1
|
Xiao Z, Chen J, Fan X, Zhao W, Chu C, Zhang JV. The Impact of Chemokine-Like Receptor 1 Gene Knockout on Lipopolysaccharide-Induced Epididymo-Orchitis in Mice. J Interferon Cytokine Res 2025; 45:1-11. [PMID: 39470435 DOI: 10.1089/jir.2024.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
This comprehensive study delved into the pivotal function of chemokine-like receptor 1 (CMKLR1) in lipopolysaccharide (LPS)-triggered epididymo-orchitis in mice. Upon LPS exposure, wild-type (WT) mice exhibited marked elevations in serum pro-inflammatory markers, including G-CSF, IL-6, and RANTES, along with heightened levels of TNF-α and IL-6 in testicular and epididymal tissues, which accompanied by pronounced structural damage within the testicular tissue and a concurrent decline in serum testosterone, estradiol (E2) levels, and testicular steroid synthetase expression. Remarkably, Cmklr1 gene ablation intensified the pro-inflammatory response in the serum (especially IFN-γ), testes, and epididymis of epididymo-orchitis models. Furthermore, Cmklr1 deficiency uniquely induced structural alterations within the epididymis, which is absent in the WT model. This genetic manipulation also exacerbated the decline in serum testosterone and E2 levels and testicular steroid synthase activity. While chemerin levels were significantly diminished in WT epididymo-orchitis models, Cmklr1 knockout had no discernible effect on chemerin expression in the model. In addition, a noteworthy observation was the elevation of the serum low density lipoprotein/high density lipoprotein (LDL/HDL) ratio in Cmklr1-deficient mice. Collectively, these findings underscore that the lack of chemerin/CMKLR1 signaling axis could potentially worsen the symptoms during LPS-induced epididymo-orchitis, highlighting its potential as a therapeutic target in related pathologies.
Collapse
Affiliation(s)
- Zhonglin Xiao
- Faculty of Data Science, City University of Macau, Macau, China
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Chen
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiujun Fan
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chiawei Chu
- Faculty of Data Science, City University of Macau, Macau, China
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Sino-European Center of Biomedicine and Health, Shenzhen, China
| |
Collapse
|
2
|
Bernardi O, Fréville M, Ramé C, Reverchon M, Dupont J. Chicken chemerin alone or in mixture with adiponectin-visfatin impairs progesterone secretion by primary hen granulosa cells. Poult Sci 2024; 103:104398. [PMID: 39447332 PMCID: PMC11539439 DOI: 10.1016/j.psj.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Adipokines including adiponectin (ADIPO), chemerin (CHEM) and visfatin (VISF) are involved in metabolism and reproductive functions. These 3 adipokines are present in ovarian cells in different preovulatory follicles in hens. We have previously shown that VISF and ADIPO are able to modulate in vitro steroid production by hen granulosa cells (GCs). It is, however, unclear whether CHEM acts on hen ovarian cells. In addition, no study has yet investigated the effect of a mixture of several adipokines such ADIPO, VISF, and CHEM on GCs from different preovulatory follicles. In this study, we investigated the effect of CHEM alone and in combination with ADIPO and VISF on cell viability, proliferation and progesterone secretion in cultured granulosa cells (GCs) from the largest follicles F1 and smaller ones (F3/F4) in the presence of gonadotropins (oLH and oFSH) or hIGF-1. First, various concentrations of chemerin were examined (0, 12, 25, 50, and 100 ng/mL) and then we determined the response to CHEM (at 25 ng/mL) in combination with ADIPO (10 µg/mL) and VISF (100 ng/mL). Chemerin exposure did not affect F1 and F3/F4 granulosa cell viability and proliferation whatever the concentation and in the presence of the mixture. However, it reduced progesterone secretion in dose dependent manner in both F1 and F3/F4 follicles. Furthermore, this CHEM inhibitory effect was significantly higher when CHEM was combined with ADIPO and VISF. Furthermore, CHEM reduced significantly oLH and oFSH- induced progesterone secretion in F1 GCs and oFSH and hIGF-1-induced progesterone secretion in F3/F4 GCs. Interestingly, this inhibitory effect of CHEM was similar in F1 GCs when CHEM was in mixture with ADIPO and VISF whereas it was significantly higher in F3/F4 GCs. Taken together, CHEM impairs progesterone secretion in cultured hen GCs and this inhibitory effect can be potentiated when it is in combination with other adipokines.
Collapse
Affiliation(s)
- Ophélie Bernardi
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, Nouzilly, F-37380, France; Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Mathias Fréville
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Christelle Ramé
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, Nouzilly, F-37380, France
| | - Joëlle Dupont
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France.
| |
Collapse
|
3
|
Zhang Q, Ye J, Wang X. Progress in the contrary effects of glucagon-like peptide-1 and chemerin on obesity development. Exp Biol Med (Maywood) 2023; 248:2020-2029. [PMID: 38058030 PMCID: PMC10800121 DOI: 10.1177/15353702231214270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by intestinal L-cells, plays a pivotal role in the modulation of β-cell insulin secretion in a glucose-dependent manner, concurrently promoting β-cell survival and β-cell mass. Notably, GLP-1 has emerged as an effective second-line treatment for type 2 diabetes mellitus, gaining further prominence for its pronounced impact on body weight reduction, positioning it as a potent antiobesity agent. However, the mechanism by which GLP-1 improves obesity remains unclear. Some reports suggest that this mechanism may be associated with the regulation of adipokine synthesis within adipose tissue. Chemerin, a multifunctional adipokine and chemokine, has been identified as a pivotal player in adipocyte differentiation and the propagation of systemic inflammation, a hallmark of obesity. This review provides a comprehensive overview of the mechanisms by which GLP-1 and chemerin play crucial roles in obesity and obesity-related diseases. It discusses well-established aspects, such as their effects on food intake and glycolipid metabolism, as well as recent insights, including their influence on macrophage polarization and adipose tissue thermogenesis. GLP-1 has been shown to increase the population of anti-inflammatory M2 macrophages, promote brown adipose tissue thermogenesis, and induce the browning of white adipose tissue. In contrast, chemerin exhibits opposite effects in these processes. In addition, recent research findings have demonstrated the promising potential of GLP-1-based therapies in directly or indirectly regulating chemerin expression. In an intriguing reciprocal relationship, chemerin has also been newly identified as a negative regulator of GLP-1 in vivo. This review delineates the intricate interplay between GLP-1 and chemerin, unraveling their mutual inhibitory interactions. To the best of our knowledge, no previous reviews have focused on this specific topic, making this review particularly valuable in expanding our understanding of the endocrine mechanisms of obesity and providing potential strategies for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Qilong Zhang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
4
|
Weber F, Schueler-Toprak S, Buechler C, Ortmann O, Treeck O. Chemerin and Chemokine-like Receptor 1 Expression in Ovarian Cancer Associates with Proteins Involved in Estrogen Signaling. Diagnostics (Basel) 2023; 13:diagnostics13050944. [PMID: 36900088 PMCID: PMC10001027 DOI: 10.3390/diagnostics13050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chemerin, a pleiotropic adipokine coded by the RARRES2 gene, has been reported to affect the pathophysiology of various cancer entities. To further approach the role of this adipokine in ovarian cancer (OC), intratumoral protein levels of chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were examined by immunohistochemistry analyzing tissue microarrays with tumor samples from 208 OC patients. Since chemerin has been reported to affect the female reproductive system, associations with proteins involved in steroid hormone signaling were analyzed. Additionally, correlations with ovarian cancer markers, cancer-related proteins, and survival of OC patients were examined. A positive correlation of chemerin and CMKLR1 protein levels in OC (Spearman's rho = 0.6, p < 0.0001) was observed. Chemerin staining intensity was strongly associated with the expression of progesterone receptor (PR) (Spearman´s rho = 0.79, p < 0.0001). Both chemerin and CMKLR1 proteins positively correlated with estrogen receptor β (ERβ) and estrogen-related receptors. Neither chemerin nor the CMKLR1 protein level was associated with the survival of OC patients. At the mRNA level, in silico analysis revealed low RARRES2 and high CMKLR1 expression associated with longer overall survival. The results of our correlation analyses suggested the previously reported interaction of chemerin and estrogen signaling to be present in OC tissue. Further studies are needed to elucidate to which extent this interaction might affect OC development and progression.
