejadghaderi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Pourya Shokri
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohtaram Abdi
- Student Research Committe, Faculty of Medicine, North Khorasan University of Medical Sciences, Bonjnurd, Iran.
| | - Negin Asghari
- Student Research Committe, Faculty of Medicine, North Khorasan University of Medical Sciences, Bonjnurd, Iran.
| | - Seyed Amir Asef-Agah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
4
|
Sarkar A, Nagappa M, Dey S, Mondal S, Babu GS, Choudhury SP, Akhil P, Debnath M. Synergistic effects of immune checkpoints and checkpoint inhibitors in inflammatory neuropathies: Implications and mechanisms. J Peripher Nerv Syst 2024; 29:6-16. [PMID: 37988274 DOI: 10.1111/jns.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Immune checkpoint molecules play pivotal roles in the regulation of immune homeostasis. Disruption of the immune checkpoints causes autoimmune/inflammatory as well as malignant disorders. Over the past few years, the immune checkpoint molecules with inhibitory function emerged as potential therapeutic targets in oncological conditions. The inhibition of the function of these molecules by using immune checkpoint inhibitors (ICIs) has brought paradigmatic changes in cancer therapy due to their remarkable clinical benefits, not only in improving the quality of life but also in prolonging the survival time of cancer patients. Unfortunately, the ICIs soon turned out to be a "double-edged sword" as the use of ICIs caused multiple immune-related adverse effects (irAEs). The development of inflammatory neuropathies such as Guillain-Barré syndrome (GBS) and Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP) as the secondary effects of immunotherapy appeared very challenging as these conditions result in significant and often permanent disability. The underlying mechanism(s) through which ICIs trigger inflammatory neuropathies are currently not known. Compelling evidence suggests autoimmune reaction and/or inflammation as the independent risk mechanism of inflammatory neuropathies. There is a lack of understanding as to whether prior exposure to the risk factors of inflammatory neuropathies, the presence of germline genetic variants in immune function-related genes, genetic variations within immune checkpoint molecules, the existence of autoantibodies, and activated/memory T cells act as determining factors for ICI-induced inflammatory neuropathies. Herein, we highlight the available pieces of evidence, discuss the mechanistic basis, and propose a few testable hypotheses on inflammatory neuropathies as irAEs of immunotherapy.
Collapse
Affiliation(s)
- Aritrani Sarkar
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Saikat Dey
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandipan Mondal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Gopika Suresh Babu
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Saptamita Pal Choudhury
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Pokala Akhil
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
5
|
Súkeníková L, Mallone A, Schreiner B, Ripellino P, Nilsson J, Stoffel M, Ulbrich SE, Sallusto F, Latorre D. Autoreactive T cells target peripheral nerves in Guillain-Barré syndrome. Nature 2024; 626:160-168. [PMID: 38233524 PMCID: PMC10830418 DOI: 10.1038/s41586-023-06916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Guillain-Barré syndrome (GBS) is a rare heterogenous disorder of the peripheral nervous system, which is usually triggered by a preceding infection, and causes a potentially life-threatening progressive muscle weakness1. Although GBS is considered an autoimmune disease, the mechanisms that underlie its distinct clinical subtypes remain largely unknown. Here, by combining in vitro T cell screening, single-cell RNA sequencing and T cell receptor (TCR) sequencing, we identify autoreactive memory CD4+ cells, that show a cytotoxic T helper 1 (TH1)-like phenotype, and rare CD8+ T cells that target myelin antigens of the peripheral nerves in patients with the demyelinating disease variant. We characterized more than 1,000 autoreactive single T cell clones, which revealed a polyclonal TCR repertoire, short CDR3β lengths, preferential HLA-DR restrictions and recognition of immunodominant epitopes. We found that autoreactive TCRβ clonotypes were expanded in the blood of the same patient at distinct disease stages and, notably, that they were shared in the blood and the cerebrospinal fluid across different patients with GBS, but not in control individuals. Finally, we identified myelin-reactive T cells in the nerve biopsy from one patient, which indicates that these cells contribute directly to disease pathophysiology. Collectively, our data provide clear evidence of autoreactive T cell immunity in a subset of patients with GBS, and open new perspectives in the field of inflammatory peripheral neuropathies, with potential impact for biomedical applications.
Collapse
Affiliation(s)
- L Súkeníková
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - A Mallone
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - B Schreiner
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - P Ripellino
- Department of Neurology, Neurocenter of Southern Switzerland EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - J Nilsson
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - M Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - S E Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - F Sallusto
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - D Latorre
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Haque TT, Weissler KA, Schmiechen Z, Laky K, Schwartz DM, Li J, Locci M, Turfkruyer M, Yao C, Schaughency P, Leak L, Lack J, Kanno Y, O'Shea J, Frischmeyer-Guerrerio PA. TGFβ prevents IgE-mediated allergic disease by restraining T follicular helper 2 differentiation. Sci Immunol 2024; 9:eadg8691. [PMID: 38241399 DOI: 10.1126/sciimmunol.adg8691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/15/2023] [Indexed: 01/21/2024]
Abstract
Allergic diseases are common, affecting more than 20% of the population. Genetic variants in the TGFβ pathway are strongly associated with atopy. To interrogate the mechanisms underlying this association, we examined patients and mice with Loeys-Dietz syndrome (LDS) who harbor missense mutations in the kinase domain of TGFΒR1/2. We demonstrate that LDS mutations lead to reduced TGFβ signaling and elevated total and allergen-specific IgE, despite the presence of wild-type T regulatory cells in a chimera model. Germinal center activity was enhanced in LDS and characterized by a selective increase in type 2 follicular helper T cells (TFH2). Expression of Pik3cg was increased in LDS TFH cells and associated with reduced levels of the transcriptional repressor SnoN. PI3Kγ/mTOR signaling in LDS naïve CD4+ T cells was elevated after T cell receptor cross-linking, and pharmacologic inhibition of PI3Kγ or mTOR prevented exaggerated TFH2 and antigen-specific IgE responses after oral antigen exposure in an adoptive transfer model. Naïve CD4+ T cells from nonsyndromic allergic individuals also displayed decreased TGFβ signaling, suggesting that our mechanistic discoveries may be broadly relevant to allergic patients in general. Thus, TGFβ plays a conserved, T cell-intrinsic, and nonredundant role in restraining TFH2 development via the PI3Kγ/mTOR pathway and thereby protects against allergic disease.
Collapse
Affiliation(s)
- Tamara T Haque
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine A Weissler
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zoe Schmiechen
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karen Laky
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Li
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathilde Turfkruyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen Yao
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul Schaughency
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lashawna Leak
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuka Kanno
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John O'Shea
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Habib AA, Waheed W. Guillain-Barré Syndrome. Continuum (Minneap Minn) 2023; 29:1327-1356. [PMID: 37851033 DOI: 10.1212/con.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
OBJECTIVE This article summarizes the clinical features, diagnostic criteria, differential diagnosis, pathogenesis, and prognosis of Guillain-Barré syndrome (GBS), with insights into the current and future diagnostic and therapeutic interventions for this neuromuscular syndrome. LATEST DEVELOPMENTS GBS is an acute, inflammatory, immune-mediated polyradiculoneuropathy that encompasses many clinical variants and divergent pathogenic mechanisms that lead to axonal, demyelinating, or mixed findings on electrodiagnostic studies. The type of antecedent infection, the development of pathogenic cross-reactive antibodies via molecular mimicry, and the location of the target gangliosides affect the subtype and severity of the illness. The data from the International GBS Outcome Study have highlighted regional variances, provided new and internationally validated prognosis tools that are beneficial for counseling, and introduced a platform for discussion of GBS-related open questions. New research has been undertaken, including research on novel diagnostic and therapeutic biomarkers, which may lead to new therapies. ESSENTIAL POINTS GBS is among the most frequent life-threatening neuromuscular emergencies in the world. At least 20% of patients with GBS have a poor prognosis and significant residual deficits despite receiving available treatments. Research is ongoing to further understand the pathogenesis of the disorder, find new biomarkers, and develop more effective and specific treatments.
