1
|
Kang XZ, Jin DY, Cheng Y. C1orf115 interacts with clathrin adaptors to undergo endocytosis and induces ABCA1 to promote enteric cholesterol efflux. Cell Mol Life Sci 2025; 82:59. [PMID: 39847086 PMCID: PMC11757849 DOI: 10.1007/s00018-025-05590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
C1orf115 has been identified in high-throughput screens as a regulator of multidrug resistance possibly mediated through an interaction with ATP-dependent membrane transporter ABCB1. Here we show that C1orf115 not only shares structural similarities with FACI/C11orf86 to interact with clathrin adaptors to undergo endocytosis, but also induces ABCA1 transcription to promote cholesterol efflux. C1orf115 consists of an N-terminal intrinsically disordered region and a C-terminal α-helix. Its α-helix binds to phosphoinositides, and mediates C1orf115 localization to the plasma membrane, nucleolus and nuclear speckles. An acidic dileucine-like motif "ExxxIL" within C1orf115 binds with the AP2 complex and mediates its localization to clathrin-coating pits. The positively charged amphipathic α-helix undergoes acetylation, which redistributes C1orf115 from the plasma membrane and nucleolus to nuclear speckles. C1orf115 is widely expressed and most abundant in the small intestine. The ability of C1orf115 in clathrin-mediated endocytosis is required for its regulation of drug resistance, which is modulated by acetylation. RNA-seq analysis reveals that C1orf115 induces intestinal transcription of another ATP-dependent transporter ABCA1 and consequently promotes ABCA1-mediated cholesterol efflux in enterocytes. Our study provides mechanistic insight into how C1orf115 modulates drug resistance and cholesterol efflux through clathrin-mediated endocytosis and ABCA1 expression.
Collapse
Affiliation(s)
- Xiao-Zhuo Kang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
2
|
Gu L, Fu Y, Li X. Roles of post-translational modifications of UHRF1 in cancer. Epigenetics Chromatin 2024; 17:15. [PMID: 38725075 PMCID: PMC11080273 DOI: 10.1186/s13072-024-00540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
UHRF1 as a member of RING-finger type E3 ubiquitin ligases family, is an epigenetic regulator with five structural domains. It has been involved in the regulation of a series of biological functions, such as DNA replication, DNA methylation, and DNA damage repair. Additionally, aberrant overexpression of UHRF1 has been observed in over ten cancer types, indicating that UHRF1 is a typical oncogene. The overexpression of UHRF1 repressed the transcription of such tumor-suppressor genes as CDKN2A, BRCA1, and CDH1 through DNMT1-mediated DNA methylation. In addition to the upstream transcription factors regulating gene transcription, post-translational modifications (PTMs) also contribute to abnormal overexpression of UHRF1 in cancerous tissues. The types of PTM include phosphorylation, acetylation, methylationand ubiquitination, which regulate protein stability, histone methyltransferase activity, intracellular localization and the interaction with binding partners. Recently, several novel PTM types of UHRF1 have been reported, but the detailed mechanisms remain unclear. This comprehensive review summarized the types of UHRF1 PTMs, as well as their biological functions. A deep understanding of these crucial mechanisms of UHRF1 is pivotal for the development of novel UHRF1-targeted anti-cancer therapeutic strategies in the future.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yongming Fu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Xiong Li
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
3
|
