1
|
Azadnia A, Mikryukov V, Anslan S, Hagh-Doust N, Rahimlou S, Tamm H, Tedersoo L. Structure of plant-associated microeukaryotes in roots and leaves of aquatic and terrestrial plants revealed by blocking peptide-nucleic acid (PNA) amplification. FEMS Microbiol Ecol 2023; 99:fiad152. [PMID: 38012113 DOI: 10.1093/femsec/fiad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Studies of plant-microbe interactions, including mutualistic, antagonistic, parasitic, or commensal microbes, have greatly benefited our understanding of ecosystem functioning. New molecular identification tools have increasingly revealed the association patterns between microorganisms and plants. Here, we integrated long-read PacBio single-molecule sequencing technology with a blocking protein-nucleic acid (PNA) approach to minimise plant amplicons in a survey of plant-eukaryotic microbe relationships in roots and leaves of different aquatic and terrestrial plants to determine patterns of organ, host, and habitat preferences. The PNA approach reduced the samples' relative amounts of plant reads and did not distort the fungal and other microeukaryotic composition. Our analyses revealed that the eukaryotic microbiomes associated with leaves and roots of aquatic plants exhibit a much larger proportion of non-fungal microorganisms than terrestrial plants, and leaf and root microbiomes are similar. Terrestrial plants had much stronger differentiation of leaf and root microbiomes and stronger partner specificity than aquatic plants.
Collapse
Affiliation(s)
- Avid Azadnia
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
| | - Vladimir Mikryukov
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
| | - Sten Anslan
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
- Mycology and Microbiology Center, University of Tartu, Tartu 50409, Estonia
| | - Niloufar Hagh-Doust
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
- Mycology and Microbiology Center, University of Tartu, Tartu 50409, Estonia
| | - Saleh Rahimlou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Heidi Tamm
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
| | - Leho Tedersoo
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
- Mycology and Microbiology Center, University of Tartu, Tartu 50409, Estonia
| |
Collapse
|
2
|
Dong M, Wang B, Tian Y, Chen L, Li Y, Sun H. Diversity of fungal assemblages in rhizosphere and endosphere of blueberry (Vaccinium spp.) under field conditions revealed by culturing and culture-independent molecular methods. Can J Microbiol 2022; 68:622-632. [PMID: 35926235 DOI: 10.1139/cjm-2022-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mycorrhizae are important to plants in improving nutrient absorption and stress resistance. To study mycorrhizal fungal diversity in blueberry, we combined culture method and culture-independent molecular method to analyze the root endosphere and rhizosphere fungi in three different cultivars. We obtained 212 isolates with a culture method and classified them into 40 types according to their morphological characteristics. Then, we amplified the internal transcribed spacer (ITS) sequence and found rich species diversity. With high-throughput sequencing, 561 operational taxonomic units (OTUs) were annotated based on a 97% similarity level cutoff. The alpha diversity index revealed that the fungal abundance and diversity in the rhizosphere were higher than in the endosphere. The dominant phyla were Ascomycota and Basidiomycota and the dominant genus was Oidiodendron. We also constructed the plant-fungus symbiotic system by inoculating in vitro stock shoots, which lays a theoretical foundation for further research to develop and utilize the dominant mycorrhizal fungi of blueberry.