Collapse
Affiliation(s)
- Florian Weber
- Institute for Pathology, University of Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Susanne Schueler-Toprak
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Chemerin Forms: Their Generation and Activity. Biomedicines 2022; 10:biomedicines10082018. [PMID: 36009565 PMCID: PMC9405667 DOI: 10.3390/biomedicines10082018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Chemerin is the product of the RARRES2 gene which is secreted as a precursor of 143 amino acids. That precursor is inactive, but proteases from the coagulation and fibrinolytic cascades, as well as from inflammatory reactions, process the C-terminus of chemerin to first activate it and then subsequently inactivate it. Chemerin can signal via two G protein-coupled receptors, chem1 and chem2, as well as be bound to a third non-signaling receptor, CCRL2. Chemerin is produced by the liver and secreted into the circulation as a precursor, but it is also expressed in some tissues where it can be activated locally. This review discusses the specific tissue expression of the components of the chemerin system, and the role of different proteases in regulating the activation and inactivation of chemerin. Methods of identifying and determining the levels of different chemerin forms in both mass and activity assays are reviewed. The levels of chemerin in circulation are correlated with certain disease conditions, such as patients with obesity or diabetes, leading to the possibility of using chemerin as a biomarker.
Collapse
|
6
|
Yu M, Yang Y, Huang C, Ge L, Xue L, Xiao Z, Xiao T, Zhao H, Ren P, Zhang JV. Chemerin: A Functional Adipokine in Reproductive Health and Diseases. Biomedicines 2022; 10:biomedicines10081910. [PMID: 36009457 PMCID: PMC9406010 DOI: 10.3390/biomedicines10081910] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
As a multifaceted adipokine, chemerin has been found to perform functions vital for immunity, adiposity, and metabolism through its three known receptors (chemokine-like receptor 1, CMKLR1; G-protein-coupled receptor 1, GPR1; C-C motif chemokine receptor-like 2, CCRL2). Chemerin and the cognate receptors are also expressed in the hypothalamus, pituitary gland, testis, ovary, and placenta. Accumulating studies suggest that chemerin participates in normal reproduction and underlies the pathological mechanisms of certain reproductive system diseases, including polycystic ovary syndrome (PCOS), preeclampsia, and breast cancer. Herein, we present a comprehensive review of the roles of the chemerin system in multiple reproductive processes and human reproductive diseases, with a brief discussion and perspectives on future clinical applications.
Collapse
Affiliation(s)
- Ming Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Yali Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Lei Ge
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Xue
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhonglin Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Tianxia Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Huashan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Peigen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
7
|
Wu M, Huang Y, Zhu Q, Zhu X, Xue L, Xiong J, Chen Y, Wu C, Guo Y, Li Y, Wu M, Wang S. Adipose tissue and ovarian aging: Potential mechanism and protective strategies. Ageing Res Rev 2022; 80:101683. [PMID: 35817297 DOI: 10.1016/j.arr.2022.101683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/29/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Ovarian aging occurs approximately 10 years prior to the natural age-associated functional decline of other organ systems. With the increase of life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Therefore, understanding the causes and molecular mechanisms of ovarian aging is very essential for the inhibition of age-related diseases and the promotion of health and longevity in women. Recently, studies have revealed an association between adipose tissue (AT) and ovarian aging. Alterations in the function and quantity of AT have profound consequences on ovarian function because AT is central for follicular development, lipid metabolism, and hormonal regulation. Moreover, the interplay between AT and the ovary is bidirectional, with ovary-derived signals directly affecting AT biology. In this review, we summarize the current knowledge of the complex molecular mechanisms controlling the crosstalk between the AT and ovarian aging, and further discuss how therapeutic targeting of the AT can delay ovarian aging.
Collapse
Affiliation(s)
- Meng Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yibao Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Qingqing Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Xiaoran Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Liru Xue
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Chen
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Chuqing Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yican Guo
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yinuo Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Bongrani A, Plotton I, Mellouk N, Ramé C, Guerif F, Froment P, Dupont J. High androgen concentrations in follicular fluid of polycystic ovary syndrome women. Reprod Biol Endocrinol 2022; 20:88. [PMID: 35701786 PMCID: PMC9195430 DOI: 10.1186/s12958-022-00959-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/03/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND According to current definitions of Polycystic Ovary Syndrome (PCOS), hyperandrogenism is considered as a key element in the pathogenesis of this common endocrinopathy. However, until now, studies about ovarian androgen profile in women are very rare. Our aim was then to characterise the expression profile of the androgens in follicular fluid of 30 PCOS patients, and compare it to those of 47 Control women and 29 women with only polycystic ovary morphology on ultrasounds (ECHO group). METHODS A retrospective, single-centre cohort study was performed. The intrafollicular concentrations of the key androgens were assessed and correlated with the intrafollicular levels of some adipokines of interest. Androgens were quantified by mass spectrophotometry combined with ultra-high-performance liquid chromatography, while adipokine concentrations were measured by ELISA assays. RESULTS In PCOS patients, the intrafollicular concentrations of the androgens synthesised by ovarian theca cells, i.e., 17OH-pregnenolone, dehydroepiandrosterone, Δ4-androstenedione and testosterone, were significantly higher than those of the androgens of adrenal origin, and positively correlated with the main PCOS clinical and biological features, as well as with the adipokines mostly expressed in the follicular fluid of PCOS patients, i.e. resistin, omentin, chemerin and apelin. Conversely, Control women showed the highest levels of 17OH-progesterone, deoxycorticosterone and 11-deoxycortisol. Confirming these results, apelin levels were negatively associated with pregnenolone and deoxycorticosterone concentrations, while visfatin levels, which were higher in the Control group, negatively correlated with the Δ4-androstenedione and testosterone ones. CONCLUSIONS PCOS is characterised by a selective increase in the intrafollicular levels of the androgens synthesised by theca cells, strengthening the hypothesis that ovarian hyperandrogenism plays a central role in its pathogenesis. Further, the significant correlation between the intrafollicular concentrations of the androgens and most of the adipokines of interest, including apelin, chemerin, resistin and omentin, confirms the existence of a close relationship between these two hormonal systems, which appear deeply involved in ovarian physiology and PCOS physiopathology.
