1
|
Gorzkowska J, Kozak W, Bobis-Wozowicz S, Cherepashuk I, Madeja Z, Lasota S. The dynamics of chemoattractant receptors redistribution in the electrotaxis of 3T3 fibroblasts. Cell Commun Signal 2025; 23:173. [PMID: 40200280 PMCID: PMC11980103 DOI: 10.1186/s12964-025-02165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Electrotaxis, the directed cell movement in direct current electric field (dcEF), is crucial for wound healing and development. We recently proposed a biphasic electrotaxis mechanism, where an initial rapid response is driven by ionic mechanisms, while redistribution of membrane components come into play during prolonged exposure to dcEF. METHODS To verify this hypothesis, we studied the redistribution dynamics of EGFR, PDGFRα/β, and TGFβR1 in dcEF. For this purpose, we utilized cells transfected with plasmids encoding fluorescently tagged receptors, which were exposed to dcEF in a custom-designed electrotactic chamber. Fluorescent images were captured using wide-field or TIRF microscopy, enabling precise quantitative analysis of receptor redistribution. Additionally, the functional significance of these selected receptors in electrotaxis was evaluated by silencing their expression using an siRNA library. RESULTS Although EGFR moved immediately to cathode after dcEF application, maximum distribution asymmetry was reached after 30-40 min. This process was more efficient at higher dcEF intensities, specifically, asymmetry was greater at 3 V/cm compared to 1 V/cm, consistent with the biphasic mechanism observed only under the stronger dcEF. Additionally, redistribution was more effective under alkaline conditions and near the cell base, but decreased when glass was coated with poly-L-lysine, indicating electroosmosis as a key factor. Importantly, EGFR redistribution did not correlate with the rapid reaction of 3T3 cells to dcEF reversal, which occurred within 1-2 min, when receptor orientation was not yet reversed. PDGFRα exhibited similar but less marked cathodal redistribution, while PDGFRβ and TGFβR1 did not redistribute. siRNA knockdown experiments confirmed the importance of EGFR and ErbB4 in the electrotaxis. EGFR's role was largely ligand-independent, and it had a significant impact on the response of 3T3 cells to dcEF during the first hour of the experiment, but was not involved in the fastest response, which was Kir-dependent. CONCLUSIONS Our study suggests that EGFR redistribution may play a role in the early stages and partially contribute to the long-term electrotaxis of 3T3 fibroblasts. However, this mechanism alone does not fully explain rapid responses to dcEF orientation changes indicating a more complex, multimodal mechanism of electrotaxis in these cells.
Collapse
Affiliation(s)
- Jagoda Gorzkowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Wiktoria Kozak
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Sylwia Bobis-Wozowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Ivan Cherepashuk
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Zbigniew Madeja
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Sławomir Lasota
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.
| |
Collapse
|
2
|
Naggay BK, Farahani SK, Gao X, Holle A, Kemkemer R. Direct current electrical fields inhibit cancer cell motility in microchannel confinements. Sci Rep 2025; 15:4605. [PMID: 39920207 PMCID: PMC11806051 DOI: 10.1038/s41598-025-87737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
The capability of cells to sense and respond to endogenous electrical fields plays a crucial role in processes like nerve regeneration, wound healing, and development. In vitro, many cell types respond to electrical fields by migrating along the corresponding electrical field vectors. This process is known as galvano- or electrotaxis. Here we report on the combined impact of micro-confinements and direct current electrical fields (dcEFs) on the motility of MDA-MB-231 human breast cancer cells using a self-developed, easy-to-use platform with microchannels ranging from 3 μ m to 11 μ m in width and 11 μ m height. We found that MDA-MB-231 cells respond to exogenous electrical fields ranging from 100 mV mm- 1 to 1000 mV mm- 1 with altered cell motility depending on the confinement size. Our data show an overall inhibited galvanotaxis in confinements, while in contrast an enhancing effect in unconfined galvanotaxis is found. The application of direct current electrical fields to microchannels not only caused a reduction in migration speed but also decreased the number of permeating cells. By applying 1000 mV mm- 1 , single-cell permeation could be prevented in confinements of 5 μ m and smaller.
Collapse
Affiliation(s)
- Benjamin Karem Naggay
- Department of Life Sciences, Reutlingen University, 72762, Reutlingen, Germany
- Reutlingen Research Institute, Reutlingen University, 72762, Reutlingen, Germany
| | | | - Xu Gao
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117411, Singapore
| | - Andrew Holle
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117411, Singapore
| | - Ralf Kemkemer
- Department of Life Sciences, Reutlingen University, 72762, Reutlingen, Germany.
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Ende K, Santos F, Guasch J, Kemkemer R. Migration of human T cells can be differentially directed by electric fields depending on the extracellular microenvironment. iScience 2024; 27:109746. [PMID: 38706849 PMCID: PMC11067362 DOI: 10.1016/j.isci.2024.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
T cell migration plays an essential role in the immune response and T cell-based therapies. It can be modulated by chemical and physical cues such as electric fields (EFs). The mechanisms underlying electrotaxis (cell migration manipulated by EFs) are not fully understood and systematic studies with immune cells are rare. In this in vitro study, we show that direct current EFs with strengths of physiologically occurring EFs (25-200 mV/mm) can guide the migration of primary human CD4+ and CD8+ T cells on 2D substrates toward the anode and in a 3D environment differentially (CD4+ T cells show cathodal and CD8+ T cells show anodal electrotaxis). Overall, we find that EFs present a potent stimulus to direct T cell migration in different microenvironments in a cell-type-, substrate-, and voltage-dependent manner, while not significantly influencing T cell differentiation or viability.
Collapse
Affiliation(s)
- Karen Ende
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
| | - Fabião Santos
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Judith Guasch
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ralf Kemkemer
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Alizadeh F, Saviz M, Khoraminia F, Talebipour A, Imani R, Shabani I. EMEMI: An interference-free mini-incubator with integrated electric and magnetic field exposure for real-time microscopic imaging of field effects. Bioelectromagnetics 2024; 45:33-47. [PMID: 37789661 DOI: 10.1002/bem.22483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023]
Abstract
Uninterrupted microscopic observation and real-time imaging of cell behavior during exposure to the stimulus, for example, electric and/or magnetic fields, especially for periods of several days, has been a challenge in experimental bioelectromagnetics due to a lack of proper gas/temperature conditions outside the incubator. Conventional mini-incubators might suffer from stray fields produced by heating elements. We report an in vitro electric and magnetic fields (EMF) exposure system embedded inside a novel under-the-microscope mini-CO2 -incubator with a unique design to avoid electromagnetic interference from the heating and circulation functions while ensuring the requisite temperature. A unique, reconfigurable array of electrodes and/or coils excited by calculated current distributions among array elements is designed to provide excellent field uniformity and controllable linear or circular polarization (even at very low frequencies) of the EMF within the cell culture. Using standard biochemical assays, long-term cell viability has been verified and compared with a conventional incubator. Cell orientation/migration in three-dimensional culture made of collagen-hydrogels has been successfully observed in vitro, in long-term, and in real-time under the influence of DC electric fields with the device.