Collapse
|
8
|
Ha J, Park S, Kang H, Kyung T, Kim N, Kim DK, Kim H, Bae K, Song MC, Lee KJ, Lee E, Hwang BS, Youn J, Seok JM, Park K. Real-world data on the incidence and risk of Guillain-Barré syndrome following SARS-CoV-2 vaccination: a prospective surveillance study. Sci Rep 2023; 13:3773. [PMID: 36882454 PMCID: PMC9989583 DOI: 10.1038/s41598-023-30940-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Increasing evidence suggests an association between SARS-CoV-2 vaccines and Guillain-Barré syndrome (GBS). Nevertheless, little is understood about the contributing risk factors and clinical characteristics of GBS post SARS-CoV-2 vaccination. In this prospective surveillance study of 38,828,691 SARS-CoV-2 vaccine doses administered from February 2021 to March 2022 in the Gyeonggi Province, South Korea, 55 cases of GBS were reported post vaccination. We estimated the incidence rate of GBS per million doses and the incidence rate ratio for the vaccine dose, mechanism, age, and sex. Additionally, we compared the clinical characteristics of GBS following mRNA-based and viral vector-based vaccinations. The overall incidence of GBS following SARS-CoV-2 vaccination was 1.42 per million doses. Viral vector-based vaccines were associated with a higher risk of GBS. Men were more likely to develop GBS than women. The third dose of vaccine was associated with a lower risk of developing GBS. Classic sensorimotor and pure motor subtypes were the predominant clinical subtypes, and demyelinating type was the predominant electrodiagnostic subtype. The initial dose of viral-vector based vaccine and later doses of mRNA-based vaccine were associated with GBS, respectively. GBS following SARS-CoV-2 vaccination may not be clinically distinct. However, physicians should pay close attention to the classic presentation of GBS in men receiving an initial dose of viral vector-based SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Jongmok Ha
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University Seoul Hospital, Seoul, Korea.,Department of Applied Statistics, Chung-Ang University, Seoul, Republic of Korea
| | - Hyunwook Kang
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea
| | - Taeeun Kyung
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea
| | - Namoh Kim
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea
| | - Dong Kyu Kim
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea
| | - Hyeonjoon Kim
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea
| | - Kihoon Bae
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea
| | - Min Cheol Song
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea
| | - Kwang June Lee
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea
| | - Euiho Lee
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea
| | - Beom Seuk Hwang
- Department of Applied Statistics, Chung-Ang University, Seoul, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-Gu, Seoul, 06351, Korea. .,Neuroscience Center, Samsung Medical Center, Seoul, Korea.
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Hospital Cheonan, Soonchunhyang University College of Medicine, Cheonan, Korea.
| | - Kunhee Park
- Infectious Disease Control Center, Gyeonggi Provincial Government, Suwon, Korea.
| |
Collapse
|
9
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
10
|
Untari NKSD, Kusumastuti K, Suryokusumo G, Sudiana IK. Hyperbaric oxygen therapy improves recovery at acute motor axonal neuropathy case. J Neurosci Rural Pract 2023; 14:145-148. [PMID: 36891088 PMCID: PMC9944315 DOI: 10.25259/jnrp_9_2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Acute motor axonal neuropathy (AMAN) is a rare immune-mediated disorder characterized by acute flaccid paralysis with elevated levels of GM1 antibodies. It is also known as a subtype of the Guillain-Barre syndrome (GBS) and develops since antigen s serve as antibodies in the spinal cord. We report a case diagnosed as AMAN with symptoms of ascending limb symmetrical weakness. A neurological examination revealed a flaccid paralysis with multiple cranial nerve palsies. Electromyography showed an axonal type of GBS. The patient refused bone marrow fluid aspiration. Intravenous immunoglobulin was administered at the high care unit. Unfortunately, despite the standard therapy, an optimal recovery was not obtained. Hyperbaric oxygen (HBO) therapy has been known to be common in illnesses and some clinical diseases. Although it has not been indicated for peripheral neuropathy, a remarkable recovery was soon visible in the HBO-treated AMAN case. The HBO mechanisms involved here are anti-inflammation and immunomodulation.
Collapse
Affiliation(s)
| | - Kurnia Kusumastuti
- Department of Neurology, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Guritno Suryokusumo
- Department of Hyperbaric, Pembangunan Nasional University, Jakarta, Indonesia
| | - I Ketut Sudiana
- Department of Pathology Anatomy, Dr. Soetomo General Hospital, Surabaya, Indonesia
| |
Collapse
|
11
|
Elahi E, Ali ME, Zimmermann J, Getts DR, Müller M, Lamprecht A. Immune Modifying Effect of Drug Free Biodegradable Nanoparticles on Disease Course of Experimental Autoimmune Neuritis. Pharmaceutics 2022; 14:2410. [PMID: 36365228 PMCID: PMC9695102 DOI: 10.3390/pharmaceutics14112410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2023] Open
Abstract
Guillain-Barre syndrome (GBS) is an autoimmune disease of demyelination and inflammation of peripheral nerves. Current treatments are limited to plasma exchange and intravenous immunoglobulins. Cargo-free nanoparticles (NPs) have been evaluated here for their therapeutic benefit on the disease course of experimental autoimmune neuritis (EAN), mimicking the human GBS. NPs prepared from poly-lactic co-glycolic acid (PLGA) with variable size and surface charge (i.e., 500 nm vs. 130 nm, polyvinyl alcohol (PVA) vs. sodium cholate), were intravenously administered in before- or early-onset treatment schedules in a rat EAN model. NP treatment mitigated distinctly the clinical severity of EAN as compared to the P2-peptide control group (P2) in all treatments and reduced the trafficking of inflammatory monocytes at inflammatory loci and diverted them towards the spleen. Therapeutic treatment with NPs reduced the expression of proinflammatory markers (CD68 (P2: 34.8 ± 6.6 vs. NP: 11.9 ± 2.3), IL-1β (P2: 18.3 ± 0.8 vs. NP: 5.8 ± 2.2), TNF-α (P2: 23.5 ± 3.7 vs. NP: 8.3 ± 1.7) and elevated the expression levels of anti-inflammatory markers CD163 (P2: 19.7 ± 3.0 vs. NP: 41.1 ± 6.5; all for NP-PVA of 130 nm; relative to healthy control). These results highlight the therapeutic potential of such cargo-free NPs in treating EAN, which would be easily translatable into clinical use due to their well-known low-toxicity profile.
Collapse
Affiliation(s)
- Ehsan Elahi
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, 53127 Bonn, Germany
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk Str. 3, 53121 Bonn, Germany
| | - Mohamed Ehab Ali
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk Str. 3, 53121 Bonn, Germany
| | - Julian Zimmermann
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, 53127 Bonn, Germany
| | - Daniel R. Getts
- Myeloid Therapeutics, 300 Technology Sq., Suite 203, Cambridge, MA 02139, USA
| | - Marcus Müller
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, 53127 Bonn, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk Str. 3, 53121 Bonn, Germany
| |
Collapse
|
12
|
Albarrán V, Chamorro J, Rosero DI, Saavedra C, Soria A, Carrato A, Gajate P. Neurologic Toxicity of Immune Checkpoint Inhibitors: A Review of Literature. Front Pharmacol 2022; 13:774170. [PMID: 35237154 PMCID: PMC8882914 DOI: 10.3389/fphar.2022.774170] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors have entailed a change of paradigm in the management of multiple malignant diseases and are acquiring a key role in an increasing number of clinical sceneries. However, since their mechanism of action is not limited to the tumor microenvironment, their systemic activity may lead to a wide spectrum of immune-related side effects. Although neurological adverse events are much less frequent than gastrointestinal, hepatic, or lung toxicity, with an incidence of <5%, their potential severity and consequent interruptions to cancer treatment make them of particular importance. Despite them mainly implying peripheral neuropathies, immunotherapy has also been associated with an increased risk of encephalitis and paraneoplastic disorders affecting the central nervous system, often appearing in a clinical context where the appropriate diagnosis and early management of neuropsychiatric symptoms can be challenging. Although the pathogenesis of these complications is not fully understood yet, the blockade of tumoral inhibitory signals, and therefore the elicitation of cytotoxic T-cell-mediated response, seems to play a decisive role. The aim of this review was to summarize the current knowledge about the pathogenic mechanisms, clinical manifestations, and therapeutic recommendations regarding the main forms of neurotoxicity related to checkpoint inhibitors.
