1
|
Tomita T. Non-vesicular extracellular RNA: A potential drug target to intervene cell-cell communication. Pharmacol Ther 2025; 266:108774. [PMID: 39644926 DOI: 10.1016/j.pharmthera.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The importance of non-vesicular extracellular RNA in the mammalian system is becoming increasingly apparent. Non-vesicular extracellular RNA is defined as RNA molecules not included in a lipid bilayer such as exosomes. Because non-vesicular extracellular RNA is not protected from RNases and is therefore rapidly degraded, they were not easily captured by conventional biofluid analyses. Recent publications showed that some non-vesicular extracellular RNAs are relatively stable in biofluids or tissue culture media, and they have unique biological functions. Major RNAs (rRNA, mRNA, and tRNA) and other non-cording RNAs play important roles in transcription or translation in the cell. In contrast, non-vesicular extracellular RNA has functions related to intercellular communication rather than protein synthesis. This review discusses the basics of non-vesicular extracellular RNA, including its definition, purification, receptors, and future prospects as a drug target.
Collapse
Affiliation(s)
- Takeshi Tomita
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Japan; Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
2
|
Hong S, Choe J. Crystal structure of NYN domain of Human KHNYN in complex with single strand RNA. Biochem Biophys Res Commun 2024; 738:150545. [PMID: 39167961 DOI: 10.1016/j.bbrc.2024.150545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
KHNYN protein with a KH-like domain and a NYN endoribonuclease domain interacts with Zinc-finger antiviral protein (ZAP). ZAP isoforms recognize viral or cellular RNAs and recruit KHNYN to form the ZAP: KHNYN complex. Although the structures of several PIN/NYN domains have been determined, the precise substrate RNA binding mode remains poorly understood. This study presents the crystal structure of a complex of the NYN domain of KHNYN and a 7mer RNA from interferon lambda3 (IFNL3). Our structural analysis reveals that NYN domain of human KHNYN shares structural similarities with other NYN domains of ZC3H12Ã C proteins. The RNA is bound in the central groove region of the protein, facilitated by interactions including coordination by two Mg2+ ions, hydrophobic interactions, and hydrogen bonds. In the observed RNA-protein complex, the U5, A6, and U7 bases are stacked on top of one another, while U3 and U4 bases adopt an "open" conformation (as opposed to base-stacked), forming a U-shaped overall structure. Mutagenesis studies underscore the significance of residues involved in RNA binding for RNase activity. Interestingly, NYN domain of human KHNYN forms a head-to-tail dimer in the crystal, a structural feature also observed in other homologous PIN/NYN proteins, with a residue from the symmetry mate contributing to hydrophobic interactions with the bound RNA.
Collapse
Affiliation(s)
- Sunho Hong
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Jungwoo Choe
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
3
|
Vollmar M, Tirunagari S, Harrus D, Armstrong D, Gáborová R, Gupta D, Afonso MQL, Evans G, Velankar S. Dataset from a human-in-the-loop approach to identify functionally important protein residues from literature. Sci Data 2024; 11:1032. [PMID: 39333508 PMCID: PMC11436914 DOI: 10.1038/s41597-024-03841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
We present a novel system that leverages curators in the loop to develop a dataset and model for detecting structure features and functional annotations at residue-level from standard publication text. Our approach involves the integration of data from multiple resources, including PDBe, EuropePMC, PubMedCentral, and PubMed, combined with annotation guidelines from UniProt, and LitSuggest and HuggingFace models as tools in the annotation process. A team of seven annotators manually curated ten articles for named entities, which we utilized to train a starting PubmedBert model from HuggingFace. Using a human-in-the-loop annotation system, we iteratively developed the best model with commendable performance metrics of 0.90 for precision, 0.92 for recall, and 0.91 for F1-measure. Our proposed system showcases a successful synergy of machine learning techniques and human expertise in curating a dataset for residue-level functional annotations and protein structure features. The results demonstrate the potential for broader applications in protein research, bridging the gap between advanced machine learning models and the indispensable insights of domain experts.
Collapse
Affiliation(s)
- Melanie Vollmar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Santosh Tirunagari
- Literature Services, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Deborah Harrus
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - David Armstrong
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Romana Gáborová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Deepti Gupta
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Marcelo Querino Lima Afonso
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Genevieve Evans
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
4
|
Luo J, He L, Guo Y, Wang J, Liu H, Li Z. MCPIP1 Elicits a Therapeutic Effect on Cervical Cancer by Facilitating XIAP mRNA Decay via Its Endoribonuclease Activity. Int J Mol Sci 2024; 25:10285. [PMID: 39408613 PMCID: PMC11477132 DOI: 10.3390/ijms251910285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Cervical cancer is the fourth most common malignancy in women globally. Chemotherapies, targeted therapies, and immunotherapies in the treatment of cervical cancer are usually accompanied by effective and adverse effects. Therefore, finding other efficient and accurate molecular targets remains essential to improve the treatment benefits of cervical cancer patients. MCPIP1 (monocyte chemoattractant protein-induced protein 1) is a kind of endonuclease with a CCCH zinc finger domain and a PilT-N-terminal (PIN) domain, and its function in cervical cancer is unknown. We found that MCPIP1 inhibits cell proliferation and promotes cell apoptosis of cervical cancer. Additionally, MCPIP1 suppresses mRNA and protein expression of the apoptotic inhibitor XIAP by decreasing its mRNA stability. Mechanically, MCPIP1 binds to the XIAP mRNA via its CCCH zinc finger domain and degrades the XIAP mRNA via the endonuclease activity coming from its PIN domain. Our study clarifies that MCPIP1 promotes cervical cancer cell apoptosis by suppressing the expression of XIAP, thereby impeding cervical cancer progression. Moreover, targeted delivery of MCPIP1 with engineered Salmonella typhimurium leads to tumor growth retardation in the HeLa xenograft tumor model in mice. Therefore, our study may provide a theoretical basis for formulating clinical treatment strategies for cervical cancer.
Collapse
Affiliation(s)
- Junyun Luo
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Ling He
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Yanxia Guo
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Junzhi Wang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Hui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Zhaoyong Li
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Bataclan M, Leoni C, Moro SG, Pecoraro M, Wong EH, Heissmeyer V, Monticelli S. Crosstalk between Regnase-1 and -3 shapes mast cell survival and cytokine expression. Life Sci Alliance 2024; 7:e202402784. [PMID: 38830770 PMCID: PMC11147952 DOI: 10.26508/lsa.202402784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Post-transcriptional regulation of immune-related transcripts by RNA-binding proteins (RBPs) impacts immune cell responses, including mast cell functionality. Despite their importance in immune regulation, the functional role of most RBPs remains to be understood. By manipulating the expression of specific RBPs in murine mast cells, coupled with mass spectrometry and transcriptomic analyses, we found that the Regnase family of proteins acts as a potent regulator of mast cell physiology. Specifically, Regnase-1 is required to maintain basic cell proliferation and survival, whereas both Regnase-1 and -3 cooperatively regulate the expression of inflammatory transcripts upon activation, with Tnf being a primary target in both human and mouse cells. Furthermore, Regnase-3 directly interacts with Regnase-1 in mast cells and is necessary to restrain Regnase-1 expression through the destabilization of its transcript. Overall, our study identifies protein interactors of endogenously expressed Regnase factors, characterizes the regulatory interplay between Regnase family members in mast cells, and establishes their role in the control of mast cell homeostasis and inflammatory responses.
