1
|
Zhao H, Wu Y, Kim SM. Enhancing doxorubicin's anticancer impact in colorectal cancer by targeting the Akt/Gsk3β/mTOR-SREBP1 signaling axis with an HDAC inhibitor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:321-335. [PMID: 40254556 PMCID: PMC12012316 DOI: 10.4196/kjpp.24.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 04/22/2025]
Abstract
Colorectal cancer ranks third in global incidence and is the second leading cause of cancer-related mortality. Doxorubicin, an anthracycline chemotherapeutic drug, is integral to current cancer treatment protocols. However, toxicity and resistance to doxorubicin poses a significant challenge to effective therapy. Panobinostat has emerged as a critical agent in colorectal cancer treatment due to its potential to overcome doxorubicin resistance and enhance the efficacy of existing therapeutic protocols. This study aimed to evaluate the capability of panobinostat to surmount doxorubicin toxicity and resistance in colorectal cancer. Specifically, we assessed the efficacy of panobinostat in enhancing the therapeutic response to doxorubicin in colorectal cancer cells and explored the potential synergistic effects of their combined treatment. Our results demonstrate that the combination treatment significantly reduces cell viability and colony-forming ability in colorectal cancer cells compared to individual treatments. The combination induces significant apoptosis, as evidenced by increased levels of cleaved PARP and cleaved caspase-9, while also resulting in a greater reduction in p-Akt/p-GSK-3β/mTOR expression, along with substantial decreases in c-Myc and SREBP-1 levels, compared to monotherapies. Consistent with the in vitro experimental results, the combination treatment significantly inhibited tumor formation in colorectal cancer xenograft nude mice compared to the groups treated with either agent alone. In conclusion, our research suggests that the panobinostat effectively enhances the effect of doxorubicin and combination of two drugs significantly reduced colorectal cancer tumor growth by targeting the Akt/GSK-3β/mTOR signaling pathway, indicating a synergistic therapeutic potential of these two drugs in colorectal cancer treatment.
Collapse
Affiliation(s)
- Huaxin Zhao
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Yanling Wu
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| |
Collapse
|
2
|
Tseng C, Chen CM, Hsieh YH, Lin CY, Chen JW, Hsiao PH, Fong YC, Wang PH, Chen PN, Lin RC. MTA2 knockdown suppresses human osteosarcoma metastasis by inhibiting uPA expression. Aging (Albany NY) 2024; 16:12239-12251. [PMID: 39248711 PMCID: PMC11424574 DOI: 10.18632/aging.206070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024]
Abstract
The relationship between metastasis-associated protein 2 (MTA2) overexpression and tumor growth and metastasis has been extensively studied in a variety of tumor cells but not in human osteosarcoma cells. This study aims to elucidate the clinical significance, underlying molecular mechanisms, and biological functions of MTA2 in human osteosarcoma in vitro and in vivo. Our results show that MTA2 was elevated in osteosarcoma cell lines and osteosarcoma tissues and was associated with tumor stage and overall survival of osteosarcoma patients. Knockdown of MTA2 inhibited osteosarcoma cell migration and invasion by reducing the expression of urokinase-type plasminogen activator (uPA). Bioinformatic analysis demonstrated that high levels of uPA in human osteosarcoma tissues correlated positively with MTA2 expression. Furthermore, treatment with recombinant human uPA (Rh-uPA) caused significant restoration of OS cell migration and invasion in MTA2 knockdown osteosarcoma cells. We found that ERK1/2 depletion increased the expression of uPA, facilitating osteosarcoma cell migration and invasion. Finally, MTA2 depletion significantly reduced tumor metastasis and the formation of lung nodules in vivo. Overall, our study suggests that MTA2 knockdown suppresses osteosarcoma cell metastasis by decreasing uPA expression via ERK signaling. This finding provides new insight into potential treatment strategies against osteosarcoma metastasis by targeting MTA2.
Collapse
Affiliation(s)
- Chun Tseng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung, Taiwan
- Department of Biomedical Sciences National Chung Cheng University, Chiayi, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Yu Lin
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
| | - Jian-Wen Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
| | - Pang-Hsuan Hsiao
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Pei-Han Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Renn-Chia Lin
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev 2024; 44:2236-2265. [PMID: 38613488 DOI: 10.1002/med.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind β-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.
Collapse
Affiliation(s)
- Edvin Purić
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|
4
|
Chen J, Chen S, Gong G, Yang F, Chen J, Wang Y. Inhibition of IL-4/STAT6/IRF4 signaling reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023; 121:110554. [PMID: 37385124 DOI: 10.1016/j.intimp.2023.110554] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Previous studies have shown that epithelial-to-mesenchymal transition (EMT) in nasal epithelial cells is critical for tissue remodeling of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the precise mechanism underlying the EMT remains poorly understood. This study aimed to investigate the role of interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6)/interferon regulatory factor 4 (IRF4) signaling pathway on EMT in eosinophilic CRSwNP. METHODS We performed quantitative real-time polymerase chain reaction, immunohistochemistry, immunofluorescent staining, and Western blotting to evaluate the expression of STAT6, IRF4, and EMT markers in sinonasal mucosal samples. Effects of IL-4-induced EMT were determined using primary human nasal epithelial cells (hNECs) from patients with eosinophilic CRSwNP. Wound scratch assay, cell morphology, Western blotting, and immunofluorescence cytochemistry were performed to evaluate EMT, and EMT-related markers. Next, human THP-1 monocytic cells were stimulated by phorbolate-12-myristate-13-acetate to differentiate into M0 and were subsequently polarized into M1 with lipopolysaccharide and interferon-γ, M2 with IL-4. The markers of the macrophage phenotype were assessed by Western blotting. The co-culture system was built to explore the interaction between macrophages (THP-1 cells) and hNECs. After co-culture with M2 macrophages, EMT-related markers of primary hNECs were evaluated by immunofluorescence cytochemistry and Western blotting. Enzymelinked immunosorbent assays were used to detect transforming growth factor beta 1 (TGF-β1) in THP-1-derived supernatants. RESULTS STAT6 and IRF4 mRNA and protein expression were significantly upregulated in both eosinophilic and noneosinophilic nasal polyps compared with control tissues. The expression of STAT6 and IRF4 in eosinophilic nasal polyps was higher than those in noneosinophilic nasal polyps. STAT6 and IRF4 were not only expressed in epithelial cells but also in macrophages. The number of STAT6+CD68+ cells and IRF4+CD68+ cells in eosinophilic nasal polyps was higher than those in noneosinophilic nasal polyps and control tissues. EMT was enhanced in eosinophilic CRSwNP compared to the healthy controls and noneosinophilic CRSwNP. IL-4-stimulated human nasal epithelial cells exhibited EMT characteristics. The hNECs co-cultured with M2 macrophages demonstrated high levels of EMT-related markers. The TGF-β1 level was significantly induced by IL-4 and elevated (M2) rather than control macrophages. The inhibition of STAT6 by AS1517499 reduced the expression of IRF4 in epithelial cells and macrophages and counteracted IL-4-induced EMT in epithelial cells. CONCLUSION In eosinophilic nasal polyps, IL-4 induces STAT6 signaling to upregulate IRF4 expression in epithelial cells and macrophages. IL-4 promotes EMT of hNECs through the STAT6/IRF4 signaling pathway. IL-4-induced M2 macrophages enhanced EMT of hNECs. Inhibition of STAT6 can downregulate the expression of IRF4 and suppress the EMT process, thus providing a new strategy for the treatment of nasal polyps.
Collapse
Affiliation(s)
- Jingcai Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Otorhinolaryngology, The First Affiliated Hospital, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoqing Gong
- Department of Otorhinolaryngology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan 430022, China
| | - Fan Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianjun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanjun Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Casalino L, Talotta F, Matino I, Verde P. FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098307. [PMID: 37176013 PMCID: PMC10179602 DOI: 10.3390/ijms24098307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Among FOS-related components of the dimeric AP-1 transcription factor, the oncoprotein FRA-1 (encoded by FOSL1) is a key regulator of invasion and metastasis. The well-established FRA-1 pro-invasive activity in breast cancer, in which FOSL1 is overexpressed in the TNBC (Triple Negative Breast Cancer)/basal subtypes, correlates with the FRA-1-dependent transcriptional regulation of EMT (Epithelial-to-Mesenchymal Transition). After summarizing the major findings on FRA-1 in breast cancer invasiveness, we discuss the FRA-1 mechanistic links with EMT and cancer cell stemness, mediated by transcriptional and posttranscriptional interactions between FOSL1/FRA-1 and EMT-regulating transcription factors, miRNAs, RNA binding proteins and cytokines, along with other target genes involved in EMT. In addition to the FRA-1/AP-1 effects on the architecture of target promoters, we discuss the diagnostic and prognostic significance of the EMT-related FRA-1 transcriptome, along with therapeutic implications. Finally, we consider several novel perspectives regarding the less explored roles of FRA-1 in the tumor microenvironment and in control of the recently characterized hybrid EMT correlated with cancer cell plasticity, stemness, and metastatic potential. We will also examine the application of emerging technologies, such as single-cell analyses, along with animal models of TNBC and tumor-derived CTCs and PDXs (Circulating Tumor Cells and Patient-Derived Xenografts) for studying the FRA-1-mediated mechanisms in in vivo systems of EMT and metastasis.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Ilenia Matino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
6
|
Li S, Pritchard DM, Yu LG. Galectin-3 promotes secretion of proteases that decrease epithelium integrity in human colon cancer cells. Cell Death Dis 2023; 14:268. [PMID: 37055381 PMCID: PMC10102123 DOI: 10.1038/s41419-023-05789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Galectin-3 is a galactoside-binding protein that is commonly overexpressed in many epithelial cancers. It is increasingly recognized as a multi-functional, multi-mode promoter in cancer development, progression, and metastasis. This study reports that galectin-3 secretion by human colon cancer cells induces cancer cell secretion, in an autocrine/paracrine manner, of a number of proteases including cathepsin-B, MMP-1 and MMP-13. The secretion of these proteases causes disruption of epithelial monolayer integrity, increases its permeability and promotes tumour cell invasion. This effect of galectin-3 is shown to be mediated through induction of cellular PYK2-GSK3α/β signalling and can be prevented by the presence of galectin-3 binding inhibitors. This study thus reveals an important mechanism in galectin-3-mediated promotion of cancer progression and metastasis. It provides further evidence to the increased realization of galectin-3 as a potential therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- Shun Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - David Mark Pritchard
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lu-Gang Yu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
7
|
Ding Y, Niu W, Zheng X, Zhou C, Wang G, Feng Y, Yu B. Plasminogen activator, urokinase enhances the migration, invasion, and proliferation of colorectal cancer cells by activating the Src/ERK pathway. J Gastrointest Oncol 2022; 13:3100-3111. [PMID: 36636041 PMCID: PMC9830328 DOI: 10.21037/jgo-22-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022] Open
Abstract
Background This paper aims to explore the effects of plasminogen activator, urokinase (PLAU) expression on the migration, invasion, and proliferation of colorectal cancer (CRC) cells and to preliminarily analyze its possible mechanism, thereby laying a foundation for the research on potential biological targets of CRC. Methods CRC-related mRNA was screened in Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds/). Differentially expressed genes (DEGs) were obtained for functional enrichment analysis. The enriched pathway and key involved functional gene were screened for further in vitro and in vivo analysis CRC cells were transfected with PLAU-NC (negative control), PLAU-mimic, and PLAU-inhibitor for 48 h and divided into the above groups for later studies. The migration, invasion, and proliferation capacities of CRC cells were detected using wound healing, Transwell, and colony formation assays, respectively. The Src inhibitor saracatinib (AZD0530) was added to the PLAU-NC and PLAU-mimic groups, and the expression levels of Src/extracellular signal-regulated kinase (ERK) pathway-, migration-, invasion-, and proliferation-related proteins were detected by Western blotting. Results The results showed that after upregulation of PLAU, the number of CRC cells (SW480) that migrated to the center of the wound significantly increased, the number of cells that migrated and invaded through the basement membrane increased in the PLAU-mimic group, and the number of colonies also increased. These results suggest that increasing PLAU expression promotes the migration, invasion, and proliferation of CRC cells. At the same time, the molecular mechanism of PLAU in CRC cells was investigated by downregulating the protein expression of Src combined with the results of the bioinformatics analysis. Western blotting revealed that the protein expressions of phosphorylated Src (p-Src) and phosphorylated ERK (p-ERK) in SW480 and SW620 cells increased significantly in the PLAU-mimic group compared with the PLAU-NC group, while the results were the opposite in the PLAU-inhibitor group. After being treated with saracatinib, we observed significantly decreased protein levels of p-ERK, matrix metallopeptidase 2 (MMP-2), MMP-3, MMP-9, Cyclin D1, and Cyclin A2 in the SW480 cells. Conclusions In conclusion, PLAU affects the migration, invasion, and proliferation of CRC cells by activating the Src/ERK pathway.
