1
|
Tang S, Borlak J. Genomics of human NAFLD: Lack of data reproducibility and high interpatient variability in drug target expression as major causes of drug failures. Hepatology 2024; 80:901-915. [PMID: 38358517 PMCID: PMC11407777 DOI: 10.1097/hep.0000000000000780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND AIMS NAFLD is a major disease burden and a foremost cause of chronic liver disease. Presently, nearly 300 trials evaluate the therapeutic efficacy of > 20 drugs. Remarkably, the majority of drugs fail. To better comprehend drug failures, we investigated the reproducibility of fatty liver genomic data across 418 liver biopsies and evaluated the interpatient variability of 18 drug targets. APPROACH AND RESULTS Apart from our own data, we retrieved NAFLD biopsy genomic data sets from public repositories and considered patient demographics. We divided the data into test and validation sets, assessed the reproducibility of differentially expressed genes and performed gene enrichment analysis. Patients were stratified by disease activity score, fibrosis grades and sex, and we investigated the regulation of 18 drug targets across 418 NAFLD biopsies of which 278 are NASH cases. We observed poor reproducibility of differentially expressed genes across 9 independent studies. On average, only 4% of differentially expressed genes are commonly regulated based on identical sex and 2% based on identical NAS disease score and fibrosis grade. Furthermore, we observed sex-specific gene regulations, and for females, we noticed induced expression of genes coding for inflammatory response, Ag presentation, and processing. Conversely, extracellular matrix receptor interactions are upregulated in males, and the data agree with clinical findings. Strikingly, and with the exception of stearoyl-CoA desaturase, most drug targets are not regulated in > 80% of patients. CONCLUSIONS Lack of data reproducibility, high interpatient variability, and the absence of disease-dependent drug target regulations are likely causes of NASH drug failures in clinical trials.
Collapse
|
2
|
Panneerselvam S, Wilson C, Kumar P, Abirami D, Pamarthi J, Reddy MS, Varghese J. Overview of hepatocellular carcinoma: from molecular aspects to future therapeutic options. Cell Adh Migr 2023; 17:1-21. [PMID: 37726886 PMCID: PMC10512929 DOI: 10.1080/19336918.2023.2258539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most highly prevalent malignant tumor globally and the second most common cause of mortality. HCC develops with complex pathways that occur through multistage biological processes. Non-alcoholic fatty liver disease, metabolic-associated fatty liver disease, alcoholic liver disease, autoimmune hepatitis, hepatitis B, and hepatitis C are the causative etiologies of HCC. HCC develops as a result of epigenetic changes, protein-coding gene mutations, and altered signaling pathways. Biomarkers and potential therapeutic targets for HCC open up new possibilities for treating the disease. Immune checkpoint inhibitors are included in the treatment options in combination with molecular targeted therapy.
Collapse
Affiliation(s)
- Sugan Panneerselvam
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Cornelia Wilson
- Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Discovery Park, Sandwich, UK
| | - Prem Kumar
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Dinu Abirami
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Jayakrishna Pamarthi
- Multi-Disciplinary Research Unit, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- The Director and Head, Liver Transplant and HPB surgery, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Aimuzi R, Xie Z, Qu Y, Jiang Y, Luo K. Associations of urinary organophosphate esters metabolites and diet quality with nonalcoholic/metabolic dysfunction-associated fatty liver diseases in adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114720. [PMID: 36889207 DOI: 10.1016/j.ecoenv.2023.114720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Whether exposure to organophosphate esters (OPEs) is associated with metabolic dysfunction-associated fatty liver disease (MAFLD) and nonalcoholic fatty liver disease (NAFLD) remains unclear. A healthy diet is crucial to metabolic health and dietary intake is also an important route for OPEs exposure. However, the joint associations of OPEs, diet quality, and the effect modification by diet quality remain unknown. This study comprised 2618 adults with complete data on 6 urinary OPEs metabolites, 24 h dietary recalls, and definitions of NAFLD and MAFLD from the 2011-2018 National Health and Nutrition Examination Survey cycles. Multivariable binary logistic regression was applied to assess the associations of OPEs metabolites with NAFLD, MAFLD, and components of MAFLD. We also adopted the quantile g-Computation method to examine the associations of OPEs metabolites mixture. Our results revealed that OPEs metabolites mixture and three individual metabolites [i.e., bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(2-chloroethyl) phosphate, and diphenyl phosphate] were significantly and positively associated with NAFLD and MAFLD (P-trend<0.001), with BDCIPP being identified as the dominant metabolite, whereas the 4 diet quality scores were monotonically and inversely associated with both MAFLD and NAFLD (P-trend<0.001). Of note, 4 diet quality scores were by and large negatively associated with BDCIPP, but not with other OPEs metabolites. Joint association analyses revealed that individuals with higher diet quality and lower BDCIPP concentration tend to have lower odds of having MAFLD and NAFLD in comparison with people in the low diet quality and high BDCIPP group, but the associations of BDCIPP were not modified by diet quality. Our findings suggest that certain OPEs metabolites and diet quality exhibited opposing associations with both MAFLD and NAFLD. Individuals adherent to a healthier diet may have a lower level of certain OPEs metabolites, and thus could have lower odds of having NAFLD and MAFLD.
