1
|
Tamatta R, Singh AK. Critical role of microRNAs in cellular quality control during brain aging and neurological disorders: Interplay between autophagy and proteostasis. Life Sci 2025; 369:123563. [PMID: 40089100 DOI: 10.1016/j.lfs.2025.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
A decline in cellular quality control mechanisms is one of the processes of brain aging. Autophagy and proteostasis are two regulatory mechanisms that maintain cellular component turnover to preserve cellular homeostasis, optimal function, and neuronal health by eliminating damaged and aggregated proteins and preventing neurodegenerative disorders (NDDs). Impaired autophagy and proteostasis are significant hallmarks of aging and many age-related NDDs. MicroRNAs are noncoding RNA molecules that have recently been shown to be essential for regulating several biological processes, such as autophagy, proteostasis, cellular differentiation, and development by targeting mRNA's 3'untranslated region (3'UTR). During brain aging, miRNAs have been shown to dysregulate proteostasis and autophagy, resulting in abnormal cellular activity and protein aggregation, a characteristic of age-related NDDs. This review highlights the complex interactions of miRNAs in the orchestration of proteostasis and autophagy. This dysregulation impairs autophagic flux and proteostasis and accelerates age-related disorders, neuroinflammation, and neurodegeneration. Understanding the complex interactions among miRNAs, autophagy, and proteostasis in the aging brain is essential for novel therapeutics development for age-related NDDs.
Collapse
Affiliation(s)
- Rajesh Tamatta
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576 104, India.
| |
Collapse
|
2
|
Song Y, Jia H, Ma Q, Zhang L, Lai X, Wang Y. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front Physiol 2024; 15:1461519. [PMID: 39483752 PMCID: PMC11525220 DOI: 10.3389/fphys.2024.1461519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Pulmonary hypertension is a progressive disease of the pulmonary arteries that begins with increased pulmonary artery pressure, driven by progressive remodeling of the small pulmonary arteries, and ultimately leads to right heart failure and death. Vascular remodeling is the main pathological feature of pulmonary hypertension, but treatments for pulmonary hypertension are lacking. Determining the process of vascular proliferation and dysfunction may be a way to decipher the pathogenesis of pulmonary hypertension. In this review, we summarize the important pathways of pulmonary hypertension pathogenesis. We show how these processes are integrated and emphasize the benign role of aerobic exercise, which, as an adjunctive therapy, may be able to modify vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Yinping Song
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Qing Ma
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Lulu Zhang
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Xiangyi Lai
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
3
|
Karamali N, Daraei A, Rostamlou A, Mahdavi R, Akbari Jonoush Z, Ghadiri N, Mahmoudi Z, Mardi A, Javidan M, Sohrabi S, Baradaran B. Decoding contextual crosstalk: revealing distinct interactions between non-coding RNAs and unfolded protein response in breast cancer. Cancer Cell Int 2024; 24:104. [PMID: 38468244 PMCID: PMC10926595 DOI: 10.1186/s12935-024-03296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Breast cancer is significantly influenced by endoplasmic reticulum (ER) stress, impacting both its initiation and progression. When cells experience an accumulation of misfolded or unfolded proteins, they activate the unfolded protein response (UPR) to restore cellular balance. In breast cancer, the UPR is frequently triggered due to challenging conditions within tumors. The UPR has a dual impact on breast cancer. On one hand, it can contribute to tumor growth by enhancing cell survival and resistance to programmed cell death in unfavorable environments. On the other hand, prolonged and severe ER stress can trigger cell death mechanisms, limiting tumor progression. Furthermore, ER stress has been linked to the regulation of non-coding RNAs (ncRNAs) in breast cancer cells. These ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play essential roles in cancer development by influencing gene expression and cellular processes. An improved understanding of how ER stress and ncRNAs interact in breast cancer can potentially lead to new treatment approaches. Modifying specific ncRNAs involved in the ER stress response might interfere with cancer cell survival and induce cell death. Additionally, focusing on UPR-associated proteins that interact with ncRNAs could offer novel therapeutic possibilities. Therefore, this review provides a concise overview of the interconnection between ER stress and ncRNAs in breast cancer, elucidating the nuanced effects of the UPR on cell fate and emphasizing the regulatory roles of ncRNAs in breast cancer progression.
