1
|
Guo Y, Hu Z, Bai L, Tang Y, Hu J, Zhang Q, Liu J, Feng S. Increased glucose utilization is a targetable vulnerability to overcome drug resistance associated with neddylation blockade. Biochem Pharmacol 2025; 236:116905. [PMID: 40158819 DOI: 10.1016/j.bcp.2025.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Gastric cancer, a leading cause of cancer-related mortality, has a median survival of just 15 months in advanced stages and currently lacks effective treatment options. Neddylation blockade is a promising therapeutic strategy, yet its clinical application faces challenge with the emergence of drug resistance. Currently, the underlying mechanisms behind the drug resistance are not fully understood. Our study uncovers the link between MLN4924-induced metabolic reprogramming and its antitumor efficacy in gastric cancer cells. We first demonstrated that MLN4924, a neddylation blocker, has multiple effects on gastric cancer cell growth, notably inducing mitochondrial damage. Untargeted metabolomic analysis revealed that MLN4924 enhances glucose utilization in gastric cancer cells in a concentration-dependent manner. Mechanistically, MLN4924 reduces the neddylation of cullin2, thereby inhibiting the degradation of HIF-1α. This leads to the accumulation of HIF-1α, which upregulates GLUT1 levels and facilitates increased glucose uptake. This metabolic adaptation allows gastric cancer cells to maintain their energy supply despite mitochondrial impairment. Based on the increased glucose dependency following neddylation inhibition by MLN4924, we propose a co-targeting strategy with GLUT1 inhibition, which significantly improves therapeutic efficacy in vitro and in vivo models without safety risks. This dual-targeting approach represents a potent new strategy for gastric cancer treatment.
Collapse
Affiliation(s)
- Yueyang Guo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Zhuang Hu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Linyue Bai
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjun Tang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jingyi Hu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Qianqian Zhang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jiali Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Siqi Feng
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Shi Y, Liu B, Zhang Y, Zhao S, Zuo L, Pu J, Zhai H, Mu D, Du J, Cheng Y, Yang C, Chen Y. YTHDF1/RNF7/p27 axis promotes prostate cancer progression. Cell Death Dis 2025; 16:314. [PMID: 40251202 PMCID: PMC12008233 DOI: 10.1038/s41419-025-07648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Prostate cancer (PCa) is a prevalent malignant tumor of the urinary system and remains the most common cancer among males. In this study, we showed that YTHDF1, one of the reader proteins involved in the N6-methyladenosine (m6A) modification signaling pathway, is highly expressed in PCa cancerous tissues and cells, which correlates with poor clinical outcomes. Our study revealed that YTHDF1 knockdown inhibits tumor cell proliferation, migration, and xenograft tumor formation by decreasing p27 protein stability through proteasome degradation signaling. Consistently, YTHDF1 depletion markedly reduced the clonogenic growth of Pten or/and TP53-deficient organoids. Candidate p27-targeting E3 ubiquitin ligases screening identified RNF7 as the direct downstream target for YTHDF1 in an m6A-dependent manner. The subsequent high translation of RNF7 results in the efficient degradation of the cell cycle inhibitor p27 and malignant tumor cell growth. In addition, we provided evidence showing that YTHDF1 or RNF7 depletion sensitizes tumor cells to chemotherapy drug cisplatin by increasing cellular apoptosis. Our findings revealed that the neddylation inhibitor MLN4924 effectively inhibited prostate cancer progression in vitro and in vivo. Our study highlights the YTHDF1/RNF7/p27 axis as a crucial component in PCa, suggesting its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Yulin Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Baiyang Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Sen Zhao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li Zuo
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haoqing Zhai
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dengcai Mu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jia Du
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yan Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Cuiping Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| | - Yongbin Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
3
|
He W, Zheng Z, Zhao Q, Zhang R, Zheng H. Targeting HBV cccDNA Levels: Key to Achieving Complete Cure of Chronic Hepatitis B. Pathogens 2024; 13:1100. [PMID: 39770359 PMCID: PMC11728772 DOI: 10.3390/pathogens13121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic hepatitis B (CHB) caused by HBV infection has brought suffering to numerous people. Due to the stable existence of HBV cccDNA, the original template for HBV replication, chronic hepatitis B (CHB) is difficult to cure completely. Despite current antiviral strategies being able to effectively limit the progression of CHB, complete CHB cure requires directly targeting HBV cccDNA. In this review, we discuss strategies that may achieve a complete cure of CHB, including inhibition of cccDNA de novo synthesis, targeting cccDNA degradation through host factors and small molecules, CRISP-Cas9-based cccDNA editing, and silencing cccDNA epigenetically.
