1
|
Heidari Latibari M, Carolina Arias-Penna D, Ghafouri Moghaddam M, Butcher BA. Bacterial symbiont as game changers for Aphis craccivora Koch's fitness and survival across distinct climate types. Sci Rep 2025; 15:14208. [PMID: 40269010 PMCID: PMC12019319 DOI: 10.1038/s41598-025-98690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Symbiotic bacteria play a crucial role in the survival, development, and adaptation of aphids to environmental conditions. Buchnera aphidicola (Enterobacterales: Erwiniaceae), the obligate endosymbiont of aphids, is essential for their fitness, while facultative symbionts may provide additional ecological advantages under specific conditions. A comprehensive understanding of how these symbiotic relationships respond to different climatic environments is essential for assessing aphid adaptability and potential implications for biological control. The present study investigates the vital interactions between the obligate bacterial endosymbiont, Buchnera aphidicola, and four facultative bacterial endosymbionts (Arsenophonus sp., Hamiltonella defensa, Serratia symbiotica, and Regiella insecticola), in black cowpea aphid (BCA), in the context of different climate conditions. The BCA specimens were obtained from the leaves of the host plant, alfalfa, cultivated in three distinct climates: cold semi-arid, hot desert, and humid subtropical climates. The findings, as anticipated, indicated a pervasive prevalence of B. aphidicola in BCAs infesting alfalfa crops across all three climate types. In contrast, the BCAs of each climate type exhibited a distinct array of facultative symbionts. The highest number of facultative endosymbionts was exhibited by BCAs from the humid subtropical climate, followed by BCAs from the cold semi-arid climate, whereas none of them were detected in BCAs from the hot desert climate. Rigiella insecticola was not detected molecularly in any of the BCAs from the three climates. Following the eradication of the obligate symbiont Buchnera aphidicola by the antibiotic rifampicin in BCAs, the effects on three categories of parameters were assessed, including life cycle stages, reproductive traits, and external morphological characteristics of adults. The most significant adverse effects were observed in BCAs inhabiting hot desert followed by those inhabiting cold semi-arid climate; detrimental effects in BCAs of the humid subtropical climate were considerably less pronounced. The observed discrepancies in the parameters of BCAs from the humid subtropical climate can be attributed to the presence of a greater number of facultative symbionts, especially the presence of Serratia symbiotica (Enterobacterales: Yersiniaceae). Following the eradication of B. aphidicola, this facultative symbiont continues to complement the functions of B. aphidicola in the host's survival. Conversely, the low presence of facultative symbionts in cold semi-arid climate or even their absence in hot desert climate exacerbates the negative effects of obligate symbiont eradication. These findings highlight the crucial role of symbionts in aphid biology across a spectrum of climatic conditions, and suggest that shifts in symbiotic relationships may modulate aphid fitness, which could have implications for biological control programs.
Collapse
Affiliation(s)
- Minoo Heidari Latibari
- Integrative Insect Ecology Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Diana Carolina Arias-Penna
- Department of Entomology, University of Illinois, 320 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
- Entomologist, 111221, Bogotá D. C., Cundinamarca, Colombia
| | - Mostafa Ghafouri Moghaddam
- Integrative Insect Ecology Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Buntika A Butcher
- Integrative Insect Ecology Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Alimu A, Gao Y, Liu J, Lu Y. Geographic factors influence communities of symbiotic bacterial communities in Aphis gossypii across China's major cotton regions. Front Microbiol 2025; 16:1569543. [PMID: 40236481 PMCID: PMC11998284 DOI: 10.3389/fmicb.2025.1569543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Aphids are often infected with diverse bacterial symbionts that enhance their ecological adaptation. While geographic factors significantly influence aphid bacterial communities, research on environmental effects on the cotton aphid Aphis gossypii Glover feeding on cotton plants across China's major cotton-growing regions is limited. Methods This study examined the influence of geographic factors on the endosymbiotic bacterial community and diversity of A. gossypii by analyzing 58 field samples from 24 locations across China's major cotton-growing regions (2021-2022) using 16S rRNA (V3-V4) high-throughput sequencing. Results and discussion Our results demonstrate that geography is an important factor in shaping the endosymbiotic bacterial composition and diversity of A. gossypii. Among China's three major cotton-growing regions, the Yangtze River Basin exhibited the highest bacterial diversity, followed by the Northwestern Inland Region, and then the Yellow River Basin. Acinetobacter, Lactobacillus, Serratia, and Aeromonas were more abundant in the Yangtze River Basin, with positive correlations observed for Acinetobacter, Serratia, and Aeromonas in relation to annual precipitation. In contrast, Candidatus Uzinura, dominant in southern Xinjiang, displayed negative correlations with precipitation and longitude but a positive correlation with altitude, and this report is the first detection of it in A. gossypii. Buchnera was ubiquitous and negatively associated with both precipitation and temperature, while Arsenophonus showed no significant environmental correlations. These findings highlight the distinct influences of geographic factors on A. gossypii endosymbiotic communities across China's major cotton-growing regions, broadening our understanding of aphid-endosymbiont-environment interactions and offering potential avenues for biocontrol strategies.
Collapse
Affiliation(s)
- Abulaiti Alimu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
3
|
Zhao C, Escalante C, Jacobson AL, Balkcom KS, Conner KN, Martin KM. Metatranscriptomic and metagenomic analyses of cotton aphids ( Aphis gossypii) collected from cotton fields in Alabama, USA. FRONTIERS IN INSECT SCIENCE 2025; 5:1461588. [PMID: 40078316 PMCID: PMC11897474 DOI: 10.3389/finsc.2025.1461588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025]
Affiliation(s)
- Chaoyang Zhao
- National Soil Dynamics Laboratory, The United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Auburn, AL, United States
| | - Cesar Escalante
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Alana L. Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Kipling S. Balkcom
- National Soil Dynamics Laboratory, The United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Auburn, AL, United States
| | - Kassie N. Conner
- Alabama Cooperative Extension System, Auburn University, Auburn, AL, United States
| | - Kathleen M. Martin
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
4
|
Yun JH, Park J, Xi H, Nam S, Lee W, Kim SK. Comprehensive Analysis of the Fourteen Complete Genome Sequences of Buchnera aphidicola Isolated from Aphis Species. J Microbiol Biotechnol 2024; 35:e2409004. [PMID: 39849922 PMCID: PMC11813355 DOI: 10.4014/jmb.2409.09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025]
Abstract
Endosymbionts are important for insect species as they provide essential substances to the host. Due to the technical advance of NGS technology and de novo assemblers, many endosymbionts bacterial genomes are available now. Here, we analysed fourteen endosymbiont bacterial genomes of Aphis genius, one of notorious pest species. Fourteen genomes displayed the length between 628,098 bp to 634,931 bp; GC ratio was from 24.2 % to 25.6 % with no structural variation found. The nucleotide diversity distribution across the 14 endosymbiont genomes revealed three distinct regions, each separated by varying levels of nucleotide diversity. Intraspecific variations identified from endosymbiont bacterial genomes of the same host species revealed numbers of SNPs ranging from 31 (0.0049%) to 1,652 (0.26%) and those of INDELs ranging from 7 (21 bp; 0.0033%) to 104 (285 bp; 0.0045%). 250 unique SSRs, 28 different common SSR groups, and one different SSR group in two genomes were identified and used as a potential molecular marker to distinguish intraspecific population. Phylogenetic analysis further showed congruence between the endosymbiont bacterial genomes and the host species phylogeny, except Aphis nasturtii, Aphis helianth, and Aphis auranti, which require additional endosymbiont genomes for clarification. This comparative analysis result could serve as a cornerstone for understanding the relationship between host and endosymbiont species from a genomic perspective.
Collapse
Affiliation(s)
- Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Hong Xi
- Infoboss Inc., Seoul 06088, Republic of Korea
- Infoboss Research Center, Seoul 06088, Republic of Korea
| | - Sangjune Nam
- Agricultral Corporation Jeju Chunji, Jeju 63036, Repulic of Korea
| | - Wonhoon Lee
- Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seong-Ki Kim
- Department of Life science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Zhang H, Yang K. Bacterial communities varied in different Coccinella transversoguttata populations located in Tibetan plateau. Sci Rep 2024; 14:14708. [PMID: 38926503 PMCID: PMC11208169 DOI: 10.1038/s41598-024-65446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Coccinella transversoguttata is an important predatory beetle in Asia and America. Currently, few studies have investigated C. transversoguttata in China especially in the Tibetan plateau. In this study, full-length 16 s rRNA sequencing and qPCR experiment were performed on eight C. transversoguttata populations collected from Tibet to analyze their bacterial communities and bacteria abundance. In summary, our results revealed the microbial compositions, diversities and bacterial titers in the bacterial communities in C. transversoguttata populations in the Tibetan plateau. In future, there is a need to explore the differences in microbiota among various C. transversoguttata populations collected from different locations. These results add to our understanding of the complex bacterial communities of C. transversoguttata and their utilization as potential biocontrol factors.
Collapse
Affiliation(s)
- Huanhuan Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850032, Tibet, People's Republic of China.
- Institute of Vegetable, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850032, Tibet, People's Republic of China.
| | - Kun Yang
- Shandong Province Centre for Bioinvasions and Eco-Security, Qingdao, 266109, People's Republic of China.
