1
|
Jankowski WM, Fichna J, Tarasiuk-Zawadzka A. Molecular mechanisms and pathophysiological implications of mucin-type O-glycosylation dysregulation in colorectal cancer progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04181-0. [PMID: 40257491 DOI: 10.1007/s00210-025-04181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
Colorectal cancer (CRC) is among the most prevalent malignancies globally, with 1.9 million new cases annually. While CRC pathogenesis has been widely attributed to the adenoma-carcinoma and serrated sequences, our study highlights the critical and multifaceted role of O-glycosylation impairment in this malignancy. Mucin-type O-glycosylation, a key post-translational modification, exerts significant effects on tumor cells, impacting their proliferation, migration, and invasiveness. Additionally, its influence on the immune response to CRC presents novel perspectives for potential therapeutic interventions. The authors conducted a systematic literature review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, using databases such as Google Scholar, PubMed, and Scopus. In this article, we provide a comprehensive analysis of the mechanisms underlying mucin-type O-glycosylation disruption in CRC and examine how these mechanisms could serve as biomarkers for early diagnosis and personalized treatment strategies. Our findings contribute to a more detailed understanding of CRC pathogenesis and offer promising directions for innovative diagnostic and therapeutic approaches, which in the future may lead to improved patient prognosis.
Collapse
Affiliation(s)
- Wojciech Michał Jankowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92 - 215, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92 - 215, Lodz, Poland
| | - Aleksandra Tarasiuk-Zawadzka
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92 - 215, Lodz, Poland.
| |
Collapse
|
2
|
Yingli H, Ping Y, Jun Y, Zhu Xingwang. Aberrant protein glycosylation in the colon adenoma-cancer sequence: Colorectal cancer mechanisms and clinical implications. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167853. [PMID: 40250777 DOI: 10.1016/j.bbadis.2025.167853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/16/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Colorectal cancer (CRC) is a leading contributor to global cancer-related morbidity and mortality. Glycosylation is a common post-translational protein modification. Aberrant protein glycosylation is a hallmark of cancer, affecting biological processes and driving malignant CRC phenotypes. Specifically, abnormal N-glycosylation manifests as structural alterations in high mannose, sialylated, and fucosylated structures, collectively promoting cancer stemness and invasiveness. Concurrently, O-GlcNAcylation facilitates tumorigenesis through metabolic reprogramming and oncogene activation. Dysregulated mucin-type O-glycans (e.g., Core-1/Core-3 imbalance) and elevated SLex/SLea antigen expression are significantly correlated with tumor adhesion, metastatic dissemination, and adverse clinical outcomes. Furthermore, protein glycosylation contributes to chemoresistance through anti-apoptotic mechanisms, aberrant signaling activation, and pro-angiogenic pathways. This review systematically examines the dynamic evolution of protein glycosylation during CRC progression from normal mucosa to adenoma to adenocarcinoma. It also evaluates the CRC diagnostic and therapeutic implications of glycoproteins and glycans. This review can provide a molecular understanding for advancing CRC diagnostics and treatment.
Collapse
Affiliation(s)
- He Yingli
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yang Ping
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Yan Jun
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China
| | - Zhu Xingwang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Zhang P, Wang D, Zhou G, Jiang S, Zhang G, Zhang L, Zhang Z. Novel post-translational modification learning signature reveals B4GALT2 as an immune exclusion regulator in lung adenocarcinoma. J Immunother Cancer 2025; 13:e010787. [PMID: 40010763 DOI: 10.1136/jitc-2024-010787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) presents significant challenges in prognosis and treatment efficacy evaluation. While post-translational modifications are known to influence tumor progression, their prognostic value in LUAD remains largely unexplored. METHODS We developed a post-translational modification learning signature (PTMLS) using machine learning techniques, analyzing data from 1231 LUAD patients across seven global cohorts. The signature's efficacy in predicting immunotherapy response was evaluated using 12 immunotherapy cohorts spanning multiple cancer types (n=1201). An in-house LUAD tissue cohort (n=171) was used to validate beta-1,4-galactosyltransferase 2's (B4GALT2's) prognostic significance. The role of B4GALT2 in immune exclusion was investigated through in vivo and in vitro experiments. RESULTS The established PTMLS exhibited exceptional predictive capabilities in LUAD patient outcomes, surpassing the efficacy of 98 existing LUAD prognostic indicators. The system's predictive value was validated across diverse malignancy categories for immunotherapeutic response assessment. From a biological perspective, significant correlations were observed between PTMLS and immunological parameters, whereby elevated PTMLS levels were characterized by attenuated immune responses and immunologically cold neoplastic features. Within the PTMLS framework, B4GALT2 was identified as a crucial molecular component (r=0.82, p<0.05), and its heightened expression was linked to unfavorable clinical outcomes in LUAD cases, particularly in specimens exhibiting CD8-depleted phenotypes. The spatial distribution patterns between B4GALT2 and immune cell populations, specifically CD8+ T lymphocytes and CD20+ B lymphocytes, were elucidated through multiplexed immunofluorescence analysis. Laboratory investigations subsequently established B4GALT2's regulatory influence on LUAD cellular expansion in both laboratory cultures and animal models. Significantly, suppression of B4GALT2 was found to enhance CD8+ T lymphocyte populations and their functional status, thereby potentiating anti-programmed cell death protein 1 immunotherapeutic efficacy in animal studies. This phenomenon was characterized by reduced CD62L+CD8 T lymphocyte levels alongside elevated GZMB+/CD44+/CD69+CD8 T cell populations. CONCLUSION The developed PTMLS system represents an effective instrument for individualized prognostic evaluation and immunotherapy stratification in both LUAD and diverse cancer populations. The identification of B4GALT2 as a previously unrecognized oncogenic factor involved in immune exclusion presents a novel therapeutic avenue for LUAD treatment and immunotherapy optimization.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dingli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Guangyao Zhou
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shuai Jiang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
4
|
Chen X, Zhang D, Ou H, Su J, Wang Y, Zhou F. Bulk and single-cell RNA sequencing analyses coupled with multiple machine learning to develop a glycosyltransferase associated signature in colorectal cancer. Transl Oncol 2024; 49:102093. [PMID: 39217850 PMCID: PMC11402624 DOI: 10.1016/j.tranon.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study aims to identify key glycosyltransferases (GTs) in colorectal cancer (CRC) and establish a robust prognostic signature derived from GTs. METHODS Utilizing the AUCell, UCell, singscore, ssgsea, and AddModuleScore algorithms, along with correlation analysis, we redefined genes related to GTs in CRC at the single-cell RNA level. To improve risk model accuracy, univariate Cox and lasso regression were employed to discover a more clinically subset of GTs in CRC. Subsequently, the efficacy of seven machine learning algorithms for CRC prognosis was assessed, focusing on survival outcomes through nested cross-validation. The model was then validated across four independent external cohorts, exploring variations in the tumor microenvironment (TME), response to immunotherapy, mutational profiles, and pathways of each risk group. Importantly, we identified potential therapeutic agents targeting patients categorized into the high-GARS group. RESULTS In our research, we classified CRC patients into distinct subgroups, each exhibiting variations in prognosis, clinical characteristics, pathway enrichments, immune infiltration, and immune checkpoint genes expression. Additionally, we established a Glycosyltransferase-Associated Risk Signature (GARS) based on machine learning. GARS surpasses traditional clinicopathological features in both prognostic power and survival prediction accuracy, and it correlates with higher malignancy levels, providing valuable insights into CRC patients. Furthermore, we explored the association between the risk score and the efficacy of immunotherapy. CONCLUSION A prognostic model based on GTs was developed to forecast the response to immunotherapy, offering a novel approach to CRC management.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - Dan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - Haibin Ou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - Jing Su
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - You Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China.
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China.