Collapse
Affiliation(s)
- Wei He
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhijin Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Renxia Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| |
Collapse
|
4
|
Bou Malhab LJ, Schmidt S, Fagotto-Kaufmann C, Pion E, Gadea G, Roux P, Fagotto F, Debant A, Xirodimas DP. An Anti-Invasive Role for Mdmx through the RhoA GTPase under the Control of the NEDD8 Pathway. Cells 2024; 13:1625. [PMID: 39404389 PMCID: PMC11475522 DOI: 10.3390/cells13191625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Mdmx (Mdm4) is established as an oncogene mainly through repression of the p53 tumour suppressor. On the other hand, anti-oncogenic functions for Mdmx have also been proposed, but the underlying regulatory pathways remain unknown. Investigations into the effect of inhibitors for the NEDD8 pathway in p53 activation, human cell morphology, and in cell motility during gastrulation in Xenopus embryos revealed an anti-invasive function of Mdmx. Through stabilisation and activation of the RhoA GTPase, Mdmx is required for the anti-invasive effects of NEDDylation inhibitors. Mechanistically, through its Zn finger domain, Mdmx preferentially interacts with the inactive GDP-form of RhoA. This protects RhoA from degradation and allows for RhoA targeting to the plasma membrane for its subsequent activation. The effect is transient, as prolonged NEDDylation inhibition targets Mdmx for degradation, which subsequently leads to RhoA destabilisation. Surprisingly, Mdmx degradation requires non-NEDDylated (inactive) Culin4A and the Mdm2 E3-ligase. This study reveals that Mdmx can control cell invasion through RhoA stabilisation/activation, which is potentially linked to the reported anti-oncogenic functions of Mdmx. As inhibitors of the NEDD8 pathway are in clinical trials, the status of Mdmx may be a critical determinant for the anti-tumour effects of these inhibitors.
Collapse
Affiliation(s)
- Lara J. Bou Malhab
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Susanne Schmidt
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Christine Fagotto-Kaufmann
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Emmanuelle Pion
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Gilles Gadea
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Pierre Roux
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Francois Fagotto
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Anne Debant
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Dimitris P. Xirodimas
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| |
Collapse
|
5
|
Rosenthal ZC, Fass DM, Payne NC, She A, Patnaik D, Hennig KM, Tesla R, Werthmann GC, Guhl C, Reis SA, Wang X, Chen Y, Placzek M, Williams NS, Hooker J, Herz J, Mazitschek R, Haggarty SJ. Epigenetic modulation through BET bromodomain inhibitors as a novel therapeutic strategy for progranulin-deficient frontotemporal dementia. Sci Rep 2024; 14:9064. [PMID: 38643236 PMCID: PMC11032351 DOI: 10.1038/s41598-024-59110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.