Collapse
Affiliation(s)
- Farhad Alizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehrdad Saviz
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Farbod Khoraminia
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Ali Talebipour
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
5
|
Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, Vojvodic D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int J Mol Sci 2024; 25:993. [PMID: 38256066 PMCID: PMC10816024 DOI: 10.3390/ijms25020993] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Guido I, Olszok N, Diehl D, Bodenschatz E. Electrotaxis of Dictyostelium discoideum, Migration in an Electric Field. Methods Mol Biol 2024; 2828:107-117. [PMID: 39147974 DOI: 10.1007/978-1-0716-4023-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Living cells have the ability to detect electric fields and respond to them with directed migratory movements. Many proteomic approaches have been adopted in the past to identify the molecular mechanism behind this cellular phenomenon. However, how the cells sense the electric stimulus and transduce it into directed cell migration is still under discussion. Many eukaryotic cells react to applied electric stimulation, including Dictyostelium discoideum cells. We use them as model system for studying cell migration in electric fields, also known as electrotaxis. Here we report the protocols that we developed for our experiments. Our experimental outcomes helped us to characterize: (i) the memory that cells have in a varying electric field, which we defined as temporal electric persistence; and (ii) the accelerating motion of cells along their paths over the electric exposure time. We also report on the analysis of the role that conditioned medium factor (CMF), a protein secreted by cells when they begin to starve, plays in the mechanism of electric sensing. The results of this study can contribute to the understanding of the electrical sensing of cells and its transduction into directed cell migration.
Collapse
Affiliation(s)
- Isabella Guido
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
- School of Mathematics and Physics, University of Surrey, Guildford, United Kingdom.
| | - Nora Olszok
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Douglas Diehl
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Eberhard Bodenschatz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg-August-University Göttingen, Göttingen, Germany
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Lange F, Porath K, Sellmann T, Einsle A, Jaster R, Linnebacher M, Köhling R, Kirschstein T. Direct-Current Electrical Field Stimulation of Patient-Derived Colorectal Cancer Cells. BIOLOGY 2023; 12:1032. [PMID: 37508461 PMCID: PMC10376471 DOI: 10.3390/biology12071032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Several cues for a directional migration of colorectal cancer cells were identified as being crucial in tumor progression. However, galvanotaxis, the directional migration in direct-current electrical fields, has not been investigated so far. Therefore, we asked whether direct-current electrical fields could be used to mobilize colorectal cancer cells along field vectors. For this purpose, five patient-derived low-passage cell lines were exposed to field strengths of 150-250 V/m in vitro, and migration along the field vectors was investigated. To further study the role of voltage-gated calcium channels on galvanotaxis and intracellular signaling pathways that are associated with migration of colorectal cancer cells, the cultures were exposed to selective inhibitors. In three out of five colorectal cancer cell lines, we found a preferred cathodal migration. The cellular integrity of the cells was not impaired by exposure of the cells to the selected field strengths. Galvanotaxis was sensitive to inhibition of voltage-gated calcium channels. Furthermore, signaling pathways such as AKT and MEK, but not STAT3, were also found to contribute to galvanotaxis in our in vitro model system. Overall, we identify electrical fields as an important contributor to the directional migration of colorectal cancer cells.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Tina Sellmann
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
9
|
Khan ZM, Munson JM, Long TE, Vlaisavljevich E, Verbridge SS. Development of a Synthetic, Injectable Hydrogel to Capture Residual Glioblastoma and Glioblastoma Stem-Like Cells with CXCL12-Mediated Chemotaxis. Adv Healthc Mater 2023; 12:e2300671. [PMID: 37014179 PMCID: PMC11469263 DOI: 10.1002/adhm.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy-resistant glioblastoma stem-like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol-Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12-mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM-hydrogel interactions in vitro are studied. With a novel dual-layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.
Collapse
Affiliation(s)
- Zerin Mahzabin Khan
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Jennifer M. Munson
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
- Fralin Biomedical Research Institute at Virginia Tech – CarillionRoanokeVA24016USA
| | - Timothy E. Long
- Biodesign Center for Sustainable Macromolecular Materials and ManufacturingArizona State UniversityTempeAZ85287USA
| | - Eli Vlaisavljevich
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Scott S. Verbridge
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
| |
Collapse
|
10
|
Moreddu R, Boschi A, d’Amora M, Hubarevich A, Dipalo M, De Angelis F. Passive Recording of Bioelectrical Signals from Non-Excitable Cells by Fluorescent Mirroring. NANO LETTERS 2023; 23:3217-3223. [PMID: 37019439 PMCID: PMC10141418 DOI: 10.1021/acs.nanolett.2c05053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bioelectrical variations trigger different cell responses, including migration, mitosis, and mutation. At the tissue level, these actions result in phenomena such as wound healing, proliferation, and pathogenesis. Monitoring these mechanisms dynamically is highly desirable in diagnostics and drug testing. However, existing technologies are invasive: either they require physical access to the intracellular compartments, or they imply direct contact with the cellular medium. Here, we present a novel approach for the passive recording of electrical signals from non-excitable cells adhering to 3D microelectrodes, based on optical mirroring. Preliminary results yielded a fluorescence intensity output increase of the 5,8% in the presence of a HEK-293 cell on the electrode compared to bare microelectrodes. At present, this technology may be employed to evaluate cell-substrate adhesion and monitor cell proliferation. Further refinements could allow extrapolating quantitative data on surface charges and resting potential to investigate the electrical phenomena involved in cell migration and cancer progression.