Collapse
Affiliation(s)
- Negin Karamali
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arshia Daraei
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arman Rostamlou
- Department of Medical Biology, School of Medicine, University of EGE, Bornova, Izmir, Turkey
| | - Roya Mahdavi
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Akbari Jonoush
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nooshin Ghadiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mahmoudi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Javidan
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Sohrabi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Zhao N, Ho JSY, Meng F, Zheng S, Kurland AP, Tian L, Rea-Moreno M, Song X, Seo JS, Kaniskan HÜ, Te Velthuis AJW, Tortorella D, Chen YW, Johnson JR, Jin J, Marazzi I. Generation of host-directed and virus-specific antivirals using targeted protein degradation promoted by small molecules and viral RNA mimics. Cell Host Microbe 2023; 31:1154-1169.e10. [PMID: 37339625 PMCID: PMC10528416 DOI: 10.1016/j.chom.2023.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Targeted protein degradation (TPD), as exemplified by proteolysis-targeting chimera (PROTAC), is an emerging drug discovery platform. PROTAC molecules, which typically contain a target protein ligand linked to an E3 ligase ligand, recruit a target protein to the E3 ligase to induce its ubiquitination and degradation. Here, we applied PROTAC approaches to develop broad-spectrum antivirals targeting key host factors for many viruses and virus-specific antivirals targeting unique viral proteins. For host-directed antivirals, we identified a small-molecule degrader, FM-74-103, that elicits selective degradation of human GSPT1, a translation termination factor. FM-74-103-mediated GSPT1 degradation inhibits both RNA and DNA viruses. Among virus-specific antivirals, we developed viral RNA oligonucleotide-based bifunctional molecules (Destroyers). As a proof of principle, RNA mimics of viral promoter sequences were used as heterobifunctional molecules to recruit and target influenza viral polymerase for degradation. This work highlights the broad utility of TPD to rationally design and develop next-generation antivirals.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew P Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lu Tian
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martha Rea-Moreno
- Department of Otolaryngology, Master of Science in Biomedical Science Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiangyang Song
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ji-Seon Seo
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aartjan J W Te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Li K, Li Y, Ding H, Chen J, Zhang X. Metal-Binding Proteins Cross-Linking with Endoplasmic Reticulum Stress in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:jcdd10040171. [PMID: 37103050 PMCID: PMC10143100 DOI: 10.3390/jcdd10040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
The endoplasmic reticulum (ER), an essential organelle in eukaryotic cells, is widely distributed in myocardial cells. The ER is where secreted protein synthesis, folding, post-translational modification, and transport are all carried out. It is also where calcium homeostasis, lipid synthesis, and other processes that are crucial for normal biological cell functioning are regulated. We are concerned that ER stress (ERS) is widespread in various damaged cells. To protect cells' function, ERS reduces the accumulation of misfolded proteins by activating the unfolded protein response (UPR) pathway in response to numerous stimulating factors, such as ischemia or hypoxia, metabolic disorders, and inflammation. If these stimulatory factors are not eliminated for a long time, resulting in the persistence of the UPR, it will aggravate cell damage through a series of mechanisms. In the cardiovascular system, it will cause related cardiovascular diseases and seriously endanger human health. Furthermore, there has been a growing number of studies on the antioxidative stress role of metal-binding proteins. We observed that a variety of metal-binding proteins can inhibit ERS and, hence, mitigate myocardial damage.
Collapse
Affiliation(s)
- Kejuan Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Jianshu Chen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| |
Collapse
|
6
|
Emerging Role of MicroRNA-30c in Neurological Disorders. Int J Mol Sci 2022; 24:ijms24010037. [PMID: 36613480 PMCID: PMC9819962 DOI: 10.3390/ijms24010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of small non-coding RNAs that negatively regulate the expression of target genes by interacting with 3' untranslated regions of target mRNAs to induce mRNA degradation and translational repression. The miR-30 family members are involved in the development of many tissues and organs and participate in the pathogenesis of human diseases. As a key member of the miR-30 family, miR-30c has been implicated in neurological disorders such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. Mechanistically, miR-30c may act as a multi-functional regulator of different pathogenic processes such as autophagy, apoptosis, endoplasmic reticulum stress, inflammation, oxidative stress, thrombosis, and neurovascular function, thereby contributing to different disease states. Here, we review and discuss the biogenesis, gene regulation, and the role and mechanisms of action of miR-30c in several neurological disorders and therapeutic potential in clinics.
Collapse
|
7
|
Ricafrente A, Cwiklinski K, Nguyen H, Dalton JP, Tran N, Donnelly S. Stage-specific miRNAs regulate gene expression associated with growth, development and parasite-host interaction during the intra-mammalian migration of the zoonotic helminth parasite Fasciola hepatica. BMC Genomics 2022; 23:419. [PMID: 35659245 PMCID: PMC9167548 DOI: 10.1186/s12864-022-08644-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
Background MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression in organisms ranging from viruses to mammals. There is great relevance in understanding how miRNAs regulate genes involved in the growth, development, and maturation of the many parasitic worms (helminths) that together afflict more than 2 billion people. Results Here, we describe the miRNAs expressed by each of the predominant intra-mammalian development stages of Fasciola hepatica, a foodborne flatworm that infects a wide range of mammals worldwide, most importantly humans and their livestock. A total of 124 miRNAs were profiled, 72 of which had been previously reported and three of which were conserved miRNA sequences described here for the first time. The remaining 49 miRNAs were novel sequences of which, 31 were conserved with F. gigantica and the remaining 18 were specific to F. hepatica. The newly excysted juveniles express 22 unique miRNAs while the immature liver and mature bile duct stages each express 16 unique miRNAs. We discovered several sequence variant miRNAs (IsomiRs) as well as miRNA clusters that exhibit strict temporal expression paralleling parasite development. Target analysis revealed the close association between miRNA expression and stage-specific changes in the transcriptome; for example, we identified specific miRNAs that target parasite proteases known to be essential for intestinal wall penetration (cathepsin L3). Moreover, we demonstrate that miRNAs fine-tune the expression of genes involved in the metabolic pathways that allow the parasites to move from an aerobic external environment to the anerobic environment of the host. Conclusions These results provide novel insight into the regulation of helminth parasite development and identifies new genes and miRNAs for therapeutic development to limit the virulence and pathogenesis caused by F. hepatica. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08644-z.