| |
Collapse
|
5
|
Tolue Ghasaban F, Taghehchian N, Zangouei AS, Keivany MR, Moghbeli M. MicroRNA-135b mainly functions as an oncogene during tumor progression. Pathol Res Pract 2024; 262:155547. [PMID: 39151250 DOI: 10.1016/j.prp.2024.155547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Late diagnosis is considered one of the main reasons of high mortality rate among cancer patients that results in therapeutic failure and tumor relapse. Therefore, it is needed to evaluate the molecular mechanisms associated with tumor progression to introduce efficient markers for the early tumor detection among cancer patients. The remarkable stability of microRNAs (miRNAs) in body fluids makes them potential candidates to use as the non-invasive tumor biomarkers in cancer screening programs. MiR-135b has key roles in prognosis and survival of cancer patients by either stimulating or inhibiting cell proliferation, invasion, and angiogenesis. Therefore, in the present review we assessed the molecular biology of miR-135b during tumor progression to introduce that as a novel tumor marker in cancer patients. It has been reported that miR-135b mainly acts as an oncogene by regulation of transcription factors, signaling pathways, drug response, cellular metabolism, and autophagy. This review paves the way to suggest miR-135b as a tumor marker and therapeutic target in cancer patients following the further clinical trials and animal studies.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keivany
- Department of Radiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
van der Haar Àvila I, Zhang T, Lorrain V, de Bruin F, Spreij T, Nakayama H, Iwabuchi K, García-Vallejo JJ, Wuhrer M, van Kooyk Y, van Vliet SJ. Limited impact of cancer-derived gangliosides on anti-tumor immunity in colorectal cancer. Glycobiology 2024; 34:cwae036. [PMID: 38785323 PMCID: PMC11137322 DOI: 10.1093/glycob/cwae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Victor Lorrain
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Florance de Bruin
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Tianne Spreij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Hitoshi Nakayama
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Kazuhisa Iwabuchi
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Drury J, Geisen ME, Tessmann JW, Rychahou PG, Kelson CO, He D, Wang C, Evers BM, Zaytseva YY. Overexpression of Fatty Acid Synthase Upregulates Glutamine-Fructose-6-Phosphate Transaminase 1 and O-Linked N-Acetylglucosamine Transferase to Increase O-GlcNAc Protein Glycosylation and Promote Colorectal Cancer Growth. Int J Mol Sci 2024; 25:4883. [PMID: 38732103 PMCID: PMC11084459 DOI: 10.3390/ijms25094883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Fatty acid synthesis has been extensively investigated as a therapeutic target in cancers, including colorectal cancer (CRC). Fatty acid synthase (FASN), a key enzyme of de novo lipid synthesis, is significantly upregulated in CRC, and therapeutic approaches of targeting this enzyme are currently being tested in multiple clinical trials. However, the mechanisms behind the pro-oncogenic action of FASN are still not completely understood. Here, for the first time, we show that overexpression of FASN increases the expression of glutamine-fructose-6-phosphate transaminase 1 (GFPT1) and O-linked N-acetylglucosamine transferase (OGT), enzymes involved in hexosamine metabolism, and the level of O-GlcNAcylation in vitro and in vivo. Consistently, expression of FASN significantly correlates with expression of GFPT1 and OGT in human CRC tissues. shRNA-mediated downregulation of GFPT1 and OGT inhibits cellular proliferation and the level of protein O-GlcNAcylation in vitro, and knockdown of GFPT1 leads to a significant decrease in tumor growth and metastasis in vivo. Pharmacological inhibition of GFPT1 and OGT leads to significant inhibition of cellular proliferation and colony formation in CRC cells. In summary, our results show that overexpression of FASN increases the expression of GFPT1 and OGT as well as the level of protein O-GlcNAcylation to promote progression of CRC; targeting the hexosamine biosynthesis pathway could be a therapeutic approach for this disease.
Collapse
Affiliation(s)
- James Drury
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (M.E.G.); (J.W.T.); (C.O.K.)
| | - Mariah E. Geisen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (M.E.G.); (J.W.T.); (C.O.K.)
| | - Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (M.E.G.); (J.W.T.); (C.O.K.)
| | - Piotr G. Rychahou
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA; (P.G.R.); (B.M.E.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Courtney O. Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (M.E.G.); (J.W.T.); (C.O.K.)
| | - Daheng He
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA; (D.H.); (C.W.)
| | - Chi Wang
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA; (D.H.); (C.W.)
| | - B. Mark Evers
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA; (P.G.R.); (B.M.E.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (M.E.G.); (J.W.T.); (C.O.K.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Xie A, Wang J, Liu Y, Li G, Yang N. Impacts of β-1, 3-N-acetylglucosaminyltransferases (B3GNTs) in human diseases. Mol Biol Rep 2024; 51:476. [PMID: 38553573 DOI: 10.1007/s11033-024-09405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
Glycosylation modification of proteins is a common post-translational modification that exists in various organisms and has rich biological functions. It is usually catalyzed by multiple glycosyltransferases located in the Golgi apparatus. β-1,3-N-acetylglucosaminyltransferases (B3GNTs) are members of the glycosyltransferases and have been found to be involved in the occurrence and development of a variety of diseases including autoimmunity diseases, cancers, neurodevelopment, musculoskeletal system, and metabolic diseases. The functions of B3GNTs represent the glycosylation of proteins is a crucial and frequently life-threatening step in progression of most diseases. In this review, we give an overview about the roles of B3GNTs in tumor, nervous system, musculoskeletal and metabolic diseases, describing the recent results about B3GNTs, in order to provide a research direction and exploration value for the prevention, diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Anna Xie
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jingjing Wang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yi Liu
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guoqing Li
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Nanyang Yang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
9
|
Zhang X, Cui S, Ding Y, Li Y, Wu B, Gao J, Li M, Xu L, Xia H. Downregulation of B4GALT5 attenuates cardiac fibrosis through Lumican and Akt/GSK-3β/β-catenin pathway. Eur J Pharmacol 2024; 963:176263. [PMID: 38081351 DOI: 10.1016/j.ejphar.2023.176263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Virtually all forms of cardiac disease exhibit cardiac fibrosis as a common trait, which ultimately leads to adverse ventricular remodeling and heart failure. To improve the prognosis of heart disease, it is crucial to halt the progression of cardiac fibrosis. Protein function is intricately linked with protein glycosylation, a vital post-translational modification. As a fundamental member of the β1,4-galactosyltransferase gene family (B4GALT), β1,4-galactosyltransferase V (B4GALT5) is associated with various disorders. In this study, significant levels of B4GALT5 expression were observed in cardiac fibrosis induced by transverse aortic constriction (TAC) or TGFβ1 and the activation of cardiac fibroblasts (CFs). Subsequently, by administering AAV9-shB4GALT5 injections to TAC animals, we were able to demonstrate that in vivo B4GALT5 knockdown decreased the transformation of CFs into myofibroblasts (myoFBs) and reduced the deposition of cardiac collagen fibers. In vitro tests revealed the same results. Conversely, both in vivo and in vitro experiments indicated that overexpression of B4GALT5 stimulates CFs activation and exacerbates cardiac fibrosis. Initially, we elucidated the primary mechanism by which B4GALT5 regulates the Akt/GSK-3β/β-catenin pathway and directly interacts with laminin, thereby affecting cardiac fibrosis. Our findings demonstrate that B4GALT5 promotes cardiac fibrosis through the Akt/GSK-3β/β-catenin pathway and reveal laminin as the target protein of B4GALT5.
Collapse
Affiliation(s)
- Xutao Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Yuewen Ding
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, China
| | - Yuhua Li
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Jixian Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Ming Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Lin Xu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
10
|
N-Glycosylation of LRP6 by B3GnT2 Promotes Wnt/β-Catenin Signalling. Cells 2023; 12:cells12060863. [PMID: 36980204 PMCID: PMC10047360 DOI: 10.3390/cells12060863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Reception of Wnt signals by cells is predominantly mediated by Frizzled receptors in conjunction with a co-receptor, the latter being LRP6 or LRP5 for the Wnt/β-catenin signalling pathway. It is important that cells maintain precise control of receptor activation events in order to properly regulate Wnt/β-catenin signalling as aberrant signalling can result in disease in humans. Phosphorylation of the intracellular domain (ICD) of LRP6 is well known to regulate Wntβ-catenin signalling; however, less is known for regulatory post-translational modification events within the extracellular domain (ECD). Using a cell culture-based expression screen for functional regulators of LRP6, we identified a glycosyltransferase, B3GnT2-like, from a teleost fish (medaka) cDNA library, that modifies LRP6 and regulates Wnt/β-catenin signalling. We provide both gain-of-function and loss-of-function evidence that the single human homolog, B3GnT2, promotes extension of polylactosamine chains at multiple N-glycans on LRP6, thereby enhancing trafficking of LRP6 to the plasma membrane and promoting Wnt/β-catenin signalling. Our findings further highlight the importance of LRP6 as a regulatory hub in Wnt signalling and provide one of the few examples of how a specific glycosyltransferase appears to selectively target a signalling pathway component to alter cellular signalling events.
Collapse
|
11
|
Cadamuro F, Marongiu L, Marino M, Tamini N, Nespoli L, Zucchini N, Terzi A, Altamura D, Gao Z, Giannini C, Bindi G, Smith A, Magni F, Bertini S, Granucci F, Nicotra F, Russo L. 3D bioprinted colorectal cancer models based on hyaluronic acid and signalling glycans. Carbohydr Polym 2023; 302:120395. [PMID: 36604073 DOI: 10.1016/j.carbpol.2022.120395] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
In cancer microenvironment, aberrant glycosylation events of ECM proteins and cell surface receptors occur. We developed a protocol to generate 3D bioprinted models of colorectal cancer (CRC) crosslinking hyaluronic acid and gelatin functionalized with three signalling glycans characterized in CRC, 3'-Sialylgalactose, 6'-Sialylgalactose and 2'-Fucosylgalactose. The crosslinking, performed exploiting azide functionalized gelatin and hyaluronic acid and 4arm-PEG-dibenzocyclooctyne, resulted in biocompatible hydrogels that were 3D bioprinted with commercial CRC cells HT-29 and patient derived CRC tumoroids. The glycosylated hydrogels showed good 3D printability, biocompatibility and stability over the time. SEM and synchrotron radiation SAXS/WAXS analysis revealed the influence of glycosylation in the construct morphology, whereas MALDI-MS imaging showed that protein profiles of tumoroid cells vary with glycosylation, indicating that sialylation and fucosylation of ECM proteins induce diverse alterations to the proteome of the tumoroid and surrounding cells.
Collapse
Affiliation(s)
- Francesca Cadamuro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.
| | - Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.
| | - Michele Marino
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Nicolò Tamini
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; ASST San Gerardo Hospital, 20900 Monza, Italy
| | - Luca Nespoli
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; ASST San Gerardo Hospital, 20900 Monza, Italy.
| | | | - Alberta Terzi
- Institute of Crystallography, National Research Council, v. Amendola 122/O, 70126 Bari, Italy.
| | - Davide Altamura
- Institute of Crystallography, National Research Council, v. Amendola 122/O, 70126 Bari, Italy.
| | - Zirui Gao
- Paul Scherrer Institute, Villigen PSI 5232, Switzerland.
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, v. Amendola 122/O, 70126 Bari, Italy.
| | - Greta Bindi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy.
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy.