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managcment, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
6
|
Liu Y, Liu J, Zhang X, Yun Y. Diversity of Bacteria Associated with Guts and Gonads in Three Spider Species and Potential Transmission Pathways of Microbes within the Same Spider Host. INSECTS 2023; 14:792. [PMID: 37887804 PMCID: PMC10607309 DOI: 10.3390/insects14100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Microbial symbiosis plays a crucial role in the ecological and evolutionary processes of animals. It is well known that spiders, with their unique and diverse predatory adaptations, assume an indispensable role in maintaining ecological balance and the food chain. However, our current understanding of spider microbiomes remains relatively limited. The gut microbiota and gonad microbiota of spiders can both potentially influence their physiology, ecology, and behavior, including aspects such as digestion, immunity, reproductive health, and reproductive behavior. In the current study, based on high-throughput sequencing of the 16S rRNA V3 and V4 regions, we detected the gut and gonad microbiota communities of three spider species captured from the same habitat, namely, Eriovixia cavaleriei, Larinioides cornutus, and Pardosa pseudoannulata. In these three species, we observed that, at the phylum level classification, the gut and gonad of E. cavaleriei are primarily composed of Proteobacteria, while those of L. cornutus and P. pseudoannulata are primarily composed of Firmicutes. At the genus level of classification, we identified 372 and 360 genera from the gut and gonad bacterial communities. It is noteworthy that the gut and gonad bacterial flora of E. cavaleriei and L. cornutus were dominated by Wolbachia and Spiroplasma. Results show that there were no differences in microbial communities between females and males of the same spider species. Furthermore, there is similarity between the gut and ovary microbial communities of female spiders, implying a potential avenue for microbial transmission between the gut and gonad within female spiders. By comprehensively studying these two microbial communities, we can establish the theoretical foundation for exploring the relationship between gut and gonad microbiota and their host, as well as the mechanisms through which microbes exert their effects.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jia Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaopan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
- Centre for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
7
|
Heidari Latibari M, Moravvej G, Rakhshani E, Karimi J, Arias-Penna DC, Butcher BA. Arsenophonus: A Double-Edged Sword of Aphid Defense against Parasitoids. INSECTS 2023; 14:763. [PMID: 37754731 PMCID: PMC10531911 DOI: 10.3390/insects14090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
It is widely accepted that endosymbiont interactions with their hosts have significant effects on the fitness of both pests and beneficial species. A particular type of endosymbiosis is that of beneficial associations. Facultative endosymbiotic bacteria are associated with elements that provide aphids with protection from parasitoids. Arsenophonus (Enterobacterales: Morganellaceae) is one such endosymbiont bacterium, with infections being most commonly found among the Hemiptera species. Here, black cowpea aphids (BCAs), Aphis craccivora Koch (Hemiptera: Aphididae), naturally infected with Arsenophonus, were evaluated to determine the defensive role of this bacterium in BCAs against two parasitoid wasp species, Binodoxys angelicae and Lysiphlebus fabarum (both in Braconidae: Aphidiinae). Individuals of the black cowpea aphids infected with Arsenophonus were treated with a blend of ampicillin, cefotaxime, and gentamicin (Arsenophonus-reduced infection, AR) and subsequently subjected to parasitism assays. The results showed that the presence of Arsenophonus does not prevent BCAs from being parasitized by either B. angelicae or L. fabarum. Nonetheless, in BCA colonies parasitized by B. angelicae, the endosymbiont delayed both the larval maturation period and the emergence of the adult parasitoid wasps. In brief, Arsenophonus indirectly limits the effectiveness of B. angelicae parasitism by decreasing the number of emerged adult wasps. Therefore, other members of the BCA colony can survive. Arsenophonus acts as a double-edged sword, capturing the complex dynamic between A. craccivora and its parasitoids.
Collapse
Affiliation(s)
- Minoo Heidari Latibari
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 91779-48974, Iran; (M.H.L.); (J.K.)
| | - Gholamhossein Moravvej
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 91779-48974, Iran; (M.H.L.); (J.K.)
| | - Ehsan Rakhshani
- Department of Plant Protection, Faculty of Agriculture, University of Zabol, Zabol P.O. Box 538-98615, Iran;
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 91779-48974, Iran; (M.H.L.); (J.K.)
| | | | - Buntika A. Butcher
- Integrative Insect Ecology Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Tian PP, Zhang YL, Huang JL, Li WY, Liu XD. Arsenophonus Interacts with Buchnera to Improve Growth Performance of Aphids under Amino Acid Stress. Microbiol Spectr 2023; 11:e0179223. [PMID: 37222634 PMCID: PMC10269474 DOI: 10.1128/spectrum.01792-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Amino acids play a crucial role in the growth and development of insects. Aphids cannot ingest enough amino acids in plant phloem to meet their requirements, and therefore, they are mainly dependent on the obligate symbiont Buchnera aphidicola to synthesize essential amino acids. Besides Buchnera, aphids may harbor another facultative symbiont, Arsenophonus, which alters the requirement of the cotton-melon aphid Aphis gossypii for amino acid. However, it is unclear how Arsenophonus regulates the requirement. Here, we found that Arsenophonus ameliorated growth performance of A. gossypii on an amino acid-deficient diet. A deficiency in lysine (Lys) or methionine (Met) led to changes in the abundance of Arsenophonus. Arsenophonus suppressed the abundance of Buchnera when aphids were fed a normal amino acid diet, but this suppression was eliminated or reversed when aphids were on a Lys- or Met-deficient diet. The relative abundance of Arsenophonus was positively correlated with that of Buchnera, but neither of them was correlated with the body weight of aphids. The relative expression levels of Lys and Met synthase genes of Buchnera were affected by the interaction between Arsenophonus infections and Buchnera abundance, especially in aphids reared on a Lys- or Met-deficient diet. Arsenophonus coexisted with Buchnera in bacteriocytes, which strengthens the interaction. IMPORTANCE The obligate symbiont Buchnera can synthesize amino acids for aphids. In this study, we found that a facultative symbiont, Arsenophonus, can help improve aphids' growth performance under amino acid deficiency stress by changing the relative abundance of Buchnera and the expression levels of amino acid synthase genes. This study highlights the interaction between Arsenophonus and Buchnera to ameliorate aphid growth under amino acid stress.
Collapse
Affiliation(s)
- Pan-Pan Tian
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yu-Lin Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Ling Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Wang-Yan Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Chang G, Xue H, Ji J, Wang L, Zhu X, Zhang K, Li D, Gao X, Niu L, Gao M, Luo J, Cui J. Risk assessment of predatory lady beetle Propylea japonica's multi-generational exposure to three non-insecticidal agrochemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163931. [PMID: 37156379 DOI: 10.1016/j.scitotenv.2023.163931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
The effects of non-insecticidal agrochemicals on pest natural predators remain largely unexplored except bees and silkworm. The herbicide quizalofop-p-ethyl (QpE), fungicide thiophanate-methyl (TM), and plant growth regulator mepiquat chloride (MC) have been extensively applied as non-insecticidal agrochemicals. Here, we systematically evaluated multiple effects of these 3 non-insecticidal agrochemicals on three generations of Propylea japonica, an important agroforestry predatory beetle, including the effects on its development, reproduction, enterobacteria, and transcriptomic response. The results showed that QpE exhibited a hormetic effect on P. japonica, thus significantly increasing the survival rate of generation 2 (F2) females, generation 3 (F3) females, and F3 males and body weight of F3 males. However, three successive generations exposed to TM and MC had no significant effect on longevity, body weight, survival rate, pre-oviposition period, and fecundity of P. japonica. Additionally, we investigated the effects of MC, TM, and QpE exposure on gene expression and gut bacterial community of F3 P. japonica. Under MC, TM, and QpE exposure, the overwhelming genes of P. japonica (99.90 %, 99.45 %, and 99.7 %) remained unaffected, respectively. Under TM and MC exposure, differentially expressed genes (DEGs) were not significantly enriched in any KEGG pathway, indicating TM and MC did not significantly affect functions of P. japonica, but under QpE exposure, the expression levels of drug metabolism-related genes were down-regulated. Although QpE treatment did not affect gut dominant bacterial community composition, it significantly increased relative abundances of detoxification metabolism-related bacteria such as Wolbachia, Pseudomonas and Burkholderia in P. japonica. However, TM and MC had no significant effect on the gut bacterial community composition and relative abundance in P. japonica. This study revealed for the first time the mechanism by which P. japonica might compensate for gene downregulation-induced detoxification metabolism decline through altering symbiotic bacteria under QpE exposure. Our findings provide reference for the rational application of non-insecticidal agrochemicals.
Collapse
Affiliation(s)
- Guofeng Chang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hui Xue
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Mengxue Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
10
|
Chen R, Luo J, Zhu X, Wang L, Zhang K, Li D, Gao X, Niu L, Huangfu N, Ma X, Ji J, Cui J. Dynamic changes in species richness and community diversity of symbiotic bacteria in five reproductive morphs of cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Front Microbiol 2023; 13:1086728. [PMID: 36713208 PMCID: PMC9877530 DOI: 10.3389/fmicb.2022.1086728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Reproductive polymorphism and symbiotic bacteria are commonly observed in aphids, but their interaction remains largely unclear. In polymorphic aphid species (Aphis gossypii), offspring of parthenogenetic females (PFs) develops into sexuparae which produces gynoparae and males successively. Gynoparae further produces sexual females (SFs), and these sexual females mate with males to produce offspring. Methods In this study, we investigated the dynamic changes of symbiotic bacteria during the above-mentioned five reproductive morph switch in A. gossypii via 16S rRNA sequencing technology. Results The results showed that species richness and community diversity of symbiotic bacteria in males were the highest. Proteobacteria was absolutely dominant bacterial phylum (with relative abundance of more than 90%) in the five reproductive morphs of A. gossypii, and Buchnera was absolutely dominant genus (with relative abundance of >90%), followed by Rhodococcus, Pseudomonas, and Pantoea. Male-killing symbiont Arsenophonus presented the highest relative abundance in gynoparae, a specific morph whose offsprings were exclusively sexual females. Both principal component analysis (PCA) and clustering analysis showed trans-generation similarity in microbial community structure between sexuparae and sexual females, between PFs and gynoparae. PICRUSt 2 analysis showed that symbiotic bacteria in the five reproductive morphs were mainly enriched in metabolic pathways. Discussion Reproductive morph switch induced by environmental changes might be associated with bacterial community variation and sexual polymorphism of aphids. This study provides a new perspective for further deciphering the interactions between microbes and reproductive polymorphism in host aphids.