Collapse
|
8
|
Kim T, Croce CM. MicroRNA and ER stress in cancer. Semin Cancer Biol 2021; 75:3-14. [PMID: 33422566 DOI: 10.1016/j.semcancer.2020.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The development of biological technologies in genomics, proteomics, and bioinformatics has led to the identification and characterization of the complete set of coding genes and their roles in various cellular pathways in cancer. Nevertheless, the cellular pathways have not been fully figured out like a jigsaw puzzle with missing pieces. The discovery of noncoding RNAs including microRNAs (miRNAs) has provided the missing pieces of the cellular pathways. Likewise, miRNAs have settled many questions of inexplicable patches in the endoplasmic reticulum (ER) stress pathways. The ER stress-caused pathways typified by the unfolded protein response (UPR) are pivotal processes for cellular homeostasis and survival, rectifying uncontrolled proteostasis and determining the cell fate. Although various factors and pathways have been studied and characterized, the understanding of the ER stress requires more wedges to fill the cracks of knowledge about the ER stress pathways. Moreover, the roles of the ER stress and UPR are still controversial in cancer despite their strong potential to promote cancer. The noncoding RNAs, in particular, miRNAs aid in a better understanding of the ER stress and its role in cancer. In this review, miRNAs that are the more-investigated subtype of noncoding RNAs are focused on the interpretation of the ER stress in cancer, following the introduction of miRNA and ER stress.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Oshiba RT, Touson E, Elsherbini YM, Abdraboh ME. Melatonin: A regulator of the interplay between FoxO1, miR96, and miR215 signaling to diminish the growth, survival, and metastasis of murine adenocarcinoma. Biofactors 2021; 47:740-753. [PMID: 34058789 DOI: 10.1002/biof.1758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/12/2021] [Indexed: 01/20/2023]
Abstract
Melatonin (Mel.), also known as the magic hormone, is a nocturnally secreted hormone orchestrates the clearance of free radicals that have been built up and cumulated during day. This study aims to detect the impact of pineal gland removal on the incidence of tumor development and to assess the signaling pathways via which exogenous melatonin counteract cancer growth. This goal has been achieved by novel approach for pineal destruction using dental micromotor which validated by melatonin downregulation in blood plasma. Mice were injected sub-cutenously with Ehrlich cells to develop solid tumor as a murine model of breast cancer. The increase at tumor markers carcino embryonic antigen, TNFα, and nuclear factor kappa-light-chain-enhancer of activated B cells was over countered by exogenous melatonin supplementation (20 mg/kg) daily for 1 month. The anticancer effects of melatonin were significantly mediated by scavenging H2 O2 and NO and diminishing of lipid peroxidation marker malondialdehyde. The real-time polymerase chain Rx analyses indicated a significant effect of Melatonin in upregulating the expression of miR215, fork head box protein O1 (foxO1), and downregulation of miR96. Flowcytometric analyses indicated a significant effect of melatonin on induction of cell cycle arrest at G1 phase which was further confirmed by Ki67 downregulation. Immunohistochemical analyses indicated the role of melatonin in upregulating P53-dependent apoptosis and downregulating CD44 signaling for survivin, matrix metallo-protein kinase 2, and vascular endothelial growth factor to inhibit cell survival and metastasis. In conclusion, this study sheds the light on M./P53/miR215/CD44 with an emphasis on M./miR96//foxO1 signaling cascades, as a novel pathway of melatonin signaling in adenocarcinoma to diminish cancer cell growth, survival and metastasis.
Collapse
Affiliation(s)
- Rehab T Oshiba
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ehab Touson
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yasser M Elsherbini
- School of Allied Health, Faculty of Health, Education, Medicine and Social care, Anglia Ruskin University, Chelmsford, UK
| | - Mohamed E Abdraboh
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles Protect Human Corneal Endothelial Cells from Endoplasmic Reticulum Stress-Mediated Apoptosis. Int J Mol Sci 2021; 22:ijms22094930. [PMID: 34066474 PMCID: PMC8125791 DOI: 10.3390/ijms22094930] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal endothelial dystrophy is a relevant cause of vision loss and corneal transplantation worldwide. In the present study, we analyzed the effect of mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) in an in vitro model of corneal dystrophy, characterized by endoplasmic reticulum stress. The effects of MSC-EVs were compared with those of serum-derived EVs, reported to display a pro-angiogenic activity. MSC-EVs were able to induce a significant down-regulation of the large majority of endoplasmic reticulum stress-related genes in human corneal endothelial cells after exposure to serum deprivation and tunicamycin. In parallel, they upregulated the Akt pathway and limited caspase-3 activation and apoptosis. At variance, the effect of the serum EVs was mainly limited to Akt phosphorylation, with minimal or absent effects on endoplasmic reticulum stress modulation and apoptosis prevention. The effects of MSC-EVs were correlated to the transfer of numerous endoplasmic reticulum (ER)-stress targeting miRNAs to corneal endothelial cells. These data suggest a potential therapeutic effect of MSC-EVs for corneal endothelial endoplasmic reticulum stress, a major player in corneal endothelial dystrophy.
Collapse
|
11
|
Houshiheisan promotes angiogenesis via HIF-1α/VEGF and SDF-1/CXCR4 pathways: in vivo and in vitro. Biosci Rep 2020; 39:220749. [PMID: 31652450 PMCID: PMC6822506 DOI: 10.1042/bsr20191006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Rationale: Houshiheisan (HSHS), a classic prescription in traditional Chinese medicine (TCM), has remarkable efficacy in the treatment of ischemic stroke. Objective: To investigate the pro-angiogenic effect and molecular mechanism of HSHS for stroke recovery. Methods and results: The rat permanent middle cerebral artery occlusion (pMCAO) model was constructed by suture method, HSHS (5.25 or 10.5 g/kg) and Ginaton (28 mg/kg) treatment was intragastrically administrated at 6 h after modeling which remained for 7 consecutive days. Pathological evaluation conducted by Hematoxylin–Eosin (HE) staining and the results showed that HSHS alleviated blood vessel edema, reduced the damage to blood vessels and neurons in the ischemic areas. Immunostaining, quantitative real-time fluorescence PCR results showed that HSHS up-regulated pro-angiogenic factors including platelet endothelial cell adhesion molecule-1 (cluster of differentiation 31 (CD31)), vascular endothelial growth factor (VEGF), vascular endothelial growth factor A (VEGFA), VEGF receptor 2 (VEGFR2), angiopoietin-1 (Ang-1), while down-regulated angiopoietin-2 (Ang-2), stromal cell derived factor-1 (SDF-1), and cxc chemokine receptor 4 (CXCR4) expression in infarct rat cortex, and similar results were obtained in subsequent Western blot experiment. Furthermore, CCK8 assay and transwell migration assay were performed to assess cell proliferation, migration, and tube formation. The medicated serum (MS) of HSHS appeared to have beneficial effects for immortalized human umbilical vein cells (Im-HUVECs) on proliferation and migration after persistence hypoxia. Western blot analysis revealed that the expression of hypoxia inducible factor-1α (HIF-1α), VEGFA, Ang-1, Ang-2, and CXCR4 were significantly up-regulated while Ang-2 was down-regulated by HSHS MS treatment compared with vehicle group in vitro. Conclusion: The present study suggests a novel application of HSHS as an effective angiogenic formula for stroke recovery.