Collapse
|
8
|
Alaaeldin R, Ali FEM, Bekhit AA, Zhao QL, Fathy M. Inhibition of NF-kB/IL-6/JAK2/STAT3 Pathway and Epithelial-Mesenchymal Transition in Breast Cancer Cells by Azilsartan. Molecules 2022; 27:7825. [PMID: 36431925 PMCID: PMC9693603 DOI: 10.3390/molecules27227825] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Metastatic breast cancer is an incurable form of breast cancer that exhibits high levels of epithelial-mesenchymal transition (EMT) markers. Angiotensin II has been linked to various signaling pathways involved in tumor cell growth and metastasis. The aim of this study is to investigate, for the first time, the anti-proliferative activity of azilsartan, an angiotensin II receptor blocker, against breast cancer cell lines MCF-7 and MDA-MB-231 at the molecular level. Cell viability, cell cycle, apoptosis, colony formation, and cell migration assays were performed. RT-PCR and western blotting analysis were used to explain the molecular mechanism. Azilsartan significantly decreased the cancer cells survival, induced apoptosis and cell cycle arrest, and inhibited colony formation and cell migration abilities. Furthermore, azilsartan reduced the mRNA levels of NF-kB, TWIST, SNAIL, SLUG and bcl2, and increased the mRNA level of bax. Additionally, azilsartan inhibited the expression of IL-6, JAK2, STAT3, MMP9 and bcl2 proteins, and increased the expression of bax, c-PARP and cleaved caspase 3 protein. Interestingly, it reduced the in vivo metastatic capacity of MDA-MBA-231 breast cancer cells. In conclusion, the present study revealed, for the first time, the anti-proliferative, apoptotic, anti-migration and EMT inhibition activities of azilsartan against breast cancer cells through modulating NF-kB/IL-6/JAK2/STAT3/MMP9, TWIST/SNAIL/SLUG and apoptosis signaling pathways.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt
| | - Fares E. M. Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | | | - Qing-Li Zhao
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
9
|
Piet M, Paduch R. Ursolic and oleanolic acids in combination therapy inhibit migration of colon cancer cells through down-regulation of the uPA/uPAR-dependent MMPs pathway. Chem Biol Interact 2022; 368:110202. [PMID: 36191607 DOI: 10.1016/j.cbi.2022.110202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Colorectal cancer is one the most lethal cancers worldwide. Since chemotherapy is burdened with harmful effects, agents capable of enhancing the chemotherapeutic effect are being sought. Ursolic acid (UA) and oleanolic acid (OA) were analyzed for such properties. The aim of the study was to evaluate the ability of UA and OA administered individually and in combination with each other and/or a cytostatic drug camptothecin-11 (CPT-11) to limit the viability and migration of colorectal cancer cells. MATERIALS AND METHODS The cytotoxic effect of UA, OA and CPT-11 and impact on normal and cancer cell migration rate were assessed. Furthermore, the effect on factors crucial in cancer metastasis: MMP-2 and -9, uPA/uPAR, and E-cadherin were assessed with ELISA, Western Blotting and immunofluorescence assays. Statistical analysis was performed with One-Way Anova with Dunnett's test. RESULTS The studied compounds exhibited the most favorable properties, i.e. they reduced the viability and migration of cancer cells. Furthermore, the secretion, activity, and cellular level of cancer MMP-2 and -9 were decreased, as a result of uPA/uPAR down-regulation. The agents also increased the level of cellular E-cadherin. The effect of the studied agents on normal cells was milder. CONCLUSIONS The compounds exhibited stronger activity when administered in combination and, combined with CPT-11, enhanced anti-tumorigenic activity of the drug. The migration-limiting activity was based on down-regulation of the uPA/uPAR-dependent MMP pathway. Moreover, UA and OA exhibited a protective effect towards normal cells.
Collapse
Affiliation(s)
- Mateusz Piet
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland; Department of General Ophthalmology, Faculty of Medicine, Medical University of Lublin, ul Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
10
|
Morales-Valencia J, Lau L, Martí-Nin T, Ozerdem U, David G. Therapy-induced senescence promotes breast cancer cells plasticity by inducing Lipocalin-2 expression. Oncogene 2022; 41:4361-4370. [PMID: 35953598 PMCID: PMC9482949 DOI: 10.1038/s41388-022-02433-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 01/29/2023]
Abstract
The acquisition of novel detrimental cellular properties following exposure to cytotoxic drugs leads to aggressive and metastatic tumors that often translates into an incurable disease. While the bulk of the primary tumor is eliminated upon exposure to chemotherapeutic treatment, residual cancer cells and non-transformed cells within the host can engage a stable cell cycle exit program named senescence. Senescent cells secrete a distinct set of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). Upon exposure to the SASP, cancer cells undergo cellular plasticity resulting in increased proliferation, migration and epithelial-to-mesenchymal transition. The molecular mechanisms by which the SASP regulates these pro-tumorigenic features are poorly understood. Here, we report that breast cancer cells exposed to the SASP strongly upregulate Lipocalin-2 (LCN2). Furthermore, we demonstrate that LCN2 is critical for SASP-induced increased migration in breast cancer cells, and its inactivation potentiates the response to chemotherapeutic treatment in mouse models of breast cancer. Finally, we show that neoadjuvant chemotherapy treatment leads to LCN2 upregulation in residual human breast tumors, and correlates with worse overall survival. These findings provide the foundation for targeting LCN2 as an adjuvant therapeutic approach to prevent the emergence of aggressive tumors following chemotherapy.
Collapse
Affiliation(s)
- Jorge Morales-Valencia
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
- NYU Langone Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Lena Lau
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Teresa Martí-Nin
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Ugur Ozerdem
- Department of Pathology, New York University School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA.
- NYU Langone Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA.
- Department of Urology, New York University School of Medicine, NYU Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
11
|
Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022; 349:844-875. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
12
|
Wu CZ, Chu YC, Lai SW, Hsieh MS, Yadav VK, Fong IH, Deng L, Huang CC, Tzeng YM, Yeh CT, Chen JS. Urokinase plasminogen activator induces epithelial-mesenchymal and metastasis of pancreatic cancer through plasmin/MMP14/TGF-β axis, which is inhibited by 4-acetyl-antroquinonol B treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154062. [PMID: 35366491 DOI: 10.1016/j.phymed.2022.154062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The current standard therapy for metastatic pancreatic cancer is ineffective, necessitating a new treatment approach for prognosis improvement. The urokinase-plasmin activator (uPA) is a critical factor in epithelial-mesenchymal transition (EMT) and cancer metastasis, but its underlying mechanisms in pancreatic cancer remains elusive. METHODS We investigated uPA expression in our pancreatic cancer cohort. A bioinformatics approach was used to further determine the role of uPA in pancreatic cancer. We employed MiaPaCa-2 and PANC-1 cell lines to investigate how uPA regulates EMT and metastasis in pancreatic cancer and present a novel approach aimed at inhibiting uPA in pancreatic cancer. RESULTS We observed that higher uPA mRNA expression was significantly associated with overall-poor survival and progression-free survival in pancreatic cancer. uPA was highly expressed in tumor tissue. Gene set enrichment analysis revealed a positive association between uPA mRNA expression and EMT and transforming growth factor β (TGF-β) signaling pathways. Moreover, shRNA-mediated uPA gene knockdown reduced plasmin, MMP14, and TGF-β activation, leading to the inhibition of PANC-1 cells' EMT marker expression, migration, invasion, and cell viability. Notably, 4-acetyl-antroquinonol B (4-AAQB) treatment suppressed MiaPaCa-2 and PANC-1 cell migratory and invasive abilities by inhibiting the uPA/MMP14/TGF-β axis through upregulation of miR-181d-5p. In the xenograft mouse model of orthotropic pancreatic cancer, 4-AAQB treatment has reduced tumor growth and metastasis rate by deactivating uPA and improving the survival of the mice model. CONCLUSION Accordingly, to extent of our knowledge and previous studies, we demonstrated that 4-AAQB is an anti Pan-Cancer drug, and may inhibit pancreatic cancer EMT and metastasis and serve as a new therapeutic approach for patients with late-stage pancreatic cancer.
Collapse
Affiliation(s)
- Chung-Ze Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan, ROC; Division of Endocrinology and Metabolism, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Yi Cheng Chu
- Department of Medicine, School of Medicine, St. George's University, St. George SW17 0RE, Grenada
| | - Shiue-Wei Lai
- Division of Hematology-Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Internal Medicine, Tri-Service General Hospital Penghu Branch, Penghu, Taiwan, ROC
| | - Ming-Shou Hsieh
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan, ROC
| | - Vijesh Kumar Yadav
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan, ROC
| | - Iat-Hang Fong
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan, ROC
| | - Li Deng
- Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Amoy-BUCT Industrial Bio-Technovation Institute, Amoy 361022, China
| | - Chun-Chih Huang
- Center for General Education, National Taitung University, Taitung, Taiwan, ROC
| | - Yew-Min Tzeng
- Center for General Education, National Taitung University, Taitung, Taiwan, ROC
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan, ROC; Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan, ROC.
| | - Jin-Shuen Chen
- Administration Department and Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, ROC; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
13
|
Resveratrol Decreases the Invasion Potential of Gastric Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103047. [PMID: 35630523 PMCID: PMC9145179 DOI: 10.3390/molecules27103047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
The cancer-preventive agent Resveratrol (RSV) [3,5,4′-trihydroxytrans-stilbene] is a widely recognized antioxidant molecule with antitumoral potential against several types of cancers, including prostate, hepatic, breast, skin, colorectal, and pancreatic. Herein, we studied the effect of RSV on the cell viability and invasion potential of gastric cancer cells. AGS and MKN45 cells were treated with different doses of RSV (0–200 μM) for 24 h. Cell viability was determined using the Sulphorhodamine B dye (SRB) assay. For invasion assays, gastric cells were pre-treated with RSV (5–25 μM) for 24 h and then seeded in a Transwell chamber with coating Matrigel. The results obtained showed that RSV inhibited invasion potential in both cell lines. Moreover, to elucidate the mechanism implicated in this process, we analyzed the effects of RSV on SOD, heparanase, and NF-κB transcriptional activity. The results indicated that RSV increased SOD activity in a dose-dependent manner. Conversely, RSV significantly reduced the DNA-binding activity of NF-κB and the enzymatic activity of heparanase in similar conditions, which was determined using ELISA-like assays. In summary, these results show that RSV increases SOD activity but decreases NF-kB transcriptional activity and heparanase enzymatic activity, which correlates with the attenuation of invasion potential in gastric cancer cells. To our knowledge, no previous study has described the effect of RSV on heparanase activity. This article proposes that heparanase could be a key effector in the invasive events occurring during gastric cancer metastasis.