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy.
| | - Sabrina Bertini
- G. Ronzoni Institute for Chemical and Biochemical Research, 20133 Milan, Italy.
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91TK33 Galway, Ireland.
| |
Collapse
|
12
|
Irajizad E, Han CY, Celestino J, Wu R, Murage E, Spencer R, Dennison JB, Vykoukal J, Long JP, Do KA, Drescher C, Lu K, Lu Z, Bast RC, Hanash S, Fahrmann JF. A Blood-Based Metabolite Panel for Distinguishing Ovarian Cancer from Benign Pelvic Masses. Clin Cancer Res 2022; 28:4669-4676. [PMID: 36037307 PMCID: PMC9633421 DOI: 10.1158/1078-0432.ccr-22-1113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE To assess the contributions of circulating metabolites for improving upon the performance of the risk of ovarian malignancy algorithm (ROMA) for risk prediction of ovarian cancer among women with ovarian cysts. EXPERIMENTAL DESIGN Metabolomic profiling was performed on an initial set of sera from 101 serous and nonserous ovarian cancer cases and 134 individuals with benign pelvic masses (BPM). Using a deep learning model, a panel consisting of seven cancer-related metabolites [diacetylspermine, diacetylspermidine, N-(3-acetamidopropyl)pyrrolidin-2-one, N-acetylneuraminate, N-acetyl-mannosamine, N-acetyl-lactosamine, and hydroxyisobutyric acid] was developed for distinguishing early-stage ovarian cancer from BPM. The performance of the metabolite panel was evaluated in an independent set of sera from 118 ovarian cancer cases and 56 subjects with BPM. The contributions of the panel for improving upon the performance of ROMA were further assessed. RESULTS A 7-marker metabolite panel (7MetP) developed in the training set yielded an AUC of 0.86 [95% confidence interval (CI): 0.76-0.95] for early-stage ovarian cancer in the independent test set. The 7MetP+ROMA model had an AUC of 0.93 (95% CI: 0.84-0.98) for early-stage ovarian cancer in the test set, which was improved compared with ROMA alone [0.91 (95% CI: 0.84-0.98); likelihood ratio test P: 0.03]. In the entire specimen set, the combined 7MetP+ROMA model yielded a higher positive predictive value (0.68 vs. 0.52; one-sided P < 0.001) with improved specificity (0.89 vs. 0.78; one-sided P < 0.001) for early-stage ovarian cancer compared with ROMA alone. CONCLUSIONS A blood-based metabolite panel was developed that demonstrates independent predictive ability and complements ROMA for distinguishing early-stage ovarian cancer from benign disease to better inform clinical decision making.
Collapse
Affiliation(s)
- Ehsan Irajizad
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chae Y. Han
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Celestino
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention; The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Eunice Murage
- Department of Clinical Cancer Prevention; The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Rachelle Spencer
- Department of Clinical Cancer Prevention; The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention; The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention; The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - James P Long
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kim Anh Do
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Charles Drescher
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Gynecologic Oncology, Swedish Cancer Institute, Seattle, Washington, USA
| | - Karen Lu
- Department of Gynecological Oncology and Reproductive Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Lu
- Department of Gynecological Oncology and Reproductive Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert C. Bast
- Department of Gynecological Oncology and Reproductive Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Sam Hanash
- Department of Clinical Cancer Prevention; The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention; The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Lv W, Yu H, Han M, Tan Y, Wu M, Zhang J, Wu Y, Zhang Q. Analysis of Tumor Glycosylation Characteristics and Implications for Immune Checkpoint Inhibitor’s Efficacy for Breast Cancer. Front Immunol 2022; 13:830158. [PMID: 35444644 PMCID: PMC9013822 DOI: 10.3389/fimmu.2022.830158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The alterations of glycosylation, which is a common post-translational modification of proteins, have been acknowledged as key events in breast cancer (BC) oncogenesis and progression. The aberrant expression of glycosyltransferases leads to aberrant glycosylation patterns, posing the diagnostic potential in BC outcomes. The present study aims to establish a glycosyltransferase-based signature to predict BC prognosis and response to immune checkpoint inhibitors. We firstly screened 9 glycosyltransferase genes from The Cancer Genome Atlas (TCGA) database and accordingly established a glyco-signature for predicting the prognosis in BC patients. Patients with BC were successfully divided into high-risk and low-risk groups based on the median cutoff point for risk scores in this signature. Next, the combinational analyses of univariate and multivariate Cox regression, Kaplan–Meier, and receiver operating characteristic (ROC) curves were used to prove that this glyco-signature possessed excellent predictive performance for prognosis of BC patients, as the high-risk group possessed worse outcomes, in comparison to the low-risk group. Additionally, the Gene Set Enrichment Analysis (GSEA) and immunologic infiltration analysis were adopted and indicated that there was a more immunosuppressive state in the high-risk group than that in the low-risk group. The clinical sample validation verified that glycosyltransferase genes were differentially expressed in patients in the low- and high-risk groups, while the biomarkers of antitumor M1 macrophages were increased and N-glycosyltransferase STT3A decreased in the low-risk group. The final in vitro assay showed that the silencing of STT3A suppressed the proliferation and migration of BC cells. Collectively, our well-constructed glyco-signature is able to distinguish the high- and low-risk groups and accordingly predict BC prognosis, which will synergistically promote the prognosis evaluation and provide new immunotherapeutic targets for combating BC.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Han
- Department of Anesthesiology, The People’s Hospital of China Three Gorges, China Three Gorges University, Yichang, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- *Correspondence: Jun Zhang, ; Yiping Wu, ; Qi Zhang,
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Zhang, ; Yiping Wu, ; Qi Zhang,
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Zhang, ; Yiping Wu, ; Qi Zhang,
| |
Collapse
|
14
|
Qu L, Shi K, Xu J, Liu C, Ke C, Zhan X, Xu K, Liu Y. Atractylenolide-1 targets SPHK1 and B4GALT2 to regulate intestinal metabolism and flora composition to improve inflammation in mice with colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153945. [PMID: 35114452 DOI: 10.1016/j.phymed.2022.153945] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Atractylenolide-1, an active component of Atractylodes Lancea, which is widely used to improve the gastrointestinal function. However, the efficacy and mechanism remain unclear in treating ulcerative colitis (UC). PURPOSE This study aimed to investigate the efficacy and the underlying mechanism of atractylenolide-1in UC. METHODS A dextran sulfate sodium (DSS)-induced UC mouse model was used to investigate the efficacy of atractylenolide-1. 16S DNA sequencing, GC-MS technique and transcriptome sequencing were used to detect the composition of mouse intestinal flora, the changes of metabolites and gene expression in mouse intestine. Compound-reaction-enzyme-gene network was used to find drug targets. Recombinant plasmid overexpression was used to verify drug targets in DSS mouse models. RESULTS The results showed that Atractylenolide-1 could significantly improve weight loss, diarrhea, blood in the stool, shortening of the colon, the loss of colonic goblet cells, reduction in mucoprotein MUC2, and tight junction proteins (zo-1, occludin) in mice with colitis. It reduced the inflammatory factors TNF-α, IL-6, IL-1β as well. The 16S sequencing showed that Atractylenolide-1 regulated the diversity and abundance of the intestinal flora in mice with colitis, and the analysis of flora enrichment indicated that the regulation of intestinal flora by atractylenolide-1 may be related to the regulation of metabolism. Correlation analysis of metabolomics and transcriptome showed that two genes SPHK1 and B4GALT2 related to the metabolism of fructose and galactose were regulated by atractylenolide-1. Further verification showed that atractylenolide-1 significantly inhibited the aberrance of SPHK1 and B4GALT2 in the colon with colitis. Meanwhile, it inhibited the activation of the PI3K-AKT pathway. SPHK1 and B4GALT2 overexpressing reversed the therapeutic effect of atractylenolide-1 in mice with colitis. CONCLUSION Atractylenolide-1 is a potential drug for the treatment of colitis by suppressing inflammation via the SPHK1/PI3K/AKT axis and by targeting SPHK1 and B4GAT2 to regulate fructose/galactose-related metabolism, thereby regulating the composition of the intestinal flora.
Collapse
Affiliation(s)
- Linghang Qu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kun Shi
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jing Xu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chunlian Liu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chang Ke
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xin Zhan
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kang Xu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM processing technology engineering, Wuhan 430065, China.
| | - Yanju Liu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM processing technology engineering, Wuhan 430065, China.
| |
Collapse
|
15
|
Emilsson V, Gudmundsdottir V, Gudjonsson A, Jonmundsson T, Jonsson BG, Karim MA, Ilkov M, Staley JR, Gudmundsson EF, Launer LJ, Lindeman JH, Morton NM, Aspelund T, Lamb JR, Jennings LL, Gudnason V. Coding and regulatory variants are associated with serum protein levels and disease. Nat Commun 2022; 13:481. [PMID: 35079000 PMCID: PMC8789809 DOI: 10.1038/s41467-022-28081-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Circulating proteins can be used to diagnose and predict disease-related outcomes. A deep serum proteome survey recently revealed close associations between serum protein networks and common disease. In the current study, 54,469 low-frequency and common exome-array variants were compared to 4782 protein measurements in the serum of 5343 individuals from the AGES Reykjavik cohort. This analysis identifies a large number of serum proteins with genetic signatures overlapping those of many diseases. More specifically, using a study-wide significance threshold, we find that 2021 independent exome array variants are associated with serum levels of 1942 proteins. These variants reside in genetic loci shared by hundreds of complex disease traits, highlighting serum proteins' emerging role as biomarkers and potential causative agents of a wide range of diseases.