Collapse
Affiliation(s)
- Ruifang Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ningbo Huangfu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China,*Correspondence: Jichao Ji,
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China,Jinjie Cui,
| |
Collapse
|
11
|
Li W, Li X, Wang W, Zhang S, Cui J, Peng Y, Zhao Y. Impact of Sulfoxaflor Exposure on Bacterial Community and Developmental Performance of the Predatory Ladybeetle Propylea japonica. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02122-5. [PMID: 36242623 DOI: 10.1007/s00248-022-02122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Insects maintain a vast number of symbiotic bacteria, and these symbionts play key roles in the hosts' life processes. Propylea japonica (Coleoptera: Coccinellidae) is an abundant and widespread ladybeetle in agricultural fields in Asia. Both larvae and adults of P. japonica are likely to be exposed to insecticide residue in the field during their predatory activity. Sulfoxaflor is a highly powerful insecticide that has strong efficacy in controlling sap-sucking pests. To date, there have been several studies on the acute and long-term toxicity of sulfoxaflor to insects, but few studies have reported the impact of sulfoxaflor on the predators' micro-ecosystems. This study was to determine the impact of sulfoxaflor on the symbiotic bacteria and developmental performance of P. japonica. In the present study, two concentrations (1 mg/L and 5 mg/L) and two exposure periods (1 day and 5 days) were set for P. japonica under sulfoxaflor exposure. The survival rate, developmental duration, pupation rate, emergence rate, and body weight of P. japonica were examined. Moreover, the bacterial community of P. japonica was investigated by high-throughput 16S ribosomal RNA gene sequencing. Our results indicated that bacterial community of P. japonica was mainly composed of Staphylococcus, Pantoea, Acinetobacter, Rhodococcus, and Ralstonia at the genus level. The bacterial community of P. japonica in 1 mg/L and 5 mg/L sulfoxaflor groups was significantly altered on day 1, compared with that in control group. The results also showed that the larval duration was significantly prolonged but the pupal duration was significantly shortened in both sulfoxaflor groups. Meanwhile, the pupation and emergence rate was not significantly changed, but the body weights of adults were significantly decreased in both sulfoxaflor groups. Our study will provide a new perspective for evaluating the safety of pesticides to beneficial arthropods.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Xueqing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenrong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
12
|
Guo L, Tang C, Gao C, Li Z, Cheng Y, Chen J, Wang T, Xu J. Bacterial and fungal communities within and among geographic samples of the hemp pest Psylliodes attenuata from China. Front Microbiol 2022; 13:964735. [PMID: 36147860 PMCID: PMC9485832 DOI: 10.3389/fmicb.2022.964735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
The hemp flea beetle Psylliodes attenuata (Coleoptera: Chrysomelidae: Psylliodes) is a common pest of Cannabis sativa, including cultivars of both medicinal marijuana and industrial hemp. Both the larval and adult stages of this beetle can cause significant damages to C. sativa, resulting in substantial crop losses. At present, little is known about the bacterial and fungal community diversity among populations of this pest insect. In the present study, we obtained P. attenuata samples from nine field sites representing broad industrial hemp productions in China and analyzed their microbial communities using DNA metabarcoding. Bacterial sequences of all the samples were assigned to 3728 OTUs, which belonged to 45 phyla, 1058 genera and 1960 known species. The most common genera were Rickettsia, Wolbachia, and Candidatus_Brownia. Fungal sequences of all the samples were assigned to 910 OTUs, which belonged to 9 phyla, 308 genera and 464 known species. The most common fungal genera were Cladosporium, Cutaneotrichosporon, and Aspergillus. Principal coordinate analysis revealed a significant difference in the bacterial and fungal community structure among the nine P. attenuata populations. Understanding the microbial symbionts may provide clues to help develop potential biocontrol techniques against this pest.
Collapse
Affiliation(s)
- Litao Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Litao Guo,
| | - Chao Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunsheng Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhimin Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yi Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Tuhong Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianping Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Jianping Xu, ; 0000-0003-2915-2780
| |
Collapse
|
13
|
Shigenobu S, Yorimoto S. Aphid hologenomics: current status and future challenges. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100882. [PMID: 35150917 DOI: 10.1016/j.cois.2022.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Aphids are important model organisms in ecological, developmental, and evolutionary studies of, for example, symbiosis, insect-plant interactions, pest management, and developmental polyphenism. Here, we review the recent progress made in the genomics of aphids and their symbionts: hologenomics. The reference genome of Acyrthosiphon pisum has been greatly improved, and chromosome-level assembly is now available. The genomes of over 20 aphid species have been sequenced, and comparative genomic analyses have revealed pervasive gene duplication and dynamic chromosomal rearrangements. Over 120 symbiont genomes (both obligate and facultative) have been sequenced, and modern deep-sequencing technologies have identified novel symbionts. The advances in hologenomics have helped to elucidate the dynamic evolution of facultative and co-obligate symbionts with the ancient obligate symbiont Buchnera.
Collapse
Affiliation(s)
- Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan.
| | - Shunta Yorimoto
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
14
|
Ashraf HJ, Ramos Aguila LC, Akutse KS, Ilyas M, Abbasi A, Li X, Wang L. Comparative microbiome analysis of Diaphorina citri and its associated parasitoids Tamarixia radiata and Diaphorencyrtus aligarhensis reveals Wolbachia as a dominant endosymbiont. Environ Microbiol 2022; 24:1638-1652. [PMID: 35229443 DOI: 10.1111/1462-2920.15948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Microbiome analysis in a host-parasitoid interaction network was conducted to compare the taxonomic composition of bacterial communities of Diaphornia citri, Tamarixia radiata, and Diaphorencyrtus aligarhensis. The comparative analysis revealed differences in the composition and diversity of the symbiont populations across the host and its associated parasitoids. Proteobacteria was the most dominant phylum, representing 67.80% of the total bacterial community, while Candidatus Profftella armature and Wolbachia were the dominant genera across the host and parasitoids. There were clear differences observed in alpha and beta diversity of microbiota through the host and its associated parasitoids. The function prediction of bacterial communities and Pearson correlation analysis showed that specific bacterial communities displayed positive correlations with the carbohydrate metabolism pathway. Furthermore, when symbiotic bacteria were eliminated using a broad-spectrum antibiotic, tetracycline hydrochloride, the parasitoids' median survival time and longevity were significantly reduced. We confirmed the physiological effects of symbiotic bacteria on the fitness of parasitoids and demonstrated the effect of antibiotics in decreasing the food intake and measurement of amino acids in the hemolymph. This study sheds light on basic information about the mutualism between parasitoids and bacteria, which may be a potential source for biocontrol strategies for citrus psyllid, especially D. citri. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Komivi Senyo Akutse
- Plant Health Theme, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Muhammad Ilyas
- Department of Management Science and Engineering, School of Business, Qingdao University, Qingdao, 266071, China
| | - Asim Abbasi
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Xiaofang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
15
|
Diversity and dynamics of bacteria at the Chrysomya megacephala pupal stage revealed by third-generation sequencing. Sci Rep 2022; 12:2006. [PMID: 35132164 PMCID: PMC8821589 DOI: 10.1038/s41598-022-06311-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
Characterization of the microbial community is essential for understanding the symbiotic relationships between microbes and host insects. Chrysomya megacephala is a vital resource, a forensic insect, a pollinator, and a vector for enteric bacteria, protozoa, helminths, and viruses. However, research on its microbial community is incomprehensive, particularly at the pupal stage, which comprises approximately half of the entire larval development stage and is important entomological evidence in forensic medicine. For the first time, this study investigated the bacterial communities of C. megacephala pupae at different ages using third-generation sequencing technology. The results showed that C. megacephala has a diverse and dynamic bacterial community. Cluster analysis at ≥ 97% similarity produced 154 operational taxonomic units (OTUs) that belonged to 10 different phyla and were distributed into 15 classes, 28 orders, 50 families, 88 genera, and 130 species. Overall, the number of bacterial OTUs increased with the development of pupae, and the relative abundance of Wolbachia in the Day5 group was significantly lower than that in the other groups. Within the pupal stage, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla of bacteria. At the genus level, Wolbachia and Ignatzschineria coexisted, a rarely known feature. In addition, we found Erysipelothrix rhusiopathiae, the etiological agent of swine erysipelas, which is rarely identified in insects. This study enriches the understanding of the microbial community of C. megacephala and provides a reference for better utilization and control of C. megacephala.
Collapse
|
16
|
Chang CY, Sun XW, Tian PP, Miao NH, Zhang YL, Liu XD. Plant secondary metabolite and temperature determine the prevalence of Arsenophonus endosymbionts in aphid populations. Environ Microbiol 2022; 24:3764-3776. [PMID: 35129273 DOI: 10.1111/1462-2920.15929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Transmission rate and role in hosts contribute to the prevalence of an endosymbiont. However, factors affecting transmission and role of facultative endosymbionts are still not well understood. Here, we illustrated that host plants and environmental temperatures affected the transmission, relative abundance, and role of Arsenophonus in the cotton aphid Aphis gossypii. The transmission rate of this endosymbiont from mother aphids to offspring was relatively lower. High temperatures impeded the transmission, and infection rates declined as aphids were exposed to 30 °C. Contents of amino acids and secondary metabolites were remarkable different among host plants. Aphids feeding on zucchini leaves containing a higher titer of amino acids and lower secondary metabolites harbored a relatively lower abundance of Arsenophonus. Concentrations of an amino acid and a plant secondary metabolite, cucurbitacin B, in aphid diet were not associated with Arsenophonus abundance. However, gossypol, another plant secondary metabolite, was strongly related with the abundance. Arsenophonus imparted a fitness benefit to aphids, and the benefit was dependent on host plants and gossypol concentration. In sum, plant secondary metabolite and environmental temperature affect transmission, relative abundance, and role of Arsenophonus, which determine the endosymbiont prevalence in aphid populations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chun-Yan Chang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Wan Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pan-Pan Tian
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning-Hui Miao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Lin Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
17
|
Jiang RX, Shang F, Jiang HB, Dou W, Cernava T, Wang JJ. The Influence of Temperature and Host Gender on Bacterial Communities in the Asian Citrus Psyllid. INSECTS 2021; 12:insects12121054. [PMID: 34940142 PMCID: PMC8704560 DOI: 10.3390/insects12121054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
The Asian citrus psyllid, D. citri Kuwayama is the primary vector for Candidatus Liberibacter asiaticus (CLas), which causes a destructive disease in citrus plants. Bacterial symbionts are important determinants of insect physiology, and they can be impacted by many external factors. Temperature is an important abiotic factor affecting insect physiology, and it is also known that differences in symbiont proportions may vary in different insect genders. To date, it is unclear how the symbionts of D. citri are affected by temperature and gender. This study used high-throughput sequencing of 16S ribosomal RNA amplicons to determine how temperature and gender affect the bacterial communities present in D. citri. We identified 27 amplicon sequence variants (ASVs) belonging to 10 orders, seven classes, and five phyla. The dominant phylum was Proteobacteria (99.93%). Other phyla, including Firmicutes, Bacteroidota, Deinococcota, Cyanobacteria, and Actinobacteriota, were less abundant (<0.1%). Profftella (71.77-81.59%) and Wolbachia (18.39-28.22%) were the predominant taxa in all samples. Under high-temperature treatment, Profftella was more common in females, while Wolbachia had a higher abundance in males. In males, Profftella was more abundant under low-temperature treatments than under high-temperature treatments. In contrast, Wolbachia showed a higher abundance under high-temperature treatments than under low-temperature treatments. An RT-qPCR (quantitative real-time PCR) approach confirmed the results obtained with high-throughput DNA sequencing. Our results provide a basis for understanding the co-adaptation of D. citri and its symbionts to environmental temperature stress.