Collapse
|
13
|
Saleki K, Banazadeh M, Miri NS, Azadmehr A. Triangle of cytokine storm, central nervous system involvement, and viral infection in COVID-19: the role of sFasL and neuropilin-1. Rev Neurosci 2021; 33:147-160. [PMID: 34225390 DOI: 10.1515/revneuro-2021-0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is identified as the cause of coronavirus disease 2019 (COVID-19), and is often linked to extreme inflammatory responses by over activation of neutrophil extracellular traps (NETs), cytokine storm, and sepsis. These are robust causes for multi-organ damage. In particular, potential routes of SARS-CoV2 entry, such as angiotensin-converting enzyme 2 (ACE2), have been linked to central nervous system (CNS) involvement. CNS has been recognized as one of the most susceptible compartments to cytokine storm, which can be affected by neuropilin-1 (NRP-1). ACE2 is widely-recognized as a SARS-CoV2 entry pathway; However, NRP-1 has been recently introduced as a novel path of viral entry. Apoptosis of cells invaded by this virus involves Fas receptor-Fas ligand (FasL) signaling; moreover, Fas receptor may function as a controller of inflammation. Furthermore, NRP-1 may influence FasL and modulate cytokine profile. The neuroimmunological insult by SARS-CoV2 infection may be inhibited by therapeutic approaches targeting soluble Fas ligand (sFasL), cytokine storm elements, or related viral entry pathways. In the current review, we explain pivotal players behind the activation of cytokine storm that are associated with vast CNS injury. We also hypothesize that sFasL may affect neuroinflammatory processes and trigger the cytokine storm in COVID-19.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- USERN Office, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- National Elite Foundation, Mazandaran Province Branch, Tehran, 48157-66435, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Niloufar Sadat Miri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, 47176-47745, Iran
| | - Abbas Azadmehr
- National Elite Foundation, Mazandaran Province Branch, Tehran, 48157-66435, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- Medical Immunology Department, Babol University of Medical Sciences, Babol, 47176-47745, Iran
| |
Collapse
|
14
|
|
15
|
Shang P, Zhu M, Wang Y, Zheng X, Wu X, Zhu J, Feng J, Zhang HL. Axonal variants of Guillain-Barré syndrome: an update. J Neurol 2021; 268:2402-2419. [PMID: 32140865 DOI: 10.1007/s00415-020-09742-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Axonal variants of Guillain-Barré syndrome (GBS) mainly include acute motor axonal neuropathy, acute motor and sensory axonal neuropathy, and pharyngeal-cervical-brachial weakness. Molecular mimicry of human gangliosides by a pathogen's lipooligosaccharides is a well-established mechanism for Campylobacter jejuni-associated GBS. New triggers of the axonal variants of GBS (axonal GBS), such as Zika virus, hepatitis viruses, intravenous administration of ganglioside, vaccination, and surgery, are being identified. However, the pathogenetic mechanisms of axonal GBS related to antecedent bacterial or viral infections other than Campylobacter jejuni remain unknown. Currently, autoantibody classification and serial electrophysiology are cardinal approaches to differentiate axonal GBS from the prototype of GBS, acute inflammatory demyelinating polyneuropathy. Newly developed technologies, including metabolite analysis, peripheral nerve ultrasound, and feature selection via artificial intelligence are facilitating more accurate diagnosis of axonal GBS. Nevertheless, some key issues, such as genetic susceptibilities, remain unanswered and moreover, current therapies bear limitations. Although several therapies have shown considerable benefits to experimental animals, randomized controlled trials are still needed to validate their efficacy.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Ying Wang
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiangyu Zheng
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiujuan Wu
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jie Zhu
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Jiachun Feng
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83#, Beijing, 100085, China.
| |
Collapse
|
16
|
Zhang Y, Lin M, Hao X, Ping M, Zhang H, Zheng J. Imbalance of circulating CTLA4 + follicular helper and follicular regulatory T cells in obstetric antiphospholipid syndrome. Clin Exp Med 2021; 22:27-36. [PMID: 34002285 DOI: 10.1007/s10238-021-00720-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
Obstetric antiphospholipid syndrome (OAPS) is a systemic autoimmune disease that is characterized clinically by a variety of obstetric manifestations (fetal death and recurrent abortions) and serologically by the presence of antiphospholipid antibodies (aPLs). Whether dysregulation of Follicular helper T (Tfh) and Follicular regulatory T (Tfr) cells contribute to the immunopathogenesis in OAPS is still unknown. We analyzed phenotypic characterizations of circulating Tfh cells and Tfr cells in OAPS patients and healthy individuals. CTLA4(Cytotoxic T lymphocyte antigen 4)+ Tfh cells and CTLA4+ Tfr cells were declined and CTLA4+ Tfr/Tfh ratio and IL-21 were increased in OAPS patients compared with healthy controls. Percentages of CTLA4+ Tfh cells and CTLA4+ Tfr cells were the lowest in OAPS patients whose antiphospholipid antibodies (aPL) were triple positive. Increased CTLA4+ Tfr/Tfh ratio was positively correlated with anti-β2 glycoprotein I (anti-β2GPI) IgM, Complement 4(C4) or IL-21 in OAPS. Increased Th17 subtype and decreased Th1, Th2 subtypes in Tfh cells and Tfr cells, increased effector memory subtype and decreased central memory subtype of Tfh cells and Tfr cells were also observed in OAPS compared with healthy individuals. Our data demonstrated that an imbalance of circulating CTLA4+ Tfh cells, and Tfr cells correlates with the immunopathogenesis of OAPS.
Collapse
Affiliation(s)
- Yinmei Zhang
- Department of Laboratory Medicine, Peking University Third Hospital, Haidian District, No. 49 North Garden Road, Beijing, 100191, People's Republic of China
| | - Mingmei Lin
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, No. 49 North Garden Road, Beijing, 100191, People's Republic of China
| | - Xinjie Hao
- Department of Laboratory Medicine, Peking University Third Hospital, Haidian District, No. 49 North Garden Road, Beijing, 100191, People's Republic of China
| | - Muye Ping
- Department of Laboratory Medicine, Peking University Third Hospital, Haidian District, No. 49 North Garden Road, Beijing, 100191, People's Republic of China
| | - Han Zhang
- Department of Laboratory Medicine, Peking University Third Hospital, Haidian District, No. 49 North Garden Road, Beijing, 100191, People's Republic of China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Haidian District, No. 49 North Garden Road, Beijing, 100191, People's Republic of China.
| |
Collapse
|
17
|
Untari NKSD, Kusumastuti K, Suryokusumo G, Sudiana IK. Acute Motor Axonal Neuropathy Improvement 20 Days After Hyperbaric Oxygen Therapy. Int Med Case Rep J 2021; 14:151-155. [PMID: 33688270 PMCID: PMC7937377 DOI: 10.2147/imcrj.s289627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/29/2021] [Indexed: 11/23/2022] Open
Abstract
We reported a rare case demonstrating that the hyperbaric oxygen chamber provided faster clinical improvement in a patient with a variant of Guillain-Barre Syndrome (GBS). A patient with progressive, acute weakness of upper extremity locomotor muscles and with difficulty breathing and swallowing was diagnosed with axonal GBS. Despite life-saving conventional therapies, there was no significant improvement until day 5. During hyperbaric oxygen therapy, there were daily gradual improvements until day 20, at which time the patient was capable of walking slowly without using a walking aid.