Collapse
Affiliation(s)
- Ruxianguli Aimuzi
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhilan Xie
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
4
|
Negi CK, Bajard L, Kohoutek J, Blaha L. An adverse outcome pathway based in vitro characterization of novel flame retardants-induced hepatic steatosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117855. [PMID: 34340181 DOI: 10.1016/j.envpol.2021.117855] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 05/22/2023]
Abstract
A wide range of novel replacement flame retardants (nFRs) is consistently detected in increasing concentrations in the environment and human matrices. Evidence suggests that nFRs exposure may be associated with disruption of the endocrine system, which has been linked with the etiology of various metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). NAFLD is a multifactorial disease characterized by the uncontrolled accumulation of fats (lipids) in the hepatocytes and involves multiple-hit pathogenesis, including exposure to occupational and environmental chemicals such as organophosphate flame retardants (OPFRs). In the present study we aimed to investigate the potential mechanisms of the nFRs-induced hepatic steatosis in the human liver cells. In this study, we employed an in vitro bioassay toolbox to assess the key events (KEs) in the proposed adverse outcome pathways (AOP) (s) for hepatic steatosis. We examined nine nFRs using AOP- based in vitro assays measuring KEs such as lipid accumulation, mitochondrial dysfunction, gene expression, and in silico approach to identify the putative molecular initiating events (MIEs). Our findings suggest that several tested OPFRs induced lipid accumulation in human liver cell culture. Tricresyl phosphate (TMPP), triphenyl phosphate (TPHP), tris(1,3-dichloropropyl) phosphate (TDCIPP), and 2-ethylhexyl diphenyl phosphate (EHDPP) induced the highest lipid accumulation by altering the expression of genes encoding hepatic de novo lipogenesis and mitochondrial dysfunction depicted by decreased cellular ATP production. Available in vitro data from ToxCast and in silico molecular docking suggests that pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ) could be the molecular targets for the tested nFRs. The study identifies several nFRs, such as TMPP and EHDPP, TPHP, and TDCIPP, as potential risk factor for NAFLD and advances our understanding of the mechanisms involved, demonstrating the utility of an AOP-based strategy for screening and prioritizing chemicals and elucidating the molecular mechanisms of toxicity.
Collapse
Affiliation(s)
- Chander K Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Jiri Kohoutek
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Ludek Blaha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic.
| |
Collapse
|
5
|
Vulf M, Shunkina D, Komar A, Bograya M, Zatolokin P, Kirienkova E, Gazatova N, Kozlov I, Litvinova L. Analysis of miRNAs Profiles in Serum of Patients With Steatosis and Steatohepatitis. Front Cell Dev Biol 2021; 9:736677. [PMID: 34568346 PMCID: PMC8458751 DOI: 10.3389/fcell.2021.736677] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as one of the most common chronic liver diseases worldwide, affecting 25% of the world population. In recent years, there has been increasing evidence for the involvement of microRNAs in the epigenetic regulation of genes taking part in the development of steatosis and steatohepatitis—two main stages of NAFLD pathogenesis. In the present study, miRNA profiles were studied in groups of patients with steatosis and steatohepatitis to compare the characteristics of RNA-dependent epigenetic regulation of the stages of NAFLD development. According to the results of miRNA screening, 23 miRNAs were differentially expressed serum in a group of patients with steatohepatitis and 2 in a group of patients with steatosis. MiR-195-5p and miR-16-5p are common differentially expressed miRNAs for both steatosis and steatohepatitis. We analyzed the obtained results: the search for target genes for the differentially expressed miRNAs in our study and the subsequent gene set enrichment analysis performed on KEGG and REACTOME databases revealed which metabolic pathways undergo changes in RNA-dependent epigenetic regulation in steatosis and steatohepatitis. New findings within the framework of this study are the dysregulation of neurohumoral pathways in the pathogenesis of NAFLD as an object of changes in RNA-dependent epigenetic regulation. The miRNAs differentially expressed in our study were found to target 7% of genes in the classic pathogenesis of NAFLD in the group of patients with steatosis and 50% in the group of patients with steatohepatitis. The effects of these microRNAs on genes for the pathogenesis of NAFLD were analyzed in detail. MiR-374a-5p, miR-1-3p and miR-23a-3p do not target genes directly involved in the pathogenesis of NAFLD. The differentially expressed miRNAs found in this study target genes largely responsible for mitochondrial function. The role of miR-423-5p, miR-143-5p and miR-200c-3 in regulating apoptotic processes in the liver and hepatocarcinogenesis is of interest for future experimental studies. These miR-374a, miR-143, miR-1, miR-23a, and miR-423 have potential for steatohepatitis diagnosis and are poorly studied in the context of NAFLD. Thus, this work opens up prospects for further studies of microRNAs as diagnostic and therapeutic biomarkers for NAFLD.