Collapse
|
12
|
Pellegrini P, Selvaraju K, Faustini E, Mofers A, Zhang X, Ternerot J, Schubert A, Linder S, D′Arcy P. Induction of ER Stress in Acute Lymphoblastic Leukemia Cells by the Deubiquitinase Inhibitor VLX1570. Int J Mol Sci 2020; 21:ijms21134757. [PMID: 32635430 PMCID: PMC7369842 DOI: 10.3390/ijms21134757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
The proteasome is a validated target of cancer therapeutics. Inhibition of proteasome activity results in the activation of the unfolded protein response (UPR) characterized by phosphorylation of eukaryotic initiation factor 2α (eIF2α), global translational arrest, and increased expression of the proapoptotic CHOP (C/EBP homologous protein) protein. Defects in the UPR response has been reported to result in altered sensitivity of tumor cells to proteasome inhibitors. Here, we characterized the effects of the deubiquitinase (DUB) inhibitor VLX1570 on protein homeostasis, both at the level of the UPR and on protein translation, in acute lymphoblastic leukemia (ALL). Similar to the 20S inhibitor bortezomib, VLX1570 induced accumulation of polyubiquitinated proteins and increased expression of the chaperone Grp78/Bip in ALL cells. Both compounds induced cleavage of PARP (Poly (ADP-ribose) polymerase) in ALL cells, consistent with induction of apoptosis. However, and in contrast to bortezomib, VLX1570 treatment resulted in limited induction of the proapoptotic CHOP protein. Translational inhibition was observed by both bortezomib and VLX1570. We report that in distinction to bortezomib, suppression of translation by VXL1570 occurred at the level of elongation. Increased levels of Hsc70/Hsp70 proteins were observed on polysomes following exposure to VLX1570, possibly suggesting defects in nascent protein folding. Our findings demonstrate apoptosis induction in ALL cells that appears to be uncoupled from CHOP induction, and show that VLX1570 suppresses protein translation by a mechanism distinct from that of bortezomib.
Collapse
Affiliation(s)
- Paola Pellegrini
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Karthik Selvaraju
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Elena Faustini
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Arjan Mofers
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Jens Ternerot
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Alice Schubert
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
- Department of Oncology-Pathology, Karolinska Institute, S-17176 Stockholm, Sweden
| | - Pádraig D′Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
- Correspondence:
| |
Collapse
|
13
|
Mir-30b-5p Promotes Proliferation, Migration, and Invasion of Breast Cancer Cells via Targeting ASPP2. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7907269. [PMID: 32420372 PMCID: PMC7210518 DOI: 10.1155/2020/7907269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtypes of breast cancer, which has few effective targeted therapies. Various sources of evidence confirm that microRNAs (miRNAs) contribute to the progression and metastasis of human breast cancer. However, the molecular mechanisms underlying the changes in miRNAs expression and the regulation of miRNAs functions have not been well clarified. In this study, we found that the expression of miR-30b-5p was upregulated in breast cancer tissues and breast cancer cell lines, compared to paracancer tissues and normal breast cell lines. Moreover, induced overexpression of miR-30b-5p promoted the MDA-MB-231 and HCC 1937 cell growth, migration, and invasion and reduced the cellular apoptosis. Further studies confirmed that miR-30b-5p could directly target ASPP2 and then activate the AKT signaling pathway. Our results suggested that miR-30b-5p could act as a tumor promoter in TNBC. The newly identified miR-30b-5p/ASPP2/AKT axis represents a novel therapeutic strategy for treating TNBC.
Collapse
|
14
|
Jin Y, Yao G, Wang Y, Teng L, Wang Y, Chen H, Gao R, Lin W, Wang Z, Chen J. MiR-30c-5p mediates inflammatory responses and promotes microglia survival by targeting eIF2α during Cryptococcus neoformans infection. Microb Pathog 2020; 141:103959. [PMID: 31958475 DOI: 10.1016/j.micpath.2019.103959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Cryptococcosis is a disease predominantly caused by Cryptococcus neoformans in China and C. neoformans is the main form that causes cryptococcal meningitis. In this study, we examined the influence of MiR-30c-5p during Cryptococcus neoformans infection. microRNAs were extracted from Cerebrospinal fluid and sera of patients. To identify pathogenic microRNAs, RNASeq were performed. The results were confirmed with quantitative real-time PCR (qRT-PCR), transient transfection of siRNAs or microRNA mimics into cultured BV2 cell, flow cytometry, immunoblotting, luciferase assay and immunohistochemistry. In this study we found that miR-30c expression was downregulated and that inflammation, apoptosis, and autophagy were activated. The overexpression of miR-30c-5p significantly inhibited inflammation and autophagic activity and decreased apoptosis, and treatment with sieIF2α resulted in a significant decrease in inflammation, apoptosis. In addition, clinical samples of cerebrospinal fluid and serum of patients with cryptococcal meningitis who have undergone standard antifungal treatment showed that the expression of miR-30c-5p was increased while that of eIF2α was decreased, which was in accordance with the in vitro experiments. These studies demonstrated that miRNA-30c-5p can inhibit inflammatory, apoptotic, and autophagic activity through the eIF2α/ATF4 pathway, and it is thus a potential target for the diagnosis, treatment, and detection of cryptococcal meningitis.