Collapse
Affiliation(s)
- Marian Bataclan
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Simone G Moro
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Elaine H Wong
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
6
|
Kliza KW, Song W, Pinzuti I, Schaubeck S, Kunzelmann S, Kuntin D, Fornili A, Pandini A, Hofmann K, Garnett JA, Stieglitz B, Husnjak K. N4BP1 functions as a dimerization-dependent linear ubiquitin reader which regulates TNF signalling. Cell Death Discov 2024; 10:183. [PMID: 38643192 PMCID: PMC11032371 DOI: 10.1038/s41420-024-01913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/22/2024] Open
Abstract
Signalling through TNFR1 modulates proinflammatory gene transcription and programmed cell death, and its impairment causes autoimmune diseases and cancer. NEDD4-binding protein 1 (N4BP1) is a critical suppressor of proinflammatory cytokine production that acts as a regulator of innate immune signalling and inflammation. However, our current understanding about the molecular properties that enable N4BP1 to exert its suppressive potential remain limited. Here, we show that N4BP1 is a novel linear ubiquitin reader that negatively regulates NFκB signalling by its unique dimerization-dependent ubiquitin-binding module that we named LUBIN. Dimeric N4BP1 strategically positions two non-selective ubiquitin-binding domains to ensure preferential recognition of linear ubiquitin. Under proinflammatory conditions, N4BP1 is recruited to the nascent TNFR1 signalling complex, where it regulates duration of proinflammatory signalling in LUBIN-dependent manner. N4BP1 deficiency accelerates TNFα-induced cell death by increasing complex II assembly. Under proapoptotic conditions, caspase-8 mediates proteolytic processing of N4BP1, resulting in rapid degradation of N4BP1 by the 26 S proteasome, and acceleration of apoptosis. In summary, our findings demonstrate that N4BP1 dimerization creates a novel type of ubiquitin reader that selectively recognises linear ubiquitin which enables the timely and coordinated regulation of TNFR1-mediated inflammation and cell death.
Collapse
Affiliation(s)
- Katarzyna W Kliza
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany.
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
| | - Wei Song
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Irene Pinzuti
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Simone Schaubeck
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - David Kuntin
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Arianna Fornili
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, UK
| | - Benjamin Stieglitz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Koraljka Husnjak
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany.
| |
Collapse
|
7
|
Hong S, Choe J. Crystallization and biochemical studies of the NYN domain of human KHNYN. Acta Crystallogr F Struct Biol Commun 2024; 80:67-72. [PMID: 38376822 PMCID: PMC10910534 DOI: 10.1107/s2053230x24000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
KHNYN is composed of an N-terminal KH-like RNA-binding domain and a C-terminal PIN/NYN endoribonuclease domain. It forms a complex with zinc-finger antiviral protein (ZAP), leading to the degradation of viral or cellular RNAs depending on the ZAP isoform. Here, the production, crystallization and biochemical analysis of the NYN domain (residues 477-636) of human KHNYN are presented. The NYN domain was crystallized with a heptameric single-stranded RNA from the AU-rich elements of the 3'-UTR of interferon lambda 3. The crystal belonged to space group P4132, with unit-cell parameters a = b = c = 111.3 Å, and diffacted to 1.72 Å resolution. The RNase activity of the NYN domain was demonstrated using different single-stranded RNAs, together with the binding between the NYN domain of KHNYN and the zinc-finger domain of ZAP.
Collapse
Affiliation(s)
- Sunho Hong
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Seoul 02504, Republic of Korea
| | - Jungwoo Choe
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Seoul 02504, Republic of Korea
| |
Collapse
|
8
|
Lin B, Fan L, Jackson S, Matunis AR, Lou D, Chen K, Trevejo-Nuñez G. Lung Epithelial Regnase-1 Dampens Local Immune Response but Does Not Worsen Susceptibility to Klebsiella pneumoniae. Immunohorizons 2024; 8:89-96. [PMID: 38226923 PMCID: PMC10835647 DOI: 10.4049/immunohorizons.2300082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Klebsiella pneumoniae (KP) presents a global health threat, leading to significant morbidity and mortality due to its multidrug-resistant profile and the limited availability of therapeutic options. To eliminate KP lung infection, the host initiates a robust inflammatory response. One of the host's mechanisms for mitigating excessive inflammation involves the RNA-binding protein regnase-1 (Reg1, MCPIP1, or ZC3H12A). Reg1 has an RNA binding domain that recognizes stem-loop structures in the 3' untranslated region of various proinflammatory transcripts, leading to mRNA decay. However, excessive suppression of inflammation by Reg1 results in suboptimal KP control. Reg1 deficiency within the nonhematopoietic compartment confers resistance to KP in the lung. Given that lung epithelium is crucial for KP resistance, we hypothesized that selective deletion of Reg1 in lung epithelial cells might enhance proinflammatory signals, leading to a better control of KP. Our transcriptomic analysis of epithelial cells in KP-infected wild-type mice revealed the presence of three distinct alveolar type 2 cell (AT2) subpopulations (conventional, inflammatory, and cycling) and enrichment of Reg1 in inflammatory AT2 cells. We conditionally deleted Reg1 in lung AT2 cells (ΔReg1), which amplified the local inflammatory response in the lung and increased macrophage cell numbers compared with controls. However, when ΔReg1 mice were subjected to KP infection, there were no significant differences in bacterial burden or survival compared with controls. These findings suggest that the local inflammatory response enhanced by Reg1 deletion in AT2 cells is insufficient to control KP infection.
Collapse
Affiliation(s)
- Becky Lin
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Li Fan
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Shaterra Jackson
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Aidan R. Matunis
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dequan Lou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kong Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Giraldina Trevejo-Nuñez
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
9
|
Staszewski J, Lazarewicz N, Konczak J, Migdal I, Maciaszczyk-Dziubinska E. UPF1-From mRNA Degradation to Human Disorders. Cells 2023; 12:cells12030419. [PMID: 36766761 PMCID: PMC9914065 DOI: 10.3390/cells12030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Up-frameshift protein 1 (UPF1) plays the role of a vital controller for transcripts, ready to react in the event of an incorrect translation mechanism. It is well known as one of the key elements involved in mRNA decay pathways and participates in transcript and protein quality control in several different aspects. Firstly, UPF1 specifically degrades premature termination codon (PTC)-containing products in a nonsense-mediated mRNA decay (NMD)-coupled manner. Additionally, UPF1 can potentially act as an E3 ligase and degrade target proteins independently from mRNA decay pathways. Thus, UPF1 protects cells against the accumulation of misfolded polypeptides. However, this multitasking protein may still hide many of its functions and abilities. In this article, we summarize important discoveries in the context of UPF1, its involvement in various cellular pathways, as well as its structural importance and mutational changes related to the emergence of various pathologies and disease states. Even though the state of knowledge about this protein has significantly increased over the years, there are still many intriguing aspects that remain unresolved.
Collapse
Affiliation(s)
- Jacek Staszewski
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Correspondence: (J.S.); (E.M.-D.)
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Institute of Genetics and Development of Rennes, CNRS UMR 6290, University of Rennes 1, 35000 Rennes, France
| | - Julia Konczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Iwona Migdal
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Correspondence: (J.S.); (E.M.-D.)
| |
Collapse
|
10
|
Innate immune sensing of pathogens and its post-transcriptional regulations by RNA-binding proteins. Arch Pharm Res 2023; 46:65-77. [PMID: 36725818 PMCID: PMC9891759 DOI: 10.1007/s12272-023-01429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023]
Abstract
Innate immunity is one of the most ancient and conserved aspect of the immune system. It is responsible for an anti-infective response and has been intrinsically linked to the generation of inflammation. While the inflammatory response entails signaling to the adaptive immune system, it can be self-perpetuating and over-exaggerated, resulting in deleterious consequences, including cytokine storm, sepsis, and the development of inflammatory and autoimmune diseases. Cytokines are the defining features of the immune system. They are critical to mediation of inflammation and host immune defense, and are tightly regulated at several levels, including transcriptional and post-transcriptional levels. Recently, the role of post-transcriptional regulation in fine-tuning cytokine expression has become more appreciated. This interest has advanced our understanding of how various mechanisms are integrated and regulated to determine the amount of cytokine production in cells during inflammatory responses. Here, we would like to review how innate immunity recognizes and responds to pathogens by pattern-recognition receptors, and the molecular mechanisms regulating inflammatory responses, with a focus on the post-transcriptional regulations of inflammatory mediators by RNA-binding proteins, especially Regnase-1. Finally, we will discuss the regulatory mechanisms of Regnase-1 and highlight therapeutic strategies based on targeting Regnase-1 activity and its turnover as potential treatment options for chronic and autoimmune diseases.