Collapse
Affiliation(s)
- Ni Komang Sri Dewi Untari
- Department of Hyperbaric, Drs. Med. Rijadi S. Phys. Naval Health Institute, Surabaya, Indonesia
- Doctoral Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Kurnia Kusumastuti
- Department of Neurology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Guritno Suryokusumo
- Department of Hyperbaric, Faculty of Medicine, Pembangunan Nasional University, Jakarta, Indonesia
| | - I Ketut Sudiana
- Department of Pathology Anatomy, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
18
|
Ghamar Talepoor A, Khosropanah S, Doroudchi M. Functional subsets of circulating follicular helper T cells in patients with atherosclerosis. Physiol Rep 2020; 8:e14637. [PMID: 33230950 PMCID: PMC7683878 DOI: 10.14814/phy2.14637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Frequencies of circulating T follicular helper (cTfh) functional subsets vary in autoimmune diseases. We evaluated the frequencies and clinical relevance of functional subsets of cTfhs in patients with different degrees of stenosis. Blood samples were collected from high (≥50%) (n = 12) and low (<50%) stenosis (n = 12) groups and healthy controls (n = 6). Three subsets of cTfh cells including cTfh1 (CXCR3+ CCR6- ), cTfh2 (CXCR3- CCX6- ), and cTfh17 (CXCR3- CCR6+ ) were detected by flow cytometry. The frequency of cTfh1 cells was higher in control (p = .0006) and low-stenosis groups (p = .005) compared to high-stenosis group. The percentages of cTfh2 and cTfh17 cells were increased in high-stenosis compared to low-stenosis (p = .002 and p = .007) and control groups (p = .0004 and p = .0005), respectively. The frequency of cTfh1 cells negatively correlated with cholesterol (p = .040; r = -.44), C-reactive protein (CRP) (p = .015; r = -.68), erythrocyte sedimentation rate (ESR) (p = .002; r = -.79), neutrophil/lymphocyte ratio (NLR) (p = .028; r = -.67), and cTfh17 (p = .017; r = -.7244) in the high-stenosis group. The percentages of cTfh2 and cTfh17 cells positively correlated with cholesterol (p = .025; r = .77 and p = .033; r = .71), CRP (p = .030; r = .61 and p = .020; r = .73), ESR (p = .027; r = .69 and p = .029; r = .70), NLR (p = .004; r = .76 and p = .005; r = .74), and with each other (p = .022; r = .7382), respectively, in the high-stenosis group. The increased frequencies of cTfh2 and cTfh17 subsets and their correlation with laboratory parameters in patients with atherosclerosis may suggest their role in promoting the inflammatory response and atherosclerosis progression.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Shahdad Khosropanah
- Department of CardiologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Mehrnoosh Doroudchi
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
19
|
Lee AY, Körner H. CC chemokine receptor 6 (CCR6) in the pathogenesis of systemic lupus erythematosus. Immunol Cell Biol 2020; 98:845-853. [PMID: 32634857 DOI: 10.1111/imcb.12375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
The CC chemokine receptor 6 (CCR6) and its sole chemokine ligand, CCL20, are an intriguing pair that have been implicated in a growing number of inflammatory, autoimmune and malignant disease processes. Recent observations have also highlighted this chemokine axis in the regulation of humoral immune responses. Through this review article, we explore the emerging links of CCR6-CCL20 with an archetypal autoimmune disease of humoral dysregulation: systemic lupus erythematosus (SLE). CCR6 is expressed prominently on several immune cells involved in the pathogenesis of SLE, such as dendritic cells and T-helper 17 cells. CCR6's expression is correlated with disease activity and serological markers of disease severity, suggesting a possible role in disease pathogenesis. However, there are numerous holes in our understanding of the functions of CCR6 and CCL20, and future studies are required to determine if there are any diagnostic, prognostic or monitoring roles for these important molecules.
Collapse
Affiliation(s)
- Adrian Ys Lee
- Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, PR China
| |
Collapse
|
20
|
Liu XK, Zhao HM, Wang HY, Ge W, Zhong YB, Long J, Liu DY. Regulatory Effect of Sishen Pill on Tfh Cells in Mice With Experimental Colitis. Front Physiol 2020; 11:589. [PMID: 32581849 PMCID: PMC7290041 DOI: 10.3389/fphys.2020.00589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
The T follicular helper T (Tfh) cells play a significant role in the pathogenesis of inflammatory bowel disease (IBD), which is regulated by the Bcl-6/Blimp-1 pathway. Some studies have suggested that regulating activation of the Bcl-6/Blimp-1 pathway should be an effective method to treat IBD. Sishen Pill (SSP) has been used frequently to treat chronic colitis. Its mechanism is related to the downstream proteins in the Bcl-6/Blimp-1 pathway. However, it is unknown whether SSP regulates the function and differentiation of Tfh cells to treat IBD. In the present study, chronic colitis was induced by dextran sodium sulfate and treated with SSP for 7 days. SSP effectively treated chronic colitis, regulated the balance between Tfh10, Tfh17 and T follicular regulatory cells, while SSP increased the Blimp-1 level, inhibited expressions of Bcl-6, T-cell costimulator, programmed death (PD)-1 and PD-ligand 1 on the surface of Tfh cells. SSP inhibited activation of BcL-6, phosphorylated signal transducer and activator of transcription (p-STAT)3, signal lymphocyte activation molecule (SLAM)-associated protein but improved Blimp-1 and STAT3 expression in colonic tissues. The results indicated that SSP regulated the differentiation and function of Tfh cells to treat IBD, which was potentially related with inhibiting the Bcl-6/Blimp-1 pathway.
Collapse
Affiliation(s)
- Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Yan Wang
- Party and School Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wei Ge
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jian Long
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Pharmacology Office, Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang, China
| |
Collapse
|
21
|
Nicolas P, Ruiz A, Cobo-Calvo A, Fiard G, Giraudon P, Vukusic S, Marignier R. The Balance in T Follicular Helper Cell Subsets Is Altered in Neuromyelitis Optica Spectrum Disorder Patients and Restored by Rituximab. Front Immunol 2019; 10:2686. [PMID: 31803192 PMCID: PMC6877601 DOI: 10.3389/fimmu.2019.02686] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/31/2019] [Indexed: 01/18/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare and severe auto-immune disease of the central nervous system driven by pathogenic antibodies mainly directed against aquaporin-4 (AQP4-Ab). Treatment of NMOSD currently relies on immunosuppressants (mycophenolate mofetil, azathioprine) or B-cell-depleting therapy (rituximab). B-cell differentiation into antibody-producing cells requires T follicular helper cells (Tfh). There are several Tfh subsets that differentially affect B-cell differentiation; Tfh2 and Tfh17 subsets strongly support B-cell differentiation. By contrast, Tfh1 lack this capacity and T follicular regulatory cells (Tfr), inhibit B-cell differentiation into antibody-producing cells. We performed a broad characterization of circulating Tfh subsets in 25 NMOSD patients and analyzed the impact of different treatments on these subsets. Untreated NMOSD patients presented a Tfh polarization toward excessive B-helper Tfh subsets with an increase of Tfh17 and (Tfh2+Tfh17)/Tfh1 ratio and a decrease of Tfr and Tfh1. Rituximab restored the Tfh polarization to that of healthy controls. There was a trend toward a similar result for azathioprine and mycophenolate mofetil. Our results suggest that NMOSD patients present an impaired balance in Tfh subsets favoring B-cell differentiation which may explain the sustained antibody production. These findings provide new insights into the pathophysiology of NMOSD, and further suggest that Tfh and Tfr subsets could be considered as potential therapeutic target in NMOSD because of their upstream role in antibody production.
Collapse
Affiliation(s)
- Philippe Nicolas
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, et Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France
| | - Anne Ruiz
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France
| | - Alvaro Cobo-Calvo
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, et Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France
| | - Guillaume Fiard
- NeuroBioTec, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Pascale Giraudon
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France
| | - Sandra Vukusic
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, et Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France
| | - Romain Marignier
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, et Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France.,NeuroBioTec, Hôpital Neurologique Pierre Wertheimer, Bron, France
| |
Collapse
|
22
|
van Besouw NM, Mendoza Rojas A, Baan CC. The role of follicular T helper cells in the humoral alloimmune response after clinical organ transplantation. HLA 2019; 94:407-414. [PMID: 31423738 PMCID: PMC6852567 DOI: 10.1111/tan.13671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Over the past decade, antibody‐mediated or humoral rejection in combination with development of de novo donor‐specific antibodies (DSA) has been recognized as a distinct and common cause of transplant dysfunction and is responsible for one‐third of the failed allografts. Detailed knowledge of the mechanisms that initiate and maintain B‐cell driven antidonor reactivity is required to prevent and better treat this antidonor response in organ transplant patients. Over the past few years, it became evident that this response largely depends on the actions of both T follicular helper (Tfh) cells and the controlling counterparts, the T follicular regulatory (Tfr) cells. In this overview paper, we review the latest insights on the functions of circulating (c)Tfh cells, their subsets Tfh1, Tfh2 and Tfh17 cells, IL‐21 and Tfr cells in antibody mediated rejection (ABMR). This may offer new insights in the process to reduce de novo DSA secretion resulting in a decline in the incidence of ABMR. In addition, monitoring these cell populations could be helpful for the development of biomarkers identifying patients at risk for ABMR and provide novel therapeutic drug targets to treat ABMR.