Collapse
Affiliation(s)
- Yi Jin
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Guotai Yao
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yan Wang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Liang Teng
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yilin Wang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Hong Chen
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Rui Gao
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Wenting Lin
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Zhongzhi Wang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China.
| | - Jianghan Chen
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
15
|
Hu Y, Yang W, Xie L, Liu T, Liu H, Liu B. Endoplasmic reticulum stress and pulmonary hypertension. Pulm Circ 2020; 10:2045894019900121. [PMID: 32110387 PMCID: PMC7000863 DOI: 10.1177/2045894019900121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension is a fatal disease of which pulmonary vasculopathy is the main pathological feature resulting in the mean pulmonary arterial pressure higher than 25 mmHg. Moreover, pulmonary hypertension remains a tough problem with unclear molecular mechanisms. There have been dozens of studies about endoplasmic reticulum stress during the onset of pulmonary hypertension in patients, suggesting that endoplasmic reticulum stress may have a critical effect on the pathogenesis of pulmonary hypertension. The review aims to summarize the rationale to elucidate the role of endoplasmic reticulum stress in pulmonary hypertension. Started by reviewing the mechanisms responsible for the unfolded protein response following endoplasmic reticulum stress, the potential link between endoplasmic reticulum stress and pulmonary hypertension were introduced, and the contributions of endoplasmic reticulum stress to different vascular cells, mitochondria, and inflammation were described, and finally the potential therapies of attenuating endoplasmic reticulum stress for pulmonary hypertension were discussed.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenhao Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Hiramatsu N, Chiang K, Aivati C, Rodvold JJ, Lee JM, Han J, Chea L, Zanetti M, Koo EH, Lin JH. PERK-mediated induction of microRNA-483 disrupts cellular ATP homeostasis during the unfolded protein response. J Biol Chem 2020; 295:237-249. [PMID: 31792031 PMCID: PMC6952592 DOI: 10.1074/jbc.ra119.008336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), which reduces levels of misfolded proteins. However, if ER homeostasis is not restored and the UPR remains chronically activated, cells undergo apoptosis. The UPR regulator, PKR-like endoplasmic reticulum kinase (PERK), plays an important role in promoting cell death when persistently activated; however, the underlying mechanisms are poorly understood. Here, we profiled the microRNA (miRNA) transcriptome in human cells exposed to ER stress and identified miRNAs that are selectively induced by PERK signaling. We found that expression of a PERK-induced miRNA, miR-483, promotes apoptosis in human cells. miR-483 induction was mediated by a transcription factor downstream of PERK, activating transcription factor 4 (ATF4), but not by the CHOP transcription factor. We identified the creatine kinase brain-type (CKB) gene, encoding an enzyme that maintains cellular ATP reserves through phosphocreatine production, as being repressed during the UPR and targeted by miR-483. We found that ER stress, selective PERK activation, and CKB knockdown all decrease cellular ATP levels, leading to increased vulnerability to ER stress-induced cell death. Our findings identify miR-483 as a downstream target of the PERK branch of the UPR. We propose that disruption of cellular ATP homeostasis through miR-483-mediated CKB silencing promotes ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Nobuhiko Hiramatsu
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0612
| | - Karen Chiang
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0612; Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0612
| | - Cathrine Aivati
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0612
| | - Jeffrey J Rodvold
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093-0612
| | - Ji-Min Lee
- Soonchunhyang Institute of Med-bio Science, Soonchunhyang University, Asan 31151, Korea
| | - Jaeseok Han
- Soonchunhyang Institute of Med-bio Science, Soonchunhyang University, Asan 31151, Korea
| | - Leon Chea
- Department of Pathology, Stanford University, Stanford, California 94304
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093-0612
| | - Edward H Koo
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0612; Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117549 Singapore
| | - Jonathan H Lin
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0612; Department of Pathology, Stanford University, Stanford, California 94304; Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304.
| |
Collapse
|
17
|
Estevão-Pereira H, Lobo J, Salta S, Amorim M, Lopes P, Cantante M, Reis B, Antunes L, Castro F, Palma de Sousa S, Gonçalves CS, Costa BM, Henrique R, Jerónimo C. Overexpression of circulating MiR-30b-5p identifies advanced breast cancer. J Transl Med 2019; 17:435. [PMID: 31888645 PMCID: PMC6936051 DOI: 10.1186/s12967-019-02193-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer (BrC) remains the leading cause of cancer-related death in women, mainly due to recurrent and/or metastatic events, entailing the need for biomarkers predictive of progression to advanced disease. MicroRNAs hold promise as noninvasive cancer biomarkers due to their inherent stability and resilience in tissues and bodily fluids. There is increasing evidence that specific microRNAs play a functional role at different steps of the metastatic cascade, behaving as signaling mediators to enable the colonization of a specific organ. Herein, we aimed to evaluate the biomarker performance of microRNAs previously reported as associated with prognosis for predicting BrC progression in liquid biopsies. METHODS Selected microRNAs were assessed using a quantitative reverse transcription-polymerase chain reaction in a testing cohort of formalin-fixed paraffin-embedded primary (n = 16) and metastatic BrC tissues (n = 22). Then, miR-30b-5p and miR-200b-3p were assessed in a validation cohort #1 of formalin-fixed paraffin-embedded primary (n = 82) and metastatic BrC tissues (n = 93), whereas only miR-30b-5p was validated on a validation cohort #2 of liquid biopsies from BrC patients with localized (n = 20) and advanced (n = 25) disease. ROC curve was constructed to evaluate prognostic performance. RESULTS MiR-30b-5p was differentially expressed in primary tumors and paired metastatic lesions, with bone metastases displaying significantly higher miR-30b-5p expression levels, paralleling the corresponding primary tumors. Interestingly, patients with advanced disease disclosed increased circulating miR-30b-5p expression compared to patients with localized BrC. CONCLUSIONS MiR-30b-5p might identify BrC patients at higher risk of disease progression, thus, providing a useful clinical tool for patients' monitoring, entailing earlier and more effective treatment. Nonetheless, validation in larger multicentric cohorts is mandatory to confirm these findings.