Collapse
Affiliation(s)
- Zachary C Rosenthal
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - N Connor Payne
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Angela She
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Krista M Hennig
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Tesla
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gordon C Werthmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Surya A Reis
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yueting Chen
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Placzek
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacob Hooker
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
7
|
Wang T, Li X, Ma R, Sun J, Huang S, Sun Z, Wang M. Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review). Int J Oncol 2024; 64:39. [PMID: 38391033 PMCID: PMC10919758 DOI: 10.3892/ijo.2024.5627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Neddylation, akin to ubiquitination, represents a post‑translational modification of proteins wherein neural precursor cell‑expressed developmentally downregulated protein 8 (NEDD8) is modified on the substrate protein through a series of reactions. Neddylation plays a pivotal role in the growth and proliferation of animal cells. In colorectal cancer (CRC), it predominantly contributes to the proliferation, metastasis and survival of tumor cells, decreasing overall patient survival. The strategic manipulation of the NEDD8‑mediated neddylation pathway holds immense therapeutic promise in terms of the potential to modulate the growth of tumors by regulating diverse biological responses within cancer cells, such as DNA damage response and apoptosis, among others. MLN4924 is an inhibitor of NEDD8, and its combined use with platinum drugs and irinotecan, as well as cycle inhibitors and NEDD activating enzyme inhibitors screened by drug repurposing, has been found to exert promising antitumor effects. The present review summarizes the recent progress made in the understanding of the role of NEDD8 in the advancement of CRC, suggesting that NEDD8 is a promising anti‑CRC target.
Collapse
Affiliation(s)
- Tianyu Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong 250117, P.R. China
| | - Xiaobing Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong 250117, P.R. China
| | - Ruijie Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jian Sun
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong 250117, P.R. China
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, P.R. China
| | - Zhigang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Meng Wang
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
8
|
Morstein J, Amatuni A, Shuster A, Kuttenlochner W, Ko T, Abegg D, Groll M, Adibekian A, Renata H, Trauner DH. Optical Control of Proteasomal Protein Degradation with a Photoswitchable Lipopeptide. Angew Chem Int Ed Engl 2024; 63:e202314791. [PMID: 38109686 PMCID: PMC12079555 DOI: 10.1002/anie.202314791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Photolipids have emerged as attractive tools for the optical control of lipid functions. They often contain an azobenzene photoswitch that imparts a cis double-bond upon irradiation. Herein, we present the application of photoswitching to a lipidated natural product, the potent proteasome inhibitor cepafungin I. Several azobenzene-containing lipids were attached to the cyclopeptide core, yielding photoswitchable derivatives. Most notably, PhotoCep4 exhibited a 10-fold higher cellular potency in its light-induced cis-form, matching the potency of natural cepafungin I. The length of the photolipid tail and distal positioning of the azobenzene photoswitch with respect to the macrocycle is critical for this activity. In a proteome-wide experiment, light-triggered PhotoCep4 modulation showed high overlap with constitutively active cepafungin I. The mode of action was studied using crystallography and revealed an identical binding of the cyclopeptide in comparison to cepafungin I, suggesting that differences in their cellular activity originate from switching the tail structure. The photopharmacological approach described herein could be applicable to many other natural products as lipid conjugation is common and often necessary for potent activity. Such lipids are often introduced late in synthetic routes, enabling facile chemical modifications.
Collapse
Affiliation(s)
- Johannes Morstein
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Alexander Amatuni
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, USA
| | - Anton Shuster
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, USA
| | - Wolfgang Kuttenlochner
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, Chair of Biochemistry, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Tongil Ko
- Department of Chemistry, New York University, New York, New York 10003, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Michael Groll
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, Chair of Biochemistry, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Alexander Adibekian
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, USA
| | - Dirk H. Trauner
- Department of Chemistry, New York University, New York, New York 10003, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Pérez-González A, Ramírez-Díaz I, Guzmán-Linares J, Sarvari P, Sarvari P, Rubio K. ncRNAs Orchestrate Chemosensitivity Induction by Neddylation Blockades. Cancers (Basel) 2024; 16:825. [PMID: 38398217 PMCID: PMC10886669 DOI: 10.3390/cancers16040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
We performed an integrative transcriptomic in silico analysis using lung adenocarcinoma A549 cells treated with the neddylation inhibitor MLN4924 and the gefitinib-resistant PC9 cell line (PC9GR). We focused on the transcriptional effects of the top differentially expressed ncRNA biotypes and their correlating stemness factors. Interestingly, MLN4924-treated cells showed a significant upregulation of mRNAs involved in carcinogenesis, cell attachment, and differentiation pathways, as well as a parallel downregulation of stemness maintenance and survival signaling pathways, an effect that was inversely observed in PC9GR cells. Moreover, we found that stemness factor expression could be contrasted by selected up-regulated ncRNAs upon MLN4924 treatment in a dose and time-independent manner. Furthermore, upregulated miRNAs and lncRNA-targeted mRNAs showed an evident enrichment of proliferation, differentiation, and apoptosis pathways, while downregulated ncRNA-targeted mRNAs were implicated in stem cell maintenance. Finally, our results proved that stemness (KLF4 and FGFR2) and epithelial-mesenchymal transition (ZEB2, TWIST2, SNAI2, CDH2, and VIM) factors, which are highly expressed in PC9GR cells compared to gefitinib-sensitive PC9 cells, could be abrogated with the neddylation inhibitor MLN4924 mainly through activation of epithelial differentiation pathways, thus exerting a protective role in lung cancer cells and chemosensitivity against lung tumorigenic transformation.