Cheng Y, Kang XZ, Chan P, Cheung PHH, Cheng T, Ye ZW, Chan CP, Yu CH, Jin DY. FACI is a novel clathrin adaptor protein 2-binding protein that facilitates low-density lipoprotein endocytosis. Cell Biosci 2023; 13:74. [PMID: 37072871 PMCID: PMC10114425 DOI: 10.1186/s13578-023-01023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Cholesterol plays a vital role in multiple physiological processes. Cellular uptake of cholesterol is mediated primarily through endocytosis of low-density lipoprotein (LDL) receptor. New modifiers of this process remain to be characterized. Particularly, the role of fasting- and CREB-H-induced (FACI) protein in cholesterol homeostasis merits further investigation. METHODS Interactome profiling by proximity labeling and affinity purification - mass spectrometry was performed. Total internal reflection fluorescence microscopy and confocal immunofluorescence microscopy were used to analyze protein co-localization and interaction. Mutational analysis was carried out to define the domain and residues required for FACI localization and function. Endocytosis was traced by fluorescent cargos. LDL uptake in cultured cells and diet-induced hypercholesterolemia in mice were assessed. RESULTS FACI interacted with proteins critically involved in clathrin-mediated endocytosis, vesicle trafficking, and membrane cytoskeleton. FACI localized to clathrin-coated pits (CCP) on plasma membranes. FACI contains a conserved DxxxLI motif, which mediates its binding with the adaptor protein 2 (AP2) complex. Disruption of this motif of FACI abolished its CCP localization but didn't affect its association with plasma membrane. Cholesterol was found to facilitate FACI transport from plasma membrane to endocytic recycling compartment in a clathrin- and cytoskeleton-dependent manner. LDL endocytosis was enhanced in FACI-overexpressed AML12 cells but impaired in FACI-depleted HeLa cells. In vivo study indicated that hepatic FACI overexpression alleviated diet-induced hypercholesterolemia in mice. CONCLUSIONS FACI facilitates LDL endocytosis through its interaction with the AP2 complex.
Collapse
Affiliation(s)
- Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| | - Xiao-Zhuo Kang
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Pearl Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Pak-Hin Hinson Cheung
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Tao Cheng
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Zi-Wei Ye
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Cheng-Han Yu
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
4
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
5
|
FACI Is a Novel CREB-H-Induced Protein That Inhibits Intestinal Lipid Absorption and Reverses Diet-Induced Obesity. Cell Mol Gastroenterol Hepatol 2022; 13:1365-1391. [PMID: 35093589 PMCID: PMC8938335 DOI: 10.1016/j.jcmgh.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS CREB-H is a key liver-enriched transcription factor governing lipid metabolism. Additional targets of CREB-H remain to be identified and characterized. Here, we identified a novel fasting- and CREB-H-induced (FACI) protein that inhibits intestinal lipid absorption and alleviates diet-induced obesity in mice. METHODS FACI was identified by reanalysis of existing transcriptomic data. Faci-/- mice were generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated genome engineering. RNA sequencing was performed to identify differentially expressed genes in Faci-/- mice. Lipid accumulation in the villi was assessed by triglyceride measurement and Oil red O staining. In vitro fatty acid uptake assay was performed to verify in vivo findings. RESULTS FACI expression was enriched in liver and intestine. FACI is a phospholipid-binding protein that localizes to plasma membrane and recycling endosomes. Hepatic transcription of Faci was regulated by not only CREB-H, but also nutrient-responsive transcription factors sterol regulatory element-binding protein 1 (SREBP1), hepatocyte nuclear factor 4α (HNF4α), peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α), and CREB, as well as fasting-related cyclic adenosine monophosphate (cAMP) signaling. Genetic knockout of Faci in mice showed an increase in intestinal fat absorption. In accordance with this, Faci deficiency aggravated high-fat diet-induced obesity, hyperlipidemia, steatosis, and other obesity-related metabolic dysfunction in mice. CONCLUSIONS FACI is a novel CREB-H-induced protein. Genetic disruption of Faci in mice showed its inhibitory effect on fat absorption and obesity. Our findings shed light on a new target of CREB-H implicated in lipid homeostasis.