Collapse
Affiliation(s)
- Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Daria Shunkina
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Aleksandra Komar
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Pavel Zatolokin
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Elena Kirienkova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Ivan Kozlov
- Department of Organization and Management in the Sphere of Circulation of Medicines, Institute of Postgraduate Education, I.M. Sechenov Federal State Autonomous Educational University of Higher Education-First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
6
|
Merve Bayram H, Eren F, Esra Gunes F. The relationship between polyphenols and miRNAs: A novel therapeutic strategy for metabolic associated fatty liver disease. HEPATOLOGY FORUM 2021; 2:128-136. [PMID: 35784906 PMCID: PMC9138948 DOI: 10.14744/hf.2021.2021.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 06/15/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a public health problem that is increasingly recognized, currently affecting up to a quarter of the world's adult population. Although a biopsy is the current gold standard to diagnose MAFLD, there are potentially serious complications, making it inadequate. Thus far, noninvasive methods have not been able to determine the stage and the subtype of MAFLD. The development and prognosis of MAFLD are modulated by epigenetic factors, including microRNAs (miRNAs), which may be potential biomarkers for MAFLD. Polyphenols, found in many fruits and vegetables, may be useful, as they alter gene expression with epigenetic factors, such as miRNAs. This review presents an overview of the relationship between polyphenols and miRNAs in MAFLD. The literature suggests that miRNAs could be used as a diagnostic method for MAFLD, especially miRNA-122 and miRNA-34a. However, though it has been demonstrated that polyphenols may contribute to improving MAFLD, to our knowledge, no study to date has shown the relationship between polyphenols and miRNAs in MAFLD. The exact mechanisms of polyphenols on miRNAs in MAFLD remain unclear. Future studies may provide hope for diet therapy for MAFLD patients as well as the development of polyphenol-related foods or drugs that target miRNAs to treat MAFLD.
Collapse
Affiliation(s)
- Hatice Merve Bayram
- Department of Nutrition and Dietetics, Istanbul Gelisim University Faculty of Health Sciences, Istanbul, Turkey
| | - Fatih Eren
- Institute of Gastroenterology, Marmara University, Istanbul, Turkey
- Department of Medical Biology, Marmara University School of Medicine, Istanbul, Turkey
| | - Fatma Esra Gunes
- Department of Nutrition and Dietetics, Marmara University Faculty of Health Sciences, Istanbul, Turkey
| |
Collapse
|
7
|
Targeting miRNA by Natural Products: A Novel Therapeutic Approach for Nonalcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6641031. [PMID: 34426744 PMCID: PMC8380168 DOI: 10.1155/2021/6641031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) as multifactorial chronic liver disease and the lack of a specific treatment have begun a new era in its treatment using gene expression changes and microRNAs. This study aimed to investigate the potential therapeutic effects of natural compounds in NAFLD by regulating miRNA expression. MicroRNAs play essential roles in regulating the cell's biological processes, such as apoptosis, migration, lipid metabolism, insulin resistance, and adipocyte differentiation, by controlling the posttranscriptional gene expression level. The impact of current NAFLD pharmacological management, including drug and biological therapies, is uncertain. In this context, various dietary fruits or medicinal herbal sources have received worldwide attention versus NAFLD development. Natural ingredients such as berberine, lychee pulp, grape seed, and rosemary possess protective and therapeutic effects against NAFLD by modifying the gene's expression and noncoding RNAs, especially miRNAs.
Collapse
|
8
|
Impact of maternal obesity and prebiotic supplementation on select maternal milk microRNA levels and correlation with offspring outcomes. Br J Nutr 2021; 127:335-343. [PMID: 33814020 DOI: 10.1017/s0007114521001197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast milk composition varies with maternal factors including diet and confers health benefits to the neonate; however, the mechanisms mediating this protection remain incompletely understood. Our aim was to investigate the effects of supplementing a maternal high-fat/sucrose (HFS) diet with prebiotic oligofructose (OFS) on milk composition in rats and associations with offspring body composition and gut microbiota. Obese Sprague-Dawley dams consumed a control, HFS, HFS + OFS (10 % wt/wt) or HFS diet weight-matched to the HFS + OFS group (HFS-WM) during pregnancy and lactation. Pups were weaned onto a HFS diet on day 21. Milk was collected at weaning and analysed for protein, leptin and microRNA (miRNA) levels. Milk produced by HFS dams contained less protein than milk from lean controls which was normalised by OFS. Six miRNA (miR-222, miR-203a, miR-200a, miR-26a, miR-27a and miR-103) were differentially expressed in milk according to maternal diet. Milk leptin content was positively correlated with maternal body fat and faecal Enterobacteriaceae in male offspring at 24 weeks of age. Milk protein content was inversely associated with maternal body fat and body weight. miR-200a was positively associated with maternal body fat and Enterobacteriaceae in female offspring at 24 weeks of age. Correlations between milk protein and multiple milk miRNA and offspring body composition and gut microbiota differed by sex. Overall, our results suggest that obesogenic diets and prebiotic supplementation can alter the protein and miRNA levels in breast milk in rats and these milk components may explain, in part, the influence of these maternal diets on offspring body composition.