Collapse
|
11
|
Clayer E, Frank D, Anderton H, Zhang S, Kueh A, Heim V, Nutt SL, Chopin M, Bouillet P. ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skin‐draining lymph nodes. Immunol Cell Biol 2022; 100:160-173. [PMID: 35048402 PMCID: PMC9303644 DOI: 10.1111/imcb.12521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
The role of RNA‐binding proteins of the CCCH‐containing family in regulating proinflammatory cytokine production and inflammation is increasingly recognized. We have identified ZC3H12C (Regnase‐3) as a potential post‐transcriptional regulator of tumor necrosis factor expression and have investigated its role in vivo by generating Zc3h12c‐deficient mice that express green fluorescent protein instead of ZC3H12C. Zc3h12c‐deficient mice develop hypertrophic lymph nodes. In the immune system, ZC3H12C expression is mostly restricted to the dendritic cell (DC) populations, and we show that DC‐restricted ZC3H12C depletion is sufficient to cause lymphadenopathy. ZC3H12C can regulate Tnf messenger RNA stability via its RNase activity in vitro, and we confirmed the role of Tnf in the development of lymphadenopathy. Finally, we found that loss of ZC3H12C did not impact the outcome of skin inflammation in the imiquimod‐induced murine model of psoriasis, despite Zc3h12c being identified as a risk factor for psoriasis susceptibility in several genome‐wide association studies. Our data suggest a role for ZC3H12C in DC‐driven skin homeostasis.
Collapse
Affiliation(s)
- Elise Clayer
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
- ZAUM – Centre of Allergy and Environment Helmholtz Centre and Technical University of Munich Munich Germany
| | - Daniel Frank
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Holly Anderton
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Valentin Heim
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
- Immatics Biotechnologies GmbH Munich Germany
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
12
|
Ribeiro A, Dobosz E, Krill M, Köhler P, Wadowska M, Steiger S, Schmaderer C, Koziel J, Lech M. Macrophage-Specific MCPIP1/Regnase-1 Attenuates Kidney Ischemia-Reperfusion Injury by Shaping the Local Inflammatory Response and Tissue Regeneration. Cells 2022; 11:cells11030397. [PMID: 35159206 PMCID: PMC8834155 DOI: 10.3390/cells11030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Sterile inflammation either resolves the initial insult or leads to tissue damage. Kidney ischemia/reperfusion injury (IRI) is associated with neutrophilic infiltration, enhanced production of inflammatory mediators, accumulation of necrotic cells and tissue remodeling. Macrophage-dependent microenvironmental changes orchestrate many features of the immune response and tissue regeneration. The activation status of macrophages is influenced by extracellular signals, the duration and intensity of the stimulation, as well as various regulatory molecules. The role of macrophage-derived monocyte chemoattractant protein-induced protein 1 (MCPIP1), also known as Regnase-1, in kidney ischemia-reperfusion injury (IRI) and recovery from sterile inflammation remains unresolved. In this study, we showed that macrophage-specific Mcpip1 deletion significantly affects the kidney phenotype. Macrophage-specific Mcpip1 transgenic mice displayed enhanced inflammation and loss of the tubular compartment upon IRI. We showed that MCPIP1 modulates sterile inflammation by negative regulation of Irf4 expression and accumulation of IRF4+ cells in the tissue and, consequently, suppresses the post-ischemic kidney immune response. Thus, we identified MCPIP1 as an important molecular sentinel of immune homeostasis in experimental acute kidney injury (AKI) and renal fibrosis.
Collapse
Affiliation(s)
- Andrea Ribeiro
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, 80336 Munich, Germany;
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Moritz Krill
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Paulina Köhler
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Stefanie Steiger
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, 80336 Munich, Germany;
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Maciej Lech
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
- Correspondence:
| |
Collapse
|
13
|
Jin Z, Zheng E, Sareli C, Kolattukudy PE, Niu J. Monocyte Chemotactic Protein-Induced Protein 1 (MCPIP-1): A Key Player of Host Defense and Immune Regulation. Front Immunol 2021; 12:727861. [PMID: 34659213 PMCID: PMC8519509 DOI: 10.3389/fimmu.2021.727861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory response is a host-protective mechanism against tissue injury or infections, but also has the potential to cause extensive immunopathology and tissue damage, as seen in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other infectious diseases with public health concerns, such as Coronavirus Disease 2019 (COVID-19), if failure to resolve in a timely manner. Recent studies have uncovered a superfamily of endogenous chemical molecules that tend to resolve inflammatory responses and re-establish homeostasis without causing excessive damage to healthy cells and tissues. Among these, the monocyte chemoattractant protein-induced protein (MCPIP) family consisting of four members (MCPIP-1, -2, -3, and -4) has emerged as a group of evolutionarily conserved molecules participating in the resolution of inflammation. The focus of this review highlights the biological functions of MCPIP-1 (also known as Regnase-1), the best-studied member of this family, in the resolution of inflammatory response. As outlined in this review, MCPIP-1 acts on specific signaling pathways, in particular NFκB, to blunt production of inflammatory mediators, while also acts as an endonuclease controlling the stability of mRNA and microRNA (miRNA), leading to the resolution of inflammation, clearance of virus and dead cells, and promotion of tissue regeneration via its pleiotropic effects. Evidence from transgenic and knock-out mouse models revealed an involvement of MCPIP-1 expression in immune functions and in the physiology of the cardiovascular system, indicating that MCPIP-1 is a key endogenous molecule that governs normal resolution of acute inflammation and infection. In this review, we also discuss the current evidence underlying the roles of other members of the MCPIP family in the regulation of inflammatory processes. Further understanding of the proteins from this family will provide new insights into the identification of novel targets for both host effectors and microbial factors and will lead to new therapeutic treatments for infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Zhuqing Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - En Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Candice Sareli
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jianli Niu
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States.,Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
14
|
Akaki K, Ogata K, Yamauchi Y, Iwai N, Tse KM, Hia F, Mochizuki A, Ishihama Y, Mino T, Takeuchi O. IRAK1-dependent Regnase-1-14-3-3 complex formation controls Regnase-1-mediated mRNA decay. eLife 2021; 10:71966. [PMID: 34636324 PMCID: PMC8553338 DOI: 10.7554/elife.71966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/08/2021] [Indexed: 01/14/2023] Open
Abstract
Regnase-1 is an endoribonuclease crucial for controlling inflammation by degrading mRNAs encoding cytokines and inflammatory mediators in mammals. However, it is unclear how Regnase-1-mediated mRNA decay is controlled in interleukin (IL)-1β- or Toll-like receptor (TLR) ligand-stimulated cells. Here, by analyzing the Regnase-1 interactome, we found that IL-1β or TLR stimulus dynamically induced the formation of Regnase-1-β-transducin repeat-containing protein (βTRCP) complex. Importantly, we also uncovered a novel interaction between Regnase-1 and 14-3-3 in both mouse and human cells. In IL-1R/TLR-stimulated cells, the Regnase-1-14-3-3 interaction is mediated by IRAK1 through a previously uncharacterized C-terminal structural domain. Phosphorylation of Regnase-1 at S494 and S513 is critical for Regnase-1-14-3-3 interaction, while a different set of phosphorylation sites of Regnase-1 is known to be required for the recognition by βTRCP and proteasome-mediated degradation. We found that Regnase-1-14-3-3 and Regnase-1-βTRCP interactions are not sequential events. Rather, 14-3-3 protects Regnase-1 from βTRCP-mediated degradation. On the other hand, 14-3-3 abolishes Regnase-1-mediated mRNA decay by inhibiting Regnase-1-mRNA association. In addition, nuclear-cytoplasmic shuttling of Regnase-1 is abrogated by 14-3-3 interaction. Taken together, the results suggest that a novel inflammation-induced interaction of 14-3-3 with Regnase-1 stabilizes inflammatory mRNAs by sequestering Regnase-1 in the cytoplasm to prevent mRNA recognition.