Collapse
Affiliation(s)
- Alice Bongrani
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France
| | - Ingrid Plotton
- Molecular Endocrinology and Rare Diseases, University Hospital, Claude Bernard Lyon 1 University, 69677, Bron, France
| | - Namya Mellouk
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Ile de France, 78352, Jouy-en-Josas, France
| | - Christelle Ramé
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France
| | - Fabrice Guerif
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France
- Reproductive Medicine and Biology Department, University Hospital of Tours, 37000, Tours, France
| | - Pascal Froment
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France
| | - Joëlle Dupont
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France.
| |
Collapse
|
9
|
Estienne A, Brossaud A, Ramé C, Bernardi O, Reverchon M, Rat C, Delaveau J, Chambellon E, Helloin E, Froment P, Dupont J. Chemerin is secreted by the chicken oviduct, accumulates in egg albumen and could promote embryo development. Sci Rep 2022; 12:8989. [PMID: 35644891 PMCID: PMC9148909 DOI: 10.1038/s41598-022-12961-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractUnderstanding of the distribution of chemerin and its receptors, Chemokine-like Receptor 1 (CMKLR1), G Protein-coupled Receptor 1 (GPR1) and Chemokine (C–C motif) receptor-like 2 (CCRL2), in the egg and the embryonic annexes is currently lacking, and their role during embryogenesis remains unknown. By immunoblot using monoclonal anti-chicken antibodies and Enzyme Linked Immunosorbent Assays (ELISA), we found that chemerin is expressed 10 times higher in albumen eggs than in blood plasma, and it is also abundant in the perivitelline membrane but undetectable in yolk. Chicken chemerin can inhibit bacterial growth. By Reverse Transcription—quantitative Polymerisation Chain Reaction (RT-qPCR), western-blot, and immunofluorescence, we show that chemerin is locally produced by the oviduct magnum that participates in albumen formation. Using cultures of magnum explants, we demonstrate that progesterone (P4) and oestradiol (E2) treatment increases chemerin secretion into cultured media and expression in magnum. Chemerin and its three receptors are present in amniotic and Chorio Allantoic Membranes (CAM). Only CMKLR1 expression decreased from embryonic day (ED) 7 to ED11 and remained low until ED18. Chemerin concentrations strongly increased in amniotic fluid at D14 when egg albumen crossed the amniotic membrane. In ovo injections of neutralising chemerin and CMKLR1 antibodies (0.01, 0.1 and 1 µg) increased embryo mortality, which occurred mainly at ED12-13, in a dose-dependent manner. Chemerin treatment increased primary CAM viability. Finally, chemerin and CMKLR1 inhibition within the CAM led to a decrease in blood vessel development and associated angiogenic gene expression. Our results show an important function of the chemerin system during embryo development in chickens, suggesting the potential use of this adipokine as a predictive marker for egg fertility or hatchability.
Collapse
|
10
|
Kian M, Hosseini E, Abdizadeh T, Langaee T, Khajouei A, Ghasemi S. Molecular docking and mouse modeling suggest CMKLR1 and INSR as targets for improving PCOS phenotypes by minocycline. EXCLI JOURNAL 2022; 21:400-414. [PMID: 35368462 PMCID: PMC8971357 DOI: 10.17179/excli2021-4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of women's infertility. Some inflammatory pathways play a pivotal role in the pathogenesis of PCOS. This study aimed to investigate the possible beneficial effects of minocycline on chemokine-like receptor 1 (CMKLR1) and Insulin Receptor (INSR) in a PCOS model. A molecular docking study was implemented using Molecular Operating Environment (MOE) software. The PCOS was induced in NMRI mice (mean body weight 14.47±0.23) by 28 days estradiol valerate injection (2 mg/kg/day). The mice were then divided into six groups (n=8 per group, mean body weight 17.77± 0.26): control (received normal saline), PCOS model, control for minocycline, minocycline treated PCOS (50 mg/kg), letrozole treated PCOS (0.5 mg/kg), and metformin-treated PCOS (300 mg/kg). Serum FSH, LH, estradiol (E2), and testosterone were detected by ELISA. The ovarian tissues were stained by hematoxylin and eosin. The CMKLR1 and INSR expression levels were determined by Real-time-PCR. The molecular docking studies showed scores of -10.92 and -9.30 kcal/mol, respectively, for minocycline with CMKLR1 and INSR. Estradiol valerate treatment led to a significant increase in E2, graffian follicle, and decrease in corpus luteum (CL) numbers (P<0.05), while minocycline treatment improved these PCOS features. The minocycline treatment significantly decreased the CMKLR1 expression and increased the INSR expression (P<0.05) while the CMKLR1 expression was increased in PCOS model. Minocycline may improve ovulation in PCOS model by returning E2 to a normal level and increasing CL number (ovulation signs). These beneficial outcomes may be related to the changes in CMKLR1 and INSR gene expression involved in glucose metabolism and inflammation.
Collapse
Affiliation(s)
- Mahdie Kian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Hosseini
- Department of Obstetrics and Gynecology, IVF Clinic, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Taimour Langaee
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Azadeh Khajouei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran,*To whom correspondence should be addressed: Sorayya Ghasemi, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Tel: 09131856090, 03833331471, E-mail: ,
| |
Collapse
|
11
|
Lv J, Ge W, Ding Z, Zeng J, Wang W, Duan H, Zhang Y, Zhao X, Hu J. Regulatory role of dihydrotestosterone on BMP-6 receptors in granular cells of sheep antral follicles. Gene 2022; 810:146066. [PMID: 34838638 DOI: 10.1016/j.gene.2021.146066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic protein-6 (BMP-6) and dihydrotestosterone (DHT) affect steroid synthesis in follicles and regulate cell proliferation in the ovaries of female animals. However, little is known about granular cells (GCs) in sheep. We identified the key BMP-6 receptors, activin receptor-like kinase(ALK-6), and bone morphogenetic protein receptor type 2 (BMPRII) in sheep follicles using immunohistochemistry (IHC) and immunofluorescence (IF). Both ALK-6 and BMPRII were expressed in the GC layer, GC membranes, and cytoplasm. We evaluated ALK-6 and BMPRII expression at the follicular development stage using quantitative real-time PCR and western blotting to detect sheep GCs from large, medium, and small follicles (diameters of ≥5, 2-5, and ≤2 mm, respectively). The mRNA abundance and protein expression of ALK-6 and BMPRII were significantly higher in GCs from large follicles compared to those in GCs from small follicles (P < 0.05) and were the lowest in GCs from medium follicles. To assess whether DHT affects ALK-6 and BMPRII expression in sheep GCs, we cultured GCs from large follicles in vitro then incubated them with DHT (10-11, 10-9, 10-7 M). We found that 10-7-M DHT significantly inhibited ALK-6 and BMPRII mRNA and protein (P < 0.05). We further explored whether DHT regulates ALK-6 and BMPRII through the nuclear androgen receptor (AR) pathway and found that 10-6-M flutamide, a non-selective androgen inhibitor, partially relieved the inhibitory effect of 10-7-M DHT on ALK-6 and BMPRII expression. Thus, GCs in sheep antral follicles differentially expressed ALK-6 and BMPRII at various stages, indicating that BMP-6 plays different roles to some extent during the development of antral follicles, and that high concentrations of DHT can inhibit the expression of ALK-6 and BMPRII via the androgen receptor pathway in sheep GCs. The present study aimed to determine the expression of the main BMP-6-related main receptors, namely, ALK-6 and BMPRII, during the development of GCs in sheep antral follicles and a potential mechanism of DHT regulation in sheep GCs. Our findings lay a foundation for the further exploration of the effects of ovarian BMP-6 expression on follicular development.