Collapse
|
14
|
Downregulation of MMP-9 Enhances the Anti-Migratory Effect of Cyclophosphamide in MDA-MB-231 and MCF-7 Breast Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms222312783. [PMID: 34884588 PMCID: PMC8657655 DOI: 10.3390/ijms222312783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Metastasis is one of the most urgent issues in breast cancer patients. One of the factors necessary in the migration process is the remodeling of the extracellular matrix (ECM). Metalloproteinases (MMPs) can break down the elements of the ECM, which facilitates cell movement. Many highly aggressive tumors are characterized by high levels of MMPs. In the case of breast cancer, the association between MMP-9 and the migration potential and invasiveness of cells has been demonstrated. In addition, reports indicating increased migration of breast cancer cells after the administration of the commonly used cytostatic cyclophosphamide (CP) are particularly disturbing. Hence, our research aimed to assess the effect of CP treatment on MDA-MB-231 and MCF-7 cells and how this response is influenced by the downregulation of the MMP-9 level. The obtained results suggest that CP causes a decrease in the survival of breast cancer cells of various invasiveness, and the downregulation of MMP-9 enhances this effect, mainly by inducing apoptosis. Moreover, in the group of MMP-9 siRNA-transfected CP-treated cells, a more severe reduction in invasion and migration of cells of both lines was observed, as indicated by the migration and invasion transwell assays and Wound healing assay. Hence, we suggest that CP alone may not result in satisfactory therapeutic effects. On the other hand, the use of combination therapy targeting MMP-9, together with the CP, could improve the effectiveness of the treatment. Additionally, we confirmed a relationship between the levels of MMP-9 and cytokeratin 19 (CK19).
Collapse
|
15
|
Kim HS, Kim HJ, Lee MR, Han I. EMMPRIN expression is associated with metastatic progression in osteosarcoma. BMC Cancer 2021; 21:1059. [PMID: 34565336 PMCID: PMC8474954 DOI: 10.1186/s12885-021-08774-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Extracellular matrix metalloproteinase inducer (EMMPRIN), a cell-surface glycoprotein, is overexpressed in several cancer types. EMMPRIN induces a metastatic phenotype by triggering the production of matrix metalloproteinase proteins (MMPs) such as MMP1 and MMP2, and vascular endothelial growth factor (VEGF) in cancer cells and the surrounding stromal cells. The purpose of this study was to investigate the expression and role of EMMPRIN in osteosarcoma. Methods The level of EMMPRIN expression was evaluated using reverse transcriptase polymerase chain reaction (RT-PCR) in 6 tumor-derived osteosarcoma cell lines and compared with that in normal osteoblasts. To study the prognostic significance of EMMPRIN expression, immunohistochemistry was carried out in prechemotherapy biopsies of 54 patients. siRNA knockdown of EMMPRIN in SaOS-2 cells was conducted to explore the role of EMMPRIN. To study the role of EMMPRIN in tumor-stromal interaction in MMP production and invasion, co-culture of SaOS-2 cells with osteoblasts and fibroblasts was performed. Osteosarcoma 143B cells were injected into the tail vein of BALB/c mice and lung metastasis was analyzed. Results EMMRIN mRNA expression was significantly higher in 5 of 6 (83%) tumor-derived cells than in MG63 cells. 90% of specimens (50/54) stained positive for EMMPRIN by immunohistochemistry, and higher expression of EMMPRIN was associated with shorter metastasis-free survival (p = 0.023). Co-culture of SaOS-2 with osteoblasts resulted in increased production of pro-MMP2 and VEGF expression, which was inhibited by EMMPRIN-targeting siRNA. siRNA knockdown of EMMPRIN resulted in decreased invasion. EMMPRIN shRNA-transfected 143B cells showed decreased lung metastasis in vivo. Conclusions Our data suggest that EMMPRIN acts as a mediator of osteosarcoma metastasis by regulating MMP and VEGF production in cancer cells as well as stromal cells. EMMPRIN could serve as a therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Han-Soo Kim
- Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea.,Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Ha Jeong Kim
- Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Mi Ra Lee
- Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Ilkyu Han
- Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea. .,Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
Yang M, Arai E, Takahashi Y, Totsuka H, Chiku S, Taniguchi H, Katai H, Sakamoto H, Yoshida T, Kanai Y. Cooperative participation of epigenomic and genomic alterations in the clinicopathological diversity of gastric adenocarcinomas: significance of cell adhesion and epithelial-mesenchymal transition-related signaling pathways. Carcinogenesis 2021; 41:1473-1484. [PMID: 32710740 PMCID: PMC7665242 DOI: 10.1093/carcin/bgaa079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/27/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The present study was conducted to clarify the cooperative significance of epigenomic and genomic abnormalities during gastric carcinogenesis. Using 21 samples of normal control gastric mucosa (C), 109 samples of non-cancerous gastric mucosa (N) and 105 samples of cancerous tissue (T) from 109 patients with primary gastric adenocarcinomas, genome-wide DNA methylation analysis was performed using Infinium assay. Among these samples, 66 paired N and corresponding T samples were subjected to whole-exome and single nucleotide polymorphism array analyses. As had been shown in our previous study, 109 patients were clustered clinicopathologically into least aggressive Cluster A (n = 20), most aggressive Cluster B1 (n = 20) and Cluster B2 (n = 69). Most DNA methylation alterations in each cluster had already occurred even in N samples compared with C samples, and DNA methylation alterations at the precancerous N stage were inherited by the established cancers themselves. Recurrent single nucleotide variants and insertions/deletions resulting in functional disruption of the proteins encoded by the ABCA10, BNC2, CDH1, CTNNB1, SMAD4 and VAV2 genes were specific to Cluster B1, whereas those of the APC, EGFR, ERBB2, ERBB3, MLH1 and MUC6 genes were specific to Cluster A. MetaCore pathway analysis revealed that the epigenomically affected TWIST1 gene and genomically affected CDH1, CTNNB1, MMP9, TLN2, ROCK1 and SMAD4 genes were accumulated in signaling pathways related to cell adhesion, cytoskeleton remodeling and epithelial–mesenchymal transition in Cluster B1. These data indicate that epigenomic alterations at the precancerous stage are important in gastric carcinogenesis and that epigenomic and genomic alterations cooperatively underlie the aggressiveness of gastric adenocarcinomas.
Collapse
Affiliation(s)
- Menghan Yang
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yoriko Takahashi
- Biomedical Department, Cloud Service Division, IT Infrastructure Services Unit, Mitsui Knowledge Industry Co., Ltd., Tokyo, Japan
| | - Hirohiko Totsuka
- Bioinformatics Group, Research and Development Center, Solution Division 4, Hitachi Government and Public Corporation System Engineering Ltd., Tokyo, Japan
| | - Suenori Chiku
- Information and Communication Research Division, Mizuho Information and Research Institute, Inc., Tokyo, Japan
| | - Hirokazu Taniguchi
- Department of Clinical Laboratories, JR Tokyo General Hospital, Tokyo, Japan
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Hiromi Sakamoto
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Carey P, Low E, Harper E, Stack MS. Metalloproteinases in Ovarian Cancer. Int J Mol Sci 2021; 22:3403. [PMID: 33810259 PMCID: PMC8036623 DOI: 10.3390/ijms22073403] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023] Open
Abstract
Proteases play a crucial role in the progression and metastasis of ovarian cancer. Pericellular protein degradation and fragmentation along with remodeling of the extracellular matrix (ECM) is accomplished by numerous proteases that are present in the ovarian tumor microenvironment. Several proteolytic processes have been linked to cancer progression, particularly those facilitated by the matrix metalloproteinase (MMP) family. These proteases have been linked to enhanced migratory ability, extracellular matrix breakdown, and development of support systems for tumors. Several studies have reported the direct involvement of MMPs with ovarian cancer, as well as their mechanisms of action in the tumor microenvironment. MMPs play a key role in upregulating transcription factors, as well as the breakdown of structural proteins like collagen. Proteolytic mechanisms have been shown to enhance the ability of ovarian cancer cells to migrate and adhere to secondary sites allowing for efficient metastasis. Furthermore, angiogenesis for tumor growth and development of metastatic implants is influenced by upregulation of certain proteases, including MMPs. While proteases are produced normally in vivo, they can be upregulated by cancer-associated mutations, tumor-microenvironment interaction, stress-induced catecholamine production, and age-related pathologies. This review outlines the important role of proteases throughout ovarian cancer progression and metastasis.
Collapse
Affiliation(s)
- Preston Carey
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Preprofessional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ethan Low
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elizabeth Harper
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - M. Sharon Stack
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
18
|
Sharma A, Kaur H, De R, Srinivasan R, Pal A, Bhattacharyya S. Knockdown of E-cadherin induces cancer stem-cell-like phenotype and drug resistance in cervical cancer cells. Biochem Cell Biol 2021; 99:587-595. [PMID: 33677985 DOI: 10.1139/bcb-2020-0592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of mortality amongst women in developing countries, and resistance to therapy is the main reason for treatment failure. Recent advances suggest that cancer stem cells (CSCs) are critically involved in regulating the chemo-resistant behavior of cervical cancer cells. In our study, cells with the CSC phenotype were isolated, and we examined the expression levels of stem cell markers and genes associated with epithelial-mesenchymal transition (EMT) using different assays. However, the cells with the CSC phenotype could not be cultured for further cytotoxicity studies, so we established a model of CSC in cervical cancer cells. We performed siRNA-mediated knockdown of E-cadherin in these cells, and studied them for EMT-associated stem-cell-like properties. We also performed dose-dependent cell viability assays using clinically relevant drugs such as cisplatin, cyclopamine, and GANT58 to analyze the drug resistant behavior of these cancer cells. We found that knockdown of E-cadherin induces EMT in cervical cancer cells, imparting stem-cell like characteristics along with enhanced tumorsphere formation, cell migration, invasiveness, and drug resistance. This is the first study to establish a CSC model in cervical cancer cells by knockdown of E-cadherin, which can be used to develop anti-cancer therapies.