Collapse
Affiliation(s)
- Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
- Faculty of Biotechnology, Popular and Autonomous, University of Puebla State (UPAEP), Puebla 72410, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| | - Pouya Sarvari
- Iran National Elite Foundation (INEF), Tehran 1461965381, Iran; (P.S.); (P.S.)
| | - Pourya Sarvari
- Iran National Elite Foundation (INEF), Tehran 1461965381, Iran; (P.S.); (P.S.)
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| |
Collapse
|
10
|
Chen YN, Chan YH, Shiau JP, Farooqi AA, Tang JY, Chen KL, Yen CY, Chang HW. The neddylation inhibitor MLN4924 inhibits proliferation and triggers apoptosis of oral cancer cells but not for normal cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:299-313. [PMID: 37705323 DOI: 10.1002/tox.23951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
Increased neddylation benefits the survival of several types of cancer cells. The inhibition of neddylation has the potential to exert anticancer effects but is rarely assessed in oral cancer cells. This study aimed to investigate the antiproliferation potential of a neddylation inhibitor MLN4924 (pevonedistat) for oral cancer cells. MLN4924 inhibited the cell viability of oral cancer cells more than that of normal oral cells (HGF-1) with 100% viability, that is, IC50 values of oral cancer cells (CAL 27, OC-2, and Ca9-22) are 1.8, 1.4, and 1.9 μM. MLN4924 caused apoptotic changes such as the subG1 accumulation, activation of annexin V, pancaspase, and caspases 3/8/9 of oral cancer cells at a greater rate than in normal oral cells. MLN4924 induced greater oxidative stress in oral cancer cells compared to normal cells by upregulating reactive oxygen species and mitochondrial superoxide and depleting the mitochondrial membrane potential and glutathione. In oral cancer cells, preferential inductions also occurred for DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine). Therefore, this investigation demonstrates that MLN4924 is a potential anti-oral-cancer agent showing preferential inhibition of apoptosis and promotion of DNA damage with fewer cytotoxic effects on normal cells.
Collapse
Affiliation(s)
- Yan-Ning Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsuan Chan
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Jen-Yang Tang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Liang Chen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Mamun MAA, Liu S, Zhao L, Zhao L, Li ZR, Shen D, Zheng Y, Zheng YC, Liu HM. Micafungin: A promising inhibitor of UBE2M in cancer cell growth suppression. Eur J Med Chem 2023; 260:115732. [PMID: 37651876 DOI: 10.1016/j.ejmech.2023.115732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Neddylation is a protein modification process similar to ubiquitination, carried out through a series of activating (E1), conjugating (E2), and ligating (E3) enzymes. This process has been found to be overactive in various cancers, leading to increased oncogenic activities. Ubiquitin-conjugating enzyme 2 M (UBE2M) is one of two neddylation enzymes that play a vital role in this pathway. Studies have shown that targeting UBE2M in cancer treatment is crucial, as it regulates many molecular mechanisms like DNA damage, apoptosis, and cell proliferation. However, developing small molecule inhibitors against UBE2M remains challenging due to the lack of suitable druggable pockets. We have discovered that Micafungin, an antifungal agent that inhibits the production of 1,3-β-D-glucan in fungal cell walls, acts as a neddylation inhibitor that targets UBE2M. Biochemical studies reveal that Micafungin obstructs neddylation and stabilizes UBE2M. In cellular experiments, the drug was found to interact with UBE2M, prevent neddylation, accumulate cullin ring ligases (CRLs) substrates, reduce cell survival and migration, and induce DNA damage in gastric cancer cells. This research uncovers a new anti-cancer mechanism for Micafungin, paving the way for the development of a novel class of neddylation inhibitors that target UBE2M.