Collapse
Affiliation(s)
- Nicole M van Besouw
- Department of Internal Medicine - Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Aleixandra Mendoza Rojas
- Department of Internal Medicine - Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine - Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
23
|
Jiao Q, Qian Q, Liu C, Luo Y, Fang F, Wang M, Ji J, Qian H, Zhang X, Maurer M. T helper 22 cells from Han Chinese patients with atopic dermatitis exhibit high expression of inducible T‐cell costimulator. Br J Dermatol 2019; 182:648-657. [PMID: 31090221 DOI: 10.1111/bjd.18040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Q. Jiao
- Department of Dermatology The First Affiliated Hospital of Soochow University Shizi Road 188 Suzhou 215006 China
- Department of Dermatology and Allergy Charité–Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - Q. Qian
- Department of Dermatology The First Affiliated Hospital of Soochow University Shizi Road 188 Suzhou 215006 China
| | - C. Liu
- Department of Dermatology The First Affiliated Hospital of Soochow University Shizi Road 188 Suzhou 215006 China
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Shizi Road 188 Suzhou 215006 China
| | - Y. Luo
- Department of Dermatology and Allergy Charité–Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - F. Fang
- Department of Dermatology The First Affiliated Hospital of Soochow University Shizi Road 188 Suzhou 215006 China
| | - M. Wang
- Department of Dermatology The First Affiliated Hospital of Soochow University Shizi Road 188 Suzhou 215006 China
| | - J. Ji
- Department of Dermatology The Second Affiliated Hospital of Soochow University Sanxiang Road 1055 Su Zhou 215004 China
| | - H. Qian
- Department of Dermatology Children's Hospital of Soochow University Jingde Road 303 Suzhou 215000 China
| | - X. Zhang
- Department of Dermatology The First Affiliated Hospital of Soochow University Shizi Road 188 Suzhou 215006 China
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Shizi Road 188 Suzhou 215006 China
| | - M. Maurer
- Department of Dermatology and Allergy Charité–Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| |
Collapse
|
24
|
Yang SN, Pu X, Xiang SL, Chen JP, Pei L. [Brain derived neurotrophic factor enhances the role of mesenchymal stem cells in inhibiting follicular helper T cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 39:37-40. [PMID: 29551031 PMCID: PMC7343120 DOI: 10.3760/cma.j.issn.0253-2727.2018.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
目的 探讨脑源性神经营养因子(BDNF)增强间充质干细胞(MSC)抑制滤泡辅助性T细胞(Tfh细胞)的作用及机制。 方法 ELISA法检测MSC培养上清中吲哚胺2,3-二加氧酶(IDO)、IL-10、TGF-β和IL-21的含量;采集健康志愿者的外周血标本,采用人淋巴细胞分离液分离外周血中的淋巴细胞;采用Transwell小室进行MSC和淋巴细胞共培养,流式细胞术检测CD4+CXCR5+ Tfh细胞及其亚群的比例。 结果 ①BDNF组(BDNF刺激的MSC)培养上清IL-10、TGF-β、IDO浓度均高于对照组(加入等体积磷酸盐缓冲液)[IL-10:(42.1±4.4)ng/ml对(19.3±2.1)ng/ml,t=4.761,P=0.009;TGF-β:(13.9±1.7)ng/ml对(5.3±0.6)ng/ml,t=5.129,P=0.008;IDO:(441.3±56.9)ng/ml对(226.7±37.6)ng/ml,t=3.130,P=0.035];②BDNF组(淋巴细胞与BDNF刺激的MSC共培养)与MSC组(淋巴细胞与MSC共培养)比较:CD4+CXCR5+Tfh细胞比例降低[(3.37±0.21)%对(6.51±0.27)%,t=9.353,P<0.001],CD4+ CXCR5+ CXCR3+ CCR6−Tfh1细胞比例升高[(41.14±2.04)%对(26.72±2.57)%,t=4.383,P=0.012],CD4+CXCR5+CXCR3−CCR6−Tfh2细胞和CD4+CXCR5+CXCR3−CCR6+Tfh17细胞比例降低[Tfh2:(30.16±5.38)%对(43.26±4.11)%,t=4.426,P=0.012;Tfh17:(15.61±1.52)%对(22.32±0.72)%,t=4.202,P=0.014],CD4+CXCR5+Foxp3+ Tfr细胞比例升高[(4.95±0.22)%对(2.32±0.16)%,t=10.241,P<0.001],淋巴细胞培养上清中IL-21浓度降低[(0.28±0.03)ng/ml对(0.85±0.08)ng/ml,t=6.675,P=0.003]。 结论 BDNF能够增强MSC抑制Tfh细胞的作用,机制是抑制淋巴细胞中Tfh细胞比例升高及其向Tfh2和Tfh17亚群的分化。
Collapse
Affiliation(s)
- S N Yang
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
25
|
Monteiro C, Fernandes G, Kasahara TM, Barros PO, Dias ASO, Araújo ACRA, Ornelas AMM, Aguiar RS, Alvarenga R, Bento CAM. The expansion of circulating IL-6 and IL-17-secreting follicular helper T cells is associated with neurological disabilities in neuromyelitis optica spectrum disorders. J Neuroimmunol 2019; 330:12-18. [PMID: 30769212 DOI: 10.1016/j.jneuroim.2019.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 11/19/2022]
Abstract
Due to their function in assisting B cells, TFH cells may be involved in the production of pathogenic IgG in neuromyelitis optica spectrum disorder (NMOSD). In the present study, the proportion of IL-6+ and IL-17+ TFH cell subsets was higher in NMOSD patients than healthy individuals. The frequency of both TFH cell subsets were directly associated with disease activity. By contrast, NMOSD patients with a higher proportion of IL-10+ TFH cell subsets showed a lower neurological disabilities score. In summary, all findings suggest that expansion of peripheral IL-6+ and IL-17+ TFH cells may be involved in the severity of NMOSD.
Collapse
Affiliation(s)
- Clarice Monteiro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Gabriel Fernandes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa M Kasahara
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Priscila O Barros
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aleida S O Dias
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Alice M M Ornelas
- Departament of Genetics, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Renato S Aguiar
- Departament of Genetics, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Regina Alvarenga
- Departament of Neurology, Federal University of the State of Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil; Departament of Neurology, Federal University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Follicular helper T cell and memory B cell immunity in CHC patients. J Mol Med (Berl) 2019; 97:397-407. [PMID: 30666346 DOI: 10.1007/s00109-018-01735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis C (CHC) is associated with biological activity of T follicular helper (Tfh) cells and memory B cells (MBCs). However, the nature of Tfh cell subsets that are responsible for MBCs in CHC patients has not been evaluated. This study aimed to investigate Tfh and MBC immunity before and after direct-acting antiviral (DAA) therapy in patients with CHC. A total of 31 CHC patients and 15 healthy controls (HCs) were recruited. Individual patients were treated with sofosbuvir/ribavirin (SOF/RBV) or in combination with pegylated interferon alpha-2a (PEG-IFN-α-2a) for 12 weeks. Immunofluorescence revealed the frequency of ICOS+CD4+CXCR5+ active Tfh cells in liver tissue of CHC patients was higher than that of healthy control. Tfh and B cell co-culture experiments showed that Tfh2 cells from CHC patients have potential ability to induce B cell differentiation and IgG production. Flow cytometry showed that the frequencies of CD21-CD27+IgD- activated MBCs, ICOS+CD4+CXCR5+ activated Tfh cells, Tfh1 (IFN-γ+CD4+CXCR5+) cells, and Tfh2 (IL-4+CD4+CXCR5+) cells, but not of Tfh17 (IL-17+CD4+CXCR5+) cells, increased in CHC patients before and after DAA therapy. Collectively, ICOS+ Tfh, Tfh1, Tfh2 cells, and MBCs participated in the antiviral treatment process of SOF/RBV with or without PEG-IFN-α-2a in CHC patients, and their activity was further enhanced during the treatment. KEY MESSAGES: This study aimed to investigate Tfh cells and MBC immunity in CHC patients. CD21-CD27+IgD- activated MBCs increased in CHC patients before and after treatment. Tfh1 and Tfh2 cells increased in CHC patients before and after antiviral treatment. Intrahepatic activated Tfh cells increased in CHC patients before treatment. Tfh2 cells from CHC patients have a stronger ability to induce B cell differentiation.