Collapse
Affiliation(s)
- Kotaro Akaki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kosuke Ogata
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuhei Yamauchi
- Laboratory of Mathematical Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Noriki Iwai
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ka Man Tse
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Mochizuki
- Laboratory of Mathematical Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Kovarik P, Bestehorn A, Fesselet J. Conceptual Advances in Control of Inflammation by the RNA-Binding Protein Tristetraprolin. Front Immunol 2021; 12:751313. [PMID: 34603339 PMCID: PMC8484758 DOI: 10.3389/fimmu.2021.751313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Regulated changes in mRNA stability are critical drivers of gene expression adaptations to immunological cues. mRNA stability is controlled mainly by RNA-binding proteins (RBPs) which can directly cleave mRNA but more often act as adaptors for the recruitment of the RNA-degradation machinery. One of the most prominent RBPs with regulatory roles in the immune system is tristetraprolin (TTP). TTP targets mainly inflammation-associated mRNAs for degradation and is indispensable for the resolution of inflammation as well as the maintenance of immune homeostasis. Recent advances in the transcriptome-wide knowledge of mRNA expression and decay rates together with TTP binding sites in the target mRNAs revealed important limitations in our understanding of molecular mechanisms of TTP action. Such orthogonal analyses lead to the discovery that TTP binding destabilizes some bound mRNAs but not others in the same cell. Moreover, comparisons of various immune cells indicated that an mRNA can be destabilized by TTP in one cell type while it remains stable in a different cell linage despite the presence of TTP. The action of TTP extends from mRNA destabilization to inhibition of translation in a subset of targets. This article will discuss these unexpected context-dependent functions and their implications for the regulation of immune responses. Attention will be also payed to new insights into the role of TTP in physiology and tissue homeostasis.
Collapse
Affiliation(s)
- Pavel Kovarik
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | | | | |
Collapse
|
16
|
Mino T, Takeuchi O. Regnase-1-related endoribonucleases in health and immunological diseases. Immunol Rev 2021; 304:97-110. [PMID: 34514623 DOI: 10.1111/imr.13023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Dynamic changes in gene expression are key factors in the development and activation of immune cells. RNA metabolism is one of the critical steps for the control of gene expression. Together with transcriptional regulation, mRNA decay by specific ribonucleases (RNases) plays a vital role in shaping gene expression. In addition to the canonical exoribonuclease-mediated mRNA degradation through the recognition of cis-elements in mRNA 3' untranslated regions by RNA-binding proteins (RBPs), endoribonucleases are involved in the control of mRNAs in immune cells. In this review, we gleam insights on how Regnase-1, an endoribonuclease necessary for regulating immune cell activation and maintenance of immune homeostasis, degrades RNAs involved in immune cell activation. Additionally, we provide insights on recent studies which uncover the role of Regnase-1-related RNases, including Regnase-2, Regnase-3, and Regnase-4, as well as N4BP1 and KHNYN, in immune regulation and antiviral immunity. As the dysregulation of immune mRNA decay leads to pathologies such as autoimmune diseases or impaired activation of immune responses, RNases are deemed as essential components of regulatory feedback mechanisms that modulate inflammation. Given the critical role of RNases in autoimmunity, RNases can be perceived as emerging targets in the development of novel therapeutics.
Collapse
Affiliation(s)
- Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Garg A, Roske Y, Yamada S, Uehata T, Takeuchi O, Heinemann U. PIN and CCCH Zn-finger domains coordinate RNA targeting in ZC3H12 family endoribonucleases. Nucleic Acids Res 2021; 49:5369-5381. [PMID: 33950203 PMCID: PMC8136824 DOI: 10.1093/nar/gkab316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
The CCCH-type zinc finger (ZnF) containing ZC3H12 ribonucleases are crucial in post-transcriptional immune homoeostasis with ZC3H12A being the only structurally studied member of the family. In this study, we present a structural-biochemical characterization of ZC3H12C, which is linked with chronic immune disorders like psoriasis. We established that the RNA substrate is cooperatively recognized by the PIN and ZnF domains of ZC3H12C and analyzed the crystal structure of ZC3H12C bound to a single-stranded RNA substrate. The RNA engages in hydrogen-bonded contacts and stacking interactions with the PIN and ZnF domains simultaneously. The ZC3H12 ZnF shows unprecedented structural features not previously observed in any member of the CCCH-ZnF family and utilizes stacking interactions via a unique combination of spatially conserved aromatic residues to align the target transcript in a bent conformation onto the ZnF scaffold. Further comparative structural analysis of ZC3H12 CCCH-ZnF suggests that a trinucleotide sequence is recognized by ZC3H12 ZnF in target RNA. Our work not only describes the initial structure-biochemical study on ZC3H12C, but also provides the first molecular insight into RNA recognition by a ZC3H12 family member. Finally, our work points to an evolutionary code for RNA recognition adopted by CCCH-type ZnF proteins.
Collapse
Affiliation(s)
- Ankur Garg
- Macromolecular Structure and Interaction, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125 Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Yvette Roske
- Macromolecular Structure and Interaction, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Shinnosuke Yamada
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Udo Heinemann
- Macromolecular Structure and Interaction, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125 Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| |
Collapse
|
18
|
Tomita T, Kato M, Mishima T, Matsunaga Y, Sanjo H, Ito KI, Minagawa K, Matsui T, Oikawa H, Takahashi S, Takao T, Iwai N, Mino T, Takeuchi O, Maru Y, Hiratsuka S. Extracellular mRNA transported to the nucleus exerts translation-independent function. Nat Commun 2021; 12:3655. [PMID: 34135341 PMCID: PMC8208975 DOI: 10.1038/s41467-021-23969-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
RNA in extracellular vesicles (EVs) are uptaken by cells, where they regulate fundamental cellular functions. EV-derived mRNA in recipient cells can be translated. However, it is still elusive whether “naked nonvesicular extracellular mRNA” (nex-mRNA) that are not packed in EVs can be uptaken by cells and, if so, whether they have any functions in recipient cells. Here, we show the entrance of nex-mRNA in the nucleus, where they exert a translation-independent function. Human nex-interleukin-1β (IL1β)-mRNA outside cells proved to be captured by RNA-binding zinc finger CCCH domain containing protein 12D (ZC3H12D)-expressing human natural killer (NK) cells. ZC3H12D recruited to the cell membrane binds to the 3′-untranslated region of nex-IL1β-mRNA and transports it to the nucleus. The nex-IL1β-mRNA in the NK cell nucleus upregulates antiapoptotic gene expression, migration activity, and interferon-γ production, leading to the killing of cancer cells and antimetastasis in mice. These results implicate the diverse actions of mRNA. Nonvesicular extracellular RNA (nex-RNA) that are not packed in extracellular vesicles is detected outside the cell, but it is poorly understood. Here the authors report that nex-RNA is captured by a zinc finger protein and transported to the nucleus to enhance antimetastatic characters of the cell.
Collapse
Affiliation(s)
- Takeshi Tomita
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan.,Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Masayoshi Kato
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan.,Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Taishi Mishima
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yuta Matsunaga
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Ken-Ichi Ito
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Kentaro Minagawa
- Department of Hematology/Oncology, Penn State College of Medicine, Hershey, PA, USA
| | - Toshimitsu Matsui
- Department of Hematology, Nishiwaki Municipal Hospital, Nishiwaki, Hyogo, Japan
| | - Hiroyuki Oikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Noriki Iwai
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| | - Sachie Hiratsuka
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan. .,Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan.
| |
Collapse
|
19
|
Kook I, Ziegelbauer JM. Monocyte chemoattractant protein-induced protein 1 directly degrades viral miRNAs with a specific motif and inhibits KSHV infection. Nucleic Acids Res 2021; 49:4456-4471. [PMID: 33823555 DOI: 10.1093/nar/gkab215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) expresses miRNAs during latency. However, regulation of viral miRNAs remains largely unknown. Our prior studies demonstrated that MCPIP1 regulates KSHV miRNA biogenesis by degrading most KSHV pre-miRNAs through its RNase activity. Some viral pre-miRNAs are partially resistant to degradation by MCPIP1. Here, we further characterized MCPIP1 substrate specificity and its antiviral potential against KSHV infection. In vitro cleavage assays and binding assays showed that MCPIP1 cleavage efficiency is related to binding affinity. Motif-based sequence analysis identified that KSHV pre-miRNAs that are well degraded by MCPIP1 have a 5-base motif (M5 base motif) within their terminal loops and this motif region consists of multiple pyrimidine-purine-pyrimidine (YRY) motifs. We further demonstrated that mutation of this M5 base motif within terminal loop of pre-miRNAs inhibited MCPIP1-mediated RNA degradation. We also revealed that MCPIP1 has an antiviral effect against KSHV infection. MCPIP1 can reduce the expression of Dicer, which in turn restricts KSHV infection. Conclusively, our findings demonstrated that MCPIP1 inhibited KSHV infection and suppressed viral miRNA biogenesis by directly degrading KSHV pre-miRNAs and altering the expression of miRNA biogenesis factors.