Collapse
Affiliation(s)
- Rui-Xu Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (R.-X.J.); (F.S.); (H.-B.J.); (W.D.)
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (R.-X.J.); (F.S.); (H.-B.J.); (W.D.)
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (R.-X.J.); (F.S.); (H.-B.J.); (W.D.)
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (R.-X.J.); (F.S.); (H.-B.J.); (W.D.)
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria;
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (R.-X.J.); (F.S.); (H.-B.J.); (W.D.)
- Correspondence: ; Tel.: +86-23-6825-0255
| |
Collapse
|
18
|
Zhang S, Su H, Jiang W, Hu D, Ali I, Jin T, Yang Y, Ma X. Symbiotic microbial studies in diverse populations of Aphis gossypii, existing on altered host plants in different localities during different times. Ecol Evol 2021; 11:13948-13960. [PMID: 34707830 PMCID: PMC8525075 DOI: 10.1002/ece3.8100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Complex interactions between symbiotic bacteria and insects ultimately result in equilibrium in all aspects of life in natural insect populations. In this study, abundance of principal symbiotic bacteria was estimated using qPCR in 1553 individuals of aphids, Aphis gossypii. Aphids were sampled from primary and secondary host plants-hibiscus and cotton. Hibiscus aphids were collected from 24 different locations in April, September, and November, whereas cotton aphids were collected between 2015 and 2017 from areas with wide variations in climatic conditions. About 30%-45% aphids were recorded with the most dominant symbiont, Arsenophonus. The other symbionts were in low frequency, and about 7% of aphids were noted with Hamiltonella, Acinetobacter, and Microbacterium, and 3% of aphids were verified with Serratia and Pseudomonas. Aphids infected with Hamiltonella, Arsenophonus, and Serratia can influence Buchnera densities. Hamiltonella has positive interaction with densities of Arsenophonus and Serratia. Almost 100% coinfection of Hamiltonella and Arsenophonus was detected in Xinxiang aphids and 50% coinfection was reported in aphids from North China, while no coinfection was detected in Hainan aphids. These findings describe the prevalence pattern and richness of core community of symbiotic bacteria in naturally occurring populations of A. gossypii and provide new insights for the study of symbiotic bacteria.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Honghua Su
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Weili Jiang
- Basic Experimental Teaching Center of Life SciencesYangzhou UniversityYangzhouChina
| | - Daowu Hu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Intazar Ali
- Department of Entomology, Faculty of Agriculture and Environment (FA & E)The Islamia University of Bahawalpur, Baghdad ul‑jadeed CampusBahawalpurPakistan
| | - Tianxing Jin
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Yizhong Yang
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Xiaoyan Ma
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
19
|
Fakhour S, Renoz F, Ambroise J, Pons I, Noël C, Gala JL, Hance T. Insight into the bacterial communities of the subterranean aphid Anoecia corni. PLoS One 2021; 16:e0256019. [PMID: 34379678 PMCID: PMC8357138 DOI: 10.1371/journal.pone.0256019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Many insect species are associated with bacterial partners that can significantly influence their evolutionary ecology. Compared to other insect groups, aphids harbor a bacterial microbiota that has the reputation of being poorly diversified, generally limited to the presence of the obligate nutritional symbiont Buchnera aphidicola and some facultative symbionts. In this study, we analyzed the bacterial diversity associated with the dogwood-grass aphid Anoecia corni, an aphid species that spends much of its life cycle in a subterranean environment. Little is known about the bacterial diversity associated with aphids displaying such a lifestyle, and one hypothesis is that close contact with the vast microbial community of the rhizosphere could promote the acquisition of a richer bacterial diversity compared to other aphid species. Using 16S rRNA amplicon Illumina sequencing on specimens collected on wheat roots in Morocco, we identified 10 bacterial operational taxonomic units (OTUs) corresponding to five bacterial genera. In addition to the obligate symbiont Buchnera, we identified the facultative symbionts Serratia symbiotica and Wolbachia in certain aphid colonies. The detection of Wolbachia is unexpected as it is considered rare in aphids. Moreover, its biological significance remains unknown in these insects. Besides, we also detected Arsenophonus and Dactylopiibacterium carminicum. These results suggest that, despite its subterranean lifestyle, A. corni shelter a bacterial diversity mainly limited to bacterial endosymbionts.
Collapse
Affiliation(s)
- Samir Fakhour
- Department of Plant Protection, National Institute for Agricultural Research (INRA), Béni-Mellal, Morocco
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - François Renoz
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UC Louvain, Woluwe-Saint-Lambert, Belgium
| | - Inès Pons
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Christine Noël
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UC Louvain, Woluwe-Saint-Lambert, Belgium
| | - Thierry Hance
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Shang J, Yao YS, Zhu XZ, Wang L, Li DY, Zhang KX, Gao XK, Wu CC, Niu L, Ji JC, Luo JY, Cui JJ. Evaluation of sublethal and transgenerational effects of sulfoxaflor on Aphis gossypii via life table parameters and 16S rRNA sequencing. PEST MANAGEMENT SCIENCE 2021; 77:3406-3418. [PMID: 33786972 DOI: 10.1002/ps.6385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aphis gossypii, a polyphagous and recurrent pest induced by pesticides, causes tremendous loss crop yields each year. Previous studies on the mechanism of pesticide-induced sublethal effects mainly focus on the gene level. The symbiotic bacteria are also important participants of this mechanism, but their roles in hormesis are still unclear. RESULTS In this study, life table parameters and 16S rRNA sequencing were applied to evaluate the sublethal and transgenerational effects of sulfoxaflor on adult A. gossypii after 24-h LC20 (6.96 mg L-1 ) concentration exposure. The results indicated that the LC20 of sulfoxaflor significantly reduced the finite rate of increase (λ) and net reproductive rate (R0 ) of parent generation (G0), and significantly increased mean generation time (T) of G1 and G2, but not of G3 and G4. Both reproductive period and fecundity of G1 and G2 were significantly higher than those of the control. Furthermore, our sequencing data revealed that more than 95% bacterial communities were dominated by the phylum Proteobacteria, in which the maximum proportion genus was the primary symbiont Buchnera and the facultative symbiont Arsenophonus. Compared to those of the control, the abundance and composition of symbiotic bacteria of A. gossypii for three successive generations (G0-G2) were changed after G0 A. gossypii was exposed to sulfoxaflor: the diversity of the bacterial community was decreased, but the abundance of Buchnera was increased (G0), while the abundance of Arsenophonus was decreased. Contrary to G0, G1 and G2 cotton aphid exhibited an increased relative abundance of Arsenophonus in the sublethal treatment group. CONCLUSION Taken together, our results provide an insight into the interactions among pesticide resistance, aphids, and symbionts, which will eventually help to better manage the resurgence of A. gossypii. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiao Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- College of Plant Science, Tarim University/Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, Aral, China
| | - Yong-Sheng Yao
- College of Plant Science, Tarim University/Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, Aral, China
| | - Xiang-Zhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dong-Yang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kai-Xin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xue-Ke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chang-Cai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji-Chao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jun-Yu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jin-Jie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
21
|
Gao X, Niu R, Zhu X, Wang L, Ji J, Niu L, Wu C, Zhang S, Luo J, Cui J. Characterization and comparison of the bacterial microbiota of Lysiphlebia japonica parasitioid wasps and their aphid host Aphis gosypii. PEST MANAGEMENT SCIENCE 2021; 77:2710-2718. [PMID: 33492720 DOI: 10.1002/ps.6299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Endosymbiotic bacteria have been reported to mediate interactions between parasitoids and their insect hosts. How parasitic wasps influence changes in host microbial communities and the relationship between them are of great importance to the study of host-parasitoid co-evolutionary and ecological interactions. However, these interactions remain largely unreported for interactions between Aphis gossypii and Lysiphlebia japonica. RESULTS In this study, we characterize the bacterial microbiota of L. japonica wasps at different developmental stages and monitor changes over time in the bacterial microbiota of their parasitized and nonparasitized aphid hosts, using metagenomic analysis of 16S rDNA sequencing data. Proteobacteria, Firmicutes, and Actinobacteria were the three most abundant bacterial phyla identified in L. japonica. We found that parasitism was associated with an increased abundance of Buchnera nutritional endosymbionts, but decreased abundance of Acinetobacter, Arsenophonus, Candidatus_Hamiltonella, and Pseudomonas facultative symbionts in aphid hosts. Functional analysis of enriched pathways of parasitized aphids showed significant differences in the 'transport and metabolism of carbohydrates' and 'amino acid, lipid, and coenzyme biosynthesis' pathways. Notably, the composition of symbiotic bacteria in wasp larvae was highly similar to that of their aphid hosts, especially the high abundance of Buchnera. CONCLUSION The results provide a conceptual framework for L. japonica interactions with A. gossypii in which the exchange of symbiotic microbes provides a means by which microbiota can potentially serve as evolutionary drivers of complex, multilevel interactions underlying the ecology and co-evolution of these hosts and parasites. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueke Gao
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Ruichang Niu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xiangzhen Zhu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jichao Ji
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Lin Niu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Changcai Wu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Shuai Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Junyu Luo
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Pan HB, Li MY, Wu W, Wang ZL, Yu XP. Host-Plant Induced Shifts in Microbial Community Structure in Small Brown Planthopper, Laodelphax striatellus (Homoptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:937-946. [PMID: 33459777 DOI: 10.1093/jee/toaa316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 06/12/2023]
Abstract
Microbiome associated with insects play vital roles in host ecology and physiology. The small brown planthopper (SBPH), Laodelphax striatellus, is a polyphagous insect pest that caused enormous damage to a wide range of cereal crops. Previous studies have assessed the effects of environmental factors, such as antibiotics, insecticide, and geographical habitat on the bacterial composition of SBPH. However, the influence of host plants on the microbial community in SBPH still unclear. Here, we characterized and compared the microbial community in three SBPH populations feeding on rice, barley, and wheat, respectively, using high-throughput amplicon sequencing. Our observations revealed that the microbiome harbored by SBPH was abundant and diverse. Ten phyla comprising 141 genera of bacteria were annotated, and four fungal phyla consisting of 47 genera were assigned. The bacteria belonging to the phylum Proteobacteria were the most prevalent and the fungi with the highest abundance were from the order Hypocreales. Comparative analysis showed that host plants could significantly induce structural changes of SBPH microbiome. Significant differences in abundance were observed in two main bacterial orders (Rickettsiales and Rhodospirillales) and three fungal classes (Sordariomycetes, an unclassified class in Ascomycota and Eurotiomycetes) among three host-adapted SBPH populations. Our results could broaden our understanding of interactions among SBPH, its microbial associates and host plants, and also represented the basis of future SBPH biological management.