Collapse
Affiliation(s)
- Mei Dong
- Jilin Agricultural University, 85112, Changchun, Jilin, China;
| | - Bowei Wang
- Jilin Agricultural University, 85112, Changchun, Jilin, China;
| | - Youwen Tian
- Jilin Agricultural University, 85112, Changchun, Jilin, China;
| | - Li Chen
- Jilin Agricultural University, 85112, Changchun, Jilin, China;
| | - Yadong Li
- Jilin Agricultural University, 85112, Changchun, Jilin, China;
| | - Haiyue Sun
- Jilin Agricultural University, 85112, Changchun, China;
| |
Collapse
|
3
|
Metabarcoding of fungal assemblages in Vaccinium myrtillus endosphere suggests colonization of above-ground organs by some ericoid mycorrhizal and DSE fungi. Sci Rep 2022; 12:11013. [PMID: 35773465 PMCID: PMC9246922 DOI: 10.1038/s41598-022-15154-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Plants harbor in their external surfaces and internal tissues a highly diverse and finely structured microbial assembly, the microbiota. Each plant compartment usually represents a unique ecological niche hosting a distinct microbial community and niche differentiation, which may mirror distinct functions of a specialized microbiota, has been mainly investigated for bacteria. Far less is known for the fungal components of the plant-associated microbiota. Here, we applied a metabarcoding approach to describe the fungal assemblages in different organs of Vaccinium myrtillus plants (Ericaceae) collected in a subalpine meadow in North-West Italy, and identified specific taxa enriched in internal tissues of roots, stems, leaves and flowers. We also traced the distribution of some important fungi commonly associated with plants of the family Ericaceae, namely the ericoid mycorrhizal (ErM) fungi and the dark septate endophytes (DSE), both playing important roles in plant growth and health. Operational taxonomic units attributed to established ErM fungal species in the genus Hyaloscypha and to DSE species in the Phialocephala-Acephala applanata complex (PAC) were found in all the plant organs. Mycorrhizal fungi are thought to be strictly associated with the plant roots, and this first observation of ErM fungi in the above-ground organs of the host plant may be explained by the evolutionary closeness of ErM fungi in the genus Hyaloscypha with non mycorrhizal fungal endophytes. This is also witnessed by the closer similarities of the ErM fungal genomes with the genomes of plant endophytes than with those of other mycorrhizal fungi, such as arbuscular or ectomycorrhizal fungi.
Collapse
|
4
|
Farner JE, Spear ER, Mordecai EA. Habitat type and interannual variation shape unique fungal pathogen communities on a California native bunchgrass. FUNGAL ECOL 2021; 48. [PMID: 33408755 DOI: 10.1016/j.funeco.2020.100983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of infectious disease in regulating host populations is increasingly recognized, but how environmental conditions affect pathogen communities and infection levels remains poorly understood. Over 3 y, we compared foliar disease burden, fungal pathogen community composition, and foliar chemistry in the perennial bunchgrass Stipa pulchra occurring in adjacent serpentine and nonserpentine grassland habitats with distinct soil types and plant communities. We found that serpentine and nonserpentine S. pulchra experienced consistent, low disease pressure associated with distinct fungal pathogen communities with high interannual species turnover. Additionally, plant chemistry differed with habitat type. The results indicate that this species experiences minimal foliar disease associated with diverse fungal communities that are structured across landscapes by spatially and temporally variable conditions. Distinct fungal communities associated with different growing conditions may shield S. pulchra from large disease outbreaks, contributing to the low disease burden observed on this and other Mediterranean grassland species.
Collapse
Affiliation(s)
- Johannah E Farner
- Biology Department, Stanford University, Stanford, California 94305 USA
| | - Erin R Spear
- Biology Department, Stanford University, Stanford, California 94305 USA.,Smithsonian Tropical Research Institute, Panama City, Panama, Republic of Panama
| | - Erin A Mordecai
- Biology Department, Stanford University, Stanford, California 94305 USA
| |
Collapse
|
5
|
Oono R, Black D, Slessarev E, Sickler B, Strom A, Apigo A. Species diversity of fungal endophytes across a stress gradient for plants. THE NEW PHYTOLOGIST 2020; 228:210-225. [PMID: 32472573 DOI: 10.1111/nph.16709] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Foliar fungal endophytes are one of the most diverse guilds of symbiotic fungi found in the photosynthetic tissues of every plant lineage, but it is unclear how plant environments and leaf resource availability shape their diversity. We explored correlations between leaf nutrient availability and endophyte diversity among Pinus muricata and Vaccinium ovatum plants growing across a soil nutrient gradient spanning a series of coastal terraces in Mendocino, California. Endophyte richness decreased in plants with higher leaf nitrogen-to-phosphorus ratios for both host species, but increased with sodium, which may be toxic to fungi at high concentrations. Isolation frequency, a proxy of fungal biomass, was not significantly predicted by any of the same leaf constituents in the two plant species. We propose that stressed plants can exhibit both low foliar nutrients or high levels of toxic compounds, and that both of these stress responses predict endophyte species richness. Stressful conditions that limit growth of fungi may increase their diversity due to the suppression of otherwise dominating species. Differences between the host species in their endophyte communities may be explained by host specificity, leaf phenology, or microclimates.