Collapse
Affiliation(s)
- Rosalia Moreddu
- Plasmon
Nanotechnologies Unit, Istituto Italiano
di Tecnologia, 16163 Genoa, Italy
| | - Alessio Boschi
- Plasmon
Nanotechnologies Unit, Istituto Italiano
di Tecnologia, 16163 Genoa, Italy
- Department
of Bioengineering, University of Genoa, 16126 Genoa, Italy
| | - Marta d’Amora
- Plasmon
Nanotechnologies Unit, Istituto Italiano
di Tecnologia, 16163 Genoa, Italy
- Department
of Biology, University of Pisa, 56127 Pisa, Italy
| | | | - Michele Dipalo
- Plasmon
Nanotechnologies Unit, Istituto Italiano
di Tecnologia, 16163 Genoa, Italy
- Email
| | - Francesco De Angelis
- Plasmon
Nanotechnologies Unit, Istituto Italiano
di Tecnologia, 16163 Genoa, Italy
- Email
| |
Collapse
|
11
|
Ruiz-Garcia H, Zarco N, Watanabe F, De Araujo Farias V, Suarez-Meade P, Guerrero-Cazares H, Imitola J, Quinones-Hinojosa A, Trifiletti D. Development of Experimental Three-Dimensional Tumor Models to Study Glioblastoma Cancer Stem Cells and Tumor Microenvironment. Methods Mol Biol 2023; 2572:117-127. [PMID: 36161412 DOI: 10.1007/978-1-0716-2703-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glioblastoma (GBM) is the most common and dismal primary brain tumor. Unfortunately, despite multidisciplinary treatment, most patients will perish approximately 15 months after diagnosis. For this reason, there is an urgent need to improve our understanding of GBM tumor biology and develop novel therapies that can achieve better clinical outcomes. In this setting, three-dimensional tumor models have risen as more appropriate preclinical tools when compared to traditional cell cultures, given that two-dimensional (2D) cultures have failed to accurately recapitulate tumor biology and translate preclinical findings into patient benefits. Three-dimensional cultures using neurospheres, organoids, and organotypic better resemble original tumor genetic and epigenetic profiles, maintaining tumor microenvironment characteristics and mimicking cell-cell and cell-matrix interactions. This chapter summarizes our methods to generate well-characterized glioblastoma neurospheres, organoids, and organotypics.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
- Brain Tumor Stem Cell Laboratory, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Natanael Zarco
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
- Neurogenesis and Brain Tumors, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Fumihiro Watanabe
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Virginea De Araujo Farias
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
- Brain Tumor Stem Cell Laboratory, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Paola Suarez-Meade
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
- Brain Tumor Stem Cell Laboratory, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Hugo Guerrero-Cazares
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
- Neurogenesis and Brain Tumors, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
- Brain Tumor Stem Cell Laboratory, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Daniel Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
12
|
Bory Prevez H, Soutelo Jimenez AA, Roca Oria EJ, Heredia Kindelán JA, Morales González M, Villar Goris NA, Hernández Mesa N, Sierra González VG, Infantes Frometa Y, Montijano JI, Cabrales LEB. Simulations of surface charge density changes during the untreated solid tumour growth. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220552. [PMID: 36465673 PMCID: PMC9709566 DOI: 10.1098/rsos.220552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Understanding untreated tumour growth kinetics and its intrinsic behaviour is interesting and intriguing. The aim of this study is to propose an approximate analytical expression that allows us to simulate changes in surface charge density at the cancer-surrounding healthy tissue interface during the untreated solid tumour growth. For this, the Gompertz and Poisson equations are used. Simulations reveal that the unperturbed solid tumour growth is closely related to changes in the surface charge density over time between the tumour and the surrounding healthy tissue. Furthermore, the unperturbed solid tumour growth is governed by temporal changes in this surface charge density. It is concluded that results corroborate the correspondence between the electrical and physiological parameters in the untreated cancer, which may have an essential role in its growth, progression, metastasis and protection against immune system attack and anti-cancer therapies. In addition, the knowledge of surface charge density changes at the cancer-surrounding healthy tissue interface may be relevant when redesigning the molecules in chemotherapy and immunotherapy taking into account their polarities. This can also be true in the design of completely novel therapies.
Collapse
Affiliation(s)
- Henry Bory Prevez
- Departamento de Control Automático, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Eduardo José Roca Oria
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Maraelys Morales González
- Departamento de Farmacia, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Narciso Antonio Villar Goris
- Departamento de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
- Universidad Autónoma de Santo Domingo, Santo Domingo, República Dominicana
| | | | | | | | - Juan Ignacio Montijano
- Departamento de Matemática Aplicada, Instituto Universitario de Matemática y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| | - Luis Enrique Bergues Cabrales
- Departamento de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
- Departamento de Matemática Aplicada, Instituto Universitario de Matemática y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|
13
|
O’Hara-Wright M, Mobini S, Gonzalez-Cordero A. Bioelectric Potential in Next-Generation Organoids: Electrical Stimulation to Enhance 3D Structures of the Central Nervous System. Front Cell Dev Biol 2022; 10:901652. [PMID: 35656553 PMCID: PMC9152151 DOI: 10.3389/fcell.2022.901652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cell-derived organoid models of the central nervous system represent one of the most exciting areas in in vitro tissue engineering. Classically, organoids of the brain, retina and spinal cord have been generated via recapitulation of in vivo developmental cues, including biochemical and biomechanical. However, a lesser studied cue, bioelectricity, has been shown to regulate central nervous system development and function. In particular, electrical stimulation of neural cells has generated some important phenotypes relating to development and differentiation. Emerging techniques in bioengineering and biomaterials utilise electrical stimulation using conductive polymers. However, state-of-the-art pluripotent stem cell technology has not yet merged with this exciting area of bioelectricity. Here, we discuss recent findings in the field of bioelectricity relating to the central nervous system, possible mechanisms, and how electrical stimulation may be utilised as a novel technique to engineer “next-generation” organoids.