Collapse
Affiliation(s)
- Valur Emilsson
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Reykjavík, Iceland.
| | | | | | | | | | - Mohd A Karim
- Wellcome Trust Sanger Institute, Welcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Marjan Ilkov
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland
| | - James R Staley
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elias F Gudmundsson
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, 20892-9205, USA
| | - Jan H Lindeman
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Thor Aspelund
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland
| | - John R Lamb
- GNF Novartis, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Reykjavík, Iceland.
| |
Collapse
|
16
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Huang R, Li M, Zeng Z, Zhang J, Song D, Hu P, Yan P, Xian S, Zhu X, Chang Z, Zhang J, Guo J, Yin H, Meng T, Huang Z. The Identification of Prognostic and Metastatic Alternative Splicing in Skin Cutaneous Melanoma. Cancer Control 2022; 29:10732748211051554. [PMID: 34986671 PMCID: PMC8743934 DOI: 10.1177/10732748211051554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is a type of highly invasive cancer originated from melanocytes. It is reported that aberrant alternative splicing (AS) plays an important role in the neoplasia and metastasis of many types of cancer. Therefore, we investigated whether ASEs of pre-RNA have such an influence on the prognosis of SKCM and the related mechanism of ASEs in SKCM. The RNA-seq data and ASEs data for SKCM patients were obtained from the TCGA and TCGASpliceSeq database. The univariate Cox regression revealed 1265 overall survival-related splicing events (OS-SEs). Screened by Lasso regression, 4 OS-SEs were identified and used to construct an effective prediction model (AUC: .904), whose risk score was proved to be an independent prognostic factor. Furthermore, Kruskal-Wallis test and Mann-Whitney-Wilcoxon test showed that an aberrant splicing type of aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2) regulated by CDC-like kinase 1 (CLK1) was associated with the metastasis and stage of SKCM. Besides, the overlapped signal pathway for AIMP2 was galactose metabolism identified by the co-expression analysis. External database validation also confirmed that AIMP2, CLK1, and the galactose metabolism were associated with the metastasis and stage of SKCM patients. ChIP-seq and ATAC-seq methods further confirmed the transcription regulation of CLK1, AIMP2, and other key genes, whose cellular expression was detected by Single Cell Sequencing. In conclusion, we proposed that CLK1-regulated AIMP2-78704-ES might play a critical role in the tumorigenesis and metastasis of SKCM via galactose metabolism. Besides, we established an effective model with MTMR14-63114-ES, URI1-48867-ES, BATF2-16724-AP, and MED22-88025-AP to predict the metastasis and prognosis of SKCM patients.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Zhengzhou University School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Mingxiao Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhiwei Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Zhengzhou University School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Dianwen Song
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Hu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuyuan Xian
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaolong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University School of Medicine, Zhengzhou University, Zhengzhou, China
| | | | - Jiayao Zhang
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juanru Guo
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huabin Yin
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tong Meng
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Mathematical Sciences, Tongji University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Glycation Interferes with the Expression of Sialyltransferases in Meningiomas. Cells 2021; 10:cells10123298. [PMID: 34943806 PMCID: PMC8699175 DOI: 10.3390/cells10123298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Meningiomas are the most common non-malignant intracranial tumors and prefer, like most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation end products (AGEs). In this study, we investigated the influence of glycation on sialylation in two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). In the benign meningioma cell line, glycation led to differences in expression of sialyltransferases (ST3GAL1/2/3/5/6, ST6GAL1/2, ST6GALNAC2/6, and ST8SIA1/2), which are known to play a role in tumor progression. We could show that glycation of BEN-MEN-1 cells led to decreased expression of ST3Gal5. This resulted in decreased synthesis of the ganglioside GM3, the product of ST3Gal5. In the malignant meningioma cell line, we observed changes in expression of sialyltransferases (ST3GAL1/2/3, ST6GALNAC5, and ST8SIA1) after glycation, which correlates with less aggressive behavior.
Collapse
|
19
|
Guzman NA, Guzman DE. Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules 2021; 11:1443. [PMID: 34680076 PMCID: PMC8533156 DOI: 10.3390/biom11101443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Over the years, multiple biomarkers have been used to aid in disease screening, diagnosis, prognosis, and response to therapy. As of late, protein biomarkers are gaining strength in their role for early disease diagnosis and prognosis in part due to the advancements in identification and characterization of a distinct functional pool of proteins known as proteoforms. Proteoforms are defined as all of the different molecular forms of a protein derived from a single gene caused by genetic variations, alternative spliced RNA transcripts and post-translational modifications. Monitoring the structural changes of each proteoform of a particular protein is essential to elucidate the complex molecular mechanisms that guide the course of disease. Clinical proteomics therefore holds the potential to offer further insight into disease pathology, progression, and prevention. Nevertheless, more technologically advanced diagnostic methods are needed to improve the reliability and clinical applicability of proteomics in preventive medicine. In this manuscript, we review the use of immunoaffinity capillary electrophoresis (IACE) as an emerging powerful diagnostic tool to isolate, separate, detect and characterize proteoform biomarkers obtained from liquid biopsy. IACE is an affinity capture-separation technology capable of isolating, concentrating and analyzing a wide range of biomarkers present in biological fluids. Isolation and concentration of target analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. IACE has the potential to generate rapid results with significant accuracy, leading to reliability and reproducibility in diagnosing and monitoring disease. Additionally, IACE has the capability of monitoring the efficacy of therapeutic agents by quantifying companion and complementary protein biomarkers. With advancements in telemedicine and artificial intelligence, the implementation of proteoform biomarker detection and analysis may significantly improve our capacity to identify medical conditions early and intervene in ways that improve health outcomes for individuals and populations.
Collapse
Affiliation(s)
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, USA;
- Division of Hospital Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Zhao Y, Zhang J, Wang S, Jiang Q, Xu K. Identification and Validation of a Nine-Gene Amino Acid Metabolism-Related Risk Signature in HCC. Front Cell Dev Biol 2021; 9:731790. [PMID: 34557495 PMCID: PMC8452960 DOI: 10.3389/fcell.2021.731790] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the world’s second most deadly cancer, and metabolic reprogramming is its distinguishing feature. Among metabolite profiling, variation in amino acid metabolism supports tumor proliferation and metastasis to the most extent, yet a systematic study on the role of amino acid metabolism-related genes in HCC is still lacking. An effective amino acid metabolism-related prediction signature is urgently needed to assess the prognosis of HCC patients for individualized treatment. Materials and Methods: RNA-seq data of HCC from the TCGA-LIHC and GSE14520 (GPL3921) datasets were defined as the training set and validation set, respectively. Amino acid metabolic genes were extracted from the Molecular Signature Database. Univariate Cox and LASSO regression analyses were performed to build a predictive risk signature. K-M curves, ROC curves, and univariate and multivariate Cox regression were conducted to evaluate the predictive value of this risk signature. Functional enrichment was analyzed by GSEA and CIBERSORTx software. Results: A nine-gene amino acid metabolism-related risk signature including B3GAT3, B4GALT2, CYB5R3, GNPDA1, GOT2, HEXB, HMGCS2, PLOD2, and SEPHS1 was constructed to predict the overall survival (OS) of HCC patients. Patients were separated into high-risk and low-risk groups based on risk scores and low-risk patients had lower risk scores and longer survival time. Univariate and multivariate Cox regression verified that this signature was an independent risk factor for HCC. ROC curves showed that this risk signature can effectively predict the 1-, 2-, 3- and 5-year survival times of patients with HCC. Additionally, prognostic nomograms were established based on the training set and validation set. These genes were closely correlated with the immune regulation. Conclusion: Our study identified a nine-gene amino acid metabolism-related risk signature and built predictive nomograms for OS in HCC. These findings will help us to personalize the treatment of liver cancer patients.
Collapse
Affiliation(s)
- Yajuan Zhao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junli Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuhan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Martinez-Morales P, Morán Cruz I, Roa-de la Cruz L, Maycotte P, Reyes Salinas JS, Vazquez Zamora VJ, Gutierrez Quiroz CT, Montiel-Jarquin AJ, Vallejo-Ruiz V. Hallmarks of glycogene expression and glycosylation pathways in squamous and adenocarcinoma cervical cancer. PeerJ 2021; 9:e12081. [PMID: 34540372 PMCID: PMC8415283 DOI: 10.7717/peerj.12081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Dysregulation of glycogene expression in cancer can lead to aberrant glycan expression, which can promote tumorigenesis. Cervical cancer (CC) displays an increased expression of glycogenes involved in sialylation and sialylated glycans. Here, we show a comprehensive analysis of glycogene expression in CC to identify glycogene expression signatures and the possible glycosylation pathways altered. Methods First, we performed a microarray expression assay to compare glycogene expression changes between normal and cervical cancer tissues. Second, we used 401 glycogenes to analyze glycogene expression in adenocarcinoma and squamous carcinoma from RNA-seq data at the cBioPortal for Cancer Genomics. Results The analysis of the microarray expression assay indicated that CC displayed an increase in glycogenes related to GPI-anchored biosynthesis and a decrease in genes associated with chondroitin and dermatan sulfate with respect to normal tissue. Also, the glycogene analysis of CC samples by the RNA-seq showed that the glycogenes involved in the chondroitin and dermatan sulfate pathway were downregulated. Interestingly the adenocarcinoma tumors displayed a unique glycogene expression signature compared to squamous cancer that shows heterogeneous glycogene expression divided into six types. Squamous carcinoma type 5 (SCC-5) showed increased expression of genes implicated in keratan and heparan sulfate synthesis, glycosaminoglycan degradation, ganglio, and globo glycosphingolipid synthesis was related to poorly differentiated tumors and poor survival. Squamous carcinoma type 6 (SCC-6) displayed an increased expression of genes involved in chondroitin/dermatan sulfate synthesis and lacto and neolacto glycosphingolipid synthesis and was associated with nonkeratinizing squamous cancer and good survival. In summary, our study showed that CC tumors are not a uniform entity, and their glycome signatures could be related to different clinicopathological characteristics.