Collapse
Affiliation(s)
- Insun Kook
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph M Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Corral VM, Schultz ER, Eisenstein RS, Connell GJ. Roquin is a major mediator of iron-regulated changes to transferrin receptor-1 mRNA stability. iScience 2021; 24:102360. [PMID: 33898949 PMCID: PMC8058555 DOI: 10.1016/j.isci.2021.102360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/18/2020] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Transferrin receptor-1 (TfR1) has essential iron transport and proposed signal transduction functions. Proper TfR1 regulation is a requirement for hematopoiesis, neurological development, and the homeostasis of tissues including the intestine and muscle, while dysregulation is associated with cancers and immunodeficiency. TfR1 mRNA degradation is highly regulated, but the identity of the degradation activity remains uncertain. Here, we show with gene knockouts and siRNA knockdowns that two Roquin paralogs are major mediators of iron-regulated changes to the steady-state TfR1 mRNA level within four different cell types (HAP1, HUVEC, L-M, and MEF). Roquin is demonstrated to destabilize the TfR1 mRNA, and its activity is fully dependent on three hairpin loops within the TfR1 mRNA 3′-UTR that are essential for iron-regulated instability. We further show in L-M cells that TfR1 mRNA degradation does not require ongoing translation, consistent with Roquin-mediated instability. We conclude that Roquin is a major effector of TfR1 mRNA abundance. Roquin is a major mediator of iron-regulated TfR1 mRNA instability Roquin-mediated instability requires three stem loops within the TfR1 3′-UTR Iron-regulated TfR1 mRNA instability can occur in the absence of Regnase-1
Collapse
Affiliation(s)
- Victor M Corral
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric R Schultz
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard S Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Gregory J Connell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
22
|
Analysis of Protein Intermolecular Interactions with MAFFT-DASH. Methods Mol Biol 2020. [PMID: 33289893 DOI: 10.1007/978-1-0716-1036-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The Database of Aligned Structural Homologs (DASH) is a tool for efficiently navigating the Protein Data Bank (PDB) by means of pre-computed pairwise structural alignments. We recently showed that, by integrating DASH structural alignments with the multiple sequence alignment (MSA) software MAFFT, we were able to significantly improve MSA accuracy without dramatically increasing manual or computational complexity. In the latest DASH update, such queries are not limited to PDB entries but can also be launched from user-provided protein coordinates. Here, we describe a further extension of DASH that retrieves intermolecular interactions of all structurally similar domains in the PDB to a query domain of interest. We illustrate these new features using a model of the NYN domain of the ribonuclease N4BP1 as an example. We show that the protein-nucleotide interactions returned are distributed on the surface of the NYN domain in an asymmetric manner, roughly centered on the known nuclease active site.
Collapse
|
23
|
Musson R, Szukała W, Jura J. MCPIP1 RNase and Its Multifaceted Role. Int J Mol Sci 2020; 21:ijms21197183. [PMID: 33003343 PMCID: PMC7582464 DOI: 10.3390/ijms21197183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation is an organism’s physiological response to harmful septic and aseptic stimuli. This process begins locally through the influx of immune system cells to the damaged tissue and the subsequent activation and secretion of inflammatory mediators to restore homeostasis in the organism. Inflammation is regulated at many levels, and one of these levels is post-transcriptional regulation, which controls the half-life of transcripts that encode inflammatory mediators. One of the proteins responsible for controlling the amount of mRNA in a cell is the RNase monocyte chemoattractant protein-induced protein 1 (MCPIP1). The studies conducted so far have shown that MCPIP1 is involved not only in the regulation of inflammation but also in many other physiological and pathological processes. This paper provides a summary of the information on the role of MCPIP1 in adipogenesis, angiogenesis, cell differentiation, cancer, and skin inflammation obtained to date.
Collapse
|
24
|
Selective degradation of plasmid-derived mRNAs by MCPIP1 RNase. Biochem J 2020; 476:2927-2938. [PMID: 31530713 DOI: 10.1042/bcj20190646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Detection and degradation of foreign nucleic acids is an ancient form of host defense. However, the underlying mechanisms are not completely clear. MCPIP1 is an endoribonuclease and an important regulator in both innate and adaptive immunity by targeting inflammatory mRNA degradation. Here we report that MCPIP1 RNase can also selectively detect and degrade the mRNAs encoded by transfected plasmids. In transient transfection, MCPIP1 expression potently degraded the mRNA from exogenously transfected vectors, which is independent on the vector, genes and cell types used. Conversely, the expression of transfected plasmids in MCPIP1-null cells is significantly higher than that in wild-type cells. Interestingly, overexpression of MCPIP1 or MCPIP1 deficiency does not affect the expression of the exogenous genes incorporated into the host genome in a stable cell line or the global gene expression of host genome. This ability is not associated with PKR/RNase L system, as PKR inhibitors does not block MCPIP1-mediated mRNA degradation of exogenously transfected genes. Lastly, expression of MCPIP1 suppressed replication of Zika virus in infected cells. The study may provide a model for understanding the antiviral mechanisms of MCPIP1, and a putative tool to increase the expression of transfected exogenous genes.
Collapse
|
25
|
Mino T, Iwai N, Endo M, Inoue K, Akaki K, Hia F, Uehata T, Emura T, Hidaka K, Suzuki Y, Standley DM, Okada-Hatakeyama M, Ohno S, Sugiyama H, Yamashita A, Takeuchi O. Translation-dependent unwinding of stem-loops by UPF1 licenses Regnase-1 to degrade inflammatory mRNAs. Nucleic Acids Res 2019; 47:8838-8859. [PMID: 31329944 PMCID: PMC7145602 DOI: 10.1093/nar/gkz628] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/14/2023] Open
Abstract
Regnase-1-mediated mRNA decay (RMD), in which inflammatory mRNAs harboring specific stem–loop structures are degraded, is a critical part of proper immune homeostasis. Prior to initial translation, Regnase-1 associates with target stem–loops but does not carry out endoribonucleolytic cleavage. Single molecule imaging revealed that UPF1 is required to first unwind the stem–loops, thus licensing Regnase-1 to proceed with RNA degradation. Following translation, Regnase-1 physically associates with UPF1 using two distinct points of interaction: The Regnase-1 RNase domain binds to SMG1-phosphorylated residue T28 in UPF1; in addition, an intrinsically disordered segment in Regnase-1 binds to the UPF1 RecA domain, enhancing the helicase activity of UPF1. The SMG1-UPF1–Regnase-1 axis targets pioneer rounds of translation and is critical for rapid resolution of inflammation through restriction of the number of proteins translated by a given mRNA. Furthermore, small-molecule inhibition of SMG1 prevents RNA unwinding in dendritic cells, allowing post-transcriptional control of innate immune responses.