Collapse
Affiliation(s)
- Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China.
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China.
| |
Collapse
|
12
|
Fischer TF, Beck-Sickinger AG. Chemerin - exploring a versatile adipokine. Biol Chem 2022; 403:625-642. [PMID: 35040613 DOI: 10.1515/hsz-2021-0409] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Chemerin is a small chemotactic protein and a key player in initiating the early immune response. As an adipokine, chemerin is also involved in energy homeostasis and the regulation of reproductive functions. Secreted as inactive prochemerin, it relies on proteolytic activation by serine proteases to exert biological activity. Chemerin binds to three distinct G protein-coupled receptors (GPCR), namely chemokine-like receptor 1 (CMKLR1, recently named chemerin1), G protein-coupled receptor 1 (GPR1, recently named chemerin2), and CC-motif chemokine receptor-like 2 (CCRL2). Only CMKLR1 displays conventional G protein signaling, while GPR1 only recruits arrestin in response to ligand stimulation, and no CCRL2-mediated signaling events have been described to date. However, GPR1 undergoes constitutive endocytosis, making this receptor perfectly adapted as decoy receptor. Here, we discuss expression pattern, activation, and receptor binding of chemerin. Moreover, we review the current literature regarding the involvement of chemerin in cancer and several obesity-related diseases, as well as recent developments in therapeutic targeting of the chemerin system.
Collapse
Affiliation(s)
- Tobias F Fischer
- Institute of Biochemistry, University of Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | | |
Collapse
|
13
|
Gao Y, Xin C, Fan H, Sun X, Wang H. Circulating apelin and chemerin levels in patients with polycystic ovary syndrome: A meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1076951. [PMID: 36714603 PMCID: PMC9874085 DOI: 10.3389/fendo.2022.1076951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrine disorders. Apelin and chemerin are newly identified adipokines, which are higher in obesity and diabetes. Studies have found that the serum apelin and chemerin levels in patients with PCOS are significantly increased. However, other studies showed the opposite results. Therefore, the relationship between those two adipokines and PCOS is still controversial. AIM This meta-analysis was conducted to statistically evaluate the apelin and chemerin levels of patients with PCOS. METHODS We searched the Web of Science, Embase, PubMed, and Google Scholar databases for potential studies. "Polycystic ovary syndrome" or "PCOS" in combination with the terms "apelin" or "chemerin" were used as keywords search titles or abstracts. The publication period examined was between 1990 and 2021. Standardized mean differences (SMD) with corresponding 95% confidence intervals (CIs) were determined as the results of the meta-analysis. RESULTS A total of 148 articles were initially retrieved, and 18 qualified articles were finally obtained through preliminary screening and quality evaluation. The publications together contain 1,265 cases and 894 controls. The results of the meta-analysis showed that the circulating chemerin levels in patients with PCOS were significantly higher than those in the controls (SMD: 0.79, 95% CI [0.36, 1.23]), and there was no significant difference in circulating apelin between patients with PCOS and controls (SMD: 0.57, 95% CI [-0.21, 1.35]). CONCLUSIONS This meta-analysis is the first to evaluate circulating apelin and chemerin levels in patients with PCOS. Our findings suggest that circulating chemerin levels of patients with PCOS are significantly higher than those of healthy controls. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=218316, identifier CRD42020218316.
Collapse
Affiliation(s)
- Yiming Gao
- The First Clinical College of China Medical University, Shenyang, China
| | - Caihong Xin
- Department of Endocrinology and Metabolism, The Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Huaying Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Xin Sun, ; Hongli Wang,
| | - Hongli Wang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Xin Sun, ; Hongli Wang,
| |
Collapse
|
14
|
Sun LF, Yang YL, Wang MY, Zhao HS, Xiao TX, Li MX, Wang BB, Huang C, Ren PG, Zhang JV. Inhibition of Col6a5 Improve Lipid Metabolism Disorder in Dihydrotestosterone-Induced Hyperandrogenic Mice. Front Cell Dev Biol 2021; 9:669189. [PMID: 34109177 PMCID: PMC8181728 DOI: 10.3389/fcell.2021.669189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
Hyperandrogenism is a key pathological feature of polycystic ovarian syndrome (PCOS). Excess androgen can lead to PCOS-like cell hypertrophy in the ovaries and adipose tissue of rodents. Here, we established a dihydrotestosterone (DHT)-induced hyperandrogenic mouse model to analyze the differences in gene expression and signaling pathways of the ovaries and gonad fat pads of mice treated with or without DHT by RNA microarray analysis. From the results, we focused on the overlapping differentially expressed gene—Col6a5—and the major differentially enriched signaling pathway—lipid metabolism. We employed DHT-induced mouse ovarian stromal cell, adipogenic 3T3-L1 cell and hepatic cell line NCTC1469 models to investigate whether androgens directly mediate lipid accumulation and hypertrophy. We found that DHT increased lipid droplet accumulation in ovarian stromal cells and adipogenic 3T3-L1 cells but not NCTC1469 cells. DHT significantly altered stromal cell cholesterol metabolism and steroidogenesis, as indicated by changes in cholesterol levels and the expression of related genes, but these effects were not observed in 3T3-L1 cells. Moreover, Col6a5 expression was significantly increased in ovaries and gonadal fat pads of DHT-treated mice, and Col6a5 inhibition alleviated DHT-induced excess lipid accumulation and hypertrophy of ovarian stromal cells and adipogenic 3T3-L1 cells, even improved lipid metabolism in overnourished NCTC1469 cells. Our results indicate that Col6a5 plays important roles in the pathogenesis of DHT-induced lipid metabolism disorder and the hypertrophy of ovarian stromal cells and adipocytes.