Collapse
Affiliation(s)
- Helena Estevão-Pereira
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Maria Amorim
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Paula Lopes
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Berta Reis
- Department of Laboratory Medicine, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Fernando Castro
- Department of Medical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Susana Palma de Sousa
- Department of Medical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
18
|
Tramullas M, Francés R, de la Fuente R, Velategui S, Carcelén M, García R, Llorca J, Hurlé MA. MicroRNA-30c-5p modulates neuropathic pain in rodents. Sci Transl Med 2019; 10:10/453/eaao6299. [PMID: 30089634 DOI: 10.1126/scitranslmed.aao6299] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/21/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
Abstract
Neuropathic pain is a debilitating chronic syndrome that is often refractory to currently available analgesics. Aberrant expression of several microRNAs (miRNAs) in nociception-related neural structures is associated with neuropathic pain in rodent models. We have exploited the antiallodynic phenotype of mice lacking the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a transforming growth factor-β (TGF-β) pseudoreceptor. We used these mice to identify new miRNAs that might be useful for diagnosing, treating, or predicting neuropathic pain. We show that, after sciatic nerve injury in rats, miR-30c-5p was up-regulated in the spinal cord, dorsal root ganglia, cerebrospinal fluid (CSF) and plasma and that the expression of miR-30c-5p positively correlated with the severity of allodynia. The administration of a miR-30c-5p inhibitor into the cisterna magna of the brain delayed neuropathic pain development and reversed fully established allodynia in rodents. The mechanism was mediated by TGF-β and involved the endogenous opioid system. In patients with neuropathic pain associated with leg ischemia, the expression of miR-30c-5p was increased in plasma and CSF compared to control patients without pain. Logistic regression analysis in our cohort of patients showed that the expression of miR-30c-5p in plasma and CSF, in combination with other clinical variables, might be useful to help to predict neuropathic pain occurrence in patients with chronic peripheral ischemia.
Collapse
Affiliation(s)
- Mónica Tramullas
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain.,Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| | - Raquel Francés
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain.,Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| | - Roberto de la Fuente
- Instituto de Investigación Valdecilla, E-39011 Santander, Spain.,Servicio de Anestesiología, Hospital Universitario Valdecilla, E-39008 Santander, Spain
| | - Sara Velategui
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain
| | - María Carcelén
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain.,Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| | - Raquel García
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain.,Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| | - Javier Llorca
- Instituto de Investigación Valdecilla, E-39011 Santander, Spain.,Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Cantabria, E-39011 Santander, Spain.,CIBER de Epidemiología y Salud Pública, Spain
| | - María A Hurlé
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain. .,Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| |
Collapse
|
19
|
Guo L, Li Y, Tian Y, Gong S, Chen X, Peng T, Wang A, Jiang Z. eIF2α promotes vascular remodeling via autophagy in monocrotaline-induced pulmonary arterial hypertension rats. Drug Des Devel Ther 2019; 13:2799-2809. [PMID: 31496656 PMCID: PMC6698179 DOI: 10.2147/dddt.s213817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Eukaryotic initiation factor 2α (eIF2α) plays important roles in the proliferation and survival of pulmonary artery smooth muscle cells (PASMCs) in animal hypoxia-induced pulmonary hypertension models. However, the underlying mechanism remains unknown at large. Autophagy has been reported to play a key role in the vascular remodeling in pulmonary arterial hypertension (PAH). The purposes of this study are to determine the functions of eIF2α and autophagy in the vascular remodeling of the monocrotaline-induced PAH rats and to clarify the correlation between eIF2α and autophagy. METHODS We established a rat model of monocrotaline-induced PAH, and we established a cell model of platelet derived growth factor (PDGF)-induced PASMCs proliferation. The vascular morphology and the expression of eIF2α, LC3B, and p62 were assessed in the pulmonary arterial tissue of Sprague-Dawleyrats and PDGF-induced PASMCs. RESULTS Autophagy was significantly active in monocrotaline model group (MCT)-induced PAH rats, which obviously promotes vascular remodeling in MCT-induced PAH rats. Furthermore, the proliferation of PASMCs was induced by PDGF in vitro. The expression of LC3B, eIF2α was increased in the PDGF-induced PASMCs proliferation, and the expression of p62 was reduced in the PDGF-induced PASMCs proliferation. Moreover, eIF2α siRNA downregulated the expression of eIF2α and LC3B, and upregulated the expression of p62 in PDGF-induced PASMCs proliferation. eIF2α siRNA inhibited the PDGF-induced PASMCs proliferation. Finally, chloroquine can upregulate the protein expression of LC3B and p62, it also can inhibit proliferation in PDGF-induced PASMCs. CONCLUSION Based on these observations, we conclude that eIF2α promotes the proliferation of PASMCs and vascular remodeling in monocrotaline-induced PAH rats through accelerating autophagy pathway.