Collapse
Affiliation(s)
- Patricia Martinez-Morales
- CONACYT-Centro de Investigación Biomédica de Oriente, Mexican Institute of Social Security, Metepec, Puebla, México
| | - Irene Morán Cruz
- Centro de Investigación Biomédica de Oriente, Laboratory of Molecular Biology, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| | - Lorena Roa-de la Cruz
- Department of Biological Chemical Sciences, Universidad de las Américas-Puebla, San Andrés Cholula, Puebla, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente, Laboratory of Cell Biology, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| | - Juan Salvador Reyes Salinas
- Hospital de especialidades, General Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, México
| | - Victor Javier Vazquez Zamora
- Hospital de especialidades, General Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, México
| | | | - Alvaro Jose Montiel-Jarquin
- Hospital de especialidades, General Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, México
| | - Verónica Vallejo-Ruiz
- Centro de Investigación Biomédica de Oriente, Laboratory of Molecular Biology, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| |
Collapse
|
22
|
The Role of Glycosyltransferases in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22115822. [PMID: 34070747 PMCID: PMC8198577 DOI: 10.3390/ijms22115822] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-translational modifications (PTMs) have been extensively studied in malignancies due to its relevance in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase expression in CRC and its impact in cell function and in several biological pathways associated with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface molecules between cells and their environment and in several cases facilitate molecule function. CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins, heat shock protein 90 (Hsp90), β1 integrin, carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-β) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell–cell adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and gut microbiota composition; all such functions are associated with the prognosis and evolution of the disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide processing and to modify glycoconjugate structures in order to control CRC progression and prevent metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens, generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric antigen receptors) T cells.
Collapse
|
23
|
Matejcic M, Shaban HA, Quintana MW, Schumacher FR, Edlund CK, Naghi L, Pai RK, Haile RW, Levine AJ, Buchanan DD, Jenkins MA, Figueiredo JC, Rennert G, Gruber SB, Li L, Casey G, Conti DV, Schmit SL. Rare Variants in the DNA Repair Pathway and the Risk of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:895-903. [PMID: 33627384 PMCID: PMC8102340 DOI: 10.1158/1055-9965.epi-20-1457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inherited susceptibility is an important contributor to colorectal cancer risk, and rare variants in key genes or pathways could account in part for the missing proportion of colorectal cancer heritability. METHODS We conducted an exome-wide association study including 2,327 cases and 2,966 controls of European ancestry from three large epidemiologic studies. Single variant associations were tested using logistic regression models, adjusting for appropriate study-specific covariates. In addition, we examined the aggregate effects of rare coding variation at the gene and pathway levels using Bayesian model uncertainty techniques. RESULTS In an exome-wide gene-level analysis, we identified ST6GALNAC2 as the top associated gene based on the Bayesian risk index (BRI) method [summary Bayes factor (BF)BRI = 2604.23]. A rare coding variant in this gene, rs139401613, was the top associated variant (P = 1.01 × 10-6) in an exome-wide single variant analysis. Pathway-level association analyses based on the integrative BRI (iBRI) method found extreme evidence of association with the DNA repair pathway (BFiBRI = 17852.4), specifically with the nonhomologous end joining (BFiBRI = 437.95) and nucleotide excision repair (BFiBRI = 36.96) subpathways. The iBRI method also identified RPA2, PRKDC, ERCC5, and ERCC8 as the top associated DNA repair genes (summary BFiBRI ≥ 10), with rs28988897, rs8178232, rs141369732, and rs201642761 being the most likely associated variants in these genes, respectively. CONCLUSIONS We identified novel variants and genes associated with colorectal cancer risk and provided additional evidence for a role of DNA repair in colorectal cancer tumorigenesis. IMPACT This study provides new insights into the genetic predisposition to colorectal cancer, which has potential for translation into improved risk prediction.
Collapse
Affiliation(s)
- Marco Matejcic
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Hiba A Shaban
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | | | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
- Seidman Cancer Center, University Hospitals, Cleveland, Ohio
| | - Christopher K Edlund
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Leah Naghi
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, New York, New York
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Robert W Haile
- Department of Medicine, Research Center for Health Equity, Cedars-Sinai Samuel Oschin Comprehensive Cancer Center, Los Angeles, California
| | - A Joan Levine
- Department of Medicine, Research Center for Health Equity, Cedars-Sinai Samuel Oschin Comprehensive Cancer Center, Los Angeles, California
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne, Centre for Cancer Research, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - David V Conti
- Department of Preventive Medicine, Division of Biostatistics, University of Southern California, Los Angeles, California
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida.
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
24
|
Exosome-mediated diagnosis of pancreatic cancer using lectin-conjugated nanoparticles bound to selective glycans. Biosens Bioelectron 2021; 177:112980. [DOI: 10.1016/j.bios.2021.112980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
|
25
|
Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. eLife 2021; 10:e59629. [PMID: 33427197 PMCID: PMC7877913 DOI: 10.7554/elife.59629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Maria Trexler
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of OncologyBudapestHungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
26
|
Kadirvelraj R, Yang JY, Kim HW, Sanders JH, Moremen KW, Wood ZA. Comparison of human poly-N-acetyl-lactosamine synthase structure with GT-A fold glycosyltransferases supports a modular assembly of catalytic subsites. J Biol Chem 2021; 296:100110. [PMID: 33229435 PMCID: PMC7948508 DOI: 10.1074/jbc.ra120.015305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023] Open
Abstract
Poly-N-acetyl-lactosamine (poly-LacNAc) structures are composed of repeating [-Galβ(1,4)-GlcNAcβ(1,3)-]n glycan extensions. They are found on both N- and O-glycoproteins and glycolipids and play an important role in development, immune function, and human disease. The majority of mammalian poly-LacNAc is synthesized by the alternating iterative action of β1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and β1,4-galactosyltransferases. B3GNT2 is in the largest mammalian glycosyltransferase family, GT31, but little is known about the structure, substrate recognition, or catalysis by family members. Here we report the structures of human B3GNT2 in complex with UDP:Mg2+ and in complex with both UDP:Mg2+ and a glycan acceptor, lacto-N-neotetraose. The B3GNT2 structure conserves the GT-A fold and the DxD motif that coordinates a Mg2+ ion for binding the UDP-GlcNAc sugar donor. The acceptor complex shows interactions with only the terminal Galβ(1,4)-GlcNAcβ(1,3)- disaccharide unit, which likely explains the specificity for both N- and O-glycan acceptors. Modeling of the UDP-GlcNAc donor supports a direct displacement inverting catalytic mechanism. Comparative structural analysis indicates that nucleotide sugar donors for GT-A fold glycosyltransferases bind in similar positions and conformations without conserving interacting residues, even for enzymes that use the same donor substrate. In contrast, the B3GNT2 acceptor binding site is consistent with prior models suggesting that the evolution of acceptor specificity involves loops inserted into the stable GT-A fold. These observations support the hypothesis that GT-A fold glycosyltransferases employ coevolving donor, acceptor, and catalytic subsite modules as templates to achieve the complex diversity of glycan linkages in biological systems.
Collapse
Affiliation(s)
- Renuka Kadirvelraj
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hyun W Kim
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Justin H Sanders
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Kelley W Moremen
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| | - Zachary A Wood
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
27
|
O-glycan recognition and function in mice and human cancers. Biochem J 2020; 477:1541-1564. [PMID: 32348475 DOI: 10.1042/bcj20180103] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation represents a nearly ubiquitous post-translational modification, and altered glycosylation can result in clinically significant pathological consequences. Here we focus on O-glycosylation in tumor cells of mice and humans. O-glycans are those linked to serine and threonine (Ser/Thr) residues via N-acetylgalactosamine (GalNAc), which are oligosaccharides that occur widely in glycoproteins, such as those expressed on the surfaces and in secretions of all cell types. The structure and expression of O-glycans are dependent on the cell type and disease state of the cells. There is a great interest in O-glycosylation of tumor cells, as they typically express many altered types of O-glycans compared with untransformed cells. Such altered expression of glycans, quantitatively and/or qualitatively on different glycoproteins, is used as circulating tumor biomarkers, such as CA19-9 and CA-125. Other tumor-associated carbohydrate antigens (TACAs), such as the Tn antigen and sialyl-Tn antigen (STn), are truncated O-glycans commonly expressed by carcinomas on multiple glycoproteins; they contribute to tumor development and serve as potential biomarkers for tumor presence and stage, both in immunohistochemistry and in serum diagnostics. Here we discuss O-glycosylation in murine and human cells with a focus on colorectal, breast, and pancreatic cancers, centering on the structure, function and recognition of O-glycans. There are enormous opportunities to exploit our knowledge of O-glycosylation in tumor cells to develop new diagnostics and therapeutics.