Collapse
Affiliation(s)
- Li-Feng Sun
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ya-Li Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Mei-Yue Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hua-Shan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tian-Xia Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng-Xia Li
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bao-Bei Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
15
|
Zhou J, Huang X, Xue B, Wei Y, Hua F. Bioinformatics analysis of the molecular mechanism of obesity in polycystic ovary syndrome. Aging (Albany NY) 2021; 13:12631-12640. [PMID: 33910166 PMCID: PMC8148487 DOI: 10.18632/aging.202938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/13/2021] [Indexed: 11/25/2022]
Abstract
Background: Obesity is an important part of polycystic ovary syndrome (PCOS) pathologies. The present study utilized the bioinformatics method to identify the molecular mechanism of obesity status in PCOS. Methods: Six transcriptome profiles of adipose tissue were obtained from online databases. The background correction and normalization were performed, and the DEGs were detected with the settings p < 0.05. The GO, KEGG pathway enrichment, and PPI network analysis were performed with the detected DEGs. Results: A total of 37 DGEs were found between obesity PCOS and healthy controls, and 8 of them were tested significant in the third database. The expression patterns of the 8 detected DGEs were then measured in another two datasets based on lean/obesity PCOS patients and healthy controls. The gene CHRDL1 was found to be in linear regression with the BMI index in PCOS patients (p = 0.0358), but such a difference was not found in healthy controls (p = 0.2487). The expression of CHRDL1 was significantly higher in obesity PCOS cases than the BMI matched healthy controls (p = 0.0415). Further enrichment research demonstrated the CHRDL1 might function as an inhibitor of the BMP4 or IGF1 signalling. Conclusion: In summary, the present study identified CHRDL1 as a candidate gene responsible for the obesity of PCOS patients.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.,Department of Endocrinology, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu 213017, China
| | - Xiaolin Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Bingshuang Xue
- Department of Endocrinology, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu 213017, China
| | - Yuhe Wei
- Department of Endocrinology, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu 213017, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| |
Collapse
|
16
|
de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update 2021; 27:771-796. [PMID: 33764457 DOI: 10.1093/humupd/dmab004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic and endocrine alterations in women with polycystic ovary syndrome (PCOS) affect adipose tissue mass and distribution. PCOS is characterised by hyperandrogenism, obesity and adipocyte dysfunction. Hyperandrogenism in PCOS drives dysfunctional adipocyte secretion of potentially harmful adipocytokines. Glucocorticoids and sex-steroids modulate adipocyte development and function. For their part, adipocyte products interact with adrenal and ovarian steroidogenic cells. Currently, the relationship between adipocyte and steroidogenic cells is not clear, and for these reasons, it is important to elucidate the interrelationship between these cells in women with and without PCOS. OBJECTIVE AND RATIONALE This comprehensive review aims to assess current knowledge regarding the interrelationship between adipocytes and adrenal and ovarian steroidogenic cells in animal models and humans with or without PCOS. SEARCH METHODS We searched for articles published in English and Portuguese in PubMed. Keywords were as follows: polycystic ovary syndrome, steroidogenesis, adrenal glands, theca cells, granulosa cells, adipocytes, adipocytokines, obesity, enzyme activation, and cytochrome P450 enzymes. We expanded the search into the references from the retrieved articles. OUTCOMES Glucocorticoids and sex-steroids modulate adipocyte differentiation and function. Dysfunctional adipocyte products play important roles in the metabolic and endocrine pathways in animals and women with PCOS. Most adipokines participate in the regulation of the hypothalamic-pituitary-adrenal and ovarian axes. In animal models of PCOS, hyperinsulinemia and poor fertility are common; various adipokines modulate ovarian steroidogenesis, depending on the species. Women with PCOS secrete unbalanced levels of adipocyte products, characterised by higher levels of leptin and lower levels of adiponectin. Leptin expression positively correlates with body mass index, waist/hip ratio and levels of total cholesterol, triglyceride, luteinising hormone, oestradiol and androgens. Leptin inhibits the production of oestradiol and, in granulosa cells, may modulate 17-hydroxylase and aromatase enzyme activities. Adiponectin levels negatively correlate with fat mass, body mass index, waist-hip ratio, glucose, insulin and triglycerides, and decrease androgen production by altering expression of luteinising hormone receptor, steroidogenic acute regulatory protein, cholesterol-side-chain cleavage enzyme and 17-hydroxylase. Resistin expression positively correlates with body mass index and testosterone, and promotes the expression of 17-hydroxylase enzyme in theca cells. The potential benefits of adipokines in the treatment of women with PCOS require more investigation. WIDER IMPLICATIONS The current data regarding the relationship between adipocyte products and steroidogenic cells are conflicting in animals and humans. Polycystic ovary syndrome is an excellent model to investigate the interrelationship among adipocyte and steroidogenic cells. Women with PCOS manifest some pathological conditions associated with hyperandrogenism and adipocyte products. In animals, cross-talk between cells may vary according to species, and the current review suggests opportunities to test new medications to prevent or even reverse several harmful sequelae of PCOS in humans. Further studies are required to investigate the possible therapeutic application of adipokines in women with obese and non-obese PCOS. Meanwhile, when appropriate, metformin use alone, or associated with flutamide, may be considered for therapeutic purposes.
Collapse
Affiliation(s)
- Sebastião Freitas de Medeiros
- Department of Gynecology and Obstetrics, Medical School, Federal University of Mato Grosso; and Tropical Institute of Reproductive Medicine,Cuiabá, MT, Brazil
| | - Raymond Joseph Rodgers
- Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert John Norman
- Robinson Research Institute Adelaide Medical School, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Wang D, Weng Y, Zhang Y, Wang R, Wang T, Zhou J, Shen S, Wang H, Wang Y. Exposure to hyperandrogen drives ovarian dysfunction and fibrosis by activating the NLRP3 inflammasome in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141049. [PMID: 32758727 DOI: 10.1016/j.scitotenv.2020.141049] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 05/10/2023]
Abstract
Hyperandrogenism is the main cause of infertility as a result of polycystic ovary syndrome (PCOS). Long-term and continuous exposure to hyperandrogen can cause follicular developmental disorders. Ovarian granulosa cells (GCs) are critical in shaping the follicular development. To clarify how excessive androgen suppresses folliculogenesis and ovulation, we constructed PCOS mice by implantation of a 35-d testosterone (T) continuous-release pellet. Ovarian toll-like receptor 4 (TLR4) expression and serum IL-6 and IL-1β levels were dramatically increased in T-treated mice. In addition, the expression of NLRP3 inflammasome in the ovary of T-treated mice suggests that pyroptosis may play an essential role in follicular dysfunction. Lipopolysaccharide (LPS) has been extensively studied for activating cells by binding to TLR4. In this study, we demonstrated that LPS-induced inflammation leads to activation of the NLRP3 inflammasome with consequent impacts on follicular dysfunction. Herein we showed that LPS treatment upregulated the expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and androgen receptor (AR), while suppressed follicle stimulating hormone receptor (FSHR) expression in vitro. Moreover, we overexpressed NLRP3 using nigericin or lentiviral particles in GCs. The protein and mRNA levels of pyroptotic factors were highly enhanced with NLRP3 overexpression. As expected, the expression of Cyp19α1, Cyp11α1, 3β-HSD and FSHR at both the protein and mRNA levels was also markedly increased with excessive NLRP3. After inhibiting NLRP3, dihydrotestosterone (DHT)-treated GCs demonstrated markedly decreased NLRP3, the inflammasome adapter protein ASC, C-terminal fragment of gasdermin D (GSDMD-C), AR and Cyp19α1 at the protein level. Furthermore, with NLRP3 overexpression, the expression of fibrotic factors in ovarian cells was dramatically increased, such as TGF-β, CTGF, α-SMA, β-catenin, collagen I and collagen IV. These findings suggest that hyperandrogen stimulates chronic low-grade inflammation in the ovary to activate the NLRP3 inflammasome, further inducing a series of pathologies including ovarian GC pyroptotic death, follicular dysfunction and ovarian interstitial cell fibrosis.