Collapse
|
27
|
Constitutive Changes in Circulating Follicular Helper T Cells and Their Subsets in Patients with Graves' Disease. J Immunol Res 2018; 2018:8972572. [PMID: 30956992 PMCID: PMC6431362 DOI: 10.1155/2018/8972572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
Background Follicular helper T (Tfh) cells are critical for high-affinity antibody generation and B cell maturation and differentiation, which play important roles in autoimmune diseases. Graves' disease (GD) is one prototype of common organ-specific autoimmune thyroid diseases (AITD) characterized by autoreactive antibodies, suggesting a possible role for Tfh cells in the pathogenesis of GD. Our objective was to explore the role of circulating Tfh cell subsets and associated plasma cells (PCs) in patients with GD. Methods Thirty-six patients with GD and 20 healthy controls (HC) were enrolled in this study. The frequencies of circulating Tfh cell subsets and PCs were determined by flow cytometry, and plasma cytokines, including interleukin- (IL-) 21, IL-4, IL-17A, and interferon- (IFN-) γ, were measured using an enzyme-linked immunosorbent assay (ELISA). The mRNA expression of transcription factors (Bcl-6, T-bet, GATA-3, and RORγt) in peripheral blood mononuclear cells (PBMCs) was evaluated by real-time quantitative PCR. Results. Compared with HC, the frequencies of circulating CD4+CXCR5+CD45RA−Tfh (cTfh) cells with ICOS and PD-1 expression, the Tfh2 subset (CXCR3−CCR6−Tfh) cells, and PCs (CD19+CD27highCD38high) were significantly increased in the GD patients, but the frequencies of Tfh1 (CXCR3+CCR6−Tfh) and Tfh17 (CXCR3−CCR6+Tfh) subset cells among CD4+T cells were significantly decreased in GD patients. The plasma concentrations of IL-21, IL-4, and IL-17A were elevated in GD patients. Additionally, a positive correlation was found between the frequency of PD-1+Tfh cells (Tfh2 or PCs) and plasma IL-21 concentration (or serum TPO-Ab levels). The mRNA levels of transcription factors (GATA-3 and RORγt) were significantly increased, but T-bet and Bcl-6 mRNA expression was not obviously varied in PBMCs from GD patients. Interestingly, Tfh cell subsets and PCs from GD patients were partly normalized by treatment. Conclusion Circulating Tfh cell subsets and PCs might play an important role in the pathogenesis of GD, which are potential clues for GD patients' interventions.
Collapse
|
28
|
Nguyen XH, Dauvilliers Y, Quériault C, Perals C, Romieu-Mourez R, Paulet PE, Bernard-Valnet R, Fazilleau N, Liblau R. Circulating follicular helper T cells exhibit reduced ICOS expression and impaired function in narcolepsy type 1 patients. J Autoimmun 2018; 94:134-142. [PMID: 30104107 DOI: 10.1016/j.jaut.2018.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023]
Abstract
Despite genetic and epidemiological evidence strongly supporting an autoimmune basis for narcolepsy type 1, the mechanisms involved have remained largely unknown. Here, we aimed to investigate whether the frequency and function of circulating follicular helper and follicular regulatory T cells are altered in narcolepsy type 1. Peripheral blood mononuclear cells were collected from 32 patients with narcolepsy type 1, including 11 who developed disease after Pandemrix® vaccination, and 32 age-, sex-, and HLA-DQB1*06:02-matched healthy individuals. The frequency and phenotype of the different circulating B cell and follicular T cell subsets were examined by flow cytometry. The function of follicular helper T cells was evaluated by assessing the differentiation of naïve and memory B cells in a co-culture assay. We revealed a notable increase in the frequency of circulating B cells and CD4+CXCR5+ follicular T cells in narcolepsy patients compared to age-, sex- and HLA-matched healthy controls. However, the inducible T-cell costimulator molecule, ICOS, was selectively down-regulated on follicular T cells from patients. Reduced frequency of activated ICOS+ and PD1high blood follicular T cells was also observed in the narcolepsy group. Importantly, follicular T cells isolated from patients with narcolepsy type 1 had a reduced capacity to drive the proliferation/survival and differentiation of memory B cells. Our results provide novel insights into the potential involvement of T cell-dependent B cell responses in the pathogenesis of narcolepsy type 1 in which down-regulation of ICOS expression on follicular helper T cells correlates with their reduced function. We hypothesize that these changes contribute to regulation of the deleterious autoimmune process after disease onset.
Collapse
Affiliation(s)
- Xuan-Hung Nguyen
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France.
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, INSERM U1061, Montpellier, France
| | - Clémence Quériault
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Corine Perals
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Raphaelle Romieu-Mourez
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Pierre-Emmanuel Paulet
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Raphaël Bernard-Valnet
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Nicolas Fazilleau
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Roland Liblau
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France; Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| |
Collapse
|
29
|
Cunill V, Massot M, Clemente A, Calles C, Andreu V, Núñez V, López-Gómez A, Díaz RM, Jiménez MDLR, Pons J, Vives-Bauzà C, Ferrer JM. Relapsing-Remitting Multiple Sclerosis Is Characterized by a T Follicular Cell Pro-Inflammatory Shift, Reverted by Dimethyl Fumarate Treatment. Front Immunol 2018; 9:1097. [PMID: 29896193 PMCID: PMC5986897 DOI: 10.3389/fimmu.2018.01097] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is considered a T cell-mediated autoimmune disease, although several evidences also demonstrate a B cell involvement in its etiology. Follicular T helper (Tfh) cells, a CXCR5-expressing CD4+ T cell subpopulation, are essential in the regulation of B cell differentiation and maintenance of humoral immunity. Alterations in circulating (c)Tfh distribution and/or function have been associated with autoimmune diseases including MS. Dimethyl fumarate (DMF) is a recently approved first-line treatment for relapsing-remitting MS (RRMS) patients whose mechanism of action is not completely understood. The aim of our study was to compare cTfh subpopulations between RRMS patients and healthy subjects and evaluate the impact of DMF treatment on these subpopulations, relating them to changes in B cells and humoral response. We analyzed, by flow cytometry, the distribution of cTfh1 (CXCR3+CCR6-), cTfh2 (CXCR3-CCR6-), cTfh17 (CXCR3-CCR6+), and the recently described cTfh17.1 (CXCR3+CCR6+) subpopulations of CD4+ Tfh (CD45RA-CXCR5+) cells in a cohort of 29 untreated RRMS compared to healthy subjects. CD4+ non-follicular T helper (Th) cells (CD45RA-CXCR5-) were also studied. We also evaluated the effect of DMF treatment on these subpopulations after 6 and 12 months treatment. Untreated RRMS patients presented higher percentages of cTfh17.1 cells and lower percentages of cTfh2 cells consistent with a pro-inflammatory bias compared to healthy subjects. DMF treatment induced a progressive increase in cTfh2 cells, accompanied by a decrease in cTfh1 and the pathogenic cTfh17.1 cells. A similar decrease of non-follicular Th1 and Th17.1 cells in addition to an increase in the anti-inflammatory Th2 subpopulation were also detected upon DMF treatment, accompanied by an increase in naïve B cells and a decrease in switched memory B cells and serum levels of IgA, IgG2, and IgG3. Interestingly, this effect was not observed in three patients in whom DMF had to be discontinued due to an absence of clinical response. Our results demonstrate a possibly pathogenic cTfh pro-inflammatory profile in RRMS patients, defined by high cTfh17.1 and low cTfh2 subpopulations that is reverted by DMF treatment. Monitoring cTfh subsets during treatment may become a biological marker of DMF effectiveness.