Collapse
Affiliation(s)
- Linya Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou510000, Guangdong, People’s Republic of China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou, 510000, Guangdong, People’s Republic of China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang421002, Hunan, People’s Republic of China
- Postdoctoral Research Institute on Basic Medicine, University of South China, Hengyang, 421001, Hunan, People’s Republic of China
| | - Shaoxin Gong
- Department of Pathology, First Affiliated Hospital, University of South China, Hengyang421001, Hunan, People’s Republic of China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
| | - Aiping Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang421002, Hunan, People’s Republic of China
- Postdoctoral Research Institute on Basic Medicine, University of South China, Hengyang, 421001, Hunan, People’s Republic of China
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang421001, Hunan, People’s Republic of China
| | - Zhisheng Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang421001, Hunan, People’s Republic of China
| |
Collapse
|
20
|
Overexpression of PIMREG promotes breast cancer aggressiveness via constitutive activation of NF-κB signaling. EBioMedicine 2019; 43:188-200. [PMID: 30979686 PMCID: PMC6557765 DOI: 10.1016/j.ebiom.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 01/31/2023] Open
Abstract
Background It is well-established that activation of nuclear factor-kappa B (NF-κB) signaling plays important roles in cancer development and progression. However, the underlying mechanism by which the NF-κB pathway is constitutively activated in cancer remains largely unclear. The present study aimed to investigate the effect of PICALM interacting mitotic regulator (PIMREG) on sustaining NF-κB activation in breast cancer. Methods The underlying mechanisms in which PIMREG-mediated NF-κB constitutive activation were determined via immunoprecipitation, EMSA and luciferase reporter assays. The expression of PIMREG was examined by quantitative PCR and western blotting analyses and immunohistochemical assay. The effect of PIMREG on aggressiveness of breast cancer cell was measured using MTT, soft agar clonogenic assay, wound healing and transwell matrix penetration assays in vitro and a Xenografted tumor model in vivo. Findings PIMREG competitively interacted with the REL homology domain (RHD) of NF-κB with IκBα, and sustained NF-κB activation by promotion of nuclear accumulation and transcriptional activity of NF-κB via disrupting the NF-κB/IκBα negative feedback loop. PIMREG overexpression significantly enhanced NF-κB transactivity and promoted the breast cancer aggressiveness. The expression of PIMREG was markedly upregulated in breast cancer and positively correlated with clinical characteristics of patients with breast cancer, including the clinical stage, tumor-node-metastasis classification and poorer survival. Interpretation PIMREG promotes breast cancer aggressiveness via disrupting the NF-κB/IκBα negative feedback loop, which suggests that PIMREG might be a valuable prognostic factor and potential target for diagnosis and therapy of metastatic breast cancer. Fund The science foundation of China, Guangdong Province, Guangzhou Education System, and the Science and Technology Program of Guangzhou.
Collapse
|
21
|
Yin Z, Zhao Y, He M, Li H, Fan J, Nie X, Yan M, Chen C, Wang DW. MiR-30c/PGC-1β protects against diabetic cardiomyopathy via PPARα. Cardiovasc Diabetol 2019; 18:7. [PMID: 30635067 PMCID: PMC6329097 DOI: 10.1186/s12933-019-0811-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/03/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Metabolic abnormalities have been implicated as a causal event in diabetic cardiomyopathy (DCM). However, the mechanisms underlying cardiac metabolic disorder in DCM were not fully understood. RESULTS Db/db mice, palmitate treated H9c2 cells and primary neonatal rat cardiomyocytes were employed in the current study. Microarray data analysis revealed that PGC-1β may play an important role in DCM. Downregulation of PGC-1β relieved palmitate induced cardiac metabolism shift to fatty acids use and relevant lipotoxicity in vitro. Bioinformatics coupled with biochemical validation was used to confirm that PGC-1β was one of the direct targets of miR-30c. Remarkably, overexpression of miR-30c by rAAV system improved glucose utilization, reduced excessive reactive oxygen species production and myocardial lipid accumulation, and subsequently attenuated cardiomyocyte apoptosis and cardiac dysfunction in db/db mice. Similar effects were also observed in cultured cells. More importantly, miR-30c overexpression as well as PGC-1β knockdown reduced the transcriptional activity of PPARα, and the effects of miR-30c on PPARα was almost abated by PGC-1β knockdown. CONCLUSIONS Our data demonstrated a protective role of miR-30c in cardiac metabolism in diabetes via targeting PGC-1β, and suggested that modulation of PGC-1β by miR-30c may provide a therapeutic approach for DCM.