Collapse
Affiliation(s)
- Daojuan Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yajing Weng
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yaling Zhang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Rong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Tingyu Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jianjun Zhou
- Department of Endocrinology, the Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Shanmei Shen
- Department of Endocrinology, the Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Hongwei Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
18
|
Huang B, Zhao H, Huang C, Wu L, Xiang L, Chen J, Wang B, Xiao T, Li M, Ren L, Niu J, Zhang JV. CMKLR1 deficiency attenuates androgen-induced lipid accumulation in mice. Am J Physiol Endocrinol Metab 2020; 318:E371-E380. [PMID: 31910029 DOI: 10.1152/ajpendo.00176.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excess androgen-induced obesity has become a public health problem, and its prevalence has increased substantially in recent years. Chemokine-like receptor 1 (CMKLR1), a receptor of chemerin secreted by adipose tissue, is linked to adipocyte differentiation, adipose tissue development, and obesity. However, the effect of CMKLR1 signaling on androgen-mediated adiposity in vivo remains unclear. Using CMKLR1-knockout mice, we constructed an androgen-excess female mouse model through 5α-dihydrotestosterone (DHT) treatment and an androgen-deficient male mouse model by orchidectomy (ORX). For mechanism investigation, we used 2-(α-Naphthoyl) ethyltrimethylammonium iodide (α-NETA), an antagonist of CMKLR1, to suppress CMKLR1 in vivo and wortmannin, a PI3K signaling antagonist, to treat brown adipose tissue (BAT) explant cultures in vitro. Furthermore, we used histological examination and quantitative PCR, as well as Western blot analysis, glucose tolerance tests, and biochemical analysis of serum, to describe the phenotypes and the changes in gene expression. We demonstrated that excess androgen in the female mice resulted in larger cells in the white adipose tissue (WAT) and the BAT, whereas androgen deprivation in the male mice induced a reduction in cell size. Both of these adipocyte size effects could be attenuated in the CMKLR1-knockout mice. CMKLR1 deficiency influenced the effect of androgen treatment on adipose tissue by regulating the mRNA expression of the androgen receptor (AR) and adipocyte markers (such as Fabp4 and Cidea). Moreover, suppression of CMKLR1 by α-NETA could also reduce the extent of the adipocyte cell enlargement caused by DHT. Furthermore, we found that DHT could reduce the levels of phosphorylated ERK (pERK) in the BAT, while CMKLR1 inactivation inhibited this effect, which had been induced by DHT, through the PI3K signaling pathway. These findings reveal an antiobesity role of CMKLR1 deficiency in regulating lipid accumulation, highlighting the scientific importance for the further development of small-molecule CMKLR1 antagonists as fundamental research tools and/or as potential drugs for use in the treatment of adiposity.
Collapse
Affiliation(s)
- Binbin Huang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huashan Zhao
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chen Huang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Linlin Wu
- Shenzhen Maternity and Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen, China
| | - Liang Xiang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Chen
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baobei Wang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tianxia Xiao
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengxia Li
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lirong Ren
- Department of Obstetric, ShenZhen Baoan Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jianmin Niu
- Shenzhen Maternity and Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen, China
| | - Jian V Zhang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
20
|
Bongrani A, Mellouk N, Rame C, Cornuau M, Guérif F, Froment P, Dupont J. Ovarian Expression of Adipokines in Polycystic Ovary Syndrome: A Role for Chemerin, Omentin, and Apelin in Follicular Growth Arrest and Ovulatory Dysfunction? Int J Mol Sci 2019; 20:ijms20153778. [PMID: 31382403 PMCID: PMC6695651 DOI: 10.3390/ijms20153778] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Adipokines are a potential link between reproduction and energy metabolism and could partly explain some infertilities related to some pathophysiology, such as polycystic ovary syndrome (PCOS). However, adipokines were predominantly assessed in blood samples, while very little is known concerning their variations in follicular fluid (FF) and ovarian granulosa cells (GCs) of PCOS women. Thus, the objectives of our study were to investigate adiponectin, chemerin, resistin, visfatin, omentin, and apelin ovarian expression in PCOS women in comparison with controls and women with only a polycystic ovary morphology. In total, 78 women undergoing an in vitro fertilization procedure were divided into three groups: 23 PCOS women, 28 women presenting only ≥12 follicles per ovary (ECHO group), and 27 control women. Each group almost equally included normal weight and obese women. Follicular fluid (FF) concentration and granulosa cells (GCs) mRNA expression of adipokines and their receptors were assessed by ELISA and RT-qPCR, respectively. Omentin levels in FF and GC were higher in PCOS than in ECHO and control women, while apelin expression was increased in both PCOS and ECHO groups. FF chemerin concentration was predominant in normal-weight PCOS women compared to BMI (Body Mass Index)-matched ECHO and control women, while GC mRNA levels were higher in the obese PCOS group than in the ECHO one. Compared to PCOS, ECHO women had increased FF adiponectin concentrations and lower plasma AMH levels. The FF concentration of all adipokines was higher in obese subjects except for adiponectin, predominant in normal-weight women. In conclusion, women with PCOS expressed higher GC chemerin and omentin, whereas the ECHO group presented higher levels of FF adiponectin and apelin and lower plasma AMH and LH concentrations. Chemerin, omentin, and apelin expression was differently regulated in women with PCOS, suggesting their possible role in follicular growth arrest and ovulatory dysfunction characterizing PCOS pathogenesis.