Collapse
Affiliation(s)
- Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People's Republic of China
| | - Mu-Yu Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Ma YJ, He HP, Zhao HM, Xian YD, Guo H, Liu B, Xue K. Microbiome diversity of cotton aphids (Aphis gossypii) is associated with host alternation. Sci Rep 2021; 11:5260. [PMID: 33664278 PMCID: PMC7933357 DOI: 10.1038/s41598-021-83675-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023] Open
Abstract
Aphids are infected by a series of bacteria that can help them survive on specific host plants. However, the associations between aphids and these bacteria are not clear, and the bacterial communities in many aphid species are poorly characterized. Here, we investigated the bacterial communities of cotton aphids (Aphis gossypii) on 2 representative winter host plants and transferred to 3 summer host plants by 16S rDNA sequencing using the Illumina MiSeq platform. Our results revealed that the bacterial communities varied among cotton aphids on hibiscus, cotton aphids on pomegranate, cotton aphids on cotton transferred from hibiscus, cotton aphids on muskmelon transferred from hibiscus, cotton aphids on cucumber transferred from hibiscus,. The diversity and richness of the bacterial communities were significantly higher in aphids on muskmelon and aphids on cucumber than in the other treatments. There were two main factors influencing the distribution of internal bacterial OTUs revealed by principal component analysis, including the differences among Punicaceae, Malvaceae and Cucurbitaceae. There were 28 bacterial communities with significant differences between two arbitrary treatments, which could be grouped into 6 main clusters depending on relative abundance. Moreover, our results indicated that in addition to the obligate endosymbiont Buchnera, with a dominant position (> 52%), A. gossypii also harbored 3 facultative endosymbiotic bacteria (Serratia, Arsenophonus, and Wolbachia) and 3 possibly symbiotic bacteria (Acinetobacter, Pantoea, and Flavobacterium). There were several correspondences between the symbiotic bacteria in cotton aphids and the specific host plants of the aphids. This study provides a better understanding of the interactions among symbiotic bacteria, aphids and host plants, suggesting that the selection pressure on aphid bacterial communities is likely to be exerted by the species of host plants.
Collapse
Affiliation(s)
- Yan-jie Ma
- grid.411077.40000 0004 0369 0529College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Hao-peng He
- grid.411077.40000 0004 0369 0529College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Hai-meng Zhao
- grid.411077.40000 0004 0369 0529College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Yi-dan Xian
- grid.411077.40000 0004 0369 0529College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Hui Guo
- grid.411077.40000 0004 0369 0529College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Biao Liu
- grid.464374.60000 0004 1757 8263Nanjing Institute of Environmental Sciences, MEP, Nanjing, 210042 China
| | - Kun Xue
- grid.411077.40000 0004 0369 0529College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China ,grid.464374.60000 0004 1757 8263Nanjing Institute of Environmental Sciences, MEP, Nanjing, 210042 China
| |
Collapse
|
24
|
Yang K, Chen H, Bing XL, Xia X, Zhu YX, Hong XY. Wolbachia and Spiroplasma could influence bacterial communities of the spider mite Tetranychus truncatus. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 83:197-210. [PMID: 33484388 DOI: 10.1007/s10493-021-00589-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The structures of arthropod bacterial communities are complex. These microbiotas usually provide many beneficial services to their hosts, whereas occasionally they may be parasitical. To date, little is known about the bacterial communities of Tetranychus truncatus and the factors contributing to the structure of its bacterial communities are unexplored yet. Here, we used four symbiont-infected T. truncatus strains-including one Wolbachia and Spiroplasma co-infected strain, two symbiont singly-infected strains and one symbiont uninfected strain-to investigate the influence of endosymbionts on the structure of the host mites' microbiota. Based on 16S rRNA genes sequencing analysis, we found Wolbachia and Spiroplasma were the two most abundant bacteria in T. truncatus and the presence of both symbionts could not change the diversity of bacterial communities (based on alpha-diversity indexes such as ACE, Chao1, Shannon and Simpson diversity index). Symbiont infection did alter the abundance of many other bacterial genera, such as Megamonas and Bacteroides. The structures of bacterial communities differed significantly among symbiont-infected strains. These results suggested a prominent effect of Wolbachia and Spiroplasma on bacterial communities of the host T. truncatus. These findings advance our understanding of T. truncatus microbiota and will be helpful for further study on bacterial communities of spider mites.
Collapse
Affiliation(s)
- Kun Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Han Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xue Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
25
|
Xu T, Chen J, Jiang L, Qiao G. Diversity of bacteria associated with Hormaphidinae aphids (Hemiptera: Aphididae). INSECT SCIENCE 2021; 28:165-179. [PMID: 31840419 PMCID: PMC7818174 DOI: 10.1111/1744-7917.12746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/07/2019] [Accepted: 12/01/2019] [Indexed: 05/29/2023]
Abstract
Bacteria are ubiquitous inhabitants of animals. Hormaphidinae is a particular aphid group exhibiting very diverse life history traits. However, the microbiota in this group is poorly known. In the present study, using high-throughput sequencing of bacterial 16S ribosomal RNA gene amplicons, we surveyed the bacterial flora in hormaphidine aphids and explored whether the aphid tribe, host plant and geographical distribution are associated with the distribution of secondary symbionts. The most dominant bacteria detected in hormaphidine species are heritable symbionts. As expected, the primary endosymbiont Buchnera aphidicola is the most abundant symbiont across all species and has cospeciated with its host aphids. Six secondary symbionts were detected in Hormaphidinae. Arsenophonus is widespread in Hormaphidinae species, suggesting the possibility of ancient acquisition of this symbiont. Ordination analyses and statistical tests show that the symbiont composition does not seem to relate to any of the aphid tribes, host plants or geographical distributions, which indicate that horizontal transfers might occur for these symbionts in Hormaphidinae. Correlation analysis exhibits negative interference between Buchnera and coexisting secondary symbionts, while the interactions between different secondary symbionts are complicated. These findings display a comprehensive picture of the microbiota in Hormaphidinae and may be helpful in understanding the symbiont diversity within a group of aphids.
Collapse
Affiliation(s)
- Ting‐Ting Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Li‐Yun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Ge‐Xia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
26
|
Qin M, Chen J, Xu S, Jiang L, Qiao G. Microbiota associated with Mollitrichosiphum aphids (Hemiptera: Aphididae: Greenideinae): diversity, host species specificity and phylosymbiosis. Environ Microbiol 2021; 23:2184-2198. [PMID: 33415800 PMCID: PMC8248049 DOI: 10.1111/1462-2920.15391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
Symbiotic association is universal in nature, and an array of symbionts play a crucial part in host life history. Aphids and their diverse symbionts have become a good model system to study insect‐symbiont interactions. Previous symbiotic diversity surveys have mainly focused on a few aphid clades, and the relative importance of different factors regulating microbial community structure is not well understood. In this study, we collected 65 colonies representing eight species of the aphid genus Mollitrichosiphum from different regions and plants in southern China and Nepal and characterized their microbial compositions using Illumina sequencing of the V3 − V4 hypervariable region of the 16S rRNA gene. We evaluated how microbiota varied across aphid species, geography and host plants and the correlation between microbial community structure and host aphid phylogeny. Heritable symbionts dominated the microbiota associated with Mollitrichosiphum, and multiple infections of secondary symbionts were prevalent. Ordination analyses and statistical tests highlighted the contribution of aphid species in shaping the structures of bacterial, symbiont and secondary symbiont communities. Moreover, we observed a significant correlation between Mollitrichosiphum aphid phylogeny and microbial community composition, providing evidence for a pattern of phylosymbiosis between natural aphid populations and their microbial associates.