Collapse
|
9
|
Wang W, Cheng X, Zhu J. Long non-coding RNA OTUD6B-AS1 overexpression inhibits the proliferation, invasion and migration of colorectal cancer cells via downregulation of microRNA-3171. Oncol Lett 2021; 21:193. [PMID: 33574932 PMCID: PMC7816294 DOI: 10.3892/ol.2021.12454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a common digestive system malignancy and a major cause of cancer-associated mortality worldwide. Aberrant expression of long non-coding RNAs has been reported in several types of cancer. The aim of the present study was to investigate the role of ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) in CRC and its underlying mechanisms. OTUD6B-AS1 expression in CRC cell lines was examined using reverse transcription-quantitative PCR. Furthermore, The Cancer Genome Atlas database was utilized to examine the expression levels of OTUD6B-AS1 in CRC tissues. Following OTUD6B-AS1 overexpression, Cell Counting Kit-8 and colony formation assays were used to detect the proliferation ability of HCT116 cells. The expression levels of proliferation-related protein Ki67 were determined using immunofluorescence staining. Subsequently, Transwell and wound healing assays were used to evaluate the invasion and migration of HCT116 cells, respectively. The expression levels of migration-related proteins (MMP2 and MMP9) were measured using western blotting. Additionally, a luciferase reporter assay was used to verify the potential interaction between OTUD6B-AS1 and microRNA-3171 (miR-3171). Subsequently, rescue assays were performed to clarify the regulatory effects of OTUD6B-AS1 and miR-3171 on CRC development. The results demonstrated that OTUD6B-AS1 expression was low in CRC cells and tissues. Overexpression of OTUD6B-AS1 inhibited the proliferation, invasion and migration of HCT116 cells. Furthermore, miR-3171 was demonstrated to be a direct target of OTUD6B-AS1 using a luciferase reporter assay. The rescue assays revealed that miR-3171 mimics markedly reversed the inhibitory effects of OTUD6B-AS1 overexpression on proliferation, invasion and migration of CRC cells. Overall, these findings demonstrated that OTUD6B-AS1 overexpression inhibited the proliferation, invasion and migration of HCT116 cells via downregulation of miR-3171, suggesting that OTUD6B-AS1 may serve as a novel biomarker for CRC treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Emergency Traumatic Surgery, Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, P.R. China
| | - Xia Cheng
- Graduate School, Dalian Medical University, Dalian, Liaoning 116000, P.R. China.,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Jianhua Zhu
- Department of Emergency Traumatic Surgery, Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, P.R. China
| |
Collapse
|
10
|
Li T, Tong W, Roberts R, Liu Z, Thakkar S. DeepDILI: Deep Learning-Powered Drug-Induced Liver Injury Prediction Using Model-Level Representation. Chem Res Toxicol 2020; 34:550-565. [PMID: 33356151 DOI: 10.1021/acs.chemrestox.0c00374] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug-induced liver injury (DILI) is the most frequently reported single cause of safety-related withdrawal of marketed drugs. It is essential to identify drugs with DILI potential at the early stages of drug development. In this study, we describe a deep learning-powered DILI (DeepDILI) prediction model created by combining model-level representation generated by conventional machine learning (ML) algorithms with a deep learning framework based on Mold2 descriptors. We conducted a comprehensive evaluation of the proposed DeepDILI model performance by posing several critical questions: (1) Could the DILI potential of newly approved drugs be predicted by accumulated knowledge of early approved ones? (2) is model-level representation more informative than molecule-based representation for DILI prediction? and (3) could improved model explainability be established? For question 1, we developed the DeepDILI model using drugs approved before 1997 to predict the DILI potential of those approved thereafter. As a result, the DeepDILI model outperformed the five conventional ML algorithms and two state-of-the-art ensemble methods with a Matthews correlation coefficient (MCC) value of 0.331. For question 2, we demonstrated that the DeepDILI model's performance was significantly improved (i.e., a MCC improvement of 25.86% in test set) compared with deep neural networks based on molecule-based representation. For question 3, we found 21 chemical descriptors that were enriched, suggesting a strong association with DILI outcome. Furthermore, we found that the DeepDILI model has more discrimination power to identify the DILI potential of drugs belonging to the World Health Organization therapeutic category of 'alimentary tract and metabolism'. Moreover, the DeepDILI model based on Mold2 descriptors outperformed the ones with Mol2vec and MACCS descriptors. Finally, the DeepDILI model was applied to the recent real-world problem of predicting any DILI concern for potential COVID-19 treatments from repositioning drug candidates. Altogether, this developed DeepDILI model could serve as a promising tool for screening for DILI risk of compounds in the preclinical setting, and the DeepDILI model is publicly available through https://github.com/TingLi2016/DeepDILI.