Collapse
Affiliation(s)
- Alice Bongrani
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Namya Mellouk
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Christelle Rame
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Marion Cornuau
- Service de Médecine et Biologie de la Reproduction, CHRU Bretonneau, 2, boulevard Tonnellé, F-37044 Tours, France
| | - Fabrice Guérif
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU Bretonneau, 2, boulevard Tonnellé, F-37044 Tours, France
| | - Pascal Froment
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Joëlle Dupont
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France.
| |
Collapse
|
21
|
Tamadon A, Hu W, Cui P, Ma T, Tong X, Zhang F, Li X, Shao LR, Feng Y. How to choose the suitable animal model of polycystic ovary syndrome? TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a gynecological metabolic and endocrine disorder with uncertain etiology. To understand the etiology of PCOS or the evaluation of various therapeutic agents, different animal models have been introduced. Considering this fact that is difficult to develop an animal model that mimics all aspects of this syndrome, but, similarity of biological, anatomical, and/or biochemical features of animal model to the human PCOS phenotypes can increase its application. This review paper evaluates the recently researched animal models and introduced the best models for different research purposes in PCOS studies. During January 2013 to January 2017, 162 studies were identified which applied various kinds of animal models of PCOS including rodent, primate, ruminant and fish. Between these models, prenatal and pre-pubertal androgen rat models and then prenatal androgen mouse model have been studied in detail than others. The comparison of main features of these models with women PCOS demonstrates higher similarity of these three models to human conditions. Thereafter, letrozole models can be recommended for the investigation of various aspects of PCOS. Interestingly, similarity of PCOS features of post-pubertal insulin and human chorionic gonadotropin rat models with women PCOS were considerable which can make it as a good choice for future investigations.
Collapse
Affiliation(s)
- Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
22
|
Walters KA, Bertoldo MJ, Handelsman DJ. Evidence from animal models on the pathogenesis of PCOS. Best Pract Res Clin Endocrinol Metab 2018; 32:271-281. [PMID: 29779581 DOI: 10.1016/j.beem.2018.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine condition in women, and is characterized by reproductive, endocrine and metabolic features. However, there is no simple unequivocal diagnostic test for PCOS, its etiology remains unknown and there is no cure. Hence, the management of PCOS is suboptimal as it relies on the ad hoc empirical management of its symptoms only. Decisive studies are required to unravel the origins of PCOS, but due to ethical and logistical reasons these are not possible in humans. Experimental animal models for PCOS have been established which have enhanced our understanding of the mechanisms underlying PCOS and propose novel mechanism-based therapies to treat the condition. This review examines the findings from various animal models to reveal the current knowledge of the mechanisms underpinning the development of PCOS, and also provides insights into the implications from these studies for improved clinical management of this disorder.
Collapse
Affiliation(s)
- K A Walters
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - M J Bertoldo
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - D J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia.
| |
Collapse
|
23
|
Yang YL, Sun LF, Yu Y, Xiao TX, Wang BB, Ren PG, Tang HR, Zhang JV. Deficiency of Gpr1 improves steroid hormone abnormality in hyperandrogenized mice. Reprod Biol Endocrinol 2018; 16:50. [PMID: 29793502 PMCID: PMC5968470 DOI: 10.1186/s12958-018-0363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex genetic disease with multifarious phenotypes. Many researches use dehydroepiandrosterone (DHEA) to induce PCOS in pubertal mouse models. The aim of this study was to investigate the role of GPR1 in dehydroepiandrosterone (DHEA)-induced hyperandrogenized mice. METHODS Prepubertal C57BL/6 mice (25 days of age) and Gpr1-deficient mice were each divided into two groups and injected daily with sesame oil with or without DHEA (6 mg/100 g) for 21 consecutive days. Hematoxylin and eosin (H&E) staining was performed to determine the characteristics of the DHEA-treated ovaries. Real-time PCR was used to examine steroid synthesis enzymes gene expression. Granulosa cell was cultured to explore the mechanism of DHEA-induced, GPR1-mediated estradiol secretion. RESULTS DHEA treatment induced some aspects of PCOS in wild-type mice, such as increased body weight, elevated serum testosterone, increased number of small, cystic, atretic follicles, and absence of corpus luteum in ovaries. However, Gpr1 deficiency significantly attenuated the DHEA-induced weight gain and ovarian phenotype, improving steroidogenesis in ovaries and estradiol synthesis in cultured granulosa cells, partially through mTOR signaling. CONCLUSIONS In conclusion, Gpr1 deficiency leads to the improvement of steroid synthesis in mice hyperandrogenized with DHEA, indicating that GPR1 may be a therapeutic target for DHEA-induced hyperandrogenism.
Collapse
Affiliation(s)
- Ya-Li Yang
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Li-Feng Sun
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yan Yu
- Baoan Maternal and Child Health Care Hospital, Shenzhen, 518101 China
| | - Tian-Xia Xiao
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Bao-Bei Wang
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Pei-Gen Ren
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Hui-Ru Tang
- Peking University Shenzhen Hospital, Shenzhen, 518035 China
| | - Jian V. Zhang
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| |
Collapse
|
24
|
Huang BB, Liu XC, Qin XY, Chen J, Ren PG, Deng WF, Zhang J. Effect of High-Fat Diet on Immature Female Mice and Messenger and Noncoding RNA Expression Profiling in Ovary and White Adipose Tissue. Reprod Sci 2018; 26:1360-1372. [DOI: 10.1177/1933719118765966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Obesity is a chronic multifactorial disease prevalent in many areas of the world and is a major cause of morbidity and mortality. In women, obesity increases the risks of both metabolic and reproductive diseases, such as diabetes and infertility. The mechanisms underlying these effects, especially in young women, are largely unknown. To explore these mechanisms, we established a high-fat diet (HFD) model of obesity in immature female mice. Microarray analysis of gene expression in ovaries and white adipose tissue identified a large number of differentially expressed genes (>1.3-fold change) in both tissues. In ovaries of the HFD group, there were 208 differentially expressed messenger RNAs (mRNAs), including 98 upregulated and 110 downregulated, and 295 differentially expressed lncRNAs (long non coding RNAs), including 63 upregulated and 232 downregulated. In white adipose tissue, there were 625 differentially expressed mRNAs, including 220 upregulated and 605 downregulated in the HFD group, and 1595 differentially expressed lncRNAs, including 1320 and 275 downregulated in the HFD group. Our results reveal significant differences between the transcriptomes of the HFD and control groups in both ovaries and white adipose tissue that provide clues to the molecular mechanisms of diet-induced female reproductive dysfunction and metabolic disorders, as well as biomarkers of risk for these disorders.
Collapse
Affiliation(s)
- Bin-bin Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | | | - Xiao-yun Qin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei-gen Ren
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei-Fen Deng
- Shenzhen IVF Gynaecologic Hospital, Shenzhen, China
| | - Jian Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
25
|
Mellouk N, Ramé C, Barbe A, Grandhaye J, Froment P, Dupont J. Chicken Is a Useful Model to Investigate the Role of Adipokines in Metabolic and Reproductive Diseases. Int J Endocrinol 2018; 2018:4579734. [PMID: 30018639 PMCID: PMC6029501 DOI: 10.1155/2018/4579734] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/16/2018] [Indexed: 01/04/2023] Open
Abstract
Reproduction is a complex and essential physiological process required by all species to produce a new generation. This process involves strict hormonal regulation, depending on a connection between the hypothalamus-pituitary-gonadal axis and peripheral organs. Metabolic homeostasis influences the reproductive functions, and its alteration leads to disturbances in the reproductive functions of humans as well as animals. For a long time, adipose tissue has been recognised as an endocrine organ but its ability to secrete and release hormones called adipokines is now emerging. Adipokines have been found to play a major role in the regulation of metabolic and reproductive processes at both central and peripheral levels. Leptin was initially the first adipokine that has been described to be the most involved in the metabolism/reproduction interrelation in mammals. In avian species, the role of leptin is still under debate. Recently, three novel adipokines have been discovered: adiponectin (ADIPOQ, ACRP30), visfatin (NAMPT, PBEF), and chemerin (RARRES2, TIG2). However, their mode of action between mammalian and nonmammalian species is different due to the different reproductive and metabolic systems. Herein, we will provide an overview of the structure and function related to metabolic and reproductive mechanisms of the latter three adipokines with emphasis on avian species.