Collapse
|
6
|
Nettore IC, Franchini F, Palatucci G, Macchia PE, Ungaro P. Epigenetic Mechanisms of Endocrine-Disrupting Chemicals in Obesity. Biomedicines 2021; 9:biomedicines9111716. [PMID: 34829943 PMCID: PMC8615468 DOI: 10.3390/biomedicines9111716] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
The incidence of obesity has dramatically increased over the last decades. Recently, there has been a growing interest in the possible association between the pandemics of obesity and some endocrine-disrupting chemicals (EDCs), termed “obesogens”. These are a heterogeneous group of exogenous compounds that can interfere in the endocrine regulation of energy metabolism and adipose tissue structure. Oral intake, inhalation, and dermal absorption represent the major sources of human exposure to these EDCs. Recently, epigenetic changes such as the methylation of cytosine residues on DNA, post-translational modification of histones, and microRNA expression have been considered to act as an intermediary between deleterious effects of EDCs and obesity development in susceptible individuals. Specifically, EDCs exposure during early-life development can detrimentally affect individuals via inducing epigenetic modifications that can permanently change the epigenome in the germline, enabling changes to be transmitted to the next generations and predisposing them to a multitude of diseases. The purpose of this review is to analyze the epigenetic alterations putatively induced by chemical exposures and their ability to interfere with the control of energy metabolism and adipose tissue regulation, resulting in imbalances in the control of body weight, which can lead to obesity.
Collapse
Affiliation(s)
- Immacolata Cristina Nettore
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Fabiana Franchini
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Giuseppe Palatucci
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Paola Ungaro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale del CNR “G. Salvatore”, Via S. Pansini, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-770-4795
| |
Collapse
|
7
|
Suppression of JAK-STAT signaling by Epstein-Barr virus tegument protein BGLF2 through recruitment of SHP1 phosphatase and promotion of STAT2 degradation. J Virol 2021; 95:e0102721. [PMID: 34319780 DOI: 10.1128/jvi.01027-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Some lytic proteins encoded by Epstein-Barr virus (EBV) suppress host interferon (IFN) signaling to facilitate viral replication. In this study we sought to identify and characterize EBV proteins antagonizing IFN signaling. The induction of IFN-stimulated genes (ISGs) by IFN-β was effectively suppressed by EBV. A functional screen was therefore performed to identify IFN-antagonizing proteins encoded by EBV. EBV tegument protein BGLF2 was identified as a potent suppressor of JAK-STAT signaling. This activity was found to be independent of its stimulatory effect on p38 and JNK pathways. Association of BGLF2 with STAT2 resulted in more pronounced K48-linked polyubiquitination and proteasomal degradation of the latter. Mechanistically, BGLF2 promoted the recruitment of SHP1 phosphatase to STAT1 to inhibit its tyrosine phosphorylation. In addition, BGLF2 associated with cullin 1 E3 ubiquitin ligase to facilitate its recruitment to STAT2. Consequently, BGLF2 suppressed ISG induction by IFN-β. Furthermore, BGLF2 also suppressed type II and type III IFN signaling, although the suppressive effect on type II IFN response was milder. When pre-treated with IFN-β, host cells became less susceptible to primary infection of EBV. This phenotype was reversed when expression of BGLF2 was enforced. Finally, genetic disruption of BGLF2 in EBV led to more pronounced induction of ISGs. Taken together, our study unveils the roles of BGLF2 not only in the subversion of innate IFN response but also in lytic infection and reactivation of EBV. Importance Epstein-Barr virus (EBV) is an oncogenic virus associated with the development of lymphoid and epithelial malignancies. EBV has to subvert interferon-mediated host antiviral response to replicate and cause diseases. It is therefore of great interest to identify and characterize interferon-antagonizing proteins produced by EBV. In this study we perform a screen to search for EBV proteins that suppress the action of interferons. We further show that BGLF2 protein of EBV is particularly strong in this suppression. This is achieved by inhibiting two key proteins STAT1 and STAT2 that mediate the antiviral activity of interferons. BGLF2 recruits a host enzyme to remove the phosphate group from STAT1 thereby inactivating its activity. BGLF2 also redirects STAT2 for degradation. A recombinant virus in which BGLF2 gene has been disrupted can activate host interferon response more robustly. Our findings reveal a novel mechanism by which EBV BGLF2 protein suppresses interferon signaling.