Collapse
Affiliation(s)
- Ting Li
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, United States.,University of Arkansas at Little Rock and University of Arkansas for Medical Sciences Joint Bioinformatics Program, Little Rock, Arkansas 72204, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Ruth Roberts
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, United States.,ApconiX Ltd., Alderley Park, Alderley Edge SK10 4TG, United Kingdom.,University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Shraddha Thakkar
- Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
11
|
Drug-Induced Steatosis and Steatohepatitis: The Search for Novel Serum Biomarkers Among Potential Biomarkers for Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Drug Saf 2020; 42:701-711. [PMID: 30762163 DOI: 10.1007/s40264-018-00790-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced steatosis (DIS) and drug-induced steatohepatitis (DISH) are two of several types of drug-induced liver injury (DILI). They can be caused by various drugs and may present as acute, potentially lethal disorders or as chronic slowly progressive liver injury. Despite the fact that they are distinct disorders, the slow progressive forms of DIS and DISH are often confused with or misdiagnosed as non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis (NASH), which are much more common and, by definition, not caused by drugs. Currently the only way to identify DIS is via imaging studies or a liver biopsy, while DISH can be identified only through liver biopsy. In addition, diagnosis of either DIS or DISH requires an exhaustive clinical evaluation and comprehensive causality assessment to rule out other possible causes and determine the association with the suspected drug. Furthermore, it is difficult, using existing methods, to monitor the progression of DIS and DISH and to determine the underlying mechanism. Therefore, there is a great unmet need for non-invasive biomarkers that will be able to identify the development of DIS or DISH during drug development and to monitor for progression or regression of the disorder during treatment or following drug discontinuation. Recent developments in the fields of NAFLD and NASH have introduced several novel biomarkers that show promise for the diagnosis, monitoring, and severity assessment of these common diseases. Given the significant overlap in possible underlying mechanisms and histological pattern between NAFLD/NASH and DIS/DISH, these postulated NAFLD and NASH biomarkers may have a potential application to DIS and DISH. This article reviews the existing medical literature and other publically available information pertaining to novel serum biomarkers for NAFLD and NASH, and explores the concurrent identification of these biomarkers for DIS and DISH.
Collapse
|
12
|
Gervasoni C, Cattaneo D, Filice C, Galli M. Drug-induced liver steatosis in patients with HIV infection. Pharmacol Res 2019; 145:104267. [PMID: 31077811 DOI: 10.1016/j.phrs.2019.104267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Drug-induced liver injury (DILI) due to the use of prescription and non-prescription medication by HIV-positive and HIV-negative patients is one of the main causes of acute liver failure and transplantation in Western countries and, although rare, has to be considered a serious problem because of its unforeseeable nature and possibly fatal course. Drug-induced steatosis (DIS) and steatohepatitis (DISH) are infrequent but well-documented types of DILI. Although a number of commonly used drugs are associated with steatosis, it is not always easy to identify them as causative agents because of the weak temporal relationship between the administration of the drug and the clinical event, the lack of a confirmatory re-challenge, and the high prevalence of non-alcoholic fatty liver disease (NAFLD) in the general population, which often makes it difficult to make a differential diagnosis of DIS and DISH. The scenario is even more complex in HIV-positive patients not only because of the underlying disease, but also because the various anti-retroviral regimens have different effects on liver steatosis. Given the high prevalence of liver steatosis in HIV-positive patients and the increasing use of drugs associated with a potential steatotic risk, the identification of clinical signs suggesting liver damage should help to avoid the possible misdiagnosis of "primary" NAFLD in a patient with DIS or DISH. This review will therefore initially concentrate on the current diagnostic criteria for DIS/DISH and their differential diagnosis from NAFLD. Subsequently, it will consider the different clinical manifestations of iatrogenic liver steatosis in detail, with specific reference to HIV-positive patients. Finally, the last part of the review will be dedicated to the possible effects of liver steatosis on the bioavailability of antiretroviral and other drugs.
Collapse
Affiliation(s)
- Cristina Gervasoni
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy.
| | - Dario Cattaneo
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Carlo Filice
- Infectious Diseases Department, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Massimo Galli
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
13
|
Thankam FG, Boosani CS, Dilisio MF, Gross RM, Agrawal DK. Genes interconnecting AMPK and TREM-1 and associated microRNAs in rotator cuff tendon injury. Mol Cell Biochem 2019; 454:97-109. [PMID: 30306456 PMCID: PMC6438203 DOI: 10.1007/s11010-018-3456-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022]
Abstract
Fatty infiltration and inflammation delay the healing responses and raise major concerns in the therapeutic management of rotator cuff tendon injuries (RCTI). Our evaluations showed the upregulation of 'metabolic check point' AMPK and inflammatory molecule, TREM-1 from shoulder biceps tendons collected from RCTI subjects. However, the epigenetic regulation of these biomolecules by miRNAs is largely unknown and it is likely that a deeper understanding of the mechanism of action can have therapeutic potential for RCTI. Based on this background, we have evaluated the miRNAs from RCTI patients with fatty infiltration and inflammation (FI group) and compared with RCTI patients without fatty infiltration and inflammation (No-FI group). NetworkAnalyst was employed to evaluate the genes interconnecting AMPK and TREM-1 pathway, using PRKAA1 (AMPK), TREM-1, HIF1α, HMGB1, and AGER as input genes. The most relevant miRNAs were screened by considering the fold change below - 7.5 and the number of target genes 10 and more which showed 13 miRNAs and 216 target genes. The exact role of these miRNAs in the fatty infiltration and inflammation associated with RCTI is still unknown and the understanding of biological activity of these miRNAs can pave ways to develop miRNA-based therapeutics in the management of RCTI.
Collapse
Affiliation(s)
- Finosh G Thankam
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Chandra S Boosani
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Matthew F Dilisio
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - R Michael Gross
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA.