Collapse
Affiliation(s)
- Anuka Sharma
- Department of Biophysics, PGIMER, Chandigarh, India
| | | | - Renaissa De
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecologic Pathology, PGIMER, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| | | |
Collapse
|
19
|
Armartmuntree N, Jusakul A, Sakonsinsiri C, Loilome W, Pinlaor S, Ungarreevittaya P, Yong CH, Techasen A, Imtawil K, Kraiklang R, Suwannakul N, Kaewlert W, Chaiprasert T, Thanan R, Murata M. Promoter hypermethylation of early B cell factor 1 (EBF1) is associated with cholangiocarcinoma progression. J Cancer 2021; 12:2673-2686. [PMID: 33854627 PMCID: PMC8040704 DOI: 10.7150/jca.52378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/14/2021] [Indexed: 01/20/2023] Open
Abstract
DNA hypermethylation in a promoter region causes gene silencing via epigenetic changes. We have previously reported that early B cell factor 1 (EBF1) was down-regulated in cholangiocarcinoma (CCA) tissues and related to tumor progression. Thus, we hypothesized that the DNA hypermethylation of EBF1 promoter would suppress EBF1 expression in CCA and induce its progression. In this study, the DNA methylation status of EBF1 and mRNA expression levels were analyzed in CCA and normal bile duct (NBD) tissues using a publicly available database of genome-wide association data. The results showed that the DNA methylation of EBF1 promoter region was significantly increased in CCA tissues compared with those of NBD. The degree of methylation was negatively correlated with EBF1 mRNA expression levels. Using methylation-specific PCR technique, the DNA methylation rates of EBF1 promoter region were investigated in CCA tissues (n=72). CCA patients with high methylation rates of EBF1 promoter region in the tumor tissues (54/72) had a poor prognosis. Higher methylation rates of EBF1 promoter region have shown in all CCA cell lines than that of an immortal cholangiocyte cell line (MMNK1). Upon treatment with the DNA methyltransferase inhibitor 5-Aza-dC, increased EBF1 expression levels and reduced DNA methylation rates were observed in CCA cells. Moreover, restoration of EBF1 expression in CCA cells led to inhibition of cell growth, migration and invasion. In addition, RNA sequencing analysis suggested that EBF1 is involved in suppression of numerous pathways in cancer. Taken together, DNA hypermethylation in the EBF1 promoter region suppresses EBF1 expression and induces CCA progression with aggressive clinical outcomes.
Collapse
Affiliation(s)
- Napat Armartmuntree
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chern Han Yong
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanokwan Imtawil
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Nattawan Suwannakul
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Waleeporn Kaewlert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Timpika Chaiprasert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
20
|
Bu F, Nie H, Zhu X, Wu T, Lin K, Zhao J, Huang J. A signature of 18 immune-related gene pairs to predict the prognosis of pancreatic cancer patients. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:713-726. [PMID: 33128857 PMCID: PMC7654420 DOI: 10.1002/iid3.363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer is one of the most lethal malignancies. With the promising prospects conveyed by immunotherapy in cancers, we aimed to construct an immune‐related gene pairs (IRGPs) signature to predict the prognosis of pancreatic cancer patients. We downloaded clinical and transcriptional data of pancreatic cancer patients from The Cancer Genome Atlas data set as the training group and GSE57495 data set as the verification group. We filtered immune‐related transcriptional data by IMMPORT. With the assistance of lasso penalized Cox regression, we constructed our prognostic IRGPs signature and divided all samples into high‐/low‐risk groups by receiver operating characteristic curve for further comparisons. The comparisons between high‐ and low‐risk groups including survival rate, multivariate, and univariate Cox proportional‐hazards analysis, infiltration of immune cells, and Gene Set Enrichment Analysis (GSEA). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) are facilitated to analyze the proceedings in which our IRGPs signature may involve in. The results revealed that 18 IRGPs were defined as our prognostic signature. The prognostic value of this IRGPs signature was verified from the GSE57495 data set. We further demonstrated the independent prognostic value of this IRGPs signature. The contents of six immune cells between high‐/low‐risk groups were different, which was associated with the progression of diverse cancers. Results from GO, KEGG, and GSEA revealed that this IRGPs signature was involved in extracellular space, immune response, cancer pathways, cation channel, and gated channel activities. Evidently, this IRGPs signature will provide remarkable value for the therapy of pancreatic cancer patients.
Collapse
Affiliation(s)
- Fanqin Bu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Han Nie
- Department of Vascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojian Zhu
- Zhongshan School of Medicine, Research Center of the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ting Wu
- Infection Department of Guixi Traditional Chinese Medicine Hospital, Guixi, Jiangxi, China
| | - Kang Lin
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiefeng Zhao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Zheng K, Li Q, Lin D, Zong X, Luo X, Yang M, Yue X, Ma S. Peptidomic analysis of pilose antler and its inhibitory effect on triple-negative breast cancer at multiple sites. Food Funct 2020; 11:7481-7494. [PMID: 32789330 DOI: 10.1039/d0fo01531h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pilose antler (PA) is a traditional Chinese functional food that has been reported to inhibit breast cancer; however, the specific substances that exert this effect and the underlying mechanisms remain unknown. This study aims to identify the specific proteins in PA water-soluble polypeptides (PAWPs) that are involved in cancer inhibition and determine the effects of PAWPs on triple-negative breast cancer in mice. In this study, peptidomic analysis of 105 varieties of polypeptides from PAWPs was carried out using LC-MS, 22 of which had functions that could potentially suppress tumors, including endopeptidase inhibitors, metal ion-binding proteins, angiogenesis inhibitors, intercellular adhesion proteins, and extracellular matrix repair proteins. Furthermore, we showed that intragastric administration of PAWPs into mice inhibited the growth and metastasis of triple-negative 4T1 breast tumors. PAWPs activated the expression of cleaved-caspase3 and increased tumor apoptosis, resulting in the reduction of platelet-endothelial cell adhesion molecule (PECAM-1/CD31) expression and the number of blood vessels, as well as the inhibition of matrix metalloproteinase (MMP) 2 and 9, increasing the ratio of Cadherin-1 (CDH1)/Cadherin-2 (CDH2) and inhibiting epithelial-mesenchymal transition (EMT) in these tumors. Therefore, PAWPs inhibit the progression and metastasis of triple-negative 4T1 breast cancer at multiple key sites in mice and contain various tumor suppressor proteins that are potentially involved in these processes.
Collapse
Affiliation(s)
- Kexin Zheng
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Qilong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongdong Lin
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xiaoyan Zong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xue Luo
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Mei Yang
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xiqing Yue
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Shiliang Ma
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China. and College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
22
|
Xu G, Ou L, Liu Y, Wang X, Liu K, Li J, Li J, Wang S, Huang D, Zheng K, Wang S. Upregulated expression of MMP family genes is associated with poor survival in patients with esophageal squamous cell carcinoma via regulation of proliferation and epithelial‑mesenchymal transition. Oncol Rep 2020; 44:29-42. [PMID: 32627007 PMCID: PMC7251684 DOI: 10.3892/or.2020.7606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the cleavage of several components of the extracellular matrix and serve important roles in tumor growth, metastasis and invasion. Previous studies have focused on the expression of one or several MMPs in esophageal squamous cell carcinoma (ESCC); however, in the present study, the transcriptomics of all 23 MMPs were systematically investigated with a focus on the prognostic value of the combination of MMPs. In this study, 8 overlapping differentially expressed genes of the MMP family were identified based on data obtained from Gene Expression Omnibus and The Cancer Genome Atlas. The prognostic value of these MMPs were investigated; the receiver operating characteristic curves, survival curves and nomograms showed that the combination of 6 selected MMPs possessed a good predictive ability, which was more accurate than the prediction model based on Tumor‑Node‑Metastasis stage. Gene set enrichment analysis and gene co‑expression analysis were performed to investigate the potential mechanism of action of MMPs in ESCC. The MMP family was associated with several signaling pathways, such as epithelial‑mesenchymal transition (EMT), Notch, TGF‑β, mTOR and P53. Cell Counting Kit‑8, colony formation, wound healing assays and western blotting were used to determine the effect of BB‑94, a pan‑MMP inhibitor, on proliferation and migration of ESCC cells. BB‑94 treatment decreased ESCC cell growth, migration and EMT. Therefore, MMPs may serve both as diagnostic and prognostic biomarkers of ESCC, and MMP inhibition may be a promising preventive and therapeutic strategy for patients with ESCC.
Collapse
Affiliation(s)
- Guifeng Xu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Ling Ou
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, P.R. China
| | - Ying Liu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, P.R. China
| | - Xiao Wang
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, P.R. China
| | - Kaisheng Liu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, P.R. China
| | - Jieling Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Junjun Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, P.R. China
| | - Shaoqi Wang
- Department of Oncology, Hubei Provincial Corps Hospital, Chinese People Armed Police Forces, Wuhan, Hubei 430061, P.R. China
| | - Dane Huang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P.R. China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
23
|
Jeong S, Park MJ, Song W, Kim HS. Current immunoassay methods and their applications to clinically used biomarkers of breast cancer. Clin Biochem 2020; 78:43-57. [PMID: 32007438 DOI: 10.1016/j.clinbiochem.2020.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/13/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Breast cancer is the leading cause of cancer-related mortality worldwide, with a higher incidence in developed countries. The biomarkers for breast cancer such as estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, CA (cancer antigen) 15-3, CA 27.29, and carcinoembryonic antigen have been recommended for use in the laboratory based on the guidelines of American and European societies. Immunoassays have been frequently and consistently used to detect these clinically established biomarkers of breast cancer. Despite the higher accessibility of serum biomarkers, including CA 15-3, CA 27.29, and CEA, compared to tissue markers, variations in immunoassays affect their standardization and clinical utility. When reviewing the immunoassays used to detect these serum markers, we found that the most frequently used immunoassay was enzyme-linked immunosorbent assay, followed by electrochemiluminescent immunoassay, and then chemiluminescence immunoassay for CA 15-3 and CEA. Meanwhile, the chemiluminescence immunoassay was the most common technique for CA27.29. The electrochemiluminescent immunoassay and monoclonal fluorometric assay have become the preferred methods in 2010-2019 compared to 2000-2009. Analytical and clinical performance factors such as sensitivity, specificity, detection limit, hazard risk to laboratory personnel, speed, and economic feasibility influenced these changes in user preference. When using the immunoassays, there should be a comprehensive understanding of the principles, advantages, vulnerability, and precautions for interpretation. In the future, a combination of immunological biomarkers and genetic platforms will benefit patients with breast cancer by facilitating prognosis prediction and guiding therapeutic intervention.
Collapse
Affiliation(s)
- Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1 Singil-ro, Yeongdeungpo-gu, Seoul 07440, South Korea.
| | - Min-Jeong Park
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1 Singil-ro, Yeongdeungpo-gu, Seoul 07440, South Korea.
| | - Wonkeun Song
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1 Singil-ro, Yeongdeungpo-gu, Seoul 07440, South Korea.