Collapse
Affiliation(s)
- M A A Mamun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Shuan Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Lijie Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Lijuan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Zhong-Rui Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Dandan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Liu Y, Liu J, Peng N, Hai S, Zhang S, Zhao H, Liu W. Role of non-canonical post-translational modifications in gastrointestinal tumors. Cancer Cell Int 2023; 23:225. [PMID: 37777749 PMCID: PMC10544213 DOI: 10.1186/s12935-023-03062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins contribute to the occurrence and development of tumors. Previous studies have suggested that canonical PTMs such as ubiquitination, glycosylation, and phosphorylation are closely implicated in different aspects of gastrointestinal tumors. Recently, emerging evidence showed that non-canonical PTMs play an essential role in the carcinogenesis, metastasis and treatment of gastrointestinal tumors. Therefore, we summarized recent advances in sumoylation, neddylation, isoprenylation, succinylation and other non-canonical PTMs in gastrointestinal tumors, which comprehensively describe the mechanisms and functions of non-classical PTMs in gastrointestinal tumors. It is anticipated that targeting specific PTMs could benefit the treatment as well as improve the prognosis of gastrointestinal tumors.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
13
|
Han D, Schaffner SH, Davies JP, Benton ML, Plate L, Nordman JT. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. Proc Natl Acad Sci U S A 2023; 120:e2305092120. [PMID: 37722046 PMCID: PMC10523488 DOI: 10.1073/pnas.2305092120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3 (Bromodomain and WD repeat-containing protein 3), a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased H3K4me1 (H3 lysine 4 monomethylation) levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels but also causes a decrease in H3K4me3 (H3 lysine 4 trimethylation) levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific lysine demethylase 5 (KDM5/Lid), an enzyme that removes tri- and dimethyl marks from H3K4. Moreover, analysis of ChIP-seq (chromatin immunoprecipitation sequencing) data revealed that BRWD3 and KDM5 are significantly colocalized throughout the genome and H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.
Collapse
Affiliation(s)
- Dongsheng Han
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| | | | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
- Department of Chemistry, Vanderbilt University, Nashville, TN37212
| | - Jared T. Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| |
Collapse
|
14
|
He ZX, Yang WG, Zengyangzong D, Gao G, Zhang Q, Liu HM, Zhao W, Ma LY. Targeting cullin neddylation for cancer and fibrotic diseases. Theranostics 2023; 13:5017-5056. [PMID: 37771770 PMCID: PMC10526667 DOI: 10.7150/thno.78876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/12/2023] [Indexed: 09/30/2023] Open
Abstract
Protein neddylation is a post-translational modification, and its best recognized substrates are cullin family proteins, which are the core component of Cullin-RING ligases (CRLs). Given that most neddylation pathway proteins are overactivated in different cancers and fibrotic diseases, targeting neddylation becomes an emerging approach for the treatment of these diseases. To date, numerous neddylation inhibitors have been developed, of which MLN4924 has entered phase I/II/III clinical trials for cancer treatment, such as acute myeloid leukemia, melanoma, lymphoma and solid tumors. Here, we systematically describe the structures and biological functions of the critical enzymes in neddylation, highlight the medicinal chemistry advances in the development of neddylation inhibitors and propose the perspectives concerning targeting neddylation for cancer and fibrotic diseases.