Collapse
Affiliation(s)
- Michelle O’Hara-Wright
- Stem Cell Medicine Group, Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Sahba Mobini
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM + CSIC), Madrid, Spain
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
- *Correspondence: Anai Gonzalez-Cordero,
| |
Collapse
|
14
|
Lange F, Venus J, Shams Esfand Abady D, Porath K, Einsle A, Sellmann T, Neubert V, Reichart G, Linnebacher M, Köhling R, Kirschstein T. Galvanotactic Migration of Glioblastoma and Brain Metastases Cells. Life (Basel) 2022; 12:580. [PMID: 35455071 PMCID: PMC9027426 DOI: 10.3390/life12040580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Galvanotaxis, the migration along direct current electrical fields, may contribute to the invasion of brain cancer cells in the tumor-surrounding tissue. We hypothesized that pharmacological perturbation of the epidermal growth factor (EGF) receptor and downstream phosphatidylinositol 3-kinase (PI3K)/AKT pathway prevent galvanotactic migration. In our study, patient-derived glioblastoma and brain metastases cells were exposed to direct current electrical field conditions. Velocity and direction of migration were estimated. To determine the effects of EGF receptor antagonist afatinib and AKT inhibitor capivasertib, assays of cell proliferation, apoptosis and immunoblot analyses were performed. Both inhibitors attenuated cell proliferation in a dose-dependent manner and induced apoptosis. We found that most of the glioblastoma cells migrated preferentially in an anodal direction, while brain metastases cells were unaffected by direct current stimulations. Afatinib presented only a mild attenuation of galvanotaxis. In contrast, capivasertib abolished the migration of glioblastoma cells without genetic alterations in the PI3K/AKT pathway, but not in cells harboring PTEN mutation. In these cells, an increase in the activation of ERK1/2 may in part substitute the inhibition of the AKT pathway. Overall, our data demonstrate that glioblastoma cells migrate in the electrical field and the PI3K/AKT pathway was found to be highly involved in galvanotaxis.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| | - Jakob Venus
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Daria Shams Esfand Abady
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Tina Sellmann
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Valentin Neubert
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Gesine Reichart
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
15
|
Non-contact electrical stimulation as an effective means to promote wound healing. Bioelectrochemistry 2022; 146:108108. [DOI: 10.1016/j.bioelechem.2022.108108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
|
16
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Sprugnoli G, Rossi S, Rotenberg A, Pascual-Leone A, El-Fakhri G, Golby AJ, Santarnecchi E. Personalised, image-guided, noninvasive brain stimulation in gliomas: Rationale, challenges and opportunities. EBioMedicine 2021; 70:103514. [PMID: 34391090 PMCID: PMC8365310 DOI: 10.1016/j.ebiom.2021.103514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
Malignant brain tumours are among the most aggressive human cancers, and despite intensive efforts made over the last decades, patients' survival has scarcely improved. Recently, high-grade gliomas (HGG) have been found to be electrically integrated with healthy brain tissue, a communication that facilitates tumour mitosis and invasion. This link to neuronal activity has provided new insights into HGG pathophysiology and opened prospects for therapeutic interventions based on electrical modulation of neural and synaptic activity in the proximity of tumour cells, which could potentially slow tumour growth. Noninvasive brain stimulation (NiBS), a group of techniques used in research and clinical settings to safely modulate brain activity and plasticity via electromagnetic or electrical stimulation, represents an appealing class of interventions to characterise and target the electrical properties of tumour-neuron interactions. Beyond neuronal activity, NiBS may also modulate function of a range of substrates and dynamics that locally interacts with HGG (e.g., vascular architecture, perfusion and blood-brain barrier permeability). Here we discuss emerging applications of NiBS in patients with brain tumours, covering potential mechanisms of action at both cellular, regional, network and whole-brain levels, also offering a conceptual roadmap for future research to prolong survival or promote wellbeing via personalised NiBS interventions.
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy; Image Guided Neurosurgery laboratory, Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Brain investigation and Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Simone Rossi
- Brain investigation and Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Alexander Rotenberg
- Department of Neurology and Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew Senior Life, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann, Universitat Autonoma, Barcelona, Spain
| | - Georges El-Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Image Guided Neurosurgery laboratory, Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Clancy H, Pruski M, Lang B, Ching J, McCaig CD. Glioblastoma cell migration is directed by electrical signals. Exp Cell Res 2021; 406:112736. [PMID: 34273404 DOI: 10.1016/j.yexcr.2021.112736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
Electric field (EF) directed cell migration (electrotaxis) is known to occur in glioblastoma multiforme (GBM) and neural stem cells, with key signalling pathways frequently dysregulated in GBM. One such pathway is EGFR/PI3K/Akt, which is down-regulated by peroxisome proliferator activated receptor gamma (PPARγ) agonists. We investigated the effect of electric fields on primary differentiated and glioma stem cell (GSCs) migration, finding opposing preferences for anodal and cathodal migration, respectively. We next sought to determine whether chemically disrupting Akt through PTEN upregulation with the PPARγ agonist, pioglitazone, would modulate electrotaxis of these cells. We found that directed cell migration was significantly inhibited with the addition of pioglitazone in both differentiated GBM and GSCs subtypes. Western blot analysis did not demonstrate any change in PPARγ expression with and without exposure to EF. In summary we demonstrate opposing EF responses in primary GBM differentiated cells and GSCs can be inhibited chemically by pioglitazone, implicating GBM EF modulation as a potential target in preventing tumour recurrence.
Collapse
Affiliation(s)
- Hannah Clancy
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Michal Pruski
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; School of Medicine, Tongji University, Shanghai, China
| | - Bing Lang
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jared Ching
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.
| | - Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
19
|
Warren D, Tomaskovic-Crook E, Wallace GG, Crook JM. Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioeng 2021; 5:020901. [PMID: 33834152 PMCID: PMC8019355 DOI: 10.1063/5.0032196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
There is a fundamental need for clinically relevant, reproducible, and standardized in vitro human neural tissue models, not least of all to study heterogenic and complex human-specific neurological (such as neuropsychiatric) disorders. Construction of three-dimensional (3D) bioprinted neural tissues from native human-derived stem cells (e.g., neural stem cells) and human pluripotent stem cells (e.g., induced pluripotent) in particular is appreciably impacting research and conceivably clinical translation. Given the ability to artificially and favorably regulate a cell's survival and behavior by manipulating its biophysical environment, careful consideration of the printing technique, supporting biomaterial and specific exogenously delivered stimuli, is both required and advantageous. By doing so, there exists an opportunity, more than ever before, to engineer advanced and precise tissue analogs that closely recapitulate the morphological and functional elements of natural tissues (healthy or diseased). Importantly, the application of electrical stimulation as a method of enhancing printed tissue development in vitro, including neuritogenesis, synaptogenesis, and cellular maturation, has the added advantage of modeling both traditional and new stimulation platforms, toward improved understanding of efficacy and innovative electroceutical development and application.
Collapse
Affiliation(s)
- Danielle Warren
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | | | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | - Jeremy M. Crook
- Author to whom correspondence should be addressed:. Tel.: +61 2 4221 3011
| |
Collapse
|
20
|
Ammann KR, Slepian MJ. Vascular endothelial and smooth muscle cell galvanotactic response and differential migratory behavior. Exp Cell Res 2021; 399:112447. [PMID: 33347857 PMCID: PMC7906251 DOI: 10.1016/j.yexcr.2020.112447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023]
Abstract
Chronic disease or injury of the vasculature impairs the functionality of vascular wall cells particularly in their ability to migrate and repair vascular surfaces. Under pathologic conditions, vascular endothelial cells (ECs) lose their non-thrombogenic properties and decrease their motility. Alternatively, vascular smooth muscle cells (SMCs) may increase motility and proliferation, leading to blood vessel luminal invasion. Current therapies to prevent subsequent blood vessel occlusion commonly mechanically injure vascular cells leading to endothelial denudation and smooth muscle cell luminal migration. Due to this dichotomous migratory behavior, a need exists for modulating vascular cell growth and migration in a more targeted manner. Here, we examine the efficacy of utilizing small direct current electric fields to influence vascular cell-specific migration ("galvanotaxis"). We designed, fabricated, and implemented an in vitro chamber for tracking vascular cell migration direction, distance, and displacement under galvanotactic influence of varying magnitude. Our results indicate that vascular ECs and SMCs have differing responses to galvanotaxis; ECs exhibit a positive correlation of anodal migration while SMCs exhibit minimal change in directional migration in relation to the electric field direction. SMCs exhibit less motility response (i.e. distance traveled in 4 h) compared to ECs, but SMCs show a significantly higher motility at low electric potentials (80 mV/cm). With further investigation and translation, galvanotaxis may be an effective solution for modulation of vascular cell-specific migration, leading to enhanced endothelialization, with coordinate reduced smooth muscle in-migration.