Collapse
Affiliation(s)
- Namya Mellouk
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Christelle Ramé
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Alix Barbe
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Jérémy Grandhaye
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Pascal Froment
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| |
Collapse
|
26
|
Kennedy AJ, Davenport AP. International Union of Basic and Clinical Pharmacology CIII: Chemerin Receptors CMKLR1 (Chemerin 1) and GPR1 (Chemerin 2) Nomenclature, Pharmacology, and Function. Pharmacol Rev 2018; 70:174-196. [PMID: 29279348 PMCID: PMC5744648 DOI: 10.1124/pr.116.013177] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemerin, a chemoattractant protein and adipokine, has been identified as the endogenous ligand for a G protein-coupled receptor encoded by the gene CMKLR1 (also known as ChemR23), and as a consequence the receptor protein was renamed the chemerin receptor in 2013. Since then, chemerin has been identified as the endogenous ligand for a second G protein-coupled receptor, encoded by the gene GPR1 Therefore, the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification recommends that the official name of the receptor protein for chemokine-like receptor 1 (CMKLR1) is chemerin receptor 1, and G protein-coupled receptor 1 is chemerin receptor 2 to follow the convention of naming the receptor protein after the endogenous ligand. Chemerin receptor 1 and chemerin receptor 2 can be abbreviated to Chemerin1 and Chemerin2, respectively. Chemerin requires C-terminal processing for activity, and human chemerin21-157 is reported to be the most active form, with peptide fragments derived from the C terminus biologically active at both receptors. Small-molecule antagonist, CCX832, selectively blocks CMKLR1, and resolvin E1 activation of CMKLR1 is discussed. Activation of both receptors by chemerin is via coupling to Gi/o, causing inhibition of adenylyl cyclase and increased Ca2+ flux. Receptors and ligand are widely expressed in humans, rats, and mice, and both receptors share ∼80% identity across these species. CMKLR1 knockout mice highlight the role of this receptor in inflammation and obesity, and similarly, GPR1 knockout mice exhibit glucose intolerance. In addition, the chemerin receptors have been implicated in cardiovascular disease, cancer, steroidogenesis, human immunodeficiency virus replication, and neurogenerative disease.
Collapse
Affiliation(s)
- Amanda J Kennedy
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
27
|
Lim JJ, Lima PDA, Salehi R, Lee DR, Tsang BK. Regulation of androgen receptor signaling by ubiquitination during folliculogenesis and its possible dysregulation in polycystic ovarian syndrome. Sci Rep 2017; 7:10272. [PMID: 28860512 PMCID: PMC5578986 DOI: 10.1038/s41598-017-09880-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/31/2017] [Indexed: 02/02/2023] Open
Abstract
Although chronic hyperandrogenism suppresses antral follicular development, a phenomenon often observed in polycystic ovarian syndrome (PCOS), whether and how deregulation of androgen receptor (AR) signaling is involved, is not well understood. In the present study, we examined the role of ring finger protein 6 (RNF6) in AR ubiquitination and the possible dysregulation in the expression and actions of growth differentiation factor 9 (GDF9) and kit-ligand (Kitlg) in a chronic androgenized PCOS rat model. 5α-dihydrotestosterone (DHT) treatment in vivo inhibited antral follicle growth, a response mediated through increased RNF6 content, suppressed K63- but increased K48-linked AR ubiquitination as well as the mRNA expression and content of soluble KIT-L (sKitlg) and content of GDF9. These androgenic responses were attenuated by gonadotropin treatment in vivo. Growth of antral follicles from DHT-treated rats in vitro was significantly slower when compared to those of control but was significantly enhanced by exogenous GDF9, suggesting the DHT-induced antral follicular growth arrest is in part the results of GDF9 suppression. Our findings indicate how hyperandrogenism modulates RNF6 content and subsequently AR ubiquitination, resulting in antral follicle growth arrest in a chronically androgenized PCOS rat model.
Collapse
Affiliation(s)
- Jung Jin Lim
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 133-791, Korea
| | - Patricia D A Lima
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Reza Salehi
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Dong Ryul Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, 135-913, Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, 135-081, Korea
| | - Benjamin K Tsang
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada.
| |
Collapse
|
28
|
Hewitson TD, Boon WC, Simpson ER, Smith ER, Samuel CS. Estrogens do not protect, but androgens exacerbate, collagen accumulation in the female mouse kidney after ureteric obstruction. Life Sci 2016; 158:130-6. [PMID: 27373424 DOI: 10.1016/j.lfs.2016.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022]
Abstract
AIMS Controversy surrounds the gender basis of progression in chronic kidney disease. Unfortunately, most experimental studies addressing this question do not distinguish between direct effects of estrogen and indirect activation of estrogen receptors through conversion of testosterone to 17β-estradiol by aromatase. We examined the pathogenesis of renal fibrosis in female aromatase knockout (ArKO) mice, which lack circulating and stored estrogens, while having normal levels of testosterone. MAIN METHODS ArKO mice and their wild-type (ArWT) counterparts were subjected to unilateral ureteric obstruction (UUO), with kidney tissue collected at day(D) 0, 3 and 9 post-UUO. Effects of 5α-dihydrotestosterone (DHT) administration on each genotype were also studied. Tissue was assessed biochemically and histochemically for fibrosis. Western blot analysis was used to measure α-smooth muscle actin (α-SMA) expression and TGF-β1 signalling. Matrix metalloproteinase-2 (MMP-2) activity was measured by zymography. KEY FINDINGS UUO increased collagen content over time (p<0.05 (D3) and p<0.01 (D9) vs day 0), with no difference between genotypes in qualitative (collagen IV staining) and quantitative (hydroxyproline concentration) analyses. Systemic administration of non-aromatizable DHT increased collagen content after 3days of UUO in both genotypes. This was not paralleled by any change in α-SMA (myofibroblast burden) or TGF-β1 signalling but was commensurate with DHT reducing MMP2 activity in both genotypes (p<0.05 vs genotype controls). SIGNIFICANCE Physiological concentrations of estrogens do not protect the injured kidney from fibrosis progression. Androgens rather than estrogens are the relevant factor involved in regulating disease-related renal scarring in this model.
Collapse
Affiliation(s)
- Tim D Hewitson
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Carlton, Victoria, Australia
| | - Wah Chin Boon
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Prince Henry's Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | - Evan R Simpson
- Prince Henry's Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Edward R Smith
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Chrishan S Samuel
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|