Collapse
|
28
|
Hao Y, Créquer-Grandhomme A, Javier N, Singh A, Chen H, Manzanillo P, Lo MC, Huang X. Structures and mechanism of human glycosyltransferase β1,3-N-acetylglucosaminyltransferase 2 (B3GNT2), an important player in immune homeostasis. J Biol Chem 2020; 296:100042. [PMID: 33158990 PMCID: PMC7948737 DOI: 10.1074/jbc.ra120.015306] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
β1,3-N-acetylglucosaminyltransferases (B3GNTs) are Golgi-resident glycosyltransferases involved in the biosynthesis of poly-N-acetyl-lactosamine chains. They catalyze the addition of the N-acetylglucosamine to the N-acetyl-lactosamine repeat as a key step of the chain elongation process. Poly-N-acetyl-lactosamine is involved in the immune system in many ways. Particularly, its long chain has been demonstrated to suppress excessive immune responses. Among the characterized B3GNTs, B3GNT2 is the major poly-N-acetyl-lactosamine synthase, and deletion of its coding gene dramatically reduced the cell surface poly-N-acetyl-lactosamine and led to hypersensitive and hyperresponsive immunocytes. Despite the extensive functional studies, no structural information is available to understand the molecular mechanism of B3GNT2, as well as other B3GNTs. Here we present the structural and kinetic studies of the human B3GNT2. Five crystal structures of B3GNT2 have been determined in the unliganded, donor substrate-bound, acceptor substrate-bound, and product(s)-bound states at resolutions ranging from 1.85 to 2.35 Å. Kinetic study shows that the transglycosylation reaction follows a sequential mechanism. Critical residues involved in recognition of both donor and acceptor substrates as well as catalysis are identified. Mutations of these invariant residues impair B3GNT2 activity in cell assays. Structural comparison with other glycosyltransferases such as mouse Fringe reveals a novel N-terminal helical domain of B3GNTs that may stabilize the catalytic domain and distinguish among different acceptor substrates.
Collapse
Affiliation(s)
- Yue Hao
- Department of Molecular Engineering, Amgen Research, Cambridge, Massachusetts, USA; Amgen Postdoctoral Fellow Program, Amgen Research, Cambridge, Massachusetts, USA.
| | | | - Noelle Javier
- Department of Discovery Technologies, Amgen Research, South San Francisco, California, USA
| | - Aman Singh
- Department of Discovery Attribute Sciences, Amgen Research, South San Francisco, California, USA
| | - Hao Chen
- Department of Protein Technologies, Amgen Research, Cambridge, Massachusetts, USA
| | - Paolo Manzanillo
- Department of Inflammation and Oncology, Amgen Research, South San Francisco, California, USA
| | - Mei-Chu Lo
- Department of Discovery Technologies, Amgen Research, South San Francisco, California, USA
| | - Xin Huang
- Department of Molecular Engineering, Amgen Research, Cambridge, Massachusetts, USA.
| |
Collapse
|
29
|
Dobie C, Skropeta D. Insights into the role of sialylation in cancer progression and metastasis. Br J Cancer 2020; 124:76-90. [PMID: 33144696 PMCID: PMC7782833 DOI: 10.1038/s41416-020-01126-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Upregulation of sialyltransferases—the enzymes responsible for the addition of sialic acid to growing glycoconjugate chains—and the resultant hypersialylation of up to 40–60% of tumour cell surfaces are established hallmarks of several cancers, including lung, breast, ovarian, pancreatic and prostate cancer. Hypersialylation promotes tumour metastasis by several routes, including enhancing immune evasion and tumour cell survival, and stimulating tumour invasion and migration. The critical role of enzymes that regulate sialic acid in tumour cell growth and metastasis points towards targeting sialylation as a potential new anti-metastatic cancer treatment strategy. Herein, we explore insights into the mechanisms by which hypersialylation plays a role in promoting metastasis, and explore the current state of sialyltransferase inhibitor development.
Collapse
Affiliation(s)
- Christopher Dobie
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; and Molecular Horizons, University of Wollongong, NSW, 2522, Wollongong, Australia
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; and Molecular Horizons, University of Wollongong, NSW, 2522, Wollongong, Australia. .,Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
30
|
Schriml LM, Mitraka E, Munro J, Tauber B, Schor M, Nickle L, Felix V, Jeng L, Bearer C, Lichenstein R, Bisordi K, Campion N, Hyman B, Kurland D, Oates CP, Kibbey S, Sreekumar P, Le C, Giglio M, Greene C. Human Disease Ontology 2018 update: classification, content and workflow expansion. Nucleic Acids Res 2020; 47:D955-D962. [PMID: 30407550 PMCID: PMC6323977 DOI: 10.1093/nar/gky1032] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
The Human Disease Ontology (DO) (http://www.disease-ontology.org), database has undergone significant expansion in the past three years. The DO disease classification includes specific formal semantic rules to express meaningful disease models and has expanded from a single asserted classification to include multiple-inferred mechanistic disease classifications, thus providing novel perspectives on related diseases. Expansion of disease terms, alternative anatomy, cell type and genetic disease classifications and workflow automation highlight the updates for the DO since 2015. The enhanced breadth and depth of the DO’s knowledgebase has expanded the DO’s utility for exploring the multi-etiology of human disease, thus improving the capture and communication of health-related data across biomedical databases, bioinformatics tools, genomic and cancer resources and demonstrated by a 6.6× growth in DO’s user community since 2015. The DO’s continual integration of human disease knowledge, evidenced by the more than 200 SVN/GitHub releases/revisions, since previously reported in our DO 2015 NAR paper, includes the addition of 2650 new disease terms, a 30% increase of textual definitions, and an expanding suite of disease classification hierarchies constructed through defined logical axioms.
Collapse
Affiliation(s)
- Lynn M Schriml
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | | | - James Munro
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Becky Tauber
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Mike Schor
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Lance Nickle
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Victor Felix
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Linda Jeng
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Bearer
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Nicole Campion
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brooke Hyman
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Kurland
- New York University Langone Medical Center, Department of Neurosurgery, New York, NY, USA
| | - Connor Patrick Oates
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siobhan Kibbey
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Chris Le
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle Giglio
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Carol Greene
- University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Stotter BR, Talbot BE, Capen DE, Artelt N, Zeng J, Matsumoto Y, Endlich N, Cummings RD, Schlondorff JS. Cosmc-dependent mucin-type O-linked glycosylation is essential for podocyte function. Am J Physiol Renal Physiol 2020; 318:F518-F530. [PMID: 31904283 DOI: 10.1152/ajprenal.00399.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mucin-type O-linked glycosylation, a posttranslational modification affecting the stability and biophysical characteristics of proteins, requires C1GalT1 (T synthase) and its obligate, X-linked chaperone Cosmc. Hypomorphic C1GalT1 mutations cause renal failure via not yet established mechanisms. We hypothesize that impaired Cosmc-dependent O-glycosylation in podocytes is sufficient to cause disease. Podocyte-specific Cosmc knockout mice were generated and phenotyped to test this hypothesis. Female heterozygous mice displaying mosaic inactivation of Cosmc in podocytes due to random X-linked inactivation were also examined. Mice with podocyte-specific Cosmc deletion develop profound albuminuria, foot process effacement, glomerular sclerosis, progressive renal failure, and impaired survival. Glomerular transcriptome analysis reveals early changes in cell adhesion, extracellular matrix organization, and chemokine-mediated signaling pathways, coupled with podocyte loss. Expression of the O-glycoprotein podoplanin was lost, while Tn antigen, representing immature O-glycans, was most abundantly found on podocalyxin. In contrast to hemizygous male and homozygous female animals, heterozygous female mosaic animals developed only mild albuminuria, focal foot process effacement, and nonprogressive kidney disease. Ultrastructurally, Cosmc-deficient podocytes formed Tn antigen-positive foot processes interdigitating with those of normal podocytes but not with other Cosmc-deficient cells. This suggests a cell nonautonomous mechanism for mucin-type O-glycoproteins in maintaining podocyte function. In summary, our findings demonstrated an essential and likely cell nonautonomous role for mucin-type O-glycosylation for podocyte function.
Collapse
Affiliation(s)
- Brian R Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brianna E Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Center for Systems Biology/Program in Membrane Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nadine Artelt
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Junwei Zeng
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yasuyuki Matsumoto
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Richard D Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Johannes S Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Neumeyer S, Popanda O, Butterbach K, Edelmann D, Bläker H, Toth C, Roth W, Herpel E, Jäkel C, Schmezer P, Benner A, Burwinkel B, Hoffmeister M, Brenner H, Chang-Claude J. DNA methylation profiling to explore colorectal tumor differences according to menopausal hormone therapy use in women. Epigenomics 2019; 11:1765-1778. [PMID: 31755748 DOI: 10.2217/epi-2019-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Use of menopausal hormone therapy (MHT) has been associated with a reduced risk for colorectal cancer, but mechanisms underlying this relationship are not well understood. In the colon, MHT appears to act through estrogen receptor β (ERβ) which may influence DNA methylation by binding to DNA. Using genome-wide methylation profiling data, we aimed to identify genes that may be differentially methylated according to MHT use. Materials & methods: DNA methylation was measured using Illumina HumanMethylation450k arrays in two independent tumor sample sets of colorectal cancer patients. Differential methylation was determined using R/limma. Results: In the discovery analysis, two CpG sites showed differential DNA methylation according to MHT use, both were not replicated. In stratified analyses, 342 CpG sites were associated with current MHT use only in ERβ-positive tumors. Conclusion: The suggestive findings of differential methylation according to current MHT use in ERβ-positive tumors warrant further investigation.