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
24
|
Lee KS, Nam GS, Baek J, Kim S, Nam KS. Inhibition of TPA‑induced metastatic potential by morin hydrate in MCF‑7 human breast cancer cells via the Akt/GSK‑3β/c‑Fos signaling pathway. Int J Oncol 2020; 56:630-640. [PMID: 31939617 DOI: 10.3892/ijo.2020.4954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/08/2019] [Indexed: 11/06/2022] Open
Abstract
Plant flavonoid 2',3,4',5,7‑pentahydroxyflavone (morin hydrate), isolated from the family Moraceae (Morus alba L.), is known to have anti‑inflammatory and anticancer effects. However, its pharmaceutical effects on metastasis have not been fully elucidated to date. Therefore, the current study investigated the effects of morin hydrate on cancer metastasis in MCF‑7 human breast cancer cells. The results showed that morin hydrate suppressed 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑induced cell migration and invasion via the inhibition of matrix metalloproteinase (MMP)‑9 activity. Furthermore, gene expression level of MMP‑9, MMP‑7, urokinase plasminogen activator (uPA), uPA receptor (uPAR) and fibronectin were significantly decreased by morin hydrate treatment. Morin hydrate inhibited the phosphorylation of Akt and glycogen synthase kinase (GSK)‑3β, and downregulated the expression of an activator protein‑1 subunit c‑Fos. In addition, the GSK‑3β phosphorylation and c‑Fos expression were suppressed by PI3K/Akt pathway inhibitors, LY294002 and wortmannin. Taken together, these results demonstrated that morin hydrate reduced the metastatic potential in TPA‑treated MCF‑7 human breast cancer cells via the inhibition of MMPs, uPA and uPAR, and the underlying Akt/GSK‑3β/c‑Fos pathway. Therefore, the present investigation suggested that morin hydrate may be a natural substance with a preventive potential for metastasis in breast cancer cells.
Collapse
Affiliation(s)
- Kyu-Shik Lee
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Gi Suk Nam
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Junyoung Baek
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| |
Collapse
|
25
|
Zhou Y, Chen D, Xue G, Yu S, Yuan C, Huang M, Jiang L. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Adv 2020; 10:34517-34526. [PMID: 35514369 PMCID: PMC9056791 DOI: 10.1039/d0ra04231e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) is one kind of breast cancer that demonstrates highly aggressive tumor biology. The high heterogeneity of TNBC makes its individual clinical treatment extremely blind and limited, which also introduces more challenges into the diagnosis and treatment of diseases. Urokinase-type plasminogen activator (uPA) is a high level marker for breast cancer, which mediates tumor growth and metastasis. Quercetin is a plant-derived flavonoid in many plants, which inhibits uPA and has low bioavailability and mediocre pharmaceutical efficacy. Thus, we herein developed polymeric nanoparticulate systems from PLGA-TPGS (Qu-NPs) for quercetin oral delivery and evaluated the anticancer effect of this formulation on TNBC in vitro and in vivo. Qu-NPs have a uniform spherical morphology with a mean diameter of 198.4 ± 7.8 nm and good drug loading capacity (8.1 ± 0.4%). Moreover, Qu-NPs exhibited significantly improved inhibition on the growth and metastasis in TNBC cells. Following oral gavage, a remarkable antitumor effect of Qu-NPs on 4T1-bearing mice was observed with a tumor inhibition ratio of 67.88% and fewer lung metastatic colonies. Furthermore, the inhibitory effect of quercetin on the migration of uPA knockdown MDA-MB231 cells was greatly attenuated. Together, Qu-NPs improved the significant antitumor and antimetastatic effects by inhibiting uPA, which provides a new strategy for the treatment of TNBC. Triple negative breast cancer (TNBC) is one kind of breast cancer that demonstrates highly aggressive tumor biology.![]()
Collapse
Affiliation(s)
- Yang Zhou
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| | - Dan Chen
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| | - Guangpu Xue
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| | - Shujuan Yu
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| | - Cai Yuan
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Mingdong Huang
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| | - Longguang Jiang
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
26
|
Chen Y, Zhang T, Liu X, Li Z, Zhou D, Xu W. Melatonin suppresses epithelial‑to‑mesenchymal transition in the MG‑63 cell line. Mol Med Rep 2019; 21:1356-1364. [PMID: 31894324 DOI: 10.3892/mmr.2019.10902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/31/2019] [Indexed: 11/06/2022] Open
Abstract
Epithelial‑to‑mesenchymal transition (EMT) is a major process involved in tumor progression and metastasis. Melatonin is secreted by the pineal gland and has been documented as a potential therapeutic agent for multiple tumors. However, the effects of melatonin on EMT during osteosarcoma (OA) development remain undefined. The present study explored the biological functions and effects of melatonin on EMT induced by transforming growth factor β1 (TGF‑β1) and its underlying mechanisms in MG‑63 cells. Using western‑blotting and immunofluorescence, it was found that the switch in E‑cadherin/N‑cadherin and vimentin expression was induced by TGF‑β1, which was reversed by melatonin through the suppression of Snail and matrix metalloproteinase 9 (MMP‑9), through hypoxia‑inducible factor 1α (HIF‑1α) inhibition. These findings demonstrated that the anticancer effects of melatonin against OA MG‑63 cells is through the suppression of EMT via HIF‑1α/Snail/MMP‑9 signaling.
Collapse
Affiliation(s)
- Yongjun Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Tao Zhang
- Department of Immunology, Basic and Forensic Medicine of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014060, P.R. China
| | - Xiongwei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Zengyan Li
- Department of Nephrology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Dongming Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Wensheng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| |
Collapse
|
27
|
Wang L, Xu C, Liu X, Yang Y, Cao L, Xiang G, Liu F, Wang S, Liu J, Meng Q, Jiao J, Niu Y. TGF-β1 stimulates epithelial-mesenchymal transition and cancer-associated myoepithelial cell during the progression from in situ to invasive breast cancer. Cancer Cell Int 2019; 19:343. [PMID: 31889895 PMCID: PMC6923856 DOI: 10.1186/s12935-019-1068-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022] Open
Abstract
Background The progression of ductal carcinoma in situ (DCIS) into invasive ductal carcinoma (IDC) is prevented by normal breast myoepithelial cells. Studies have suggested that EMT-associated genes were enriched in IDC in contrast to DCIS. This paper explored the relationship and potential mechanism between myoepithelial cells and EMT-associated genes in facilitating the transformation from DCIS to breast cancer. Methods EMT markers and myoepithelial phenotypic markers in IDC, DCIS, and healthy breast tissue were characterized using immunohistochemical assay. Both in vivo and in vitro models were created to mimic the various cell–cell interactions in the development of invasive breast cancer. Results We found that EMT markers were more abundant in invasive carcinomas than DCIS and adjacent normal breast tissue. Meanwhile, TGF-β1 regulated the morphology of MCF-7 (epithelial cells substitute) migration and EMT markers during the transformation from DCIS to invasive breast cancer. Additionally, TGF-β1 also regulated invasion, migration and cytokines secretion of MDA-MB-231 (myoepithelial cells substitute) and epithelial cells when co-cultured with MCF-7 both in vitro and in vivo. Conclusions In conclusion, these findings demonstrated that both EMT phenotypes and cancer-associated myoepithelial cells may have an impact on the development of invasive breast cancer.
Collapse
Affiliation(s)
- Li Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,2The Second Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Cong Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Xia Liu
- 5Department of Oncology, General Hospital of Tianjin Medical University, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Yang Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Lu Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Guomin Xiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Fang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Shuling Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,4Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Jing Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Qingxiang Meng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Jiao Jiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Yun Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060 China.,3Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| |
Collapse
|
28
|
Jin F, Xiao D, Zhao T, Yu M. Proteasome inhibitor MG132 suppresses pancreatic ductal adenocarcinoma-cell migration by increasing ESE3 expression. Oncol Lett 2019; 19:858-868. [PMID: 31897200 PMCID: PMC6924158 DOI: 10.3892/ol.2019.11157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
The clinical significance of the proteasome inhibitor MG132 has been examined in numerous human cancer types; however, its influence on the metastasis and progression of pancreatic cancer is yet to be determined. In the present study, the effect of MG132 treatment on pancreatic ductal adenocarcinoma (PDAC) cell lines (SW1990 and PANC-1) was examined. Compared with the control groups, MG132 treatment resulted in higher expression levels of ETS homologous factor (ESE3), a crucial member of the E26 transformation-specific family that is central to various differentiation and development processes in epithelial tissues. MG132 treatment also increased the nuclear translocation of ESE3. Mechanistically, MG132 further inhibited the invasion and migration of PDAC cells by promoting E-cadherin expression, which not only plays an important role in cell-cell adhesion, but is also a direct target of ESE3. Furthermore, subsequent knockdown experiments, using short interfering RNAs, demonstrated that MG132 upregulated E-cadherin via an increase in ESE3 expression. The results of the present study support the hypothesis that MG132 treatment inhibits PDAC metastasis, highlighting the potential of MG132 as a therapeutic agent for the treatment of patients with PDAC.