Collapse
Affiliation(s)
- Zhongwei Yin
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yanru Zhao
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Mengying He
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Huaping Li
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jiahui Fan
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiang Nie
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Mengwen Yan
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing, 100029 China
| | - Chen Chen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Dao Wen Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
22
|
Yang J, Wang B, Chen H, Chen X, Li J, Chen Y, Yuan D, Zheng S. Thyrotroph embryonic factor is downregulated in bladder cancer and suppresses proliferation and tumorigenesis via the AKT/FOXOs signalling pathway. Cell Prolif 2018; 52:e12560. [PMID: 30515906 PMCID: PMC6496933 DOI: 10.1111/cpr.12560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives Thyrotroph embryonic factor (TEF) plays an important role in several different processes in normal human cells; however, its function in malignant cells has not been fully elucidated. Materials and methods The mRNA levels of TEF in 408 bladder cancer (BC) samples from the Cancer Genome Atlas (TCGA) database were analysed in depth. Next, the expression of TEF in 7 BC cell lines was compared to that in normal bladder epithelial cells. The cell count, colony formation and anchorage‐independent growth assays as well as a nude mouse xenograft model were utilized to examine the effects of TEF on proliferation and tumorigenesis. Immunofluorescence staining, flow cytometry analysis and treatment with an AKT inhibitor were performed to explore the molecular regulation mechanisms of TEF in BC. Results Analysis of TCGA data indicated that TEF mRNA was decreased in BC samples compared to that in normal bladder epithelial cells and correlated with the poor survival of BC patients. Additional experiments verified that the mRNA and protein expression of TEF were significantly decreased in BC cells compared to that in normal bladder epithelial cells. Upregulation of TEF expression significantly retarded BC cell growth by inhibiting the G1/S transition via regulating AKT/FOXOs signalling. Conclusion Our results suggest that TEF might play an important role in suppressing BC cells proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Jianan Yang
- Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Bin Wang
- Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Han Chen
- Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, the Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuhong Chen
- Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, the Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yanfei Chen
- Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Daozhang Yuan
- Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Shunsheng Zheng
- Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Increased phosphorylation of eIF2α in chronic myeloid leukemia cells stimulates secretion of matrix modifying enzymes. Oncotarget 2018; 7:79706-79721. [PMID: 27802179 PMCID: PMC5346746 DOI: 10.18632/oncotarget.12941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
Recent studies underscore the role of the microenvironment in therapy resistance of chronic myeloid leukemia (CML) cells and leukemia progression. We previously showed that sustained mild activation of endoplasmic reticulum (ER) stress in CML cells supports their survival and resistance to chemotherapy. We now demonstrate, using dominant negative non-phosphorylable mutant of eukaryotic initiation factor 2 α subunit (eIF2α), that phosphorylation of eIF2α (eIF2α-P), which is a hallmark of ER stress in CML cells, substantially enhances their invasive potential and modifies their ability to secrete extracellular components, including the matrix-modifying enzymes cathepsins and matrix metalloproteinases. These changes are dependent on the induction of activating transcription factor-4 (ATF4) and facilitate extracellular matrix degradation by CML cells. Conditioned media from CML cells with constitutive activation of the eIF2α-P/ATF4 pathway induces invasiveness of bone marrow stromal fibroblasts, suggesting that eIF2α-P may be important for extracellular matrix remodeling and thus leukemia cells-stroma interactions. Our data show that activation of stress response in CML cells may contribute to the disruption of bone marrow niche components by cancer cells and in this way support CML progression.
Collapse
|
24
|
McMahon M, Samali A, Chevet E. Regulation of the unfolded protein response by noncoding RNA. Am J Physiol Cell Physiol 2017. [DOI: 10.1152/ajpcell.00293.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are exposed to various intrinsic and extrinsic stresses in both physiological and pathological conditions. To adapt to those conditions, cells have evolved various mechanisms to cope with the disturbances in protein demand, largely through the unfolded protein response (UPR) in the endoplasmic reticulum (ER), but also through the integrated stress response (ISR). Both responses initiate downstream signaling to transcription factors that, in turn, trigger adaptive programs and/or in the case of prolonged stress, cell death mechanisms. Recently, noncoding RNAs, including microRNA and long noncoding RNA, have emerged as key players in the stress responses. These noncoding RNAs act as both regulators and effectors of the UPR and fine-tune the output of the stress signaling pathways. Although much is known about the UPR and the cross talk that exists between pathways, the contribution of small noncoding RNA has not been fully assessed. Herein we bring together and review the current known functions of noncoding RNA in regulating adaptive pathways in both physiological and pathophysiological conditions, illustrating how they operate within the known UPR functions and contribute to diverse cellular outcomes.
Collapse
Affiliation(s)
- Mari McMahon
- INSERM U1242 “Chemistry, Oncogenesis, Stress, Signalling,” Université de Rennes 1, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France; and
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Eric Chevet
- INSERM U1242 “Chemistry, Oncogenesis, Stress, Signalling,” Université de Rennes 1, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France; and
| |
Collapse
|
25
|
陈 帅, 周 永, 陈 颖, 陈 小, 李 光, 杨 加, 雷 玉, 赵 光, 黄 秋, 杨 长, 杜 亚, 黄 云. [Specific microRNA expression profiles of lung adenocarcinoma in Xuanwei region and bioinformatic analysis for predicting their target genes and related signaling pathways]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:238-244. [PMID: 28219870 PMCID: PMC6779667 DOI: 10.3969/j.issn.1673-4254.2017.02.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To identify differentially expressed microRNAs (miRNAs) related to lung adenocarcinoma in Xuanwei region and predict their target genes and related signaling pathways based on bioinformatic analysis. METHODS High-throughput microarray assay was performed to detect miRNA expression profiles in 34 paired human lung adenocarcinoma and adjacent normal tissues (including 24 cases in Xuanwei region and 10 in other regions). Gene ontology and KEGG pathway analyses were used to predict the target genes and the regulatory signaling pathways. RESULTS Thirty-four miRNAs were differentially expressed in lung adenocarcinoma tissues in cases in Xuanwei region as compared with cases in other regions, including 23 upregulated and 11 downregulated miRNAs. The predicted target genes included GF, RTK, SOS, IRS1, BCAP, CYTOKINSR, ECM, ITGB, FAK and Gbeta;Y involving the PI3K/Alt, WNT and MAPK pathways. CONCLUSION The specific microRNA expression profiles of lung adenocarcinoma in cases found in Xuanwei region allow for a better understanding of the pathogenesis of lung adenocarcinoma in Xuanwei. The predicted target genes may involve the PI3K/Alt, WNT and MAPK pathways.
Collapse
Affiliation(s)
- 帅 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 永春 周
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 颖 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 小波 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 光剑 李
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 加鹏 杨
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 玉洁 雷
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 光强 赵
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 秋博 黄
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 长绍 杨
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 亚茜 杜
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 云超 黄
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| |
Collapse
|