Collapse
Affiliation(s)
- Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Danielle Black
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Eric Slessarev
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Burton Sickler
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Amanda Strom
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Austen Apigo
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
6
|
Nguyen DQ, Schneider D, Brinkmann N, Song B, Janz D, Schöning I, Daniel R, Pena R, Polle A. Soil and root nutrient chemistry structure root-associated fungal assemblages in temperate forests. Environ Microbiol 2020; 22:3081-3095. [PMID: 32383336 DOI: 10.1111/1462-2920.15037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Root-associated fungi (RAF) link nutrient fluxes between soil and roots and thus play important roles in ecosystem functioning. To enhance our understanding of the factors that control RAF, we fitted statistical models to explain variation in RAF community structure using data from 150 temperate forest sites covering a broad range of environmental conditions and chemical root traits. We found that variation in RAF communities was related to both root traits (e.g., cations, carbohydrates, NO3 - ) and soil properties (pH, cations, moisture, C/N). The identified drivers were the combined result of distinct response patterns of fungal taxa (determined at the rank of orders) to biotic and abiotic factors. Our results support that RAF community variation is related to evolutionary adaptedness of fungal lineages and consequently, drivers of RAF communities are context-dependent.
Collapse
Affiliation(s)
- Dung Quang Nguyen
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany.,Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Grisebachstraße 8, 37077, Germany
| | - Nicole Brinkmann
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Bin Song
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Ingo Schöning
- Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Grisebachstraße 8, 37077, Germany
| | - Rodica Pena
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| |
Collapse
|
7
|
Hamim A, Boukeskasse A, Ouhdouch Y, Farrouki A, Barrijal S, Miché L, Mrabet R, Duponnois R, Hafidi M. Phosphate solubilizing and PGR activities of ericaceous shrubs microorganisms isolated from Mediterranean forest soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
The effect of environment on the microbiome associated with the roots of a native woody plant under different climate types in China. Appl Microbiol Biotechnol 2019; 103:3899-3913. [PMID: 30903216 DOI: 10.1007/s00253-019-09747-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/26/2022]
Abstract
Few studies have investigated the effect of environment on the root-associated microbiome, especially for woody plants in their native environment. The roots and rhizosphere soils of a native woody species (Broussonetia papyrifera) sampled across four different climate types in China were used to elucidate the influence of environment on the root-associated microbiome. Our results showed that the B. papyrifera root-associated microbiome contained abundant Proteobacteria and Basidiomycota, especially Pseudomonas and Rhizobium. The root-associated microbiomes were found to be significantly different under different climate types except for the bacterial community in the rhizosphere, and the proportion of bacterial operational taxonomic units (OTUs) shared among different climate types was lower than that of fungi. More than 50% of the total variance between microbiomes could be explained by 15 environmental factors, six of which, especially soil concentration phosphate and nitrate, had a significant effect. This study provided a comprehensive understanding of the root-associated microbiome of B. papyrifera and further confirmed the effect of environment on the root-associated microbiome of B. papyrifera under different climate types, with some exceptions in the rhizobacterial community and fungal OTUs. Our findings advanced knowledge of the effect of environment through an exploration of environmental factors and found that the nitrogen and phosphorus content represented the key factors.