- Department of Clinical & Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
14
|
Yu J, Peng J, Luan Z, Zheng F, Su W. MicroRNAs as a Novel Tool in the Diagnosis of Liver Lipid Dysregulation and Fatty Liver Disease. Molecules 2019; 24:molecules24020230. [PMID: 30634538 PMCID: PMC6358728 DOI: 10.3390/molecules24020230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, metabolic disorder, especially fatty liver disease, has been considered a major challenge to global health. The attention of researchers focused on expanding knowledge of the regulation mechanism behind these diseases and towards the new diagnostics tools and treatments. The pathophysiology of the fatty liver disease is undoubtedly complex. Abnormal hepatic lipid accumulation is a major symptom of most metabolic diseases. Therefore, the identification of novel regulation factors of lipid metabolism is important and meaningful. As a new diagnostic tool, the function of microRNAs during fatty liver disease has recently come into notice in biological research. Accumulating evidence supports the influence of miRNAs in lipid metabolism. In this review, we discuss the potential role of miRNAs in liver lipid metabolism and the pathogenesis of fatty liver disease.
Collapse
Affiliation(s)
- Jingwei Yu
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
- Department of Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jun Peng
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Wen Su
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
15
|
Liu Z, Delavan B, Roberts R, Tong W. Transcriptional Responses Reveal Similarities Between Preclinical Rat Liver Testing Systems. Front Genet 2018; 9:74. [PMID: 29616076 PMCID: PMC5870427 DOI: 10.3389/fgene.2018.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/19/2018] [Indexed: 01/03/2023] Open
Abstract
Toxicogenomics (TGx) is an important tool to gain an enhanced understanding of toxicity at the molecular level. Previously, we developed a pair ranking (PRank) method to assess in vitro to in vivo extrapolation (IVIVE) using toxicogenomic datasets from the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) database. With this method, we investiagted three important questions that were not addressed in our previous study: (1) is a 1-day in vivo short-term assay able to replace the 28-day standard and expensive toxicological assay? (2) are some biological processes more conservative across different preclinical testing systems than others? and (3) do these preclinical testing systems have the similar resolution in differentiating drugs by their therapeutic uses? For question 1, a high similarity was noted (PRank score = 0.90), indicating the potential utility of shorter term in vivo studies to predict outcome in longer term and more expensive in vivo model systems. There was a moderate similarity between rat primary hepatocytes and in vivo repeat-dose studies (PRank score = 0.71) but a low similarity (PRank score = 0.56) between rat primary hepatocytes and in vivo single dose studies. To address question 2, we limited the analysis to gene sets relevant to specific toxicogenomic pathways and we found that pathways such as lipid metabolism were consistently over-represented in all three assay systems. For question 3, all three preclinical assay systems could distinguish compounds from different therapeutic categories. This suggests that any noted differences in assay systems was biological process-dependent and furthermore that all three systems have utility in assessing drug responses within a certain drug class. In conclusion, this comparison of three commonly used rat TGx systems provides useful information in utility and application of TGx assays.
Collapse
Affiliation(s)
- Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Brian Delavan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States.,Department of Biosciences, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Ruth Roberts
- ApconiX, Alderley Edge, United Kingdom.,Department of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
16
|
Lin J, Chuang CC, Zuo L. Potential roles of microRNAs and ROS in colorectal cancer: diagnostic biomarkers and therapeutic targets. Oncotarget 2017; 8:17328-17346. [PMID: 28061475 PMCID: PMC5370044 DOI: 10.18632/oncotarget.14461] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
As one of the most commonly diagnosed cancers worldwide, colorectal adenocarcinoma often occurs sporadically in individuals aged 50 or above and there is an increase among younger patients under 50. Routine screenings are recommended for this age group to improve early detection. The multifactorial etiology of colorectal cancer consists of both genetic and epigenetic factors. Recently, studies have shown that the development and progression of colorectal cancer can be attributed to aberrant expression of microRNA. Reactive oxygen species (ROS) that play a key role in cancer cell survival, can also lead to carcinogenesis and cancer exacerbations. Given the rapid accumulating knowledge in the field, an updated review regarding microRNA and ROS in colorectal cancer is necessary. An extensive literature search has been conducted in PubMed/Medline databases to review the roles of microRNAs and ROS in colorectal cancer. Unique microRNA expression in tumor tissue, peripheral blood, and fecal samples from patients with colorectal cancer is outlined. Therapeutic approaches focusing on microRNA and ROS in colorectal cancer treatment is also delineated. This review aims to summarize the newest knowledge on the pathogenesis of colorectal cancer in the hopes of discovering novel diagnostic biomarkers and therapeutic techniques.