Collapse
Affiliation(s)
- Sonja Neumeyer
- Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Epigenomics & Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Katja Butterbach
- Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Division of Clinical Epidemiology & Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Csaba Toth
- Institute of Pathology, Heidelberg University, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Cornelia Jäkel
- Division of Epigenomics & Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Epigenomics & Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Gynecology & Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Im Neuenheimer Feld 440, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology & Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology & Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Genetic Tumour Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 54, 20251 Hamburg, Germany
| |
Collapse
|
33
|
Singh H, Tiwari K, Tiwari R, Pramanik SK, Das A. Small Molecule as Fluorescent Probes for Monitoring Intracellular Enzymatic Transformations. Chem Rev 2019; 119:11718-11760. [DOI: 10.1021/acs.chemrev.9b00379] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Harwinder Singh
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Karishma Tiwari
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Rajeshwari Tiwari
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Amitava Das
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
34
|
Role of keratan sulfate expression in human pancreatic cancer malignancy. Sci Rep 2019; 9:9665. [PMID: 31273306 PMCID: PMC6609602 DOI: 10.1038/s41598-019-46046-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/21/2019] [Indexed: 01/15/2023] Open
Abstract
Keratan sulfate (KS) is a sulfated linear polymer of N-acetyllactosamine. Proteoglycans carrying keratan sulfate epitopes were majorly observed in cornea, cartilage and brain; and mainly involved in embryonic development, cornea transparency, and wound healing process. Recently, expression of KS in cancer has been shown to be highly associated with advanced tumor grade and poor prognosis. Therefore, we aimed to identify the expression of KS epitope in human pancreatic cancer primary and metastatic tumor lesions. Immunohistochemical analysis of KS expression was performed on primary pancreatic tumors and metastatic tissues. We observed an increased expression of KS epitope on primary tumor tissues compared to uninvolved normal and tumor stroma; and is associated with worse overall survival. Moreover, lung metastatic tumors show a higher-level expression of KS compared to primary tumors. Interestingly, KS biosynthesis specific glycosyltransferases expression was differentially regulated in metastatic pancreatic tumors. Taken together, these results indicate that aberrant expression of KS is predictive of pancreatic cancer progression and metastasis and may serve as a novel prognostic biomarker for pancreatic cancer.
Collapse
|
35
|
Matboli M, Shafei AE, Ali MA, Ashry AM, Kamal KM, Agag MA, Reda I, Tash EF, Ali M. circRNAs (hsa_circ_00156, hsa_circ _000224, and hsa_circ _000520) are novel potential biomarkers in hepatocellular carcinoma. J Cell Biochem 2019; 120:7711-7724. [PMID: 30426540 DOI: 10.1002/jcb.28045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Circular RNAs (circRNAs) are a newly validated type of noncoding RNAs recently found to be deregulated in several human cancers. More accurate and specific noninvasive biomarkers are strongly needed for better diagnosis and prognosis of hepatocellular carcinoma (HCC). We performed a bioinformatics analysis to retrieve a novel panel of circRNAs potentially relevant to HCC. We examined their expression in the sera of 68 patients with HCC, 60 patients with chronic hepatitis C, and 36 healthy controls using quantitative polymerase chain reaction. We examined the performance characteristics of the selected circRNA biomarker panel in comparison with alpha-fetoprotein (AFP). In addition, we performed a survival analysis to correlate between their expression levels and patient survival. The circRNAs hsa_circ _00224 and hsa_circ _00520 showed a strong biomarker potential with relatively high sensitivities and specificities compared with AFP. The combined panel including the three circRNAs showed superior performance characteristics relative to those of AFP. The median follow-up period was 26 months. hsa_circ_00520 expression has been shown to be associated with relapse-free survival (P < 0.005). circRNAs hsa_circ_00156, hsa_circ_000224, and hsa_circ_000520 are novel potential biomarkers of high sensitivity and specificity, which could potentially be used in the diagnosis of HCC.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | | | | | | | | | - Eman Fathy Tash
- Lecturer of Geriatric Medicine, Faculty of Medicine Ain Shams University, Cairo, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
36
|
Li T, Liu L, Wei N, Yang JY, Chapla DG, Moremen KW, Boons GJ. An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nat Chem 2019; 11:229-236. [PMID: 30792508 PMCID: PMC6399472 DOI: 10.1038/s41557-019-0219-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/20/2019] [Indexed: 11/09/2022]
Abstract
An automated platform that can synthesize a wide range of complex carbohydrates will greatly increase their accessibility and should facilitate progress in glycoscience. Here we report a fully automated process for enzyme-mediated oligosaccharide synthesis that can give easy access to different classes of complex glycans including poly-N-acetyllactosamine derivatives, human milk oligosaccharides, gangliosides and N-glycans. Our automated platform uses a catch and release approach in which glycosyltransferase-catalysed reactions are performed in solution and product purification is accomplished by solid phase extraction. We developed a sulfonate tag that can easily be installed and enables highly efficient solid phase extraction and product release using a single set of washing conditions, regardless of the complexity of the glycan. Using this custom-built synthesizer, as many as 15 reaction cycles can be performed in an automated fashion without a need for lyophilization or buffer exchange steps.
Collapse
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Na Wei
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA. .,Department of Chemistry, University of Georgia, Athens, GA, USA. .,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Aco-Tlachi M, Carreño-López R, Martínez-Morales PL, Maycotte P, Aguilar-Lemarroy A, Jave-Suárez LF, Santos-López G, Reyes-Leyva J, Vallejo-Ruiz V. Glycogene expression profiles based on microarray data from cervical carcinoma HeLa cells with partially silenced E6 and E7 HPV oncogenes. Infect Agent Cancer 2018; 13:25. [PMID: 30038662 PMCID: PMC6053821 DOI: 10.1186/s13027-018-0197-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Background Aberrant glycosylation is a characteristic of tumour cells. The expression of certain glycan structures has been associated with poor prognosis. In cervical carcinoma, changes in the expression levels of some glycogenes have been associated with lymph invasion. Human papillomavirus (HPV) infection is one of the most important factors underlying the development of cervical cancer. The HPV oncoproteins E6 and E7 have been implicated in cervical carcinogenesis and can modify the host gene expression profile. The roles of these oncoproteins in glycosylation changes have not been previously reported. Methods To determine the effect of the E6 and E7 oncoproteins on glycogene expression we partially silenced the E6 and E7 oncogenes in HeLa cells, we performed a microarray expression assay to identify altered glycogenes and quantified the mRNA levels of glycogenes by RT-qPCR. A protein-protein interaction network was constructed to identify potentially altered glycosylation pathways. Results The microarray analysis showed 9 glycogenes that were upregulated and 7 glycogenes that were downregulated in HeLa shE6/E7 cells. Some of these genes participate in glycosylation related to Notch proteins and O-glycans antigens. Conclusions Our results support that E6 and E7 oncoproteins could modify glycogene expression the products of which participate in the synthesis of structures implicated in proliferation, adhesion and apoptosis.
Collapse
Affiliation(s)
- Miguel Aco-Tlachi
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico.,2Posgrado en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Edificio 103-J Cd. Universitaria, Col. San Manuel, C.P. 72570 Puebla, Pue Mexico
| | - Ricardo Carreño-López
- 2Posgrado en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Edificio 103-J Cd. Universitaria, Col. San Manuel, C.P. 72570 Puebla, Pue Mexico
| | - Patricia L Martínez-Morales
- 4CONACYT- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Paola Maycotte
- 4CONACYT- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Adriana Aguilar-Lemarroy
- 3Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col Independencia, C.P. 44340 Guadalajara, Jalisco Mexico
| | - Luis Felipe Jave-Suárez
- 3Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col Independencia, C.P. 44340 Guadalajara, Jalisco Mexico
| | - Gerardo Santos-López
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Julio Reyes-Leyva
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Verónica Vallejo-Ruiz
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| |
Collapse
|
38
|
Zhang C, Deng X, Qiu L, Peng F, Geng S, Shen L, Luo Z. Knockdown of C1GalT1 inhibits radioresistance of human esophageal cancer cells through modifying β1-integrin glycosylation. J Cancer 2018; 9:2666-2677. [PMID: 30087707 PMCID: PMC6072818 DOI: 10.7150/jca.25252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022] Open
Abstract
Radiotherapy has played a limited role for the treatment of human esophageal cancer owing to the risk of tumor radioresistance. Core 1 β1, 3-galactosyltransferase (C1GalT1), which catalyzes the formation of core 1 O-glycan structures, is frequently overexpressed during tumorigenesis. However, the exact effects and mechanisms of C1GalT1 in the radioresistance of esophageal cancer remain unclear. In this study, Public databases and our data revealed that C1GalT1 expression was up-regulated in esophageal cancer tissues and was associated with poor survival. Upon irradiation, we found that esophageal cancer cells with high levels of C1GalT1 could tolerate cell death and had increased resistance to radiotherapy. Irradiation also promoted the expression of C1GalT1 and core 1 O-glycan structures. C1GalT1 knockdown increased the radiosensitivity of esophageal cancer cells, and attenuated irradiation-enhanced migration and invasion. Mechanistic investigations showed that C1GalT1 modified O-glycan structures on β1-integrin and regulated its downstream focal adhesion kinase (FAK) signaling. Furthermore, β1-integrin-blocking antibody and FAK inhibitor enhanced radiation-induced apoptosis in esophageal cancer cells. Together, our results indicate that C1GalT1 is a major determinant of radioresistance via modulation of β1-integrin glycosylation. C1GalT1 may be a potent molecular target for enhancing the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Chuanyi Zhang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Qiu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Feng Peng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shanshan Geng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Shen
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
39
|
Evans DR, Venkitachalam S, Revoredo L, Dohey AT, Clarke E, Pennell JJ, Powell AE, Quinn E, Ravi L, Gerken TA, Green JS, Woods MO, Guda K. Evidence for GALNT12 as a moderate penetrance gene for colorectal cancer. Hum Mutat 2018; 39:1092-1101. [PMID: 29749045 DOI: 10.1002/humu.23549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 12/29/2022]
Abstract
Characterizing moderate penetrance susceptibility genes is an emerging frontier in colorectal cancer (CRC) research. GALNT12 is a strong candidate CRC-susceptibility gene given previous linkage and association studies, and inactivating somatic and germline alleles in CRC patients. Previously, we found rare segregating germline GALNT12 variants in a clinic-based cohort (N = 118) with predisposition for CRC. Here, we screened a new population-based cohort of incident CRC cases (N = 479) for rare (MAF ≤1%) deleterious germline GALNT12 variants. GALNT12 screening revealed eight rare variants. Two variants were previously described (p.Asp303Asn, p.Arg297Trp), and additionally, we found six other rare variants: five missense (p.His101Gln, p.Ile142Thr, p.Glu239Gln, p.Thr286Met, p.Val290Phe) and one putative splice-altering variant (c.732-8 G>T). Sequencing of population-matched controls (N = 400) revealed higher burden of these variants in CRC cases compared with healthy controls (P = 0.0381). We then functionally characterized the impact of substitutions on GALNT12 enzyme activity using in vitro-derived peptide substrates. Three of the newly identified GALNT12 missense variants (p.His101Gln, p.Ile142Thr, p.Val290Phe) demonstrated a marked loss (>2-fold reduction) of enzymatic activity compared with wild-type (P ≤ 0.05), whereas p.Glu239Gln exhibited a ∼2-fold reduction in activity (P = 0.077). These findings provide strong, independent evidence for the association of GALNT12 defects with CRC-susceptibility; underscoring implications for glycosylation pathway defects in CRC.