Collapse
Affiliation(s)
- Fanjie Jin
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Di Xiao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Ming Yu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
29
|
Bak MJ, Furmanski P, Shan NL, Lee HJ, Bao C, Lin Y, Shih WJ, Yang CS, Suh N. Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer. Carcinogenesis 2019; 39:1045-1055. [PMID: 29846560 DOI: 10.1093/carcin/bgy071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/02/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
Estrogen plays an important role in breast cancer development. While the mechanism of the estrogen effects is not fully elucidated, one possible route is by increasing the stem cell-like properties in the tumors. Tocopherols are known to reduce breast cancer development and progression. The aim of the present study is to investigate the effects of tocopherols on the regulation of breast cancer stemness mediated by estrogen. To determine the effects of tocopherols on estrogen-influenced breast cancer stem cells, the MCF-7 tumorsphere culture system, which enriches for mammary progenitor cells and putative breast cancer stem cells, was utilized. Treatment with estrogen resulted in an increase in the CD44+/CD24- subpopulation and aldehyde dehydrogenase activity in tumorspheres as well as the number and size of tumorspheres. Tocopherols inhibited the estrogen-induced expansion of the breast cancer stem population. Tocopherols decreased the levels of stem cell markers, including octamer-binding transcription factor 4 (OCT4), CD44 and SOX-2, as well as estrogen-related markers, such as trefoil factor (TFF)/pS2, cathepsin D, progesterone receptor and SERPINA1, in estrogen-stimulated tumorspheres. Overexpression of OCT4 increased CD44 and sex-determining region Y-box-2 levels and significantly increased cell invasion and expression of the invasion markers, matrix metalloproteinases, tissue inhibitors of metalloproteinase and urokinase plasminogen activator, and tocopherols inhibited these OCT4-mediated effects. These results suggest a potential inhibitory mechanism of tocopherols in estrogen-induced stemness and cell invasion in breast cancer.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Philip Furmanski
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Naing Lin Shan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hong Jin Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Cheng Bao
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Yong Lin
- Department of Biostatistics, Rutgers School of Public Health, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Weichung Joe Shih
- Department of Biostatistics, Rutgers School of Public Health, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
30
|
Wang H, Zhang Z, Xu K, Wei S, Li L, Wang L. Exploration of estrogen receptor-associated hub genes and potential molecular mechanisms in non-smoking females with lung adenocarcinoma using integrated bioinformatics analysis. Oncol Lett 2019; 18:4605-4612. [PMID: 31611968 PMCID: PMC6781748 DOI: 10.3892/ol.2019.10845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to explore important estrogen receptor-associated genes and to determine the potential pathogenic and prognostic factors for lung adenocarcinoma in non-smoking females. The gene expression profiles of the two datasets (GSE32863 and GSE75037) were downloaded from the Gene Expression Omnibus (GEO) database. Data for non-smoking female patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database were also downloaded. The Linear Models for Microarray Data package in R was used to explore the differentially expressed genes (DEGs) between samples from non-smoking female patients with lung adenocarcinoma and samples of adjacent non-cancerous lung tissue. The Database for Annotation, Visualization and Integrated Discovery was used for functional enrichment of the DEGs. The Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape software were used to obtain a protein-protein interaction (PPI) network and to identify the hub genes. In addition, the network between the estrogen receptor and the DEGs was constructed. A Kaplan-Meier survival plot was used to analyze the overall survival (OS). In total, 248 DEGs were identified in the GEO database, and 2,362 DEGs were identified in TCGA database. The intersection of the two datasets (DEGs in GEO and TCGA) revealed 170 DEGs, and these were selected for further investigation. Gene Ontology was used to group the 170 DEGs into biological process, molecular function and cellular component categories. Kyoto Encyclopedia of Genes and Genomes pathway analysis was subsequently performed. A total of 27 hub genes, including caveolin 1 (CAV1), matrix metallopeptidase 9 (MMP9), secreted phosphoprotein 1 (SPP1) and collagen type I α 1 chain (COL1A1), were closely associated with the estrogen receptor. CAV1 and SPP1 were associated with the OS. However, MMP9 and COL1A1 did not have any significant effect on OS. In summary, the identification of CAV1, MMP9, SPP1 and COL1A1 may provide novel insights into the molecular mechanism of lung adenocarcinoma in non-smoking female patients, and the results obtained in the current study may guide future clinical studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Zhihong Zhang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Ke Xu
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Song Wei
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Lailing Li
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Lijun Wang
- Department of Respiratory Disease, Tongling People's Hospital, Tongling, Anhui 244000, P.R. China
| |
Collapse
|
31
|
Hsu MJ, Peng SF, Chueh FS, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Huang WW, Chung JG. Lupeol suppresses migration and invasion via p38/MAPK and PI3K/Akt signaling pathways in human osteosarcoma U-2 OS cells. Biosci Biotechnol Biochem 2019; 83:1729-1739. [PMID: 31010399 DOI: 10.1080/09168451.2019.1606693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Lupeol, one of the common components from the fruits and natural foods, has been reported to exert antitumor activities in many human cancer cell lines; however, its effects on osteosarcoma cell metastasis were not elucidated. In the present study, lupeol at 10–25 μM induced cell morphological changes and decreased total viable cell number in U-2 OS cells. Lupeol (5–15 μM) suppressed cell mobility, migration, and invasion by wound healing and transwell chamber assays, respectively. Lupeol inhibited the activities of MMP-2 and −9 in U-2 OS cells by gelatin zymography assay. Lupeol significantly decreased PI3K, pAKT, β-catenin, and increased GSK3β. Furthermore, lupeol decreased the expressions of Ras, p-Raf-1, p-p38, and β-catenin. Lupeol also decreased uPA, MMP-2, MMP-9, and N-cadherin but increased VE-cadherin in U-2 OS cells. Based on these observations, we suggest that lupeol can be used in anti-metastasis of human osteosarcoma cells in the future.
Collapse
Affiliation(s)
- Ming-Jie Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children‘s Hospital, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University Children‘s Hospital, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
32
|
Jaiswal RK, Yadava PK. TGF-β-mediated regulation of plasminogen activators is human telomerase reverse transcriptase dependent in cancer cells. Biofactors 2019; 45:803-817. [PMID: 31317567 DOI: 10.1002/biof.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
Telomerase is a specialized reverse transcriptase/terminal transferase enzyme that adds telomeric repeat sequences at the extreme end of a newly replicated chromosome. Apart from telomere lengthening, telomerase has many extracurricular activities. Telomerase is known to regulate the expression of many genes and helps in cancer progression and epithelial-to-mesenchymal transitions (EMTs). We have previously reported that human telomerase reverse transcriptase (hTERT) regulates the expression of plasminogen activator such as urokinase-type plasminogen activator (uPA) in cancer cells following a genome-wide transcriptomic study. Here, we present data substantiating these results in terms of real-time assays, western blots, and immunofluorescence. Another aim of this study is to find out the possible mechanism by which hTERT regulates the expression of plasminogen activators. We have used some molecular biology techniques such as quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence and some assays such as wound healing assay and colony formation assay to solve this question. In this study, we show a positive association between hTERT and uPA. We also demonstrate that hTERT enhances uPA expression concomitant with EMT. Knocking down of hTERT reduces uPA expression as well as reverses EMT in cancer cells. We have also found that uPA is a transforming growth factor beta (TGF-β)-induced protein. Our observations establish that TGF-β-induced uPA expression is hTERT dependent.
Collapse
Affiliation(s)
- Rishi K Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Pramod K Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| |
Collapse
|
33
|
Song T, Meng S, Xu ST, Jin SJ, Zeng QZ, Gu GJ. The overexpression of uPA promotes the proliferation and fibrinolytic activity of human umbilical vein endothelial cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2959-2966. [PMID: 31934132 PMCID: PMC6949720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this article is to study whether the overexpression of urokinase-type plasminogen activator (uPA) can promote the proliferation and fibrinolytic activity of human umbilical vein endothelial cells (HUVECs). The recombinant adenovirus vectors containing the human uPA gene were constructed and transfected into HUVECs. In this study, the mRNA of uPA was detected by qPCR, and the uPA protein was measured by Western blot. The cell proliferation was measured using MTT. The fibrinolytic activity of uPA was quantified using a colorimetric assay. We also measured MMP2 (metalloproteinase-2), MMP9 (metalloproteinase-9), and VEGF (vascular endothelial growth factor) proteins using ELISA. The results showed that the levels of the uPA mRNA and the protein in the overexpression group were significantly higher compared to the other groups, (P < 0.05). The cell proliferation and uPA activity were increased significantly in the overexpression group, compared to the other groups, (P < 0.05). The secretions of MMP2, MMP9, and VEGF in the overexpression group were significantly higher than they were in the other two groups (P < 0.05). In conclusion, we successfully transfected a recombined adenovirus vector carrying uPA into a HUVEC. The exogenous uPA gene could transcribe and secrete the uPA protein in the HUVECs. The overexpression of uPA can increase cell proliferation and uPA activity. It can improve the invasion and angiogenesis ability in HUVECs by promoting their secretions of MMP2, MMP9, and VEGF.
Collapse
Affiliation(s)
- Tao Song
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, Anhui, PR China
| | - Song Meng
- Department of Clinical, Luohe Medical CollegeLuohe, Henan, PR China
| | - Song-Tao Xu
- Department of Clinical, Luohe Medical CollegeLuohe, Henan, PR China
- Tumor Occurrence and Prevention Research Innovation Team of HenanLuohe, Henan, PR China
| | - Shao-Ju Jin
- Department of Pharmacology, Luohe Medical CollegeLuohe, Henan, PR China
| | - Qing-Zhong Zeng
- Department of Emergency, Cancer Hospital of Jiangxi ProvinceNanchang, Jiangxi, PR China
| | - Guo-Jian Gu
- Department of Pathology, Taicang Affiliated Hospital of Soochow UniversityTaicang, Jiangsu, PR China
- Department of Pathology, The First People’s Hospital of TaicangTaicang, Jiangsu, PR China
| |
Collapse
|
34
|
Lin M, Zhang Z, Gao M, Yu H, Sheng H, Huang J. MicroRNA-193a-3p suppresses the colorectal cancer cell proliferation and progression through downregulating the PLAU expression. Cancer Manag Res 2019; 11:5353-5363. [PMID: 31354344 PMCID: PMC6578599 DOI: 10.2147/cmar.s208233] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer-related death in China. Dysregulation of microRNAs (miRNAs) is involved in cancer development and progression. Our previous study showed an inverse relationship between miR-193a-3p expression and the prognosis of CRC. However, the exact biological functions of miR-193a-3p in CRC are still poorly understood. This study aimed to explore the role and mechanism of miR-193a-3p in CRC. Methods Real-time PCR and Western blotting were used to examine the expression levels of RNA and protein, respectively. A dual luciferase assay was performed to validate predicted targets of miR-193a-3p. Loss and gain-of-function studies were carried out to reveal the effects and potential mechanism of the miR-193a-3p in the proliferation, metastasis and angiogenesis of CRC cells. Results The expression levels of miR-193a-3p in human CRC cell lines were significantly decreased compared with that in normal colonic epithelium cell line. Furthermore, plasminogen activator urokinase (PLAU) was validated as a direct target gene of miR-193a-3p. Over-expression of miR-193a-3p inhibited proliferation, migration and angiogenesis of HT-29 cell, whereas forced expression of PLAU could rescue the inhibitory effects. Conclusion miR-193a-3p might inhibit CRC cell growth, migration and angiogenesis partly through targeting PLAU. MiR-193a-3p/PLAU axis might provide a potent therapeutic opportunity for aggressive CRC.
Collapse
Affiliation(s)
- Maosong Lin
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Zan Zhang
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Mingjun Gao
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Haihui Sheng
- Shanghai Engineering Center of Molecular Medicine, and National Engineering Center for Biochip, Shanghai 201203, People's Republic of China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| |
Collapse
|
35
|
Zandi Z, Kashani B, Poursani EM, Bashash D, Kabuli M, Momeny M, Mousavi-pak SH, Sheikhsaran F, Alimoghaddam K, Mousavi SA, Ghaffari SH. TLR4 blockade using TAK-242 suppresses ovarian and breast cancer cells invasion through the inhibition of extracellular matrix degradation and epithelial-mesenchymal transition. Eur J Pharmacol 2019; 853:256-263. [DOI: 10.1016/j.ejphar.2019.03.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/26/2022]
|
36
|
Yunusova NV, Tugutova EA, Tamkovich SN, Kondakova IV. [The role of exosomal tetraspanins and proteases in tumor progression]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:123-133. [PMID: 29723143 DOI: 10.18097/pbmc20186402123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Major (CD9, CD63, CD81) and others (CD82, CD151, Tspan8) tetraspanins are widely represented in exosomes, where they interact with various proteins and form functional tetraspanin complexes. Tetraspanin complexes include proteases. Tetraspanin-associated exosomal proteases (ADAM proteases, MMPs, EMMPRIN) play an important role in the processes of cell motility, migration, invasion and formation of metastases. Also, a significant contribution to tumor progression is made by proteases that are not associated with tetraspanins. They destabilize intercellular contacts, promote migration and invasion of tumor cells, participate in the regulation of the expression IGF-I, VEGF and transcription factors activation/deactivation. The role of other proteases of exosomes in the processes of tumor progression is being clarified.