Collapse
Affiliation(s)
- Jingmei Lin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Xing W, Zeng C. A novel serum microRNA-based identification and classification biomarker of human glioma. Tumour Biol 2017; 39:1010428317705339. [PMID: 28475008 DOI: 10.1177/1010428317705339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malignant glioma is one of the most common primary brain tumors that develop via multiple pathways and gene deregulation. MicroRNAs are involved in human cancer development and progression, and their serum expression profiles of glioma patients may be useful for classifying cancers. However, the profile and molecular mechanism of serum microRNAs for human glioma are poorly understood. Thus, it is crucial to analyze microRNA expression in human glioma serum to identify molecular subclasses and early stage of glioma. In this study, we performed microRNA alteration that contributes to glioma profile via analysis of The Cancer Genome Atlas RNA sequencing data and other independent Gene Expression Omnibus microarray data. We identified the glioma-associated novel microRNA as a key regulator of human glioma development and progression. The putative novel miR-1825 was validated by real-time polymerase chain reaction and its expression was significantly decreased in the serum of glioma patients compared with healthy controls. Patients with high miR-1825 expression had a longer survival rate. Interestingly, we found that miR-1825 expression levels were dependent on tumor size and pathological grading in glioma patients, but not associated with other factors including age and T classification. MicroRNA-Gene Ontology network indicated that miR-1825 may play an important role in the development of human glioma including apoptosis, cell proliferation, and invasion. In vitro assays of miR-1825 inhibit U87 cell proliferation and invasion and induce apoptosis. Furthermore, we provide evidence that the tumor-suppressive microRNA miR-1825 controls KLF2 expression. Reporter gene analyses revealed that both microRNAs directly targeted the 3'-untranslated region of KLF2 messenger RNA. These data demonstrated that miR-1825 expression in serum of human glioma was associated with tumorigenesis and miR-1825 may be used as a biomarker for identification of the pathological grade of glioma.
Collapse
Affiliation(s)
- Wenli Xing
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Chun Zeng
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| |
Collapse
|
18
|
Mechanistic roles of microRNAs in hepatocarcinogenesis: A study of thioacetamide with multiple doses and time-points of rats. Sci Rep 2017; 7:3054. [PMID: 28596526 PMCID: PMC5465221 DOI: 10.1038/s41598-017-02798-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Environmental chemicals exposure is one of the primary factors for liver toxicity and hepatocarcinoma. Thioacetamide (TAA) is a well-known hepatotoxicant and could be a liver carcinogen in humans. The discovery of early and sensitive microRNA (miRNA) biomarkers in liver injury and tumor progression could improve cancer diagnosis, prognosis, and management. To study this, we performed next generation sequencing of the livers of Sprague-Dawley rats treated with TAA at three doses (4.5, 15 and 45 mg/kg) and four time points (3-, 7-, 14- and 28-days). Overall, 330 unique differentially expressed miRNAs (DEMs) were identified in the entire TAA-treatment course. Of these, 129 DEMs were found significantly enriched for the “liver cancer” annotation. These results were further complemented by pathway analysis (Molecular Mechanisms of Cancer, p53-, TGF-β-, MAPK- and Wnt-signaling). Two miRNAs (rno-miR-34a-5p and rno-miR-455-3p) out of 48 overlapping DEMs were identified to be early and sensitive biomarkers for TAA-induced hepatocarcinogenicity. We have shown significant regulatory associations between DEMs and TAA-induced liver carcinogenesis at an earlier stage than histopathological features. Most importantly, miR-34a-5p is the most suitable early and sensitive biomarker for TAA-induced hepatocarcinogenesis due to its consistent elevation during the entire treatment course.
Collapse
|
19
|
Beger R, Yu LR, Daniels J, Mattes W. Exploratory biomarkers: Analytical approaches and their implications. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Austermann C, Schierwagen R, Mohr R, Anadol E, Klein S, Pohlmann A, Jansen C, Strassburg CP, Schwarze-Zander C, Boesecke C, Rockstroh JK, Odenthal M, Trebicka J. microRNA-200a: A stage-dependent biomarker and predictor of steatosis and liver cell injury in human immunodeficiency virus patients. Hepatol Commun 2017; 1:36-45. [PMID: 29404431 PMCID: PMC5747028 DOI: 10.1002/hep4.1017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/27/2016] [Accepted: 01/08/2017] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease contributes to liver-related mortality and has a high prevalence among patients with human immunodeficiency virus (HIV). The early detection of steatosis could prevent disease progression through life-style changes. However, as the common serum markers are nonspecific and the gold standard for the detection of nonalcoholic fatty liver disease remains the invasive liver biopsy, its verification is limited. Therefore, the search for novel biomarkers is essential. Several studies have emphasized the role of microRNAs (miRNAs) as biomarkers for certain liver diseases. With our study, we aimed to investigate the potential of miR-200a as a biomarker for liver injury, fibrosis, and steatosis in HIV patients. The study cohort consisted of 89 HIV patients. Clinical and laboratory parameters were assessed twice, within a median follow-up period of 12 months. miR-200a serum levels were determined by real-time polymerase chain reaction and normalized to spiked-in RNA (SV40). miR-200a serum levels showed a significant correlation with the patients' controlled attenuation parameter scores and their body weight at baseline and with alanine aminotransferase serum levels at follow-up. At baseline, we observed a stage-dependent increase in miR-200a serum levels according to the degree of steatosis. More importantly, patients with higher baseline levels of miR-200a recorded a progression of steatosis at follow-up. Remarkably, miR-200a not only reveals a prognostic value for steatosis but possibly also for liver damage and metabolic adaptions as patients with an increase in alanine aminotransferase/aspartate aminotransferase serum levels over time also recorded higher baseline miR-200a levels. Conclusion : Our study reveals miR-200a not only to be a stage-dependent biomarker of steatosis but also to be a predictor of steatosis progression and probably liver cell injury in HIV patients. (Hepatology Communications 2017;1:36-45).