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Wang ZL, Wang TZ, Zhu HF, Pan HB, Yu XP. Diversity and dynamics of microbial communities in brown planthopper at different developmental stages revealed by high-throughput amplicon sequencing. INSECT SCIENCE 2020; 27:883-894. [PMID: 31612637 DOI: 10.1111/1744-7917.12729] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The microbiome associated with brown planthopper (BPH) plays an important role in mediating host health and fitness. Characterization of the microbial community and its structure is prerequisite for understanding the intricate symbiotic relationships between microbes and host insect. Here, we investigated the bacterial and fungal communities of BPH at different developmental stages using high-throughput amplicon sequencing. Our results revealed that both the bacterial and fungal communities were diverse and dynamic during BPH development. The bacterial communities were generally richer than fungi in each developmental stage. At 97% similarly, 19 phyla and 278 genera of bacteria were annotated, while five fungal phyla comprising 80 genera were assigned. The highest species richness for the bacterial communities was detected in the nymphal stage. The taxonomic diversity of the fungal communities in female adults was generally at a relatively higher level when compared to other developmental stages. The most dominant phylum of bacteria and fungi at each developmental stage all belonged to Proteobacteria and Ascomycota, respectively. A significantly lower abundance of bacterial genus Acinetobacter was recorded in the egg stage when compared to other developmental stages, while the dominant fungal genus Wallemia was more abundant in the nymph and adult stages than in the egg stage. Additionally, the microbial composition differed between male and female adults, suggesting that the microbial communities in BPH were gender-dependent. Overall, our study enriches our knowledge on the microbial communities associated with BPH and will provide clues to develop potential biocontrol techniques against this rice pest.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tian-Zhao Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hang-Feng Zhu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
28
|
Wang ZL, Pan HB, Wu W, Li MY, Yu XP. The gut bacterial flora associated with brown planthopper is affected by host rice varieties. Arch Microbiol 2020; 203:325-333. [PMID: 32940717 DOI: 10.1007/s00203-020-02013-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
Gut microbiota plays vital roles in the development, evolution and environmental adaptation of the host insects. The brown planthopper (BPH) is one of the most destructive pests of rice, but little is known about its gut microbiota. In this study, we investigated the gut bacterial communities in two BPH populations feeding on susceptible and resistant rice varieties by high-throughput amplicon sequencing. Our results revealed that the gut bacterial communities in BPH were species diverse. A total of 29 phyla and 367 genera were captured, with Proteobacteria and Acinetobacter being the most prominent phylum and genus, respectively. Comparative analysis showed that significant differences in the profile of gut bacterial communities existed between the two BPH populations. The species richness detected in the population feeding on the resistant rice variety was significantly higher than that in the population rearing on the susceptible rice variety. Although the most dominant gut bacteria at all taxonomic levels showed no significant differences between the two BPH populations, the relative abundances of two subdominant phyla (Firmicutes and Bacteroidetes) and two subdominant classes (Bacteroidia and Clostridia) were significantly different. FAPROTAX analysis further indicated that host rice varieties might induce changes of the gut bacterial flora in BPH, as significant differences in five metabolism-related functional categories (fermentation, methylotrophy, xylanolysis, nitrate reduction and ureolysis) were detected between the two BPH populations. Our results are informative for studies which focused on the interactions between BPH and its symbiotic microbes and could also provide the basis of future BPH biological management.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Wei Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Mu-Yu Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
29
|
Zhang ZY, Ali MW, Saqib HSA, Liu SX, Yang X, Li Q, Zhang H. A Shift Pattern of Bacterial Communities Across the Life Stages of the Citrus Red Mite, Panonychus citri. Front Microbiol 2020; 11:1620. [PMID: 32754145 PMCID: PMC7366552 DOI: 10.3389/fmicb.2020.01620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 02/01/2023] Open
Abstract
As one of the most detrimental citrus pests worldwide, the citrus red mite, Panonychus citri (McGregor), shows extraordinary fecundity, polyphagia, and acaricide resistance, which may be influenced by microbes as other arthropod pests. However, the community structure and physiological function of microbes in P. citri are still largely unknown. Here, the high-throughput sequencing of 16S rDNA amplicons was employed to identify and compare the profile of bacterial communities across the larva, protonymph, deutonymph, and adult stages of P. citri. We observed a dominance of phylums Proteobacteria and Firmicutes, and classes α-, γ-, β-Proteobacteria and Bacilli in the bacterial communities across the host lifespan. Based on the dynamic analysis of the bacterial community structure, a significant shift pattern between the immature (larva, protonymph, and deutonymph) and adult stages was observed. Accordingly, among the major families (and corresponding genera), although the relative abundances of Pseudomonadaceae (Pseudomonas), Moraxellaceae (Acinetobacter), and Sphingobacteriaceae (Sphingobacterium) were consistent in larva to deutonymph stages, they were significantly increased to 30.18 ± 8.76% (30.16 ± 8.75%), 20.78 ± 10.86% (18.80 ± 10.84%), and 11.71 ± 5.49% (11.68 ± 5.48%), respectively, in adult stage, which implied the important function of these bacteria on the adults' physiology. Actually, the functional prediction of bacterial communities and Spearman correlation analysis further confirm that these bacteria had positively correlations with the pathway of "lipid metabolism" (including eight sublevel pathways) and "metabolism of cofactors and vitamins" (including five sublevel pathways), which all only increased in adult stages. In addition, the bacterial communities were eliminated by using broad-spectrum antibiotics, streptomycin, which significantly suppressed the survival and oviposition of P. citri. Overall, we not only confirmed the physiological effects of bacteria community on the vitality and fecundity of adult hosts, but also revealed the shift pattern of bacterial community structures across the life stages and demonstrated the co-enhancements of specific bacterial groups and bacterial functions in nutritional metabolism in P. citri. This study sheds light on basic information about the mutualism between spider mites and bacteria, which may be useful in shaping the next generation of control strategies for spider mite pests, especially P. citri.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Waqar Ali
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng-Xuan Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qin Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Shang F, Niu J, Ding BY, Wang JJ. Comparative Insight into the Bacterial Communities in Alate and Apterous Morphs of Brown Citrus Aphid (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1436-1444. [PMID: 32040182 DOI: 10.1093/jee/toaa016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Wing polyphenism (alate and apterous morphs) in aphids is a trade-off between dispersal and reproduction. How bacterial communities are associated with wing polyphenism in aphids is still not clearly understood. This study used 16S rRNA sequencing to examine the differences in diversity of the bacterial community between alate and apterous morphs in Aphis citricidus, the main vector of the Citrus tristeza virus. Eighty-one operational taxonomic units (OTUs) belonging to 37 orders, 34 classes, and 13 phyla were identified from all samples. Among these OTUs, Wolbachia (79.17%), Buchnera (17.64%), and Pseudomonas (2.99%) were the dominant bacterial genera. The diversity of symbionts varied between the two morphs; apterous morphs had more bacterial diversity (69 OTUs belonging to 45 families, 21 classes, and 12 phyla) than alate morphs (45 OTUs belonging to 36 families, 15 classes, and 10 phyla). In addition, the abundance of five OTUs was significantly different between two morphs. Among these OTUs, two Pseudomonas species (Pseudomonas_brenneri [OTU21] and unclassified_Pseudomonas [OTU13]) represented a high proportion (3.93% and 2.06%) in alate morphs but were present in low abundance (0.006% and 0.002%) in apterous morphs. RT-qPCR showed consistent results with high-throughput DNA sequencing. The preliminary survey showed the difference in composition and frequency of bacteria between alate and apterous morphs. Thus, the results contribute to anew insight of microorganisms that may be involved in wing dimorphism and helpful for controlling the dispersal of this pest through artificial elimination or reinfection of bacterial symbionts or targeting symbiosis-related host genes by RNA interference in future.
Collapse
Affiliation(s)
- Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Ramalho MDO, Martins C, Morini MSC, Bueno OC. What Can the Bacterial Community of Atta sexdens (Linnaeus, 1758) Tell Us about the Habitats in Which This Ant Species Evolves? INSECTS 2020; 11:E332. [PMID: 32481532 PMCID: PMC7349130 DOI: 10.3390/insects11060332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
Studies of bacterial communities can reveal the evolutionary significance of symbiotic interactions between hosts and their associated bacteria, as well as identify environmental factors that may influence host biology. Atta sexdens is an ant species native to Brazil that can act as an agricultural pest due to its intense behavior of cutting plants. Despite being extensively studied, certain aspects of the general biology of this species remain unclear, such as the evolutionary implications of the symbiotic relationships it forms with bacteria. Using high-throughput amplicon sequencing of 16S rRNA genes, we compared for the first time the bacterial community of A. sexdens (whole ant workers) populations according to the habitat (natural versus agricultural) and geographical location. Our results revealed that the bacterial community associated with A. sexdens is mainly influenced by the geographical location, and secondarily by the differences in habitat. Also, the bacterial community associated with citrus differed significantly from the other communities due to the presence of Tsukamurella. In conclusion, our study suggests that environmental shifts may influence the bacterial diversity found in A. sexdens.
Collapse
Affiliation(s)
- Manuela de Oliveira Ramalho
- Centro de Estudos de Insetos Sociais—CEIS, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil;
- Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY 14850, USA
| | - Cintia Martins
- Campus Ministro Reis Velloso, Universidade Federal do Piauí, Av. São Sebastião, 2819, Parnaíba, Piauí 64202-020, Brazil;
| | - Maria Santina Castro Morini
- Núcleo de Ciências Ambientais, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida e Souza, 200, Centro Cívico, Mogi das Cruzes 08780-911, SP, Brazil;
| | - Odair Correa Bueno
- Centro de Estudos de Insetos Sociais—CEIS, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil;
| |
Collapse
|
32
|
Xu S, Jiang L, Qiao G, Chen J. The Bacterial Flora Associated with the Polyphagous Aphid Aphis gossypii Glover (Hemiptera: Aphididae) Is Strongly Affected by Host Plants. MICROBIAL ECOLOGY 2020; 79:971-984. [PMID: 31802184 PMCID: PMC7198476 DOI: 10.1007/s00248-019-01435-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Aphids live in symbiosis with a variety of bacteria, including the obligate symbiont Buchnera aphidicola and diverse facultative symbionts. The symbiotic associations for one aphid species, especially for polyphagous species, often differ across populations. In the present study, by using high-throughput 16S rRNA sequencing, we surveyed in detail the microbiota in natural populations of the cotton aphid Aphis gossypii in China and assessed differences in bacterial diversity with respect to host plant and geography. The microbial community of A. gossypii was dominated by a few heritable symbionts. Arsenophonus was the most dominant secondary symbiont, and Spiroplasma was detected for the first time. Statistical tests and ordination analyses showed that host plants rather than geography seemed to have shaped the associated symbiont composition. Special symbiont communities inhabited the Cucurbitaceae-feeding populations, which supported the ecological specialization of A. gossypii on cucurbits from the viewpoint of symbiotic bacteria. Correlation analysis suggested antagonistic interactions between Buchnera and coexisting secondary symbionts and more complicated interactions between different secondary symbionts. Our findings lend further support to an important role of the host plant in structuring symbiont communities of polyphagous aphids and will improve our understanding of the interactions among phytophagous insects, symbionts, and environments.