Collapse
Affiliation(s)
- Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Noriki Iwai
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kentaro Inoue
- Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Kotaro Akaki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yutaka Suzuki
- Laboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Daron M Standley
- Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Mariko Okada-Hatakeyama
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
26
|
Behrens G, Winzen R, Rehage N, Dörrie A, Barsch M, Hoffmann A, Hackermüller J, Tiedje C, Heissmeyer V, Holtmann H. A translational silencing function of MCPIP1/Regnase-1 specified by the target site context. Nucleic Acids Res 2019; 46:4256-4270. [PMID: 29471506 PMCID: PMC5934641 DOI: 10.1093/nar/gky106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
The expression of proteins during inflammatory and immune reactions is coordinated by post-transcriptional mechanisms. A particularly strong suppression of protein expression is exerted by a conserved translational silencing element (TSE) identified in the 3′ UTR of NFKBIZ mRNA, which is among the targets of the RNA-binding proteins Roquin-1/2 and MCPIP1/Regnase-1. We present evidence that in the context of the TSE MCPIP1, so far known for its endonuclease activity toward mRNAs specified by distinct stem–loop (SL) structures, also suppresses translation. Overexpression of MCPIP1 silenced translation in a TSE-dependent manner and reduced ribosome occupancy of the mRNA. Correspondingly, MCPIP1 depletion alleviated silencing and increased polysomal association of the mRNA. Translationally silenced NFKBIZ or reporter mRNAs were mostly capped, polyadenylated and ribosome associated. Furthermore, MCPIP1 silenced also cap-independent, CrPV-IRES-dependent translation. This suggests that MCPIP1 suppresses a post-initiation step. The TSE is predicted to form five SL structures. SL4 and 5 resemble target structures reported for MCPIP1 and together were sufficient for MCPIP1 binding and mRNA destabilization. Translational silencing, however, required SL1–3 in addition. Thus the NFKBIZ TSE functions as an RNA element in which sequences adjacent to the site of interaction with MCPIP1 and dispensable for accelerated mRNA degradation extend the functional repertoire of MCPIP1 to translational silencing.
Collapse
Affiliation(s)
- Gesine Behrens
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhard Winzen
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Nina Rehage
- Institute for Immunology, Biomedical Center of the Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anneke Dörrie
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Monika Barsch
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Hoffmann
- Young Investigators Group Bioinformatics and Transcriptomics, Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany.,Department of Computer Science, University of Leipzig, 04081 Leipzig, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center of the Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377 München, Germany
| | - Helmut Holtmann
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
27
|
Nishimura T, Fakim H, Brandmann T, Youn JY, Gingras AC, Jinek M, Fabian MR. Human MARF1 is an endoribonuclease that interacts with the DCP1:2 decapping complex and degrades target mRNAs. Nucleic Acids Res 2019; 46:12008-12021. [PMID: 30364987 PMCID: PMC6294520 DOI: 10.1093/nar/gky1011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis arrest female 1 (MARF1) is a cytoplasmic RNA binding protein that is essential for meiotic progression of mouse oocytes, in part by limiting retrotransposon expression. MARF1 is also expressed in somatic cells and tissues; however, its mechanism of action has yet to be investigated. Human MARF1 contains a NYN-like domain, two RRMs and eight LOTUS domains. Here we provide evidence that MARF1 post-transcriptionally silences targeted mRNAs. MARF1 physically interacts with the DCP1:DCP2 mRNA decapping complex but not with deadenylation machineries. Importantly, we provide a 1.7 Å resolution crystal structure of the human MARF1 NYN domain, which we demonstrate is a bona fide endoribonuclease, the activity of which is essential for the repression of MARF1-targeted mRNAs. Thus, MARF1 post-transcriptionally represses gene expression by serving as both an endoribonuclease and as a platform that recruits the DCP1:DCP2 decapping complex to targeted mRNAs.
Collapse
Affiliation(s)
- Tamiko Nishimura
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hana Fakim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Switzerland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Zhu L, Liao SE, Fukunaga R. Drosophila Regnase-1 RNase is required for mRNA and miRNA profile remodelling during larva-to-adult metamorphosis. RNA Biol 2019; 16:1386-1400. [PMID: 31195914 DOI: 10.1080/15476286.2019.1630799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metamorphosis is an intricate developmental process in which large-scale remodelling of mRNA and microRNA (miRNA) profiles leads to orchestrated tissue remodelling and organogenesis. Whether, which, and how, ribonucleases (RNases) are involved in the RNA profile remodelling during metamorphosis remain unknown. Human Regnase-1 (also known as MCPIP1 and Zc3h12a) RNase remodels RNA profile by cleaving specific RNAs and is a crucial modulator of immune-inflammatory and cellular defence. Here, we studied Drosophila CG10889, which we named Drosophila Regnase-1, an ortholog of human Regnase-1. The larva-to-adult metamorphosis in Drosophila includes two major transitions, larva-to-pupa and pupa-to-adult. regnase-1 knockout flies developed until the pupa stage but could not complete pupa-to-adult transition, dying in puparium case. Regnase-1 RNase activity is required for completion of pupa-to-adult transition as transgenic expression of wild-type Drosophila Regnase-1, but not the RNase catalytic-dead mutants, rescued the pupa-to-adult transition in regnase-1 knockout. High-throughput RNA sequencing revealed that regnase-1 knockout flies fail to remodel mRNA and miRNA profiles during the larva-to-pupa transition. Thus, we uncovered the roles of Drosophila Regnase-1 in the larva-to-adult metamorphosis and large-scale remodelling of mRNA and miRNA profiles during this metamorphosis process.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Susan E Liao
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
29
|
Tanaka H, Arima Y, Kamimura D, Tanaka Y, Takahashi N, Uehata T, Maeda K, Satoh T, Murakami M, Akira S. Phosphorylation-dependent Regnase-1 release from endoplasmic reticulum is critical in IL-17 response. J Exp Med 2019; 216:1431-1449. [PMID: 31072819 PMCID: PMC6547859 DOI: 10.1084/jem.20181078] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
The endoribonuclease Regnase-1 suppresses inflammation through RNA degradation. Here, we show that Regnase-1 is phosphorylated and inactivated by the Act1-TBK1-IKKi axis during IL-17 stimulation. Moreover, this phosphorylation substantially contributes to the mRNA stabilization needed for amplification of TH17-cell–mediated inflammation. Regnase-1 (also known as Zc3h12a or MCPIP-1) is an endoribonuclease involved in mRNA degradation of inflammation-associated genes. Regnase-1 is inactivated in response to external stimuli through post-translational modifications including phosphorylation, yet the precise role of phosphorylation remains unknown. Here, we demonstrate that interleukin (IL)-17 induces phosphorylation of Regnase-1 in an Act1-TBK1/IKKi–dependent manner, especially in nonhematopoietic cells. Phosphorylated Regnase-1 is released from the endoplasmic reticulum (ER) into the cytosol, thereby losing its mRNA degradation function, which leads to expression of IL-17 target genes. By using CRISPR/Cas-9 technology, we generated Regnase-1 mutant mice, in which IL-17–induced Regnase-1 phosphorylation is completely blocked. Mutant mice (Regnase-1AA/AA and Regnase-1ΔCTD/ΔCTD) were resistant to the IL-17–mediated inflammation caused by T helper 17 (Th17) cells in vivo. Thus, Regnase-1 plays a critical role in the development of IL-17–mediated inflammatory diseases via the Act1-TBK1-IKKi axis, and blockade of Regnase-1 phosphorylation sites may be promising for treatment of Th17-associated diseases.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yasunobu Arima
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Daisuke Kamimura
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Yuki Tanaka
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Noriyuki Takahashi
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan
| | - Takuya Uehata
- Department of Host Defense, Research Institute for Microbial Research, Osaka University, Osaka, Japan
| | - Kazuhiko Maeda
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Host Defense, Research Institute for Microbial Research, Osaka University, Osaka, Japan
| | - Takashi Satoh
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Host Defense, Research Institute for Microbial Research, Osaka University, Osaka, Japan
| | - Masaaki Murakami
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan .,Department of Host Defense, Research Institute for Microbial Research, Osaka University, Osaka, Japan
| |
Collapse
|
30
|
Substrate specificity of human MCPIP1 endoribonuclease. Sci Rep 2018; 8:7381. [PMID: 29743536 PMCID: PMC5943514 DOI: 10.1038/s41598-018-25765-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
MCPIP1, also known as Regnase-1, is a ribonuclease crucial for regulation of stability of transcripts related to inflammatory processes. Here, we report that MCPIP1 acts as an endonuclease by degrading several stem-loop RNA structures and single-stranded RNAs. Our studies revealed cleavage sites present in the stem-loops derived from the 3′ untranslated region of the interleukin-6 transcript. Furthermore, MCPIP1 induced endonuclease cleavage at the loop motif of stem-loop structures. Additionally, we observed that MCPIP1 could cleave single-stranded RNA fragments. However, RNA substrates shorter than 6 nucleotides were not further affected by MCPIP1 nucleolytic activity. In this study, we also determined the dissociation constants of full-length MCPIP1D141N and its ribonuclease domain PIN D141N with twelve oligonucleotides substrates. The equilibrium binding constants (Kd) for MCPIP1D141N and the RNA targets were approximately 10 nM. Interestingly, we observed that the presence of a zinc finger in the PIN domain increases the affinity of this protein fragment to 25-nucleotide-long stem-loop RNA but not to shorter ones. Furthermore, size exclusion chromatography of the MCPIP1 and PIN proteins suggested that MCPIP1 undergoes homooligomerization during interaction with RNA substrates. Our results provide insight into the mechanism of MCPIP1 substrate recognition and its affinity towards various oligonucleotides.