Collapse
|
9
|
Yang H, Zhao X, Liu C, Bai L, Zhao M, Li L. Diversity and characteristics of colonization of root-associated fungi of Vaccinium uliginosum. Sci Rep 2018; 8:15283. [PMID: 30327504 PMCID: PMC6191440 DOI: 10.1038/s41598-018-33634-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/03/2018] [Indexed: 02/04/2023] Open
Abstract
This study investigated ericoid mycorrhizal fungi (EMF) diversity in Vaccinium uliginosum across its main wild distribution range in China. Fungal communities in hair roots of V. uliginosum were analyzed using Illumina MiSeq sequencing. Only 22 OTUs were assigned to putative EMF genera. Rhizoscyphus and Meliniomyces dominated EMF communities, followed by Clavaria, Oidiodendron, Lachnum, Acephala, and Phialocephala. There were more dark septate endophytes (DSE) reads from the Greater Khingan Mountains than from other study areas, similar to the results of the percent colonization of DSE by the magnified intersections method. Overall, high-throughput sequencing data provided a rough community-scale sketch of root-associated fungi of V. uliginosum. Two hundred and eighty slow-growing isolates were isolated from root pieces of V. uliginosum, and the isolates matched 16 fungal genera on the basis of morphological and internal transcribed spacer sequence comparison. The isolates of Cryptosporiopsis ericae, Oidiodendron maius, Lachnum sp., Sordariomycetes sp., and Pleosporales sp., formed ericoid hyphal coils via resynthesis trails. The co-existence between EMF and DSE in hair roots was observed via trypan blue staining. A putative model for the co-existence between EMF and DSE in the hair roots of V. uliginosum was proposed. We suggest that under certain environmental stresses, such as low temperature and poor available nutrients, ericoid plants may favor co-colonization by both DSE and EMF.
Collapse
Affiliation(s)
- Hongyi Yang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xingyu Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Changli Liu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Long Bai
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Min Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, 150081, China.
| |
Collapse
|
10
|
Yurgel SN, Douglas GM, Dusault A, Percival D, Langille MGI. Dissecting Community Structure in Wild Blueberry Root and Soil Microbiome. Front Microbiol 2018; 9:1187. [PMID: 29922264 PMCID: PMC5996171 DOI: 10.3389/fmicb.2018.01187] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022] Open
Abstract
A complex network of functions and symbiotic interactions between a eukaryotic host and its microbiome is a the foundation of the ecological unit holobiont. However, little is known about how the non-fungal eukaryotic microorganisms fit in this complex network of host-microbiome interactions. In this study, we employed a unique wild blueberry ecosystem to evaluate plant-associated microbiota, encompassing both eukaryotic and bacterial communities. We found that, while soil microbiome serves as a foundation for root microbiome, plant-influenced species sorting had stronger effect on eukaryotes than on bacteria. Our study identified several fungal and protist taxa, which are correlated with decreased fruit production in wild blueberry agricultural ecosystems. The specific effect of species sorting in root microbiome resulted in an increase in relative abundance of fungi adapted to plant-associated life-style, while the relative abundance of non-fungal eukaryotes was decreased along the soil-endosphere continuum in the root, probably because of low adaptation of these microorganisms to host-plant defense responses. Analysis of community correlation networks indicated that bacterial and eukaryotic interactions became more complex along the soil-endosphere continuum and, in addition to extensive mutualistic interactions, co-exclusion also played an important role in shaping wild blueberry associated microbiome. Our study identified several potential hub taxa with important roles in soil fertility and/or plant-microbe interaction, suggesting the key role of these taxa in the interconnection between soils and plant health and overall microbial community structure. This study also provides a comprehensive view of the role of non-fungal eukaryotes in soil ecosystem.