Collapse
|
8
|
Nakagawa Y, Kumagai K, Han SI, Mizunoe Y, Araki M, Mizuno S, Ohno H, Matsuo K, Yamada Y, Kim JD, Miyamoto T, Sekiya M, Konishi M, Itoh N, Matsuzaka T, Takahashi S, Sone H, Shimano H. Starvation-induced transcription factor CREBH negatively governs body growth by controlling GH signaling. FASEB J 2021; 35:e21663. [PMID: 34042217 DOI: 10.1096/fj.202002784rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
cAMP responsive element-binding protein H (CREBH) is a hepatic transcription factor to be activated during fasting. We generated CREBH knock-in flox mice, and then generated liver-specific CREBH transgenic (CREBH L-Tg) mice in an active form. CREBH L-Tg mice showed a delay in growth in the postnatal stage. Plasma growth hormone (GH) levels were significantly increased in CREBH L-Tg mice, but plasma insulin-like growth factor 1 (IGF1) levels were significantly decreased, indicating GH resistance. In addition, CREBH overexpression significantly increased hepatic mRNA and plasma levels of FGF21, which is thought to be as one of the causes of growth delay. However, the additional ablation of FGF21 in CREBH L-Tg mice could not correct GH resistance at all. CREBH L-Tg mice sustained GH receptor (GHR) reduction and the increase of IGF binding protein 1 (IGFBP1) in the liver regardless of FGF21. As GHR is a first step in GH signaling, the reduction of GHR leads to impairment of GH signaling. These data suggest that CREBH negatively regulates growth in the postnatal growth stage via various pathways as an abundant energy response by antagonizing GH signaling.
Collapse
Affiliation(s)
- Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Kae Kumagai
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yuhei Mizunoe
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaya Araki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ohno
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Matsuo
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yasunari Yamada
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Jun-Dal Kim
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Takafumi Miyamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center (TMRC), University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center (TMRC), University of Tsukuba, Tsukuba, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hirohito Sone
- Faculty of Medicine, Department of Hematology, Endocrinology and Metabolism, Niigata University, Niigata, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Bi Y, Cui D, Xiong X, Zhao Y. The characteristics and roles of β-TrCP1/2 in carcinogenesis. FEBS J 2020; 288:3351-3374. [PMID: 33021036 DOI: 10.1111/febs.15585] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
β-transducin repeat-containing protein (β-TrCP), one of the well-characterized F-box proteins, acts as a substrate receptor and constitutes an active SCFβ-TrCP E3 ligase with a scaffold protein CUL1, a RING protein RBX1, and an adaptor protein SKP1. β-TrCP plays a critical role in the regulation of various physiological and pathological processes, including signal transduction, cell cycle progression, cell migration, DNA damage response, and tumorigenesis, by governing burgeoning amounts of key regulators for ubiquitination and proteasomal degradation. Given that a variety of β-TrCP substrates are well-known oncoproteins and tumor suppressors, and dysregulation of β-TrCP is frequently identified in human cancers, β-TrCP plays a vital role in carcinogenesis. In this review, we first briefly introduce the characteristics of β-TrCP1, β-TrCP2, and SCFβ-TrCP ubiquitin ligase, and then discuss SCFβ-TrCP ubiquitin ligase regulated biological processes by targeting its substrates for degradation. Moreover, we summarize the regulation of β-TrCP1 and β-TrCP2 at multiple layers and further discuss the various roles of β-TrCP1 and β-TrCP2 in human cancer, functioning as either an oncoprotein or a tumor suppressor in a manner dependent of cellular context. Finally, we provide novel insights for future perspectives on the potential of targeting β-TrCP1 and β-TrCP2 for cancer therapy.