Collapse
Affiliation(s)
- Kaitlyn R Ammann
- Department of Medicine, Sarver Heart Center, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| | - Marvin J Slepian
- Department of Medicine, Sarver Heart Center, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Department of Materials Science and Engineering, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
21
|
Pibuel MA, Poodts D, Díaz M, Hajos SE, Lompardía SL. The scrambled story between hyaluronan and glioblastoma. J Biol Chem 2021; 296:100549. [PMID: 33744285 PMCID: PMC8050860 DOI: 10.1016/j.jbc.2021.100549] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in cancer biology are revealing the importance of the cancer cell microenvironment on tumorigenesis and cancer progression. Hyaluronan (HA), the main glycosaminoglycan in the extracellular matrix, has been associated with the progression of glioblastoma (GBM), the most frequent and lethal primary tumor in the central nervous system, for several decades. However, the mechanisms by which HA impacts GBM properties and processes have been difficult to elucidate. In this review, we provide a comprehensive assessment of the current knowledge on HA's effects on GBM biology, introducing its primary receptors CD44 and RHAMM and the plethora of relevant downstream signaling pathways that can scramble efforts to directly link HA activity to biological outcomes. We consider the complexities of studying an extracellular polymer and the different strategies used to try to capture its function, including 2D and 3D in vitro studies, patient samples, and in vivo models. Given that HA affects not only migration and invasion, but also cell proliferation, adherence, and chemoresistance, we highlight the potential role of HA as a therapeutic target. Finally, we review the different existing approaches to diminish its protumor effects, such as the use of 4-methylumbelliferone, HA oligomers, and hyaluronidases and encourage further research along these lines in order to improve the survival and quality of life of GBM patients.
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| |
Collapse
|
22
|
Mondal C, Di Martino JS, Bravo-Cordero JJ. Actin dynamics during tumor cell dissemination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:65-98. [PMID: 33962751 PMCID: PMC8246644 DOI: 10.1016/bs.ircmb.2020.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The actin cytoskeleton is a dynamic network that regulates cellular behavior from development to disease. By rearranging the actin cytoskeleton, cells are capable of migrating and invading during developmental processes; however, many of these cellular properties are hijacked by cancer cells to escape primary tumors and disseminate to distant organs in the body. In this review article, we highlight recent work describing how cancer cells regulate the actin cytoskeleton to achieve efficient invasion and metastatic colonization. We also review new imaging technologies that are capable of revealing the complex architecture and regulation of the actin cytoskeleton during motility and invasion of tumor cells.
Collapse
Affiliation(s)
- Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
23
|
Guido I, Diehl D, Olszok NA, Bodenschatz E. Cellular velocity, electrical persistence and sensing in developed and vegetative cells during electrotaxis. PLoS One 2020; 15:e0239379. [PMID: 32946489 PMCID: PMC7500600 DOI: 10.1371/journal.pone.0239379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023] Open
Abstract
Cells have the ability to detect electric fields and respond to them with directed migratory movement. Investigations identified genes and proteins that play important roles in defining the migration efficiency. Nevertheless, the sensing and transduction mechanisms underlying directed cell migration are still under discussion. We use Dictyostelium discoideum cells as model system for studying eukaryotic cell migration in DC electric fields. We have defined the temporal electric persistence to characterize the memory that cells have in a varying electric field. In addition to imposing a directional bias, we observed that the electric field influences the cellular kinematics by accelerating the movement of cells along their paths. Moreover, the study of vegetative and briefly starved cells provided insight into the electrical sensing of cells. We found evidence that conditioned medium of starved cells was able to trigger the electrical sensing of vegetative cells that would otherwise not orient themselves in the electric field. This observation may be explained by the presence of the conditioned medium factor (CMF), a protein secreted by the cells, when they begin to starve. The results of this study give new insights into understanding the mechanism that triggers the electrical sensing and transduces the external stimulus into directed cell migration. Finally, the observed increased mobility of cells over time in an electric field could offer a novel perspective towards wound healing assays.
Collapse
Affiliation(s)
- Isabella Guido
- Max-Planck Institute for Dynamics and Self-organization, Göttingen, Germany
- * E-mail:
| | - Douglas Diehl
- Max-Planck Institute for Dynamics and Self-organization, Göttingen, Germany
| | - Nora Aleida Olszok
- Max-Planck Institute for Dynamics and Self-organization, Göttingen, Germany
| | - Eberhard Bodenschatz
- Max-Planck Institute for Dynamics and Self-organization, Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg-August-University Göttingen, Göttingen, Germany
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
24
|
Tsai HF, IJspeert C, Shen AQ. Voltage-gated ion channels mediate the electrotaxis of glioblastoma cells in a hybrid PMMA/PDMS microdevice. APL Bioeng 2020; 4:036102. [PMID: 32637857 PMCID: PMC7332302 DOI: 10.1063/5.0004893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Transformed astrocytes in the most aggressive form cause glioblastoma, the most common cancer in the central nervous system with high mortality. The physiological electric field by neuronal local field potentials and tissue polarity may guide the infiltration of glioblastoma cells through the electrotaxis process. However, microenvironments with multiplex gradients are difficult to create. In this work, we have developed a hybrid microfluidic platform to study glioblastoma electrotaxis in controlled microenvironments with high throughput quantitative analysis by machine learning-powered single cell tracking software. By equalizing the hydrostatic pressure difference between inlets and outlets of the microchannel, uniform single cells can be seeded reliably inside the microdevice. The electrotaxis of two glioblastoma models, T98G and U-251MG, requires an optimal laminin-containing extracellular matrix and exhibits opposite directional and electro-alignment tendencies. Calcium signaling is a key contributor in glioblastoma pathophysiology but its role in glioblastoma electrotaxis is still an open question. Anodal T98G electrotaxis and cathodal U-251MG electrotaxis require the presence of extracellular calcium cations. U-251MG electrotaxis is dependent on the P/Q-type voltage-gated calcium channel (VGCC) and T98G is dependent on the R-type VGCC. U-251MG electrotaxis and T98G electrotaxis are also mediated by A-type (rapidly inactivating) voltage-gated potassium channels and acid-sensing sodium channels. The involvement of multiple ion channels suggests that the glioblastoma electrotaxis is complex and patient-specific ion channel expression can be critical to develop personalized therapeutics to fight against cancer metastasis. The hybrid microfluidic design and machine learning-powered single cell analysis provide a simple and flexible platform for quantitative investigation of complicated biological systems.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Camilo IJspeert
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
25
|
Electric Fields at Breast Cancer and Cancer Cell Collective Galvanotaxis. Sci Rep 2020; 10:8712. [PMID: 32457381 PMCID: PMC7250931 DOI: 10.1038/s41598-020-65566-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer growth interferes with local ionic environments, membrane potentials, and transepithelial potentials, resulting in small electrical changes in the tumor microenvironment. Electrical fields (EFs) have significant effects on cancer cell migration (galvanotaxis/electrotaxis), however, their role as a regulator of cancer progression and metastasis is poorly understood. Here, we employed unique probe systems to characterize the electrical properties of cancer cells and their migratory ability under an EF. Subcutaneous tumors were established from a triple-negative murine breast cancer cell line (4T1), electric currents and potentials of tumors were measured using vibrating probe and glass microelectrodes, respectively. Steady outward and inward currents could be detected at different positions on the tumor surface and magnitudes of the electric currents on the tumor surface strongly correlated with tumor weights. Potential measurements also showed the non-homogeneous intratumor electric potentials. Cancer cell migration was then surveyed in the presence of EFs in vitro. Parental 4T1 cells and metastatic sublines in isolation showed random migration in EFs of physiological strength, whereas cells in monolayer migrated collectively to the anode. Our data contribute to an improved understanding of breast cancer metastasis, providing new evidence in support of an electrical mechanism that promotes this phenomenon.