Collapse
Affiliation(s)
- Vanesa Cunill
- Immunology Department, Hospital Universitari Son Espases, Palma, Spain.,Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| | - Margarita Massot
- Neurology Department, Hospital Universitari Son Espases, Palma, Spain
| | - Antonio Clemente
- Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain.,Clinical Trials and Methodology Support Platform, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| | - Carmen Calles
- Neurology Department, Hospital Universitari Son Espases, Palma, Spain
| | - Valero Andreu
- Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| | - Vanessa Núñez
- Neurology Department, Hospital Universitari Son Espases, Palma, Spain
| | - Antonio López-Gómez
- Immunology Department, Hospital Universitari Son Espases, Palma, Spain.,Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| | - Rosa María Díaz
- Neurology Department, Hospital Universitari Son Espases, Palma, Spain
| | - María de Los Reyes Jiménez
- Immunology Department, Hospital Universitari Son Espases, Palma, Spain.,Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| | - Jaime Pons
- Immunology Department, Hospital Universitari Son Espases, Palma, Spain.,Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| | - Cristòfol Vives-Bauzà
- Research Unit, Institut d'Investigació Sanitària de les Illes Balears and Hospital Universitari Son Espases, Palma, Spain
| | - Joana Maria Ferrer
- Immunology Department, Hospital Universitari Son Espases, Palma, Spain.,Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| |
Collapse
|
30
|
IL-23/IL-17 immune axis in Guillain Barré Syndrome: Exploring newer vistas for understanding pathobiology and therapeutic implications. Cytokine 2018; 103:77-82. [DOI: 10.1016/j.cyto.2017.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
|
31
|
Zhang K, Sun YL, Yang F, Shi YC, Jin L, Liu ZW, Wang FS, Shi M. A pilot study on the characteristics of circulating T follicular helper cells in liver transplant recipients. Transpl Immunol 2018; 47:32-36. [PMID: 29360498 DOI: 10.1016/j.trim.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 01/01/2023]
Abstract
Circulating CD4+CXCR5+ T follicular helper cells (cTfh) have been demonstrated to be involved in B cell-mediated systemic autoimmune diseases and alloreactive responses following kidney transplantation; however, whether cTfh cells are involved in alloreactive responses after liver transplantation (LT) remains unclear. Our present study aimed to investigate the characteristics of cTfh, as well as CXCR3+CCR6-Tfh1, CXCR3-CCR6-Tfh2, and CXCR3-CCR6+Tfh17 subsets in liver allograft recipients. A total of 30 liver transplant recipients were enrolled in this study. The frequencies of cTfh, Tfh1, Tfh2, and Tfh17 subsets, and interleukin (IL)-21-producing Tfh cells in the circulating blood were analyzed by flow cytometry. The capacity of cTfh cells to help B cells differentiate into plasmablasts was determined one day before and one month after LT. The results revealed that the frequency of cTfh cells remained unaltered before and after LT. However, the frequency of the cTfh subsets (e.g., Tfh1 and Tfh2 cells) and B cells were reduced one month after LT. Functionally, the capacity of Tfh cells to produce IL-21 was reduced one month after LT. In addition, cTfh cells exhibited the capacity to help B cells differentiate into plasmablasts in an IL-21-dependent manner in vitro, which was reduced after LT, despite the unaltered production of IgM and IgG by plasmablasts. Thus, our data suggest that cTfh cells may be involved in alloreactive responses following LT via helping B cells differentiate into plasmablasts and plasma cells.
Collapse
Affiliation(s)
- Ke Zhang
- Treatment and Research Center for Infectious Disease, 302 Military Hospital of China, Peking University Teaching Hospital, Beijing, China
| | - Yan-Ling Sun
- Research Center for Liver transplantation, Beijing 302 Hospital, Beijing, China
| | - Fan Yang
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yan-Chao Shi
- Treatment and Research Center for Infectious Disease, Beijing 302 Hospital, Beijing, China
| | - Lei Jin
- Treatment and Research Center for Infectious Disease, Beijing 302 Hospital, Beijing, China
| | - Zhen-Wen Liu
- Research Center for Liver transplantation, Beijing 302 Hospital, Beijing, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Disease, Beijing 302 Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Disease, Beijing 302 Hospital, Beijing, China.
| |
Collapse
|
32
|
Kimura N, Yamagiwa S, Sugano T, Setsu T, Tominaga K, Kamimura H, Takamura M, Terai S. Possible involvement of chemokine C-C receptor 7 - programmed cell death-1 + follicular helper T-cell subset in the pathogenesis of autoimmune hepatitis. J Gastroenterol Hepatol 2018; 33:298-306. [PMID: 28591933 DOI: 10.1111/jgh.13844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/10/2017] [Accepted: 06/04/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Recent studies have demonstrated that B cells and follicular helper T (Tfh) cells, which are central regulators of humoral immune response, contribute to the development and progression of autoimmune diseases. Because Tfh cells can be divided into several subsets with distinct functional properties, this study aimed to examine the roles of different subsets of circulating Tfh cells in the immune pathogenesis of autoimmune hepatitis (AIH). METHODS Thirty-five patients with AIH, 28 patients with primary biliary cholangitis, 22 patients with chronic hepatitis B (CHB), and 44 health controls (HC) were enrolled. The frequencies of different Tfh subsets in the blood and liver were examined by flow cytometry and immunohistochemical staining. The function of circulating Tfh subsets was examined after in vitro stimulation. RESULTS In newly diagnosed AIH patients, the frequency of circulating chemokine C-C receptor 7- programmed cell death-1+ Tfh subset was significantly increased compared with that in CHB patients and HC, significantly correlated with clinical parameters, including serum IgG, prothrombin time and albumin levels, and significantly decreased after corticosteroid treatment. In the liver of AIH patients, the frequencies of activated Tfh subsets were significantly increased and positively correlated with those in the blood. Moreover, the ability to produce interleukin-21 and interleukin-17 from circulating Tfh cells was significantly increased in AIH patients compared with HC. CONCLUSIONS These results significantly extend our understanding of Tfh subsets in AIH and suggest a potential role of dysregulated chemokine C-C receptor 7- programmed cell death-1+ Tfh subset in the pathogenesis and disease progression of AIH.
Collapse
Affiliation(s)
- Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoyuki Sugano
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Tominaga
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
33
|
Zheng J, Wang T, Zhang L, Cui L. Dysregulation of Circulating Tfr/Tfh Ratio in Primary biliary cholangitis. Scand J Immunol 2017; 86:452-461. [PMID: 28941291 DOI: 10.1111/sji.12616] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Abstract
Follicular helper T (Tfh) cells and follicular regulatory T (Tfr) cells are critical for the development and maintenance of germinal centre (GC) and humoral immune responses. Accumulating evidence has demonstrated that the dysregulation of either Tfh cells or Tfr cells contributes to the pathogenesis of autoimmune diseases. We aim to investigate the roles of circulating Tfh cells and circulating Tfr cells in the pathogenesis of primary biliary cholangitis (PBC). A total of 34 patients with PBC and 27 health individuals were enrolled in this study. Flow cytometry revealed that circulating Tfh (CD4+ CXCR5+ CD127hi CD25lo ) cells were increased, but Tfr (CD4+ CXCR5+ CD127lo CD25hi ) cells and ratio of Tfr/Tfh were dramatically decreased in PBC patients compared with healthy controls. The Tfr/Tfh ratio was negatively correlated with level of serum IgM. Meanwhile, we also observed effector memory (CCR7lo PD-1hi ) Tfh cells and Tfr cells were dramatically increased, but central memory (CCR7hi PD-1lo ) Tfh cells and Tfr cells were decreased in PBC patients compared with healthy controls. Effector memory Tfr cells were positively correlated with level of serum ALP. These results indicate that an imbalance of circulating Tfr cells and Tfh cells may be involved in the immunopathogenesis of PBC and may provide novel insight for the development of PBC therapies.
Collapse
Affiliation(s)
- J Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 10019, P R, China
| | - T Wang
- Department of Laboratory Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 10019, P R, China
| | - L Zhang
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 10019, P R, China
| | - L Cui
- Department of Laboratory Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 10019, P R, China
| |
Collapse
|
34
|
Yang Y, Zhang M, Ye Y, Ma S, Fan L, Li Z. High frequencies of circulating Tfh-Th17 cells in myasthenia gravis patients. Neurol Sci 2017; 38:1599-1608. [PMID: 28578482 DOI: 10.1007/s10072-017-3009-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/25/2017] [Indexed: 11/24/2022]
Abstract
Recent studies show that the frequencies of circulating follicullar helper T (cTfh) cells are significantly higher in myasthenia gravis (MG) patients compared with healthy controls (HC). And, they are positively correlated with levels of serum anti-acetylcholine receptor antibody (anti-AchR Ab). It is unclear whether cTfh cell subset frequencies are altered and what role they play in MG patients. In order to clarify this, we examined the frequencies of cTfh cell counterparts, their subsets, and circulating plasmablasts in MG patients by flow cytometry. We determined the concentrations of serum anti-AChR Ab by enzyme-linked immunosorbent assay (ELISA). We assayed the function of cTfh cell subsets by flow cytometry and real-time polymerase chain reaction (RT-PCR). We found higher frequencies of cTfh cell counterparts, cTfh-Th17 cells, and plasmablasts in MG patients compared with HC. The frequencies of cTfh cell counterparts and cTfh-Th17 cells were positively correlated with the frequencies of plasmablasts and the concentrations of anti-AChR Ab in MG patients. Functional assays showed that activated cTfh-Th17 cells highly expressed key molecular features of Tfh cells including ICOS, PD-1, and IL-21. Results indicate that, just like cTfh cell counterparts, cTfh-Th17 cells may play a role in the immunopathogenesis and the production of anti-AChR Ab of MG.