Collapse
Affiliation(s)
- Yanli Bi
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrui Cui
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Cheung PHH, Lee TWT, Kew C, Chen H, Yuen KY, Chan CP, Jin DY. Virus subtype-specific suppression of MAVS aggregation and activation by PB1-F2 protein of influenza A (H7N9) virus. PLoS Pathog 2020; 16:e1008611. [PMID: 32511263 PMCID: PMC7302872 DOI: 10.1371/journal.ppat.1008611] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/18/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Human infection with avian influenza A (H5N1) and (H7N9) viruses causes severe respiratory diseases. PB1-F2 protein is a critical virulence factor that suppresses early type I interferon response, but the mechanism of its action in relation to high pathogenicity is not well understood. Here we show that PB1-F2 protein of H7N9 virus is a particularly potent suppressor of antiviral signaling through formation of protein aggregates on mitochondria and inhibition of TRIM31-MAVS interaction, leading to prevention of K63-polyubiquitination and aggregation of MAVS. Unaggregated MAVS accumulated on fragmented mitochondria is prone to degradation by both proteasomal and lysosomal pathways. These properties are proprietary to PB1-F2 of H7N9 virus but not shared by its counterpart in WSN virus. A recombinant virus deficient of PB1-F2 of H7N9 induces more interferon β in infected cells. Our findings reveal a subtype-specific mechanism for destabilization of MAVS and suppression of interferon response by PB1-F2 of H7N9 virus. Exactly why avian influenza A (H5N1) and (H7N9) viruses cause severe diseases in humans remains unclear. PB1-F2 protein encoded by influenza A virus is one virulence factor that might make a difference. In this study we show that PB1-F2 protein of H7N9 virus is particularly strong in the suppression of host antiviral defense. This was achieved by inhibiting a key protein in cell signaling named MAVS. PB1-F2 directs MAVS for degradation and prevents MAVS from forming protein aggregates required for full activation. A recombinant virus in which PB1-F2 of H7N9 has been deleted can activate host antiviral response robustly. Our findings reveal a novel mechanism by which PB1-F2 protein of H7N9 virus prevents MAVS aggregation and promotes MAVS degradation, leading to the suppression of host antiviral defense.
Collapse
Affiliation(s)
| | | | - Chun Kew
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (CPC); (DYJ)
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (CPC); (DYJ)
| |
Collapse
|
11
|
Khan HA, Margulies CE. The Role of Mammalian Creb3-Like Transcription Factors in Response to Nutrients. Front Genet 2019; 10:591. [PMID: 31293620 PMCID: PMC6598459 DOI: 10.3389/fgene.2019.00591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Our ability to overcome the challenges behind metabolic disorders will require a detailed understanding of the regulation of responses to nutrition. The Creb3 transcription factor family appears to have a unique regulatory role that links cellular secretory capacity with development, nutritional state, infection, and other stresses. This role in regulating individual secretory capacity genes could place this family of transcription factors at an important regulatory intersection mediating an animal’s responses to nutrients and other environmental challenges. Interestingly, in both humans and mice, individuals with mutations in Creb3L3/CrebH, one of the Creb3 family members, exhibit hypertriglyceridemia (HTG) thus linking this transcription factor to lipid metabolism. We are beginning to understand how Creb3L3 and related family members are regulated and to dissect the potential redundancy and cross talk between distinct family members, thereby mediating both healthy and pathological responses to the environment. Here, we review the current knowledge on the regulation of Creb3 family transcription factor activity, their target genes, and their role in metabolic disease.