Collapse
Affiliation(s)
- Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
33
|
Xu TT, Jiang LY, Chen J, Qiao GX. Host Plants Influence the Symbiont Diversity of Eriosomatinae (Hemiptera: Aphididae). INSECTS 2020; 11:E217. [PMID: 32244698 PMCID: PMC7240687 DOI: 10.3390/insects11040217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 01/13/2023]
Abstract
Eriosomatinae is a particular aphid group with typically heteroecious holocyclic life cycle, exhibiting strong primary host plant specialization and inducing galls on primary host plants. Aphids are frequently associated with bacterial symbionts, which can play fundamental roles in the ecology and evolution of their host aphids. However, the bacterial communities in Eriosomatinae are poorly known. In the present study, using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we surveyed the bacterial flora of eriosomatines and explored the associations between symbiont diversity and aphid relatedness, aphid host plant and geographical distribution. The microbiota of Eriosomatinae is dominated by the heritable primary endosymbiont Buchnera and several facultative symbionts. The primary endosymbiont Buchnera is expectedly the most abundant symbiont across all species. Six facultative symbionts were identified. Regiella was the most commonly identified facultative symbiont, and multiple infections of facultative symbionts were detected in the majority of the samples. Ordination analyses and statistical tests show that the symbiont community of aphids feeding on plants from the family Ulmaceae were distinguishable from aphids feeding on other host plants. Species in Eriosomatinae feeding on different plants are likely to carry different symbiont compositions. The symbiont distributions seem to be not related to taxonomic distance and geographical distance. Our findings suggest that host plants can affect symbiont maintenance, and will improve our understanding of the interactions between aphids, their symbionts and ecological conditions.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Yun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
| | - Ge-Xia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Ayoubi A, Talebi AA, Fathipour Y, Mehrabadi M. Coinfection of the secondary symbionts, Hamiltonella defensa and Arsenophonus sp. contribute to the performance of the major aphid pest, Aphis gossypii (Hemiptera: Aphididae). INSECT SCIENCE 2020; 27:86-98. [PMID: 29749703 DOI: 10.1111/1744-7917.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 04/03/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Bacterial endosymbionts play important roles in ecological traits of aphids. In this study, we characterize the bacterial endosymbionts of A. gossypii collected in Karaj, Iran and their role in the performance of the aphid. Our results indicated that beside Buchnera aphidicola, A. gossypii, also harbors both Hamiltonella defensa and Arsenophonus sp. Quantitative PCR (qPCR) results revealed that the populations of the endosymbionts increased throughout nymphal development up to adult emergence; thereafter, populations of Buchnera and Arsenophonus were diminished while the density of H. defensa constantly increased. Buchnera reduction caused prolonged development and no progeny production. Furthermore, secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring in comparison with the control insects. Reduction of the secondary symbionts did not affect parasitism rate of the aphid by the parasitic wasp Aphidius matricariae. Together these findings showed that H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
Collapse
Affiliation(s)
- Aida Ayoubi
- Faculty of Agriculture, Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | - Ali Asghar Talebi
- Faculty of Agriculture, Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathipour
- Faculty of Agriculture, Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehrabadi
- Faculty of Agriculture, Department of Entomology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
35
|
Infections with Arsenophonus Facultative Endosymbionts Alter Performance of Aphids (Aphis gossypii) on an Amino-Acid-Deficient Diet. Appl Environ Microbiol 2019; 85:AEM.01407-19. [PMID: 31540983 DOI: 10.1128/aem.01407-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/14/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic polymorphism and endosymbiont infection are ubiquitous in aphid populations. It has been known that the obligate symbiont Buchnera provides aphids with essential amino acids which cannot be ingested from plant sap. Buchnera often coexists with facultative endosymbionts in aphids. However, it is unclear whether the facultative endosymbionts affect the aphid's amino acid requirements from diet. In this study, we found that the facultative endosymbiont status in populations of the cotton-melon aphid Aphis gossypii was associated with aphid genotype or host plant. The infection frequency of Arsenophonus in aphids living on cotton was significantly higher than that in aphids on cucumber, and cucumber leaves contained higher titers of free amino acids than cotton leaves, especially amino acids Leu, Arg, Ile, Val, and Phe. The net reproductive rates of five aphid genotypes infected with Arsenophonus were not different on the complete-amino-acid diet, but the values were significantly different among seven Arsenophonus-free aphid genotypes. Moreover, the net reproductive rates of aphids on the amino-acid-deficient diet were significantly affected by Arsenophonus infection and aphid genotype. Arsenophonus infection decreased aphid performance on the Phe-free diet but improved performance on the Leu-free diet and did not affect the performance on the Ile-free or Val-free diet. Arsenophonus infections altered aphid requirements for amino acids that were significantly different in cotton and cucumber leaves, suggesting this endosymbiont would modulate the host specialization of this aphid.IMPORTANCE The facultative endosymbiont Arsenophonus plays an important role in regulating reproduction through son killing, enemy resistance, and the dietary breadth of its insect hosts. In this study, we found Arsenophonus could alter aphid performance on the amino-acid-deficient diets. Arsenophonus infection increased aphid requirements for the amino acid Phe, but decreased requirements for the Leu. Cotton and cucumber leaves contained drastically different titers of free amino acids Phe and Leu, and aphids living on these two plants were infected with different incidences of Arsenophonus We hypothesize that host specialization or the host plant range of aphids may be mediated by Arsenophonus.
Collapse
|
36
|
Zhang S, Luo J, Jiang W, Wu L, Zhang L, Ji J, Wang L, Ma Y, Cui J. Response of the bacterial community of Propylea japonica (Thunberg) to Cry2Ab protein. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113063. [PMID: 31454585 DOI: 10.1016/j.envpol.2019.113063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/04/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Propylea japonica is a very important predator in agricultural ecosystems, which could be exposed to Bt protein. In this study, the bacterial community of P. japonica fed with normal food and food containing Cry2Ab protein was characterized for the first time using qPCR and high-throughput sequencing approaches. Results showed no effect of Cry2Ab on P. japonica development and reproduction. The most abundant bacterial phylum was Firmicutes, and the most abundant genus was Staphylococcus. The total bacteria copy number was not significantly different across four larval stages. Bacteria species composition was gathered more closely in feed on sucrose solution (sucrose-fed) than in larvae only fed on pea aphid (aphid-fed), the diversity indices of some operational taxonomic unit (OTU) were significantly different between sucrose-fed and aphid-fed samples. Different instar larval stages of P. japonica fed with sucrose solution containing Cry2Ab Bt protein and found no effect on microbial community composition and total bacteria copy numbers. However, effects on relative abundance of microbes, copy numbers of Corynebacterium 1 and Glutamicibacter arilaitensis were observed significantly lower in Bt-fed first and fourth larval stages. Low and high concentrations of Cry2Ab protein altered the microbial abundance relative to sucrose-fed P. japonica and copy numbers of G. arilaitensis and Staphylococcus xylosus were significantly lower in Bt-fed samples than control sucrose-fed. Our results are the first report showing that feeding on Cry2Ab protein does not alter microbial species composition in P. japonica, but effects gene copy number of some dominant bacteria. Further investigations are needed to assess the effect of copy number change on P. japonica.
Collapse
Affiliation(s)
- Shuai Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Junyu Luo
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Weili Jiang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Linke Wu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Lijuan Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jichao Ji
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yan Ma
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
37
|
Gawande SJ, Anandhan S, Ingle A, Roylawar P, Khandagale K, Gawai T, Jacobson A, Asokan R, Singh M. Microbiome profiling of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae). PLoS One 2019; 14:e0223281. [PMID: 31568480 PMCID: PMC6768462 DOI: 10.1371/journal.pone.0223281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
The gut microbial community structure of adult Thrips tabaci collected from 10 different agro-climatically diverse locations of India was characterized by using the Illumina MiSeq platform to amplify the V3 region of the 16S rRNA gene of bacteria present in the sampled insects. Analyses were performed to study the bacterial communities associated with Thrips tabaci in India. The complete bacterial metagenome of T. tabaci was comprised of 1662 OTUs of which 62.25% belong to known and 37.7% of unidentified/unknown bacteria. These OTUs constituted 21 bacterial phyla of 276 identified genera. Phylum Proteobacteria was predominant, followed by Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. Additionally, the occurrence of the reproductive endosymbiont, Wolbachia was detected at two locations (0.56%) of the total known OTUs. There is high variation in diversity and species richness among the different locations. Alpha-diversity metrics indicated the higher gut bacterial diversity at Bangalore and lowest at Rahuri whereas higher bacterial species richness at T. tabaci samples from Imphal and lowest at Jhalawar. Beta diversity analyses comparing bacterial communities between the samples showed distinct differences in bacterial community composition of T. tabaci samples from different locations. This paper also constitutes the first record of detailed bacterial communities associated with T. tabaci. The location-wise variation in microbial metagenome profile of T. tabaci suggests that bacterial diversity might be governed by its population genetic structure, environment and habitat.