Collapse
|
26
|
Charge-Balanced Electrical Stimulation Can Modulate Neural Precursor Cell Migration in the Presence of Endogenous Electric Fields in Mouse Brains. eNeuro 2019; 6:ENEURO.0382-19.2019. [PMID: 31772032 PMCID: PMC6978916 DOI: 10.1523/eneuro.0382-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/04/2022] Open
Abstract
Electric fields (EFs) can direct cell migration and are crucial during development and tissue repair. We previously reported neural precursor cells (NPCs) are electrosensitive cells that can undergo rapid and directed migration towards the cathode using charge-balanced electrical stimulation in vitro. Here, we investigate the ability of electrical stimulation to direct neural precursor migration in mouse brains in vivo. To visualize migration, fluorescent adult murine neural precursors were transplanted onto the corpus callosum of adult male mice and intracortical platinum wire electrodes were implanted medial (cathode) and lateral (anode) to the injection site. We applied a charge-balanced biphasic monopolar stimulation waveform for three sessions per day, for 3 or 6 d. Irrespective of stimulation, the transplanted neural precursors had a propensity to migrate laterally along the corpus callosum, and applied stimulation affected that migration. Further investigation revealed an endogenous EF along the corpus callosum that correlated with the lateral migration, suggesting that the applied EF would need to overcome endogenous cues. There was no difference in transplanted cell differentiation and proliferation, or inflammatory cell numbers near the electrode leads and injection site comparing stimulated and implanted non-stimulated brains. Our results support that endogenous and applied EFs are important considerations for designing cell therapies for tissue repair in vivo.
Collapse
|
27
|
Electromigration of cell surface macromolecules in DC electric fields during cell polarization and galvanotaxis. J Theor Biol 2019; 478:58-73. [DOI: 10.1016/j.jtbi.2019.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
|
28
|
Abstract
As the leading cause of death in cancer, there is an urgent need to develop treatments to target the dissemination of primary tumor cells to secondary organs, known as metastasis. Bioelectric signaling has emerged in the last century as an important controller of cell growth, and with the development of current molecular tools we are now beginning to identify its role in driving cell migration and metastasis in a variety of cancer types. This review summarizes the currently available research for bioelectric signaling in solid tumor metastasis. We review the steps of metastasis and discuss how these can be controlled by bioelectric cues at the level of a cell, a population of cells, and the tissue. The role of ion channel, pump, and exchanger activity and ion flux is discussed, along with the importance of the membrane potential and the relationship between ion flux and membrane potential. We also provide an overview of the evidence for control of metastasis by external electric fields (EFs) and draw from examples in embryogenesis and regeneration to discuss the implications for endogenous EFs. By increasing our understanding of the dynamic properties of bioelectric signaling, we can develop new strategies that target metastasis to be translated into the clinic.
Collapse
Affiliation(s)
- Samantha L. Payne
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
29
|
Garg AA, Jones TH, Moss SM, Mishra S, Kaul K, Ahirwar DK, Ferree J, Kumar P, Subramaniam D, Ganju RK, Subramaniam VV, Song JW. Electromagnetic fields alter the motility of metastatic breast cancer cells. Commun Biol 2019; 2:303. [PMID: 31428691 PMCID: PMC6687738 DOI: 10.1038/s42003-019-0550-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Interactions between cells and their environment influence key physiologic processes such as their propensity to migrate. However, directed migration controlled by extrinsically applied electrical signals is poorly understood. Using a novel microfluidic platform, we found that metastatic breast cancer cells sense and respond to the net direction of weak (∼100 µV cm-1), asymmetric, non-contact induced Electric Fields (iEFs). iEFs inhibited EGFR (Epidermal Growth Factor Receptor) activation, prevented formation of actin-rich filopodia, and hindered the motility of EGF-treated breast cancer cells. The directional effects of iEFs were nullified by inhibition of Akt phosphorylation. Moreover, iEFs in combination with Akt inhibitor reduced EGF-promoted motility below the level of untreated controls. These results represent a step towards isolating the coupling mechanism between cell motility and iEFs, provide valuable insights into how iEFs target multiple diverging cancer cell signaling mechanisms, and demonstrate that electrical signals are a fundamental regulator of cancer cell migration.
Collapse
Affiliation(s)
- Ayush Arpit Garg
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Travis H. Jones
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Sarah M. Moss
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Sanjay Mishra
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Kirti Kaul
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Dinesh K. Ahirwar
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Jessica Ferree
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Prabhat Kumar
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Deepa Subramaniam
- College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Ramesh K. Ganju
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Vish V. Subramaniam
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Jonathan W. Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
30
|
Bertucci C, Koppes R, Dumont C, Koppes A. Neural responses to electrical stimulation in 2D and 3D in vitro environments. Brain Res Bull 2019; 152:265-284. [PMID: 31323281 DOI: 10.1016/j.brainresbull.2019.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Electrical stimulation (ES) to manipulate the central (CNS) and peripheral nervous system (PNS) has been explored for decades, recently gaining momentum as bioelectronic medicine advances. The application of ES in vitro to modulate a variety of cellular functions, including regenerative potential, migration, and stem cell fate, are being explored to aid neural degeneration, dysfunction, and injury. This review describes the materials and approaches for the application of ES to the PNS and CNS microenvironments, towards an improved understanding of how ES can be harnessed for beneficial clinical applications. Emphasized are some recent advances in ES, including conductive polymers, methods of charge transfer, impact on neural cells, and a brief overview of alternative methodologies for cellular targeting including magneto, ultrasonic, and optogenetic stimulation. This review will examine how heterogenous cell populations, including neurons, glia, and neural stem cells respond to a wide range of conductive 2D and 3D substrates, stimulation regimes, known mechanisms of response, and how cellular sources impact the response to ES.