Collapse
Affiliation(s)
- Haris A Khan
- Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Carla E Margulies
- Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
12
|
Siu KL, Yuen KS, Castaño-Rodriguez C, Ye ZW, Yeung ML, Fung SY, Yuan S, Chan CP, Yuen KY, Enjuanes L, Jin DY. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 2019; 33:8865-8877. [PMID: 31034780 DOI: 10.1096/fj.201802418r] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is capable of inducing a storm of proinflammatory cytokines. In this study, we show that the SARS-CoV open reading frame 3a (ORF3a) accessory protein activates the NLRP3 inflammasome by promoting TNF receptor-associated factor 3 (TRAF3)-mediated ubiquitination of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). SARS-CoV and its ORF3a protein were found to be potent activators of pro-IL-1β gene transcription and protein maturation, the 2 signals required for activation of the NLRP3 inflammasome. ORF3a induced pro-IL-1β transcription through activation of NF-κB, which was mediated by TRAF3-dependent ubiquitination and processing of p105. ORF3a-induced elevation of IL-1β secretion was independent of its ion channel activity or absent in melanoma 2 but required NLRP3, ASC, and TRAF3. ORF3a interacted with TRAF3 and ASC, colocalized with them in discrete punctate structures in the cytoplasm, and facilitated ASC speck formation. TRAF3-dependent K63-linked ubiquitination of ASC was more pronounced in SARS-CoV-infected cells or when ORF3a was expressed. Taken together, our findings reveal a new mechanism by which SARS-CoV ORF3a protein activates NF-κB and the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of p105 and ASC.-Siu, K.-L., Yuen, K.-S., Castaño-Rodriguez, C., Ye, Z.-W., Yeung, M.-L., Fung, S.-Y., Yuan, S., Chan, C.-P., Yuen, K.-Y., Enjuanes, L., Jin, D.-Y. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC.
Collapse
Affiliation(s)
- Kam-Leung Siu
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Zi-Wei Ye
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Man-Lung Yeung
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| |
Collapse
|
13
|
Yau MYC, Xu L, Huang CL, Wong CM. Long Non-Coding RNAs in Obesity-Induced Cancer. Noncoding RNA 2018; 4:E19. [PMID: 30154386 PMCID: PMC6162378 DOI: 10.3390/ncrna4030019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023] Open
Abstract
Many mechanisms of obesity-induced cancers have been proposed. However, it remains unclear whether or not long non-coding RNAs (lncRNAs) play any role in obesity-induced cancers. In this article, we briefly discuss the generally accepted hypotheses explaining the mechanisms of obesity-induced cancers, summarize the latest evidence for the expression of a number of well-known cancer-associated lncRNAs in obese subjects, and propose the potential contribution of lncRNAs to obesity-induced cancers. We hope this review can serve as an inspiration to scientists to further explore the regulatory roles of lncRNAs in the development of obesity-induced cancers. Those findings will be fundamental in the development of effective therapeutics or interventions to combat this life-threatening adverse effect of obesity.
Collapse
Affiliation(s)
- Mabel Yin-Chun Yau
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China.
| | - Lu Xu
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
14
|
Najumuddin, Fakhar M, Gul M, Rashid S. Interactive structural analysis of βTrCP1 and PER2 phosphoswitch binding through dynamics simulation assay. Arch Biochem Biophys 2018; 651:34-42. [DOI: 10.1016/j.abb.2018.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 10/16/2022]
|
15
|
Gao WW, Tang HMV, Cheng Y, Chan CP, Chan CP, Jin DY. Suppression of gluconeogenic gene transcription by SIK1-induced ubiquitination and degradation of CRTC1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:211-223. [PMID: 29408765 DOI: 10.1016/j.bbagrm.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
CRTCs are a group of three transcriptional coactivators required for CREB-dependent transcription. CREB and CRTCs are critically involved in the regulation of various biological processes such as cell proliferation, metabolism, learning and memory. However, whether CRTC1 efficiently induces gluconeogenic gene expression and how CRTC1 is regulated by upstream kinase SIK1 remain to be understood. In this work, we demonstrated SIK1-induced phosphorylation, ubiquitination and degradation of CRTC1 in the context of the regulation of gluconeogenesis. CRTC1 protein was destabilized by SIK1 but not SIK2 or SIK3. This effect was likely mediated by phosphorylation at S155, S167, S188 and S346 residues of CRTC1 followed by K48-linked polyubiquitination and proteasomal degradation. Expression of gluconeogenic genes such as that coding for phosphoenolpyruvate carboxykinase was stimulated by CRTC1, but suppressed by SIK1. Depletion of CRTC1 protein also blocked forskolin-induced gluconeogenic gene expression, knockdown or pharmaceutical inhibition of SIK1 had the opposite effect. Finally, SIK1-induced ubiquitination of CRTC1 was mediated by RFWD2 ubiquitin ligase at a site not equivalent to K628 in CRTC2. Taken together, our work reveals a regulatory circuit in which SIK1 suppresses gluconeogenic gene transcription by inducing ubiquitination and degradation of CRTC1. Our findings have implications in the development of new antihyperglycemic agents.