Collapse
|
31
|
MINO T, TAKEUCHI O. Post-transcriptional regulation of immune responses by RNA binding proteins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:248-258. [PMID: 29887569 PMCID: PMC6085518 DOI: 10.2183/pjab.94.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cytokines are critical mediators of inflammation and host immune defense. Cytokine production is regulated at both transcriptional and post-transcriptional levels. Post-transcriptional damping of inflammatory mRNAs is mediated by a set of RNA binding proteins (RBPs) interacting with cis-elements, such as AU-rich elements (ARE) and stem-loop structures. Whereas ARE-binding proteins such as tristetraprolin and a stem-loop recognizing protein, Roquin, downregulate cytokine mRNA abundance by recruiting a CCR4-NOT deadenylase complex, another stem-loop RBP, Regnase-1, acts as an endoribonuclease, directly degrading target cytokine mRNAs. These RBPs control translation-active or -inactive mRNAs in distinct intracellular locations. The presence of various RBPs regulating mRNAs in distinct locations enables elaborate control of cytokines under inflammatory conditions. Dysregulation of cytokine mRNA decay leads to pathologies such as the development of autoimmune diseases or impaired activation of immune responses. Here we review current knowledge about the post-transcriptional regulation of immune responses by RBPs and the importance of their alteration during inflammatory pathology and autoimmunity.
Collapse
Affiliation(s)
- Takashi MINO
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Osamu TAKEUCHI
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Correspondence should be addressed: O. Takeuchi, Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan (e-mail: )
| |
Collapse
|
32
|
Nowakowski M, Jaremko Ł, Wladyka B, Dubin G, Ejchart A, Mak P. Spatial attributes of the four-helix bundle group of bacteriocins - The high-resolution structure of BacSp222 in solution. Int J Biol Macromol 2017; 107:2715-2724. [PMID: 29107139 DOI: 10.1016/j.ijbiomac.2017.10.158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
BacSp222 is a multifunctional bacteriocin produced by Staphylococcus pseudintermedius strain 222, an opportunistic pathogen of domestic animals. At micromolar concentrations, BacSp222 kills Gram-positive bacteria and is cytotoxic toward mammalian cells, while at nanomolar doses, it acts as an immunomodulatory factor, enhancing nitric oxide release in macrophage-like cell lines. The bacteriocin is a cationic, N-terminally formylated, 50-amino-acid-long linear peptide that is rich in tryptophan residues. In this study, the solution structure of BacSp222 was determined and compared to the currently known structures of similar bacteriocins. BacSp222 was isolated from a liquid culture medium in a uniformly 13C- and 15N-labeled form, and NMR data were collected. The structure was calculated based on NMR-derived constraints and consists of a rigid and tightly packed globular bundle of four alpha-helices separated by three short turns. Although the amino acid sequence of BacSp222 has no significant similarity to any known peptide or protein, a 3D structure similarity search indicates a close relation to other four-helix bundle-motif bacteriocins, such as aureocin A53, lacticin Q and enterocins 7A/7B. Assuming similar functions, biology, structure and physicochemical properties, we propose to distinguish the four-helix bundle bacteriocins as a new Type A in subclass IId of bacteriocins, containing linear, non-pediocin-like peptides.
Collapse
Affiliation(s)
- Michał Nowakowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | - Łukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Grzegorz Dubin
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland.
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysiscs, Polish Academy of Science, Laboratory of Biological NMR, Pawińskiego 5A, 02-106 Warszawa, Poland.
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
33
|
Matelska D, Steczkiewicz K, Ginalski K. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res 2017; 45:6995-7020. [PMID: 28575517 PMCID: PMC5499597 DOI: 10.1093/nar/gkx494] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence–structure–function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.
Collapse
Affiliation(s)
- Dorota Matelska
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
34
|
Takeuchi O. Endonuclease Regnase-1/Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28929622 DOI: 10.1002/wrna.1449] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
The activation of inflammatory cells is controlled at transcriptional and posttranscriptional levels. Posttranscriptional regulation modifies mRNA stability and translation, allowing for elaborate control of proteins required for inflammation, such as proinflammatory cytokines, prostaglandin synthases, cell surface co-stimulatory molecules, and even transcriptional modifiers. Such regulation is important for coordinating the initiation and resolution of inflammation, and is mediated by a set of RNA-binding proteins (RBPs), including Regnase-1, Roquin, Tristetraprolin (TTP), and AU-rich elements/poly(U)-binding/degradation factor 1 (AUF1). Among these, Regnase-1, also known as Zc3h12a and Monocyte chemotactic protein-1-induced protein-1 (MCPIP1), acts as an endoribonuclease responsible for the degradation of mRNAs involved in inflammatory responses. Conversely, the RBPs Roquin and TTP trigger exonucleolytic degradation of mRNAs by recruiting the CCR4-NOT deadenylase complex. Regnase-1 specifically recognizes stem-loop structures present in 3'-untranslated regions of cytokine mRNAs, and directly degrades the mRNAs in a translation- and ATP-dependent RNA helicase upframeshift 1 (UPF1)-dependent manner that is reminiscent of nonsense-mediated decay. Regnase-1 regulates the activation of innate and acquired immune cells, and is critical for maintaining immune homeostasis as well as preventing over-activation of the immune system under inflammatory conditions. Furthermore, recent studies have revealed that Regnase-1 and its family members are involved not only in immunity but also in various biological processes. In this article, I review molecular mechanisms of Regnase-1-mediated mRNA decay and its physiological roles. WIREs RNA 2018, 9:e1449. doi: 10.1002/wrna.1449 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Osamu Takeuchi
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, AMED-CREST, AMED, Kyoto, Japan
| |
Collapse
|
35
|
Habacher C, Ciosk R. ZC3H12A/MCPIP1/Regnase-1-related endonucleases: An evolutionary perspective on molecular mechanisms and biological functions. Bioessays 2017; 39. [PMID: 28719000 DOI: 10.1002/bies.201700051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mammalian Zc3h12a/MCPIP1/Regnase-1, an extensively studied regulator of inflammatory response, is the founding member of a ribonuclease family, which includes proteins related by the presence of the so-called Zc3h12a-like NYN domain. Recently, several related proteins have been described in Caenorhabditis elegans, allowing comparative evaluation of molecular functions and biological roles of these ribonucleases. We discuss the structural features of these proteins, which endow some members with ribonuclease (RNase) activity while others with auxiliary or RNA-independent functions. We also consider their RNA specificity and highlight a common role for these proteins in cellular defense, which is remarkable considering the evolutionary distance and fundamental differences in cellular defense mechanisms between mammals and nematodes.