Collapse
Affiliation(s)
- Christopher Bertucci
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
| | - Ryan Koppes
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
| | - Courtney Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33146, United States.
| | - Abigail Koppes
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States; Department of Biology, Boston, 02115, MA, United States.
| |
Collapse
|
31
|
Electrotaxis of Glioblastoma and Medulloblastoma Spheroidal Aggregates. Sci Rep 2019; 9:5309. [PMID: 30926929 PMCID: PMC6441013 DOI: 10.1038/s41598-019-41505-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/26/2019] [Indexed: 11/08/2022] Open
Abstract
Treatment of neuroepithelial cancers remains a daunting clinical challenge, particularly due to an inability to address rampant invasion deep into eloquent regions of the brain. Given the lack of access, and the dispersed nature of brain tumor cells, we explore the possibility of electric fields inducing directed tumor cell migration. In this study we investigate the properties of populations of brain cancer undergoing electrotaxis, a phenomenon whereby cells are directed to migrate under control of an electrical field. We investigate two cell lines for glioblastoma and medulloblastoma (U87mg & DAOY, respectively), plated as spheroidal aggregates in Matrigel-filled electrotaxis channels, and report opposing electrotactic responses. To further understand electrotactic migration of tumor cells, we performed RNA-sequencing for pathway discovery to identify signaling that is differentially affected by the exposure of direct-current electrical fields. Further, using selective pharmacological inhibition assays, focused on the PI3K/mTOR/AKT signaling axis, we validate whether there is a causal relationship to electrotaxis and these mechanisms of action. We find that U87 mg electrotaxis is abolished under pharmacological inhibition of PI3Kγ, mTOR, AKT and ErbB2 signaling, whereas DAOY cell electrotaxis was not attenuated by these or other pathways evaluated.
Collapse
|
32
|
Mair DB, Ames HM, Li R. Mechanisms of invasion and motility of high-grade gliomas in the brain. Mol Biol Cell 2018; 29:2509-2515. [PMID: 30325290 PMCID: PMC6254577 DOI: 10.1091/mbc.e18-02-0123] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 11/30/2022] Open
Abstract
High-grade gliomas are especially difficult tumors to treat due to their invasive behavior. This has led to extensive research focusing on arresting glioma cell migration. Cell migration involves the sensing of a migratory cue, followed by polarization in the direction of the cue, and reorganization of the actin cytoskeleton to allow for a protrusive leading edge and a contractile trailing edge. Transmission of these forces to produce motility also requires adhesive interactions of the cell with the extracellular microenvironment. In glioma cells, transmembrane receptors such as CD44 and integrins bind the cell to the surrounding extracellular matrix that provides a substrate on which the cell can exert the requisite forces for cell motility. These various essential parts of the migratory machinery are potential targets to halt glioma cell invasion. In this review, we discuss the mechanisms of glioma cell migration and how they may be targeted in anti-invasion therapies.
Collapse
Affiliation(s)
- Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Heather M. Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
33
|
Bashirzadeh Y, Poole J, Qian S, Maruthamuthu V. Effect of pharmacological modulation of actin and myosin on collective cell electrotaxis. Bioelectromagnetics 2018; 39:289-298. [PMID: 29663474 DOI: 10.1002/bem.22119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 02/14/2018] [Indexed: 01/10/2023]
Abstract
Electrotaxis-the directional migration of cells in response to an electric field-is most evident in multicellular collectives and plays an important role in physiological contexts. While most cell types respond to applied electric fields of the order of a Volt per centimeter, our knowledge of the factors influencing this response is limited. This is especially true for collective cell electrotaxis, in which the subcellular migration response within a cell has to be coordinated with coupled neighboring cells. Here, we investigated the effect of the level of actin cytoskeleton polymerization and myosin activity on collective cell electrotaxis of Madin-Darby Canine Kidney (MDCK) cells in response to a weak electric field of physiologically relevant magnitude. We modulated the polymerization state of the actin cytoskeleton using the depolymerizing agent cytochalasin D or the polymerizing agent jasplakinolide. We also modulated the contractility of the cell using the myosin motor inhibitor blebbistatin or the phosphatase inhibitor calyculin A. While all the above pharmacological treatments altered cell speed to various extents, we found that only increasing the contractility and a high level of increase/stabilization of polymerized actin had a strong inhibitory effect specifically on the directedness of collective cell electrotaxis. On the other hand, even as the effect of the actin modulators on collective cell migration was varied, most conditions of actin and myosin pharmacological modulation-except for high level of actin polymerization/stabilization-resulted in cell speeds that were similar in the absence or presence of the electric field. Our results led us to speculate that the applied electric field may largely impact the cellular apparatus specifying the polarity of collective cell migration, rather than the functioning of the migratory apparatus. Bioelectromagnetics. 39:289-298, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Jonathan Poole
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Shizhi Qian
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Venkat Maruthamuthu
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
34
|
Li L, Zhang K, Lu C, Sun Q, Zhao S, Jiao L, Han R, Lin C, Jiang J, Zhao M, He Y. Caveolin-1-mediated STAT3 activation determines electrotaxis of human lung cancer cells. Oncotarget 2017; 8:95741-95754. [PMID: 29221162 PMCID: PMC5707056 DOI: 10.18632/oncotarget.21306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/26/2017] [Indexed: 12/28/2022] Open
Abstract
Migration of cancer cells leads to the invasion of distant organs by primary tumors. Further, endogenous electric fields (EFs) in the tumor microenvironment direct the migration of lung cancer cells by a process referred to as electrotaxis – although the precise mechanism remains unclear. Caveolin-1 (Cav-1) is a multifunctional scaffolding protein that is associated with directional cell migration and lung cancer invasion; however, its precise role in lung cancer electrotaxis is unknown. In the present study, we first detected outward electric currents on the tumor body surface in lung cancer xenografts using a highly-sensitive vibrating probe. Next, we found that highly-metastatic H1650-M3 cells migrated directionally to the cathode. In addition, reversal of the EF polarity reversed the direction of migration. Mechanistically, EFs activated Cav-1 and the downstream signaling molecule STAT3. RNA interference of Cav-1 reduced directional cell migration, which was accompanied by dampened STAT3 activation. Furthermore, pharmacological inhibition of STAT3 significantly reduced the electrotactic response, while rescue of STAT3 activation in Cav-1 knock-down cells restored electrotaxis. Taken together, these results suggest that endogenous EFs in the tumor micro-environment might play an important role in lung cancer metastasis by guiding cell migration through a Cav-1/STAT3-mediated signaling pathway.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Kejun Zhang
- Department of Clinical Laboratory, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qin Sun
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Lin Jiao
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, CA 95817, USA
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
35
|
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 2017; 128:1774-1809. [PMID: 28709880 PMCID: PMC5985830 DOI: 10.1016/j.clinph.2017.06.001] [Citation(s) in RCA: 753] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Abstract
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.