Collapse
Affiliation(s)
- Wei-Wei Gao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hei-Man Vincent Tang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ching-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
16
|
Selective Activation of Type II Interferon Signaling by Zika Virus NS5 Protein. J Virol 2017; 91:JVI.00163-17. [PMID: 28468880 DOI: 10.1128/jvi.00163-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
Severe complications of Zika virus (ZIKV) infection might be caused by inflammation, but how ZIKV induces proinflammatory cytokines is not understood. In this study, we show opposite regulatory effects of the ZIKV NS5 protein on interferon (IFN) signaling. Whereas ZIKV and its NS5 protein were potent suppressors of type I and type III IFN signaling, they were found to activate type II IFN signaling. Inversely, IFN-γ augmented ZIKV replication. NS5 interacted with STAT2 and targeted it for ubiquitination and degradation, but it had no influence on STAT1 stability or nuclear translocation. The recruitment of STAT1-STAT2-IRF9 to IFN-β-stimulated genes was compromised when NS5 was expressed. Concurrently, the formation of STAT1-STAT1 homodimers and their recruitment to IFN-γ-stimulated genes, such as the gene encoding the proinflammatory cytokine CXCL10, were augmented. Silencing the expression of an IFN-γ receptor subunit or treatment of ZIKV-infected cells with a JAK2 inhibitor suppressed viral replication and viral induction of IFN-γ-stimulated genes. Taken together, our findings provide a new mechanism by which the ZIKV NS5 protein differentially regulates IFN signaling to facilitate viral replication and cause diseases. This activity might be shared by a group of viral IFN modulators.IMPORTANCE Mammalian cells produce three types of interferons to combat viral infection and to control host immune responses. To replicate and cause diseases, pathogenic viruses have developed different strategies to defeat the action of host interferons. Many viral proteins, including the Zika virus (ZIKV) NS5 protein, are known to be able to suppress the antiviral property of type I and type III interferons. Here we further show that the ZIKV NS5 protein can also boost the activity of type II interferon to induce cellular proteins that promote inflammation. This is mediated by the differential effect of the ZIKV NS5 protein on a pair of cellular transcription factors, STAT1 and STAT2. NS5 induces the degradation of STAT2 but promotes the formation of STAT1-STAT1 protein complexes, which activate genes controlled by type II interferon. A drug that specifically inhibits the IFN-γ receptor or STAT1 shows an anti-ZIKV effect and might also have anti-inflammatory activity.