Collapse
Affiliation(s)
- Suresh J. Gawande
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | | | - Ashish Ingle
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Praveen Roylawar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Kiran Khandagale
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Tushar Gawai
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Hessarghatta Lake, Bengaluru, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| |
Collapse
|
38
|
Analysis of the bacterial communities and endosymbionts of natural populations of Bemisia tabaci in several crop fields from Mexico semi-arid zone. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01483-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
39
|
Bacterial communities of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae) from pepper crops (Capsicum sp.). Sci Rep 2019; 9:5766. [PMID: 30962510 PMCID: PMC6453963 DOI: 10.1038/s41598-019-42232-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/21/2019] [Indexed: 11/09/2022] Open
Abstract
Insects harbor a wide variety of microorganisms that form complex and changing communities and play an important role in the biology and evolution of their hosts. Aphids have been used as model organisms to study microorganism-insect interactions. Almost all aphids are infected with the obligate endosymbiont Buchnera aphidicola and can host different bacteria that allow them to acquire traits of agronomic importance, such as resistance to high temperatures and/or defense against natural enemies. However, the bacterial communities of most aphid species remain poorly characterized. In this study, we used high-throughput DNA sequencing to characterize the bacterial communities of Aphis gossypii and Myzus persicae from two cultivable pepper species, Capsicum frutescens (Tabasco variety) and C. annuum (Cayenne variety), in four localities of southwestern Colombia. In addition, we evaluated the dynamics of A. gossypii-associated microorganisms on a seasonal basis. Our results show that the bacterial communities of A. gossypii and M. persicae are dominated by the primary endosymbiont B. aphidicola, while the presence of the facultative symbiont Arsenophonus sp. was only detected in one A. gossypii population from cayenne pepper. In addition to these two known symbionts, eight bacterial OTUs were identified that presented a frequency of 1% or more in at least one of the analyzed populations. The results show that the bacterial communities of aphids associated with pepper crops appears to be structured according to the host aphid species and the geographical location, while no differences were observed in the diversity of bacteria between host plants. Finally, the diversity and abundance of the A. gossypii bacterial community was variable among the four sampling points evaluated over the year and showed a relation with the aphid’s population dynamics. This study represents the first approach to the knowledge of the bacterial community present in chili pepper aphids from Colombia. Nevertheless, more in-depth studies, including replicates, are required to confirm the patterns observed in the microbial communities of aphids from pepper crops.
Collapse
|
40
|
Gao X, Li W, Luo J, Zhang L, Ji J, Zhu X, Wang L, Zhang S, Cui J. Biodiversity of the microbiota in Spodoptera exigua (Lepidoptera: Noctuidae). J Appl Microbiol 2019; 126:1199-1208. [PMID: 30597740 DOI: 10.1111/jam.14190] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 02/05/2023]
Abstract
AIMS Spodoptera exigua is a serious pest of many agricultural crops. However, the bacterial communities of S. exigua are poorly studied, particularly over their entire life cycle. We aimed to study the biodiversity of the microbiota across the life cycle of S. exigua and to provide a better and obtain insight into new pest control strategies. METHODS AND RESULTS The bacterial diversity across the life cycle of S. exigua was studied using Illumina MiSeq sequencing of 16S rRNA genes. Spodoptera exigua is dominated by Proteobacteria and Firmicutes, with a total relative abundance of 90·03%. Enterococcus (24·6%), Pseudomonas (12·2%) and Asaia (45·9%) were abundant and active in eggs, while Methylobacterium (18·7%) and Halomonas (16·5%) dominated freshly eclosed larvae. The 3rd and 5th instar larvae were dominated by Enterococcus (76·3 and 62·0%). Pupal stages had the highest microbial diversity. There was no significant difference between newly emerged males and females. Symbionts of eggs were extremely similar and probably vertically transmitted by males during mating. CONCLUSIONS The result showed that the bacterial community was affected by the host developmental stages. Our results also suggest that symbionts of egg mass are probably vertically transmitted control by male spawning adults. SIGNIFICANCE AND IMPACT OF THE STUDY Our study documents the symbiont bacteria across the life cycle of S. exigua. Understanding the microbial symbionts may provide clues to develop potential biocontrol techniques against this pest.
Collapse
Affiliation(s)
- X Gao
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - W Li
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - J Luo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - L Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - J Ji
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - X Zhu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - L Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - S Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - J Cui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| |
Collapse
|
41
|
Zhang S, Luo J, Wang L, Zhang L, Zhu X, Jiang W, Cui J. Bacterial communities in natural versus pesticide-treated Aphis gossypii populations in North China. Microbiologyopen 2018; 8:e00652. [PMID: 29877631 PMCID: PMC6436440 DOI: 10.1002/mbo3.652] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/07/2018] [Accepted: 04/14/2018] [Indexed: 02/01/2023] Open
Abstract
The cotton‐melon aphid, Aphis gossypii Glover, is a worldwide‐spreading species, and pesticide‐resistant populations are increasing rapidly. In this study, investigations were performed based on Illumina HiSeq sequencing of the 16S rDNA V4 region for the bacterial communities embodied as intracellular symbionts under natural and in pesticide‐treated populations of A. gossypii. The results revealed that more than 82% of bacterial communities belonged to the phylum Proteobacteria in which the maximum proportion (53.24%) was of the genus Arsenophonus; Hamiltonella composed 22.31; and 1.37% was of the genus Acinetobacter. The relative abundance of Hamiltonella was obvious, vertically transmitted, divided into two groups, and its infection influenced the bacterial communities in A. gossypii. Symbiont density and composition were changed in samples tested on different days. Azadirachtin and phoxim influenced on the composition of bacterial communities. Different biomarkers were used for pesticide‐treated samples with LEfSe results. These findings will increase awareness regarding bacterial communities in naturally occurring populations of A. gossypii and pave the way to study the relationship between symbionts and pesticide resistance.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lijuan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Weili Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
42
|
Zhang L, Yun Y, Hu G, Peng Y. Insights into the bacterial symbiont diversity in spiders. Ecol Evol 2018; 8:4899-4906. [PMID: 29876068 PMCID: PMC5980269 DOI: 10.1002/ece3.4051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/11/2022] Open
Abstract
Most spiders are natural enemies of pests, and it is beneficial for the biological control of pests to learn the relationships between symbionts and their spider hosts. Research on the bacterial communities of insects has been conducted recently, but only a few studies have addressed the bacterial communities of spiders. To obtain a complete overview of the microbial communities of spiders, we examined eight species of spider (Pirata subpiraticus, Agelena difficilis, Artema atlanta, Nurscia albofasciata, Agelena labyrinthica, Ummeliata insecticeps, Dictis striatipes, and Hylyphantes graminicola) with high-throughput sequencing based on the V3 and V4 regions of the 16S rRNA gene. The bacterial communities of the spider samples were dominated by five types of endosymbionts, Wolbachia, Cardinium, Rickettsia, Spiroplasma, and Rickettsiella. The dominant OTUs (operational taxonomic units) from each of the five endosymbionts were analyzed, and the results showed that different spider species were usually dominated by special OTUs. In addition to endosymbionts, Pseudomonas, Sphingomonas, Acinetobacter, Novosphingobium, Aquabacterium, Methylobacterium, Brevundimonas, Rhizobium, Bradyrhizobium, Citrobacter, Arthrobacter, Pseudonocardia, Microbacterium, Lactobacillus, and Lactococcus were detected in spider samples in our study. Moreover, the abundance of Sphingomonas, Methylobacterium, Brevundimonas, and Rhizobium in the spider D. striatipes was significantly higher (p < .05) than the bacterial abundance of these species in seven other spider species. These findings suggest that same as in insects, co-infection of multiple types of endosymbionts is common in the hosts of the Araneae order, and other bacterial taxa also exist in spiders besides the endosymbionts.
Collapse
Affiliation(s)
- Lihua Zhang
- Centre for Behavioral Ecology and EvolutionCollege of Life SciencesHubei UniversityWuhanChina
| | - Yueli Yun
- Centre for Behavioral Ecology and EvolutionCollege of Life SciencesHubei UniversityWuhanChina
| | - Guowen Hu
- Centre for Behavioral Ecology and EvolutionCollege of Life SciencesHubei UniversityWuhanChina
| | - Yu Peng
- Centre for Behavioral Ecology and EvolutionCollege of Life SciencesHubei UniversityWuhanChina
- Hubei Collaborative Innovation Center for Green Transformation of Bio‐ResourcesCollege of Life SciencesHubei UniversityWuhanChina
| |
Collapse
|
43
|
Qian L, Jia F, Jingxuan S, Manqun W, Julian C. Effect of the Secondary Symbiont Hamiltonella defensa on Fitness and Relative Abundance of Buchnera aphidicola of Wheat Aphid, Sitobion miscanthi. Front Microbiol 2018; 9:582. [PMID: 29651279 PMCID: PMC5884939 DOI: 10.3389/fmicb.2018.00582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/14/2018] [Indexed: 01/15/2023] Open
Abstract
Bacterial symbionts associated with insects are often involved in host development and ecological fitness. In aphids, the role of these symbionts is variable and not fully understood across different host species. Here, we investigated the symbiont diversity of the grain aphid, Sitobion miscanthi (Takahashi), from 17 different geographical areas. Of these, two strains with the same symbiont profile, except for the presence of Hamiltonella defensa, were selected using PCR. The Hamiltonella-infected strain, YX, was collected from a Yuxi wheat field in Yunnan Province, China. The Hamiltonella-free strain, DZ, was collected from a Dezhou wheat field in Shandong Province, China. Using artificial infection with H. defensa and antibiotic treatment, a Hamiltonella-re-infected strain (DZ-H) and Hamiltonella-significantly decreased strain (DZ-HT) were established and compared to the Hamiltonella-free DZ strain in terms of ecological fitness. Infection with the DZ-H strain increased the fitness of S. miscanthi, which led to increases in adult weight, percent of wingless individuals, and number of offspring. Meanwhile, decreased abundance of H. defensa (DZ-HT strain) resulted in a lower adult weight and wingless aphid rate compared to the DZ-H strain. However, the indices of longevity in both the DZ-H and DZ-HT strains decreased slightly, but were not significantly different, compared to the DZ strain. Furthermore, quantitative PCR showed that the relative abundance of the primary symbiont Buchnera aphidicola in the DZ-H strain was significantly higher than in the DZ strain in all but the first developmental stage. These results indicate that H. defensa may indirectly improve the fitness of S. miscanthi by stimulating the proliferation of B. aphidicola.
Collapse
Affiliation(s)
- Li Qian
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Jia
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sun Jingxuan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wang Manqun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chen Julian
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|