Collapse
Affiliation(s)
- Yongxiang Yang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.,Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Neurosurgery, PLA 422nd Hospital, Zhanjiang, 524005, China
| | - Min Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, 410000, China
| | - Shan Ma
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Lingling Fan
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
35
|
Cunill V, Clemente A, Lanio N, Barceló C, Andreu V, Pons J, Ferrer JM. Follicular T Cells from smB - Common Variable Immunodeficiency Patients Are Skewed Toward a Th1 Phenotype. Front Immunol 2017; 8:174. [PMID: 28289412 PMCID: PMC5326800 DOI: 10.3389/fimmu.2017.00174] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022] Open
Abstract
Germinal center follicular T helper (GCTfh) cells are essential players in the differentiation of B cells. Circulating follicular T helper (cTfh) cells share phenotypic and functional properties with GCTfh cells. Distinct subpopulations of cTfh with different helper capabilities toward B cells can be identified: cTfh1 (CXCR3+CCR6−), cTfh2 (CXCR3−CCR6−), and cTfh17 (CXCR3−CCR6+). Alterations in cTfh function and/or distribution have been associated with autoimmunity, infectious diseases, and more recently, with several monogenic immunodeficiencies. Common variable immunodeficiency (CVID) disease is the commonest symptomatic primary immunodeficiency with a genetic cause identified in only 2–10% of patients. Although a heterogeneous disease, most patients show a characteristic defective B cell differentiation into memory B cells or antibody-secreting cells. We investigated if alterations in CVID cTfh cells frequency or distribution into cTfh1, cTfh2, and cTfh17 subpopulations and regulatory follicular T (Tfr) cells could be related to defects in CVID B cells. We found increased percentages of cTfh exhibiting higher programmed death-1 expression and altered subpopulations distribution in smB− CVID patients. In contrast to smB+ patients and controls, cTfh from smB− CVID patients show increased cTfh1 and decreased cTfh17 subpopulation percentages and increased CXCR3+CCR6+ cTfh, a population analogous to the recently described pathogenic Th17.1. Moreover, Tfr cells are remarkably decreased only in smB− CVID patients. In conclusion, increased cTfh17.1 and cTfh1/cTfh17 ratio in CVID patients could influence B cell fate in smB− CVID patients, with a more compromised B cell compartment, and the decrease in Tfr cells may lead to high risk of autoimmune conditions in CVID patients.
Collapse
Affiliation(s)
- Vanesa Cunill
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| | - Antonio Clemente
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| | - Nallibe Lanio
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| | - Carla Barceló
- Immunology Department, Hospital Universitari Son Espases , Palma de Mallorca, Balearic Islands , Spain
| | - Valero Andreu
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| | - Jaume Pons
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| | - Joana M Ferrer
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
36
|
Viisanen T, Ihantola EL, Näntö-Salonen K, Hyöty H, Nurminen N, Selvenius J, Juutilainen A, Moilanen L, Pihlajamäki J, Veijola R, Toppari J, Knip M, Ilonen J, Kinnunen T. Circulating CXCR5+PD-1+ICOS+ Follicular T Helper Cells Are Increased Close to the Diagnosis of Type 1 Diabetes in Children With Multiple Autoantibodies. Diabetes 2017; 66:437-447. [PMID: 28108610 DOI: 10.2337/db16-0714] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/01/2016] [Indexed: 01/02/2023]
Abstract
Although type 1 diabetes (T1D) is primarily perceived as a T cell-driven autoimmune disease, islet autoantibodies are the best currently available biomarker for autoimmunity and disease risk. These antibodies are produced by autoreactive B cells, the activation of which is largely dependent on the function of CD4+CXCR5+ follicular T helper cells (Tfh). In this study, we have comprehensively characterized the Tfh- as well as B-cell compartments in a large cohort of children with newly diagnosed T1D or at different stages of preclinical T1D. We demonstrate that the frequency of CXCR5+PD-1+ICOS+-activated circulating Tfh cells is increased both in children with newly diagnosed T1D and in autoantibody-positive at-risk children with impaired glucose tolerance. Interestingly, this increase was only evident in children positive for two or more biochemical autoantibodies. No alterations in the circulating B-cell compartment were observed in children with either prediabetes or diabetes. Our results demonstrate that Tfh activation is detectable in the peripheral blood close to the presentation of clinical T1D but only in a subgroup of children identifiable by positivity for multiple autoantibodies. These findings suggest a role for Tfh cells in the pathogenesis of human T1D and carry important implications for targeting Tfh cells and/or B cells therapeutically.
Collapse
Affiliation(s)
- Tyyne Viisanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Emmi-Leena Ihantola
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsti Näntö-Salonen
- Department of Pediatrics, Turku University Hospital and University of Turku, Turku, Finland
| | - Heikki Hyöty
- School of Medicine, University of Tampere and Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Noora Nurminen
- School of Medicine, University of Tampere and Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jenni Selvenius
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Auni Juutilainen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Moilanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland and Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Riitta Veijola
- Department of Pediatrics, Medical Research Center, PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Toppari
- Department of Physiology, Institute of Biomedicine, University of Turku, and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
37
|
Ueno H. T follicular helper cells in human autoimmunity. Curr Opin Immunol 2016; 43:24-31. [PMID: 27588918 DOI: 10.1016/j.coi.2016.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
|
38
|
Lv Z, Shi Q, Huang W, Xing C, Hao Y, Feng X, Yang Y, Zhang A, Kong Q, Yuki N, Wang Y. MicroRNA expression profiling in Guillain-Barré syndrome. J Neuroimmunol 2016; 301:12-15. [PMID: 27836180 DOI: 10.1016/j.jneuroim.2016.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
Guillain-Barré syndrome (GBS) is an acute inflammatory autoimmune disease affecting the peripheral nervous system. MicroRNAs (miRNAs) are a class of small noncoding RNAs that play critical roles in the process of various diseases. The miRNAs in GBS were less studied. In this study, using microarray technology, we found two miRNAs including has-miR-4717-5p and has-miR-642b-5p were upregulated in patients with GBS, which were further confirmed by PCR analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the dysregulated miRNAs may be involved in the mechanism of GBS by affecting the cellular differentiation, cell survival and axonal outgrowth.
Collapse
Affiliation(s)
- Zhanyun Lv
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Qiguang Shi
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Wenhui Huang
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Chunye Xing
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Yanlei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Xungang Feng
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Yan Yang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Aimei Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Qingxia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Nobuhiro Yuki
- Department of Neurology, Mishima Hospital, Niigata, Japan
| | - Yuzhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China; Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China.
| |
Collapse
|
39
|
Functional RNAs control T follicular helper cells. J Hum Genet 2016; 62:81-86. [PMID: 27488442 DOI: 10.1038/jhg.2016.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
T follicular helper cells (Tfh cells), which are a prototypic subset of effector CD4+ T cells, regulate the production of high-affinity antibodies by controlling B cells at initial and recall phases. Since the discovery of Tfh cells in human tonsils, many notable studies focusing on Tfh cells have clarified mechanisms underlying Tfh-cell-related physiological and pathological settings. Results of these studies revealed a chief regulatory function of BCL6 in Tfh cells and the involvement of Tfh cells in the pathogenesis of various disorders including autoimmune diseases, allergies and cancers. Further, accumulating evidence has revealed microRNAs (miRNAs) of functional noncoding RNAs (ncRNAs) to be cardinal regulators of Tfh cells during the processes of development, differentiation and plasticity. In this review article, we summarize and discuss the results of recent studies about miRNAs operating Tfh-cell function and their relationships in diseases. Through the window of such functional ncRNAs, the functional significance of Tfh cells in CD4+ T-cell biology is becoming apparent. Studies to determine the complex background of the genetic program of Tfh cells operated by functional RNAs should lead to an understanding of the manifestations of Tfh cells with unidentified pathophysiological relevance.
Collapse
|