Collapse
|
17
|
Deng JJ, Kong KYE, Gao WW, Tang HMV, Chaudhary V, Cheng Y, Zhou J, Chan CP, Wong DKH, Yuen MF, Jin DY. Interplay between SIRT1 and hepatitis B virus X protein in the activation of viral transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:491-501. [PMID: 28242208 DOI: 10.1016/j.bbagrm.2017.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) genome is organized into a minichromosome known as covalently closed circular DNA (cccDNA), which serves as the template for all viral transcripts. SIRT1 is an NAD+-dependent protein deacetylase which activates HBV transcription by promoting the activity of cellular transcription factors and coactivators. How SIRT1 and viral transactivator X protein (HBx) might affect each other remains to be clarified. In this study we show synergy and mutual dependence between SIRT1 and HBx in the activation of HBV transcription. All human sirtuins SIRT1 through SIRT7 activated HBV gene expression. The steady-state levels of SIRT1 protein were elevated in HBV-infected liver tissues and HBV-replicating hepatoma cells. SIRT1 interacted with HBx and potentiated HBx transcriptional activity on precore promoter and covalently closed circular DNA (cccDNA) likely through a deacetylase-independent mechanism, leading to more robust production of cccDNA, pregenomic RNA and surface antigen. SIRT1 and HBx proteins were more abundant when both were expressed. SIRT1 promoted the recruitment of HBx as well as cellular transcriptional factors and coactivators such as PGC-1α and FXRα to cccDNA. Depletion of SIRT1 suppressed HBx recruitment. On the other hand, SIRT1 recruitment to cccDNA was compromised when HBx was deficient. Whereas pharmaceutical agonists of SIRT1 such as resveratrol activated HBV transcription, small-molecule inhibitors of SIRT1 including sirtinol and Ex527 exhibited anti-HBV activity. Taken together, our findings revealed not only the interplay between SIRT1 and HBx in the activation of HBV transcription but also new strategies and compounds for developing antivirals against HBV.
Collapse
Affiliation(s)
- Jian-Jun Deng
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Shaanxi Key Laboratory of Biodegradable Materials, College of Chemical Engineering, Northwest University, 229 Taibai Road North, Xi'an 710069, China; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Ka-Yiu Edwin Kong
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Wei-Wei Gao
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Hei-Man Vincent Tang
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Vidyanath Chaudhary
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Jie Zhou
- Department of Microbiology, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Danny Ka-Ho Wong
- State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong; Department of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Man-Fung Yuen
- State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong; Department of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
18
|
Klein S, Meng R, Montenarh M, Götz C. The Phosphorylation of PDX-1 by Protein Kinase CK2 Is Crucial for Its Stability. Pharmaceuticals (Basel) 2016; 10:ph10010002. [PMID: 28036027 PMCID: PMC5374406 DOI: 10.3390/ph10010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022] Open
Abstract
The homeodomain protein PDX-1 is a critical regulator of pancreatic development and insulin production in pancreatic β-cells. We have recently shown that PDX-1 is a substrate of protein kinase CK2; a multifunctional protein kinase which is implicated in the regulation of various cellular aspects, such as differentiation, proliferation, and survival. The CK2 phosphorylation site of PDX-1 is located within the binding region of the E3 ubiquitin ligase adaptor protein PCIF1. To study the interaction between PDX-1 and PCIF1 we used immunofluorescence analysis, co-immunoprecipitation, GST-pull-down studies, and proximity ligation assay (PLA). For the analysis of the stability of PDX-1 we performed a cycloheximide chase. We used PDX-1 in its wild-type form as well as phosphomutants of the CK2 phosphorylation site. In pancreatic β-cells PDX-1 binds to PCIF1. The phosphorylation of PDX-1 by CK2 increases the ratio of PCIF1 bound to PDX-1. The stability of PDX-1 is extended in the absence of CK2 phosphorylation. Our results identified protein kinase CK2 as new important modulator of the stability of PDX-1.
Collapse
Affiliation(s)
- Sabrina Klein
- Medical Biochemistry and Molecular Biology, Saarland University, 66424 Homburg, Germany.
| | - Rui Meng
- Medical Biochemistry and Molecular Biology, Saarland University, 66424 Homburg, Germany.
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 156 Wujiadun, Hankou, Wuhan 430045, China.
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, 66424 Homburg, Germany.
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66424 Homburg, Germany.
| |
Collapse
|