Collapse
Affiliation(s)
- N V Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | - E A Tugutova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - S N Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; Novosibirsk State Medical University, Novosibirsk, Russia
| | - I V Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
37
|
Oncogenic Signaling in Tumorigenesis and Applications of siRNA Nanotherapeutics in Breast Cancer. Cancers (Basel) 2019; 11:cancers11050632. [PMID: 31064156 PMCID: PMC6562835 DOI: 10.3390/cancers11050632] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Overexpression of oncogenes and cross-talks of the oncoproteins-regulated signaling cascades with other intracellular pathways in breast cancer could lead to massive abnormal signaling with the consequence of tumorigenesis. The ability to identify the genes having vital roles in cancer development would give a promising therapeutics strategy in combating the disease. Genetic manipulations through siRNAs targeting the complementary sequence of the oncogenic mRNA in breast cancer is one of the promising approaches that can be harnessed to develop more efficient treatments for breast cancer. In this review, we highlighted the effects of major signaling pathways stimulated by oncogene products on breast tumorigenesis and discussed the potential therapeutic strategies for targeted delivery of siRNAs with nanoparticles in suppressing the stimulated signaling pathways.
Collapse
|
38
|
Chen JK, Peng SF, Lai KC, Liu HC, Huang YP, Lin CC, Huang AC, Chueh FS, Chung JG. Fisetin Suppresses Human Osteosarcoma U-2 OS Cell Migration and Invasion via Affecting FAK, uPA and NF-ĸB Signaling Pathway In Vitro. In Vivo 2019; 33:801-810. [PMID: 31028200 PMCID: PMC6559886 DOI: 10.21873/invivo.11542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM Evidence has indicated that fisetin induces cytotoxic effects in human cancer cell lines, including the inhibition of cell migration and invasion, however, the exact molecular mechanism of action of fisetin in human osteosarcoma cells remains unclear. MATERIALS AND METHODS The anti-metastatic mechanisms of fisetin in human osteosarcoma U-2 OS cells were investigated in vitro. RESULTS Fisetin reduced the viability of cells at different concentrations (2.5, 5 and 10 μM) as measured by flow cytometric assay. Fisetin suppressed cell mobility, migration and invasion of U-2 OS cells, as shown by wound healing assay and transwell filter chambers, respectively. The gelatin zymography assay showed that fisetin inhibited MMP-2 activity in U-2 OS cells. Results from western blotting indicated that fisetin reduced the levels of pEGFR, SOS-1, GRB2, Ras, PKC, p-ERK1/2, p-JNK, p-p-38, VEGF, FAK, RhoA, PI3K, p-AKT, NF-ĸB, uPA, MMP-7, MMP-9, and MMP-13, but increased GSK3β and E-cadherin in U-2 OS cells after 48 h of treatment. CONCLUSION Fisetin can be used in the future, as a target for the treatment of metastasis of human osteosarcoma cells.
Collapse
Affiliation(s)
- Jr-Kai Chen
- Attending Physician of Orthopaedadics, Department of Chang Bing Show-Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Kuang Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, Taiwan, R.O.C
- Department of Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan, R.O.C
| | - Hsin-Chung Liu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Chin-Chung Lin
- Department of Chinese Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Executive Yuan, Taichung, Taiwan, R.O.C
- General Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - An-Cheng Huang
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
- Department of Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
39
|
Proietti S, Cucina A, Pensotti A, Biava PM, Minini M, Monti N, Catizone A, Ricci G, Leonetti E, Harrath AH, Alwasel SH, Bizzarri M. Active Fraction from Embryo Fish Extracts Induces Reversion of the Malignant Invasive Phenotype in Breast Cancer through Down-regulation of TCTP and Modulation of E-cadherin/β-catenin Pathway. Int J Mol Sci 2019; 20:E2151. [PMID: 31052313 PMCID: PMC6539734 DOI: 10.3390/ijms20092151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/01/2022] Open
Abstract
Some yet unidentified factors released by both oocyte and embryonic microenvironments demonstrated to be non-permissive for tumor development and display the remarkable ability to foster cell/tissue reprogramming, thus ultimately reversing the malignant phenotype. In the present study we observed how molecular factors extracted from Zebrafish embryos during specific developmental phases (20 somites) significantly antagonize proliferation of breast cancer cells, while reversing a number of prominent aspects of malignancy. Embryo extracts reduce cell proliferation, enhance apoptosis, and dramatically inhibit both invasiveness and migrating capabilities of cancer cells. Counteracting the invasive phenotype is a relevant issue in controlling tumor spreading and metastasis. Moreover, such effect is not limited to cancerous cells as embryo extracts were also effective in inhibiting migration and invasiveness displayed by normal breast cells undergoing epithelial-mesenchymal transition upon TGF-β1 stimulation. The reversion program involves the modulation of E-cadherin/β-catenin pathway, cytoskeleton remodeling with dramatic reduction in vinculin, as well as downregulation of TCTP and the concomitant increase in p53 levels. Our findings highlight that-contrary to the prevailing current "dogma", which posits that neoplastic cells are irreversibly "committed"-the malignant phenotype can ultimately be "reversed", at least partially, in response to environmental morphogenetic influences.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, 00161 Rome, Italy.
| | - Alessandra Cucina
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, 00161 Rome, Italy.
- Azienda Policlinico Umberto I, 00161 Rome, Italy.
| | | | - Pier Mario Biava
- Scientific Institute of Research and Health Care (IRCCS) Multimedica, 20099 Milano, Italy.
| | - Mirko Minini
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, 00161 Rome, Italy.
- Department of Experimental Medicine, Sapienza University of Rome, Systems Biology Group Lab, 00161 Rome, Italy.
| | - Noemi Monti
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, 00161 Rome, Italy.
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Giulia Ricci
- Department. of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Erica Leonetti
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Saleh H Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Mariano Bizzarri
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
40
|
Wei L, Lun Y, Zhou X, He S, Gao L, Liu Y, He Z, Li B, Wang C. Novel urokinase-plasminogen activator inhibitor SPINK13 inhibits growth and metastasis of hepatocellular carcinoma in vivo. Pharmacol Res 2019; 143:73-85. [PMID: 30862605 DOI: 10.1016/j.phrs.2019.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 12/25/2022]
Abstract
Advanced hepatocellular carcinoma (HCC) is a highly aggressive malignancy that is a serious threat to the public health system of China. Urokinase-plasminogen activator (uPA) can promote the invasive growth and metastasis of HCC cells by activating matrix metalloproteinases (MMPs), leading to the breakage of the extra-cellular matrix. uPA is a promising target for advanced HCC treatment. In this stuy the expression of uPA was examined by quantitative polymerase chain reaction in hepatic cell lines. Protein interaction between uPA and SPINK13 was identified by immunoprecipitation. In vitro biochemical assay was used to examine the inhibitory effect of the SPINK13 on the direct cleaving of the recombinant pro-MMP9 by uPA. The antitumor effect of SPINK13 was examined by transwell assay or the nude mice tumor model.The expression of uPA was much higher in highly aggressive HCC cell lines than in lowly aggressive HCC cell lines or non-tumor hepatic cell lines. SPINK13 interacted with uPA in HCC cells and directly inhibited the cleaving of MMP9 by uPA. Treatment of the recombinant SPINK13 protein inhibited the invasion of HCC cells in several experiments, such as transwell experiments or the intrahepatic growth model. The results of the study indicated that SPINK13 could function as a promising therapeutic approach for patients with advanced HCC.
Collapse
Affiliation(s)
- Ling Wei
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China; Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Yongzhi Lun
- Department of Laboratory Medicine, School of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian Province, PR China
| | - Xiaoping Zhou
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Shang He
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Lijuan Gao
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Yan Liu
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Zheng He
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Baoming Li
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China.
| | - Chengbin Wang
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
41
|
He X, Xu X, Zhu G, Ye H. Circulating uPA as a potential prognostic biomarker for resectable esophageal squamous cell carcinoma. Medicine (Baltimore) 2019; 98:e14717. [PMID: 30817615 PMCID: PMC6831346 DOI: 10.1097/md.0000000000014717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Previous research showed that the 4 genes of matrix metallopeptidase 9 (MMP9), cyto-keratin 20 (CK20), cyto-keratin 19 (CK19) and urokinase type plasminogen activator (uPA) are detectable in the peripheral blood. All the 4 genes are related to tumor invasion and metastasis. However, whether their expression is associated with clinicopathologic factors and the prognosis of patients with esophageal squamous cell carcinoma (ESCC) is still confused. Expression levels of MMP9, CK20, CK19, and uPA were evaluated by quantificational real-time polymerase chain reaction (qRT-PCR) in peripheral blood of 205 ESCC patients who received radical resection. The cut-off value was 1000 copy numbers. Their impacts on clinicopathologic factors and survival were investigated. The uPA expression positively correlated with gender (P = .046) and tumor size (P = .046). Meanwhile, CK19 expression positively correlated with tumor size (P = .029), vascular invasion (P = .024), and CK20 expression positively correlated with tumor size (P = .035) and degrees of differentiation (P = .032). Moreover, the overexpression of MMP9 has a correlation with postoperative radiotherapy (P = .041) and chemotherapy (P = .012). Among the 4 genes, only uPA is a prognostic indicator for disease-free survival and overall survival both in univariate analysis and multivariate analysis (P = .015). This study suggests that circulating uPA mRNA in peripheral blood can serve as a potential unfavorable prognosis biomarker in ESCC. Further perspective, multi-center and large-scale study is still needed.
Collapse
Affiliation(s)
- Xiao He
- Department of Radiotherapy, Lishui People's Hospital, Lishui
| | - Xiaoling Xu
- Key Laboratory of Diagnosis and Treatment Technology for Thoracic Cancer, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, People's Republic of China
| | - Guanxia Zhu
- Key Laboratory of Diagnosis and Treatment Technology for Thoracic Cancer, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, People's Republic of China
| | - Hong Ye
- Department of Radiotherapy, Lishui People's Hospital, Lishui
| |
Collapse
|
42
|
Rajasinghe LD, Pindiprolu RH, Gupta SV. Delta-tocotrienol inhibits non-small-cell lung cancer cell invasion via the inhibition of NF-κB, uPA activator, and MMP-9. Onco Targets Ther 2018; 11:4301-4314. [PMID: 30100736 PMCID: PMC6065470 DOI: 10.2147/ott.s160163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Delta-tocotrienol (δT), an isomer of vitamin E, exhibits anticancer properties in different cancer types including non-small-cell lung cancer (NSCLC). Yet, anti-invasive effects of δT and its underlying cellular mechanism in NSCLC have not been fully explored. Matrix metalloproteinase 9 (MMP-9)-based cell migration and invasion are critical cellular mechanisms in cancer development. The current evidence indicates that MMP-9 is upregulated in most patients, and the inhibition of MMPs is involved in decreasing invasion and metastasis in NSCLC. Therefore, its suppression is a promising strategy for attenuating cell invasion and metastasis processes in NSCLC. Purpose The aim of this study was to evaluate the possibility of MMP-9 inhibition as the underlying mechanism behind the antimetastatic properties of δT on NSCLC cells. Methods The effects of δT on cell proliferation, migration, invasion, adhesion, and aggregation capabilities were investigated using different cell-based assays. An inhibitory effect of MMP-9 enzyme activity with δT was also identified using gel zymography. Using real-time PCR and Western blot analysis, a number of cellular proteins, regulatory genes, and miRNA involved in the Notch-1 and urokinase-type plasminogen activator (uPA)-mediated MMP-9 pathways were examined. Results The study found that δT inhibited cell proliferation, cell migration, invasion, aggregation, and adhesion in a concentration-dependent manner and reduced MMP-9 activities. Real-time PCR and Western blot analysis data revealed that δT increased miR-451 expressions and downregulated Notch-1-mediated nuclear factor-κB (NF-κB), which led to the repressed expression of MMP-9 and uPA proteins. Conclusion δT attenuated tumor invasion and metastasis by the repression of MMP-9/uPA via downregulation of Notch-1 and NF-κB pathways and upregulation of miR-451. The data suggest that δT may have potential therapeutic benefit against NSCLC metastasis.