Collapse
Affiliation(s)
- Daniel R Evans
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Srividya Venkitachalam
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Leslie Revoredo
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Amanda T Dohey
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Erica Clarke
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Julia J Pennell
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Amy E Powell
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Erina Quinn
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Lakshmeswari Ravi
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Thomas A Gerken
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio.,Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jane S Green
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Michael O Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
40
|
Very N, Lefebvre T, El Yazidi-Belkoura I. Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 2018; 9:1380-1402. [PMID: 29416702 PMCID: PMC5787446 DOI: 10.18632/oncotarget.22377] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths in the world. Drug resistance of tumour cells remains the main challenge toward curative treatments efficiency. Several epidemiologic studies link emergence and recurrence of this cancer to metabolic disorders. Glycosylation that modifies more than 80% of human proteins is one of the most widepread nutrient-sensitive post-translational modifications. Aberrant glycosylation participates in the development and progression of cancer. Thus, some of these glycan changes like carbohydrate antigen CA 19-9 (sialyl Lewis a, sLea) or those found on carcinoembryonic antigen (CEA) are already used as clinical biomarkers to detect and monitor CRC. The current review highlights emerging evidences accumulated mainly during the last decade that establish the role played by altered glycosylations in CRC drug resistance mechanisms that induce resistance to apoptosis and activation of signaling pathways, alter drug absorption and metabolism, and led to stemness acquisition. Knowledge in this field of investigation could aid to the development of better therapeutic approaches with new predictive biomarkers and targets tied in with adapted diet.
Collapse
Affiliation(s)
- Ninon Very
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Ikram El Yazidi-Belkoura
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| |
Collapse
|
41
|
Jia L, Luo S, Ren X, Li Y, Hu J, Liu B, Zhao L, Shan Y, Zhou H. miR-182 and miR-135b Mediate the Tumorigenesis and Invasiveness of Colorectal Cancer Cells via Targeting ST6GALNAC2 and PI3K/AKT Pathway. Dig Dis Sci 2017; 62:3447-3459. [PMID: 29030743 DOI: 10.1007/s10620-017-4755-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Metastasis is a leading cause of cancer-related death including colorectal cancer (CRC). MicroRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Aberrant sialylation is closely associated with malignant phenotype of tumor cells, including invasiveness and metastasis. AIM This study aimed to investigate the association of miR-182 and miR-135b with proliferation and invasion by targeting sialyltransferase ST6GALNAC2 in CRC cells and explore the potential molecular mechanism. METHODS We measured the levels of miR-182, miR-135b, and ST6GALNAC2 in a series of CRC cell lines and tissues using real-time PCR. Bioinformatics analysis and luciferase reporter assay were performed to test the direct binding of miR-182 and miR-135b to the target gene ST6GALNAC2. We also analyzed the possible role of miR-182/-135b on colony formation, wound healing, invasion, and tube formation. RESULTS The expression of miR-182 and miR-135b was higher in tumor tissues compared to adjacent noncancerous tissues of CRC patients, as well as up-regulated in SW620 cells than in SW480 cells with different metastatic potential. By applying bioinformatics analysis and luciferase reporter assay, we identified ST6GALNAC2 as the direct target of miR-182/-135b. Furthermore, miR-182/-135b inhibited significantly ST6GALNAC2 expression, and consistently, ST6GALNAC2 mediated migration, adhesion, invasion, proliferation, and tumor angiogenesis in CRC cell lines. Additionally, PI3K/AKT signaling pathway was regulated by miR-182/135b, which was partially blocked by altered level of ST6GALNAC2 in CRC. CONCLUSIONS The miR-182/-135b/ST6GALNAC2/PI3K/AKT axis may serve as a predictive biomarker and a potential therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| | - Shihua Luo
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
- Department of Traumatology, Shanghai Ruijin Hospital, Jiaotong University, Shanghai, 200025, China
| | - Xiang Ren
- College of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Jialei Hu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Huimin Zhou
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| |
Collapse
|
42
|
Liu T, Liu R, Zhang S, Guo K, Zhang Q, Li W, Liu Y. Sorafenib induced alteration of protein glycosylation in hepatocellular carcinoma cells. Oncol Lett 2017; 14:517-524. [PMID: 28693200 PMCID: PMC5494657 DOI: 10.3892/ol.2017.6177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/04/2017] [Indexed: 01/02/2023] Open
Abstract
Sorafenib is a multikinase inhibitor and is effective in treating hepatocellular carcinoma (HCC). However, it remains unknown whether sorafenib induces the alteration of protein glycosylation. The present study treated HCC MHCC97L and MHCC97H cells with a 50% inhibitory concentration of sorafenib. Following this treatment, alteration of protein glycosylation was detected using a lectin microarray. Compared with the controls, the binding capacity of glycoproteins extracted from sorafenib-treated HCC cells to the lectins Bauhinia purpurea lectin, Dolichos biflorus agglutinin, Euonymus europaeus lectin, Helix aspersa lectin, Helix pomatia lectin, Jacalin, Maclura pomifera lectin and Vicia villosa lectin were enhanced; while, the binding capacities to the lectins Caragana arborescens lectin, Lycopersicon esculentum lectin, Limulus polyphemus lectin, Maackia amurensis lecin I, Phaseolus vulgaris leucoagglutinin, Ricinus communis agglutinin 60, Sambucus nigra lectin and Solanum tuberosum lectin were reduced (spot intensity median/background intensity median ≥2, P<0.05). This difference in glycoprotein binding capacity indicates that cells treated with sorafenib could increase α-1,3GalNAc/Gal, β-1,3 Gal, GalNAcα-Ser/Thr(Tn) and α-GalNAc structures and decrease GlcNAc, sialic acid, tetra-antennary complex-type N-glycan and β-1,4Gal structures. These results were additionally confirmed by lectin blotting. Expression levels of signaling molecules including erythroblastosis 26-1 (Ets-1), extracellular signal-related kinases (ERK) and phosphorylated-ERK were measured by western blotting. There was a reduction in the expression of Ets-1 and ERK phosphorylation in sorafenib or 1,4-Diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene treated cells suggesting that sorafenib may reduce the expression levels of Ets-1 by blocking the Ras/Raf/mitogen activated protein kinase signaling pathway. In the present study, it was clear that sorafenib could inhibit the proliferation of HCC cells and alter protein glycosylation. The findings of this study may lead to providing a novel way of designing new anti-HCC drugs.
Collapse
Affiliation(s)
- Tianhua Liu
- Liver Cancer Institute and Cancer Research Center, Zhongshan Hospital, Institute of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Riqiang Liu
- Department of General Surgery, The People's Hospital in Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Shu Zhang
- Liver Cancer Institute and Cancer Research Center, Zhongshan Hospital, Institute of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Kun Guo
- Liver Cancer Institute and Cancer Research Center, Zhongshan Hospital, Institute of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Qinle Zhang
- Liver Cancer Institute and Cancer Research Center, Zhongshan Hospital, Institute of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Wei Li
- Liver Cancer Institute and Cancer Research Center, Zhongshan Hospital, Institute of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Yinkun Liu
- Liver Cancer Institute and Cancer Research Center, Zhongshan Hospital, Institute of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
43
|
Venkitachalam S, Guda K. Altered glycosyltransferases in colorectal cancer. Expert Rev Gastroenterol Hepatol 2017; 11:5-7. [PMID: 27781489 PMCID: PMC5520968 DOI: 10.1080/17474124.2017.1253474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/24/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Srividya Venkitachalam
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH-44106 U.S.A
| | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH-44106 U.S.A
| |
Collapse
|
44
|
Cagnoni AJ, Pérez Sáez JM, Rabinovich GA, Mariño KV. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer. Front Oncol 2016; 6:109. [PMID: 27242953 PMCID: PMC4865499 DOI: 10.3389/fonc.2016.00109] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically relevant information. This information is decoded by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes, and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration, and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade, a number of inhibitors of lectin–glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies to limit cancer progression by targeting lectin–glycan interactions.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|