Collapse
Affiliation(s)
- Svetlana N. Yurgel
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Gavin M. Douglas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ashley Dusault
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - David Percival
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | | |
Collapse
|
11
|
Li Y, Chen X, Veen GF(C, Eisenhauer N, Liang Y, Zhou X, Zhang N, Ma K. Negative effects of litter richness on root decomposition in the presence of detritivores. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yinong Li
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of Botanythe Chinese Academy of Sciences Xiangshan, Beijing China
- Institute of Modern Agricultural BiotechnologyJilin Normal University Siping China
| | - Xi Chen
- Institute of Special Animal and Plant Sciencesthe Chinese Academy of Agricultural Sciences Changchun China
| | - G. F. (Ciska) Veen
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO–KNAW) Wageningen The Netherlands
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of BiologyLeipzig University Leipzig Germany
| | - Yu Liang
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of Botanythe Chinese Academy of Sciences Xiangshan, Beijing China
| | - Xiaomei Zhou
- Institute of Modern Agricultural BiotechnologyJilin Normal University Siping China
| | - Naili Zhang
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of Botanythe Chinese Academy of Sciences Xiangshan, Beijing China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of Botanythe Chinese Academy of Sciences Xiangshan, Beijing China
| |
Collapse
|
12
|
Xu F, Cai T, Yang X, Sui W. Soil fungal community variation by large-scale reclamation in Sanjiang plain, China. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1296-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Bruzone MC, Fehrer J, Fontenla SB, Vohník M. First record of Rhizoscyphus ericae in Southern Hemisphere's Ericaceae. MYCORRHIZA 2017; 27:147-163. [PMID: 27778093 DOI: 10.1007/s00572-016-0738-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Ericoid mycorrhiza is arguably the least investigated mycorrhizal type, particularly when related to the number of potential hosts and the ecosystems they inhabit. Little is known about the global distribution of ericoid mycorrhizal (ErM) fungi, and this holds true even for the prominent ErM mycobiont Rhizoscyphus ericae. Earlier studies suggested R. ericae might be low in abundance or absent in the roots of Southern Hemisphere's Ericaceae, and our previous investigations in two Argentine Patagonian forests supported this view. Here, we revisited the formerly investigated area, albeit at a higher altitude, and screened fungi inhabiting hair roots of Gaultheria caespitosa and Gaultheria pumila at a treeless alpine site using the same methods as previously. We obtained 234 isolates, most of them belonging to Ascomycota. In contrast to previous findings, however, among 37 detected operational taxonomic units (OTUs), OTU 1 (=R. ericae s. str.) comprised the highest number of isolates (87, ∼37 %). Most of the OTUs and isolates belonged to the Helotiales, and 82.5 % of isolates belonged to OTUs shared between both Gaultheria species. At the alpine site, ericoid mycorrhizal fungi dominated, followed by dark septate endophytes and aquatic hyphomycetes probably acting as root endophytes. Our results suggest that the distribution of R. ericae is influenced, among others, by factors related to altitude such as soil type and presence/absence and type of the neighboring vegetation. Our study is the first report on R. ericae colonizing Ericaceae roots in the Southern Hemisphere and extends the known range of this prominent ErM species to NW Patagonia.
Collapse
Affiliation(s)
- M Clara Bruzone
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, INIBIOMA (Universidad Nacional del Comahue-CONICET), Bariloche, Río Negro, Argentina
| | - Judith Fehrer
- DNA Laboratory, Institute of Botany, Czech Academy of Sciences (CAS), Průhonice, CZ-252 43, Czech Republic
| | - Sonia B Fontenla
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, INIBIOMA (Universidad Nacional del Comahue-CONICET), Bariloche, Río Negro, Argentina
| | - Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany CAS, Průhonice, CZ-252 43, Czech Republic.
- Department of Plant Experimental Biology, Faculty of Science, Charles University in Prague, Prague, CZ-128 44, Czech Republic.
| |
Collapse
|
14
|
Toju H, Kishida O, Katayama N, Takagi K. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons. PLoS One 2016; 11:e0165987. [PMID: 27861486 PMCID: PMC5115672 DOI: 10.1371/journal.pone.0165987] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023] Open
Abstract
Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Aza-Takaoka, Tomakomai, Hokkaido, Japan
| | - Noboru Katayama
- Center for Ecological Research, Kyoto University, 2-chome, Hirano, Otsu, Shiga, Japan
| | - Kentaro Takagi
- Teshio Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Aza-Toikanbetsu 131, Horonobe-cho, Teshio-gun, Hokkaido, Japan
| |
Collapse
|