Collapse
Affiliation(s)
| | | | - Raphael Mohr
- Department of Internal Medicine I University of Bonn Bonn Germany.,German Center for Infection Research, partner site Bonn-Cologne Bonn Germany
| | - Evrim Anadol
- Department of Internal Medicine I University of Bonn Bonn Germany
| | - Sabine Klein
- Department of Internal Medicine I University of Bonn Bonn Germany
| | | | - Christian Jansen
- Department of Internal Medicine I University of Bonn Bonn Germany
| | | | | | | | - Jürgen K Rockstroh
- Department of Internal Medicine I University of Bonn Bonn Germany.,German Center for Infection Research, partner site Bonn-Cologne Bonn Germany
| | | | - Jonel Trebicka
- Department of Internal Medicine I University of Bonn Bonn Germany.,Faculty of Health Sciences University of Southern Denmark Odense Denmark.,European Foundation for Chronic Liver Failure Barcelona Spain
| |
Collapse
|
21
|
López-Riera M, Conde I, Tolosa L, Zaragoza Á, Castell JV, Gómez-Lechón MJ, Jover R. New microRNA Biomarkers for Drug-Induced Steatosis and Their Potential to Predict the Contribution of Drugs to Non-alcoholic Fatty Liver Disease. Front Pharmacol 2017; 8:3. [PMID: 28179883 PMCID: PMC5263149 DOI: 10.3389/fphar.2017.00003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: Drug-induced steatosis is a major reason for drug failure in clinical trials and post-marketing withdrawal; and therefore, predictive biomarkers are essential. These could be particularly relevant in non-alcoholic fatty liver disease (NAFLD), where most patients show features of the metabolic syndrome and are prescribed with combined chronic therapies, which can contribute to fatty liver. However, specific biomarkers to assess the contribution of drugs to NAFLD are lacking. We aimed to find microRNAs (miRNAs) responsive to steatotic drugs and to investigate if they could become circulating biomarkers for drug-induced steatosis. Methods: Human HepG2 cells were treated with drugs and changes in miRNA levels were measured by microarray and qRT-PCR. Drug-induced fat accumulation in HepG2 was analyzed by high-content screening and enzymatic methods. miRNA biomarkers were also analyzed in the sera of 44 biopsy-proven NAFLD patients and in 10 controls. Results: We found a set of 10 miRNAs [miR-22-5p, -3929, -24-2-5p, -663a, -29a-3p, -21 (5p and 3p), -27a-5p, -1260 and -202-3p] that were induced in human HepG2 cells and secreted to the culture medium upon incubation with model steatotic drugs (valproate, doxycycline, cyclosporin A and tamoxifen). Moreover, cell exposure to 17 common drugs for NAFLD patients showed that some of them (e.g., irbesartan, fenofibrate, and omeprazole) also induced these miRNAs and increased intracellular triglycerides, particularly in combinations. Finally, we found that most of these miRNAs (60%) were detected in human serum, and that NAFLD patients under fibrates showed both induction of these miRNAs and a more severe steatosis grade. Conclusion: Steatotic drugs induce a common set of hepatic miRNAs that could be used in drug screening during preclinical development. Moreover, most of these miRNAs are serum circulating biomarkers that could become useful in the diagnosis of iatrogenic steatosis.
Collapse
Affiliation(s)
- Mireia López-Riera
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe Valencia, Spain
| | - Isabel Conde
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La FeValencia, Spain; Servicio Medicina Digestiva, Sección Hepatología, Hospital Universitari i Politècnic La FeValencia, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe Valencia, Spain
| | - Ángela Zaragoza
- Servicio Medicina Digestiva, Sección Hepatología, Hospital Universitari i Politècnic La Fe Valencia, Spain
| | - José V Castell
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La FeValencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos IIIMadrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universitat de ValènciaValencia, Spain
| | - María J Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La FeValencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos IIIMadrid, Spain
| | - Ramiro Jover
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La FeValencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos IIIMadrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universitat de ValènciaValencia, Spain
| |
Collapse
|
22
|
Abstract
INTRODUCTION Drug induced steatohepatitis (DISH), a form of drug induced liver injury (DILI) is characterized by intracellular accumulation of lipids in hepatocytes and subsequent inflammatory events, in some ways similar to the pathology seen with other metabolic, viral and genetic causes of non alcoholic fatty liver disease and steatohepatitis (NAFLD and NASH). Areas covered: This paper provides a comprehensive review of the main underlying mechanisms by which various drugs cause DISH, and outlines existing preclinical tools to predict it and study underlying pathways involved. The translational hurdles of these models are discussed, with the example of an organotypic liver system designed to address them. Finally, we describe the clinical assessment and management of DISH. Expert Opinion: The complexity of the interconnected mechanistic pathways underlying DISH makes it important that preclinical evaluation of drugs is done in a physiologically and metabolically relevant context. Advanced organotypic tissue models, coupled with translational functional biomarkers and next-generational pan-omic measurements, may offer the best shot at gathering mechanistic knowledge and potential of a drug causing steatohepatitis. Ultimately this information could also help predict, detect or guide the development of specific treatments for DISH, which is an unmet need as of today.
Collapse
Affiliation(s)
- Ajit Dash
- a HemoShear Therapeutics LLC , Charlottesville , VA , USA
| | | | - Arun J Sanyal
- b Department of Internal Medicine, School of Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | | |
Collapse
|