Collapse
Affiliation(s)
| | - Rohini H Pindiprolu
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA,
| | - Smiti Vaid Gupta
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA,
| |
Collapse
|
43
|
Hashemi-Niasari F, Rabbani-Chadegani A, Razmi M, Fallah S. Synergy of theophylline reduces necrotic effect of berberine, induces cell cycle arrest and PARP, HMGB1, Bcl-2 family mediated apoptosis in MDA-MB-231 breast cancer cells. Biomed Pharmacother 2018; 106:858-867. [PMID: 30119256 DOI: 10.1016/j.biopha.2018.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 11/16/2022] Open
Abstract
Berberine, is a plant alkaloid, proved to have anticancer effect on various cancers. Theophylline (TH), a natural product, is widely used in the treatment of respiratory difficulties. The present study designed to elucidate the effects of theophylline and berberine combination on breast cancer cells cytotoxicity, gene expression and cell cycle. MTT assay revealed that berberine inhibited MDA-MB-231 breast cancer cells viability in a time and dose dependent manner (IC50 of 100 μM) but theophylline had no considerably effect on the cells. Combined treatment of berberine and theophylline showed a synergistic anti-proliferation effect, IC50 of berberine reduced to 50 μM and the cells were arrested at G2/M phase. Combined treatment of Berberine and theophylline reduced extracellular level of HMGB1 and down regulated HMGB1 and MMP-9 mRNA expression. The results of flow cytometry using annexin/PI staining of the cells, HMGB1 release, and poly ADP ribose polymerase cleavage demonstrated that theophylline attenuated necrotic effect of berberine and increased the level of apoptotic cell death. Enhancement of Bax content detected by ELISA and upregulation of Bax mRNA expression, down-regulation of Bcl-2 expression and increase of anion superoxide production confirmed induction of apoptosis via intrinsic apoptotic pathway. Replacement of theophylline with exogenous cyclic AMP in combination treatment represented similar effect on berberine cytotoxicity. From the results it is concluded that synergistic anticancer effect of theophylline and berberine suggests that combination of these two drugs may be an effective therapeutic agent against breast cancer cell.
Collapse
Affiliation(s)
- Fatemeh Hashemi-Niasari
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azra Rabbani-Chadegani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Bouris P, Manou D, Sopaki-Valalaki A, Kolokotroni A, Moustakas A, Kapoor A, Iozzo RV, Karamanos NK, Theocharis AD. Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling. Matrix Biol 2018; 74:35-51. [PMID: 29842969 DOI: 10.1016/j.matbio.2018.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.
Collapse
Affiliation(s)
- Panagiotis Bouris
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anastasia Sopaki-Valalaki
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anthi Kolokotroni
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE 75123 Uppsala, Sweden
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
45
|
Lian K, Ma C, Hao C, Li Y, Zhang N, Chen YH, Liu S. TIPE3 protein promotes breast cancer metastasis through activating AKT and NF-κB signaling pathways. Oncotarget 2018; 8:48889-48904. [PMID: 28388580 PMCID: PMC5564733 DOI: 10.18632/oncotarget.16522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022] Open
Abstract
TIPE3 (TNFAIP8L3) is the transfer protein of phosphoinositide second messengers that promote cancer. Its role in breast cancer has not been evaluated. We report here that TIPE3 protein was significantly upregulated in human breast cancer tissues as compared with adjacent non-tumor tissues from the same patients. The level of TIPE3 protein in invasive ductal carcinoma was significant higher than that in ductal carcinoma in situ (DCIS), and the level of TIPE3 in lymphatic metastasized carcinoma was higher than that in invasive ductal carcinoma from the same patients. Additionally, the level of TIPE3 protein was positively correlated with the level of human epidermal growth factor receptor 2 (HER-2), and TIPE3 expression was significantly higher in high-invasive breast cancer cell lines than that in low-invasive cell lines. Importantly, TIPE3 knockdown in breast cancer cells inhibited cell proliferation, migration, and invasion in vitro, whereas TIPE3 overexpression had the opposite effect. In mice, TIPE3 expression significantly promoted the metastasis of breast cancer cells. TIPE3 expression also increased the level of MMP2 and uPA, and the activation of the AKT and NF-κB signaling pathways. These results demonstrate that TIPE3 may promote breast cancer growth and metastasis through AKT and NF-κB, and may serve as a potential biomarker for breast cancer metastasis.
Collapse
Affiliation(s)
- Kaili Lian
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Chao Ma
- Department of Pathology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Chunyan Hao
- Department of Pathology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Yan Li
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Na Zhang
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suxia Liu
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| |
Collapse
|
46
|
Xiong T, Liu XW, Huang XL, Xu XF, Xie WQ, Zhang SJ, Tu J. Tristetraprolin: A novel target of diallyl disulfide that inhibits the progression of breast cancer. Oncol Lett 2018; 15:7817-7827. [PMID: 29725473 PMCID: PMC5920483 DOI: 10.3892/ol.2018.8299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/09/2018] [Indexed: 02/07/2023] Open
Abstract
Diallyl disulfide (DADS), a volatile component of garlic oil, has various biological properties, including antioxidant, antiangiogenic and anticancer effects. The present study aimed to explore novel targets of DADS that may slow or stop the progression of breast cancer. First, xenograft tumor models were created by subcutaneously injecting MCF-7 and MDA-MB-231 breast cancer cells into nude mice. Subsequently, western blot analysis was performed to investigate the expression of tristetraprolin (TTP), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in the xenograft tumors, and cell cultures. Tablet cloning, Transwell and wound healing assays revealed that DADS treatment significantly inhibited the proliferation, invasion and migration of breast cancer cells. In addition, DADS treatment led to significant downregulation of uPA and MMP-9 protein expression, but significantly upregulated TTP expression in vivo and in vitro. Knocking down TTP expression using small interfering RNA reversed the aforementioned effects of DADS, which suggests TTP is a key target of DADS in inhibiting the progression of breast cancer.
Collapse
Affiliation(s)
- Ting Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Wang Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xue-Long Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiong-Feng Xu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei-Quan Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Su-Jun Zhang
- Experimental Animal Department, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Tu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
47
|
Hogervorst M, Rietveld M, de Gruijl F, El Ghalbzouri A. A shift from papillary to reticular fibroblasts enables tumour-stroma interaction and invasion. Br J Cancer 2018; 118:1089-1097. [PMID: 29551776 PMCID: PMC5931114 DOI: 10.1038/s41416-018-0024-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/26/2017] [Accepted: 01/16/2018] [Indexed: 12/23/2022] Open
Abstract
Background Tumour stroma consists of a heterogeneous population of fibroblasts and related mesenchymal cells, collectively dubbed cancer-associated fibroblasts (CAFs). These CAFs are key players in cancer invasion of cutaneous squamous cell carcinoma (SCC). As we have shown earlier, papillary and reticular fibroblasts (Pfs and Rfs, respectively) have distinct effects on epidermal and dermal homeostasis, but their role in cancer invasion and epithelial-to-mesenchymal transition (EMT) remains to be determined. Methods We used 3D cultures of human skin equivalents (HSEs) to analyse the effects of Pfs and Rfs on the invasive behaviour of SCC and EMT. Results We reveal for the first time the importance of Pfs versus Rfs in SCC invasion and EMT. Cell lines from different stages of SCC showed significantly more extensive invasion into a dermis composed of Rfs than of Pfs. In addition, Rfs-based HSEs showed increased cell activation and stained positive for CAF biomarkers α-SMA and vimentin. Further analysis revealed that invasively growing cancer cells in Rf-HSEs express markers of EMT transition, like SNAIL2, N-cadherin and ZEB1. Conclusions Conversely, our results show that Pfs contain cancer cells more within the epidermis. Rfs are clearly predisposed to differentiate into CAFs upon SCC signals, assisting invasion and EMT.
Collapse
Affiliation(s)
- Marieke Hogervorst
- Department of Dermatology, Leiden University Medical Centre, 2333 ZA, Leiden, The Netherlands.,Biomimiq, J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Marion Rietveld
- Department of Dermatology, Leiden University Medical Centre, 2333 ZA, Leiden, The Netherlands
| | - Frank de Gruijl
- Department of Dermatology, Leiden University Medical Centre, 2333 ZA, Leiden, The Netherlands
| | | |
Collapse
|
48
|
MMP16 is a marker of poor prognosis in gastric cancer promoting proliferation and invasion. Oncotarget 2018; 7:51865-51874. [PMID: 27340864 PMCID: PMC5239520 DOI: 10.18632/oncotarget.10177] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are closely associated with tumor proliferation, invasion and metastasis. In this study, we determined the MMPs expression and their clinical significances in gastric cancer (GC). We first extensive studied MMPs expression in GC in The Cancer Genome Atlas (TCGA) RNA sequence database and found MMP16 was candidate biomarker in GC. Then we validated clinical significance of MMP16 mRNA expression in 167 GC by RT-PCR. Survival analysis showed that high expression of MMP16 indicated poor overall and disease free survival (P<0.001). The proliferation and invasion potential of GC cells were determined by CCK8, colony formation and Transwell assays. Silencing of MMP16 expression significantly decreased the invasion and proliferation capacity of GC cells (P<0.05). In conclusion, MMP16 was highly expressed and correlated with poor prognosis in GC patients by promoting proliferation and invasion of GC cells. MMP16 could be a novel molecular target and prognostic marker for GC.
Collapse
|
49
|
Liu J, Luan W, Zhang Y, Gu J, Shi Y, Yang Y, Feng Z, Qi F. HDAC6 interacts with PTPN1 to enhance melanoma cells progression. Biochem Biophys Res Commun 2018; 495:2630-2636. [DOI: 10.1016/j.bbrc.2017.12.145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/23/2017] [Indexed: 01/05/2023]
|
50
|
Piperigkou Z, Manou D, Karamanou K, Theocharis AD. Strategies to Target Matrix Metalloproteinases as Therapeutic Approach in Cancer. Methods Mol Biol 2018; 1731:325-348. [PMID: 29318564 DOI: 10.1007/978-1-4939-7595-2_27] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are capable of degrading numerous extracellular matrix (ECM) components thus participating in physiological and pathological processes. Apart from the remodeling of ECM, they affect cell-cell and cell-matrix interactions and are implicated in the development and progression of various diseases such as cancer. Numerous studies have demonstrated that MMPs evoke epithelial to mesenchymal transition (EMT) of cancer cells and affect their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Various studies have suggested MMPs as suitable targets for treatment of malignancies, and several MMP inhibitors (MMPIs) have been developed. Although initial trials have failed to establish MMPIs as anticancer agents due to lack of specificity and side effects, new MMPIs have been developed with improved action that are currently being investigated. Furthermore, novel strategies that target MMPs for improving drug delivery and regulating their activity in tumors are presented. This review summarizes the implication of MMPs in cancer progression and discusses the advancements in their targeting.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
| |
Collapse
|