Collapse
Affiliation(s)
- A Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.
| | - I Alekseichuk
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - M Bikson
- Department of Biomedical Engineering, The City College of New York, New York, USA
| | - J Brockmöller
- Department of Clinical Pharmacology, University Medical Center Goettingen, Germany
| | - A R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil
| | - R Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA
| | | | - J Ellrich
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany; EBS Technologies GmbH, Europarc Dreilinden, Germany
| | - A Flöel
- Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M S George
- Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - R Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - J Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
| | - C S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
| | - F C Hummel
- Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - D Liebetanz
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - C K Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - C D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - C Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - P C Miranda
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - R Nowak
- Neuroelectrics, Barcelona, Spain
| | - F Padberg
- Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany
| | - A Pascual-Leone
- Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA
| | - W Poppendieck
- Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - A Priori
- Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy
| | - S Rossi
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy
| | - P M Rossini
- Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy
| | | | - M A Rueger
- Department of Neurology, University Hospital of Cologne, Germany
| | | | | | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Y Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| | - A Wexler
- Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - W Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|
36
|
Huang YJ, Schiapparelli P, Kozielski K, Green J, Lavell E, Guerrero-Cazares H, Quinones-Hinojosa A, Searson P. Electrophoresis of cell membrane heparan sulfate regulates galvanotaxis in glial cells. J Cell Sci 2017; 130:2459-2467. [PMID: 28596239 DOI: 10.1242/jcs.203752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Endogenous electric fields modulate many physiological processes by promoting directional migration, a process known as galvanotaxis. Despite the importance of galvanotaxis in development and disease, the mechanism by which cells sense and migrate directionally in an electric field remains unknown. Here, we show that electrophoresis of cell surface heparan sulfate (HS) critically regulates this process. HS was found to be localized at the anode-facing side in fetal neural progenitor cells (fNPCs), fNPC-derived astrocytes and brain tumor-initiating cells (BTICs), regardless of their direction of galvanotaxis. Enzymatic removal of HS and other sulfated glycosaminoglycans significantly abolished or reversed the cathodic response seen in fNPCs and BTICs. Furthermore, Slit2, a chemorepulsive ligand, was identified to be colocalized with HS in forming a ligand gradient across cellular membranes. Using both imaging and genetic modification, we propose a novel mechanism for galvanotaxis in which electrophoretic localization of HS establishes cell polarity by functioning as a co-receptor and provides repulsive guidance through Slit-Robo signaling.
Collapse
Affiliation(s)
- Yu-Ja Huang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paula Schiapparelli
- Department of Neurosurgery and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kristen Kozielski
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jordan Green
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Emily Lavell
- Department of Neurosurgery and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Hugo Guerrero-Cazares
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Neurosurgery and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
37
|
Oudin MJ, Weaver VM. Physical and Chemical Gradients in the Tumor Microenvironment Regulate Tumor Cell Invasion, Migration, and Metastasis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:189-205. [PMID: 28424337 DOI: 10.1101/sqb.2016.81.030817] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer metastasis requires the invasion of tumor cells into the stroma and the directed migration of tumor cells through the stroma toward the vasculature and lymphatics where they can disseminate and colonize secondary organs. Physical and biochemical gradients that form within the primary tumor tissue promote tumor cell invasion and drive persistent migration toward blood vessels and the lymphatics to facilitate tumor cell dissemination. These microenvironment cues include hypoxia and pH gradients, gradients of soluble cues that induce chemotaxis, and ions that facilitate galvanotaxis, as well as modifications to the concentration, organization, and stiffness of the extracellular matrix that produce haptotactic, alignotactic, and durotactic gradients. These gradients form through dynamic interactions between the tumor cells and the resident fibroblasts, adipocytes, nerves, endothelial cells, infiltrating immune cells, and mesenchymal stem cells. Malignant progression results from the integrated response of the tumor to these extrinsic physical and chemical cues. Here, we first describe how these physical and chemical gradients develop, and we discuss their role in tumor progression. We then review assays to study these gradients. We conclude with a discussion of clinical strategies used to detect and inhibit these gradients in tumors and of new intervention opportunities. Clarifying the role of these gradients in tumor evolution offers a unique approach to target metastasis.
Collapse
Affiliation(s)
- Madeleine J Oudin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, California 94143
- UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, California 94143
- Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, and Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
38
|
Smith CL, Kilic O, Schiapparelli P, Guerrero-Cazares H, Kim DH, Sedora-Roman NI, Gupta S, O'Donnell T, Chaichana KL, Rodriguez FJ, Abbadi S, Park J, Quiñones-Hinojosa A, Levchenko A. Migration Phenotype of Brain-Cancer Cells Predicts Patient Outcomes. Cell Rep 2016; 15:2616-24. [PMID: 27292647 DOI: 10.1016/j.celrep.2016.05.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/24/2016] [Accepted: 05/09/2016] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma multiforme is a heterogeneous and infiltrative cancer with dismal prognosis. Studying the migratory behavior of tumor-derived cell populations can be informative, but it places a high premium on the precision of in vitro methods and the relevance of in vivo conditions. In particular, the analysis of 2D cell migration may not reflect invasion into 3D extracellular matrices in vivo. Here, we describe a method that allows time-resolved studies of primary cell migration with single-cell resolution on a fibrillar surface that closely mimics in vivo 3D migration. We used this platform to screen 14 patient-derived glioblastoma samples. We observed that the migratory phenotype of a subset of cells in response to platelet-derived growth factor was highly predictive of tumor location and recurrence in the clinic. Therefore, migratory phenotypic classifiers analyzed at the single-cell level in a patient-specific way can provide high diagnostic and prognostic value for invasive cancers.
Collapse
Affiliation(s)
- Chris L Smith
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Paula Schiapparelli
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Neda I Sedora-Roman
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Saksham Gupta
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Thomas O'Donnell
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sara Abbadi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - JinSeok Park
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, CT 06516, USA
| | | | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, CT 06516, USA.
| |
Collapse
|