Collapse
Affiliation(s)
- Cornelia Habacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
36
|
Senissar M, Manav MC, Brodersen DE. Structural conservation of the PIN domain active site across all domains of life. Protein Sci 2017; 26:1474-1492. [PMID: 28508407 DOI: 10.1002/pro.3193] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/26/2023]
Abstract
The PIN (PilT N-terminus) domain is a compact RNA-binding protein domain present in all domains of life. This 120-residue domain consists of a central and parallel β sheet surrounded by α helices, which together organize 4-5 acidic residues in an active site that binds one or more divalent metal ions and in many cases has endoribonuclease activity. In bacteria and archaea, the PIN domain is primarily associated with toxin-antitoxin loci, consisting of a toxin (the PIN domain nuclease) and an antitoxin that inhibits the function of the toxin under normal growth conditions. During nutritional or antibiotic stress, the antitoxin is proteolytically degraded causing activation of the PIN domain toxin leading to a dramatic reprogramming of cellular metabolism to cope with the new situation. In eukaryotes, PIN domains are commonly found as parts of larger proteins and are involved in a range of processes involving RNA cleavage, including ribosomal RNA biogenesis and nonsense-mediated mRNA decay. In this review, we provide a comprehensive overview of the structural characteristics of the PIN domain and compare PIN domains from all domains of life in terms of structure, active site architecture, and activity.
Collapse
Affiliation(s)
- M Senissar
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus, 8000, Denmark
| | - M C Manav
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus, 8000, Denmark
| | - D E Brodersen
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus, 8000, Denmark
| |
Collapse
|
37
|
Uehata T, Takeuchi O. Regnase-1 Is an Endoribonuclease Essential for the Maintenance of Immune Homeostasis. J Interferon Cytokine Res 2017; 37:220-229. [DOI: 10.1089/jir.2017.0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Takuya Uehata
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, AMED-CREST, Kyoto, Japan
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, AMED-CREST, Kyoto, Japan
| |
Collapse
|
38
|
Mao R, Yang R, Chen X, Harhaj EW, Wang X, Fan Y. Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses. Cell Mol Immunol 2017; 14:412-422. [PMID: 28194024 PMCID: PMC5423090 DOI: 10.1038/cmi.2016.70] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are central players in post-transcriptional regulation and immune homeostasis. The ribonuclease and RBP Regnase-1 exerts critical roles in both immune cells and non-immune cells. Its expression is rapidly induced under diverse conditions including microbial infections, treatment with inflammatory cytokines and chemical or mechanical stimulation. Regnase-1 activation is transient and is subject to negative feedback mechanisms including proteasome-mediated degradation or mucosa-associated lymphoid tissue 1 (MALT1) mediated cleavage. The major function of Regnase-1 is promoting mRNA decay via its ribonuclease activity by specifically targeting a subset of genes in different cell types. In monocytes, Regnase-1 downregulates IL-6 and IL-12B mRNAs, thus mitigating inflammation, whereas in T cells, it restricts T-cell activation by targeting c-Rel, Ox40 and Il-2 transcripts. In cancer cells, Regnase-1 promotes apoptosis by inhibiting anti-apoptotic genes including Bcl2L1, Bcl2A1, RelB and Bcl3. Together with up-frameshift protein-1 (UPF1), Regnase-1 specifically cleaves mRNAs that are active during translation by recognizing a stem-loop (SL) structure within the 3'UTRs of these genes in endoplasmic reticulum-bound ribosomes. Through this mechanism, Regnase-1 rapidly shapes mRNA profiles and associated protein expression, restricts inflammation and maintains immune homeostasis. Dysregulation of Regnase-1 has been described in a multitude of pathological states including autoimmune diseases, cancer and cardiovascular diseases. Here, we provide a comprehensive update on the function, regulation and molecular mechanisms of Regnase-1, and we propose that Regnase-1 may function as a master rapid response gene for cellular adaption triggered by microenvironmental changes.
Collapse
Affiliation(s)
- Renfang Mao
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Riyun Yang
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Edward W Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Xiaoying Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yihui Fan
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
39
|
Lipert B, Wilamowski M, Gorecki A, Jura J. MCPIP1, alias Regnase-1 binds and cleaves mRNA of C/EBPβ. PLoS One 2017; 12:e0174381. [PMID: 28328949 PMCID: PMC5362230 DOI: 10.1371/journal.pone.0174381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/08/2017] [Indexed: 11/23/2022] Open
Abstract
CCAAT/enhancer-binding protein beta (C/EBPβ) is a transcription factor controlling a broad range of genes essential for homeostasis, including genes related to immune functions, inflammation, metabolism and growth. Monocyte chemoattractant protein-1-induced protein 1 (MCPIP1) also called as Regnase-1 is an RNase and has been shown to decrease the stability of short-lived transcripts coding for inflammation-related proteins, including IL-1β, IL-6, IL-2, IL-8, IL-12b, IER-3, c-Rel. We found previously that the half-life of the C/EBPβ transcript is regulated by MCPIP. To understand the mechanism driving down-regulation of C/EBPβ by MCPIP1, we applied an in vitro cleavage assay, followed by a luciferase-reporter assay and RNA immunoprecipitation (RIP). We demonstrated that MCPIP1 recognizes regions of the 3’UTR of C/EBPβ mRNA and promotes its decay by introducing direct endonucleolytic cleavage.
Collapse
Affiliation(s)
- Barbara Lipert
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
| | - Mateusz Wilamowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
| | - Andrzej Gorecki
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Krakow, Poland
| | - Jolanta Jura
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
- * E-mail:
| |
Collapse
|
40
|
Abstract
Nearly 60 CCCH zinc finger proteins have been identified in humans and mice. These proteins are involved in the regulation of multiple steps of RNA metabolism, including mRNA splicing, polyadenylation, transportation, translation and decay. Several CCCH zinc finger proteins, such as tristetraprolin (TTP), roquin 1 and MCPIP1 (also known as regnase 1), are crucial for many aspects of immune regulation by targeting mRNAs for degradation and modulation of signalling pathways. In this Review, we focus on the emerging roles of CCCH zinc finger proteins in the regulation of immune responses through their effects on cytokine production, immune cell activation and immune homeostasis.
Collapse
|
41
|
Habacher C, Guo Y, Venz R, Kumari P, Neagu A, Gaidatzis D, Harvald EB, Færgeman NJ, Gut H, Ciosk R. Ribonuclease-Mediated Control of Body Fat. Dev Cell 2016; 39:359-369. [PMID: 27746047 DOI: 10.1016/j.devcel.2016.09.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/27/2016] [Accepted: 09/16/2016] [Indexed: 01/14/2023]
Abstract
Obesity is a global health issue, arousing interest in molecular mechanisms controlling fat. Transcriptional regulation of fat has received much attention, and key transcription factors involved in lipid metabolism, such as SBP-1/SREBP, LPD-2/C/EBP, and MDT-15, are conserved from nematodes to mammals. However, there is a growing awareness that lipid metabolism can also be controlled by post-transcriptional mechanisms. Here, we show that the Caenorhabditis elegans RNase, REGE-1, related to MCPIP1/Zc3h12a/Regnase-1, a key regulator of mammalian innate immunity, promotes accumulation of body fat. Using exon-intron split analysis, we find that REGE-1 promotes fat by degrading the mRNA encoding ETS-4, a fat-loss-promoting transcription factor. Because ETS-4, in turn, induces rege-1 transcription, REGE-1 and ETS-4 appear to form an auto-regulatory module. We propose that this type of fat regulation may be of key importance when, if faced with an environmental change, an animal must rapidly but precisely remodel its metabolism.
Collapse
Affiliation(s)
- Cornelia Habacher
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Yanwu Guo
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Richard Venz
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Pooja Kumari
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Eva B Harvald
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Villum Center for Bioanalytical Sciences, 5230 Odense M, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Villum Center for Bioanalytical Sciences, 5230 Odense M, Denmark
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland.
| |
Collapse
|
42
|
Abstract
Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route.
Collapse
Affiliation(s)
- Fursham M Hamid
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eugene V Makeyev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|