Collapse
Affiliation(s)
- Zhang-Xu He
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei-guang Yang
- Children's hospital affiliated of Zhengzhou university; Henan children's hospital; Zhengzhou children's hospital, Henan Zhengzhou 450000, China
| | - Dan Zengyangzong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ge Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
- Key Laboratory of Cardio-cerebrovascular Drug, Henan Province, Zhumadian 463000, China
| |
Collapse
|
15
|
Fu DJ, Wang T. Targeting NEDD8-activating enzyme for cancer therapy: developments, clinical trials, challenges and future research directions. J Hematol Oncol 2023; 16:87. [PMID: 37525282 PMCID: PMC10388525 DOI: 10.1186/s13045-023-01485-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
NEDDylation, a post-translational modification through three-step enzymatic cascades, plays crucial roles in the regulation of diverse biological processes. NEDD8-activating enzyme (NAE) as the only activation enzyme in the NEDDylation modification has become an attractive target to develop anticancer drugs. To date, numerous inhibitors or agonists targeting NAE have been developed. Among them, covalent NAE inhibitors such as MLN4924 and TAS4464 currently entered into clinical trials for cancer therapy, particularly for hematological tumors. This review explains the relationships between NEDDylation and cancers, structural characteristics of NAE and multistep mechanisms of NEDD8 activation by NAE. In addition, the potential approaches to discover NAE inhibitors and detailed pharmacological mechanisms of NAE inhibitors in the clinical stage are explored in depth. Importantly, we reasonably investigate the challenges of NAE inhibitors for cancer therapy and possible development directions of NAE-targeting drugs in the future.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
16
|
Mao W, Zhang L, Rong Y, Kuang T, Wang D, Xu X, Lou W, Li J. NEDD8-Activating Enzyme Inhibitor MLN4924 Inhibits Both the Tumor Stroma and Angiogenesis in Pancreatic Cancer via Gli1 and REDD1. Dig Dis Sci 2023; 68:1351-1363. [PMID: 36098876 DOI: 10.1007/s10620-022-07671-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/12/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Pancreatic cancer is characterized by a dense desmoplasia stroma, which hinders efficient drug delivery and plays a critical role in tumor progression and metastasis. MLN4924 is a first-in-class NEDD8-activating enzyme inhibitor that exhibits anti-tumor activities toward pancreatic cancer, and given the comprehensive effects that MLN4924 could have, we ask what impact MLN4924 would have on the stroma of pancreatic cancer and its underlying mechanisms. METHODS Primary pancreatic stellate cells (PSCs) and human HMEC-1 cells were treated with MLN4924 in vitro. The proliferation and extracellular matrix protein levels of PSCs were tested, and their relationship with transcription factor Gli1 in PSCs was investigated. The angiogenic phenotypes of HMEC-1 cells were evaluated using capillary-like tube formation assay, and their relationship with REDD1 in HMEC-1 cells was investigated. RESULTS In this study, we found that MLN4924 inhibited the proliferation of pancreatic stellate cells and their secretion of collagen and CXCL-1, and the collagen secretion inhibiting effect of MLN4924 was related with transcription factor Gli1. MLN4924 inhibited multiple angiogenic phenotypes of HMEC-1 cells, and mTOR agonist partially relieved the inhibition of MLN4924 on HEMCs. MLN4924 increased the expression of REDD1 and REDD1 knockdown promoted the angiogenic phenotypes of HMEC-1 cells. CONCLUSIONS Our study suggests that MLN4924 inhibits both the tumor stroma and angiogenesis in pancreatic cancer, and the inhibition effect is related with Gli1 in pancreatic stellate cells and REDD1 in vascular endothelial cells, respectively.
Collapse
Affiliation(s)
- Weilin Mao
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yefei Rong
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tiantao Kuang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dansong Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xuefeng Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jianang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
17
|
Kamarehei F, Saidijam M, Taherkhani A. Prognostic biomarkers and molecular pathways mediating Helicobacter pylori–induced gastric cancer: a network-biology approach. Genomics Inform 2023; 21:e8. [PMID: 37037466 PMCID: PMC10085735 DOI: 10.5808/gi.22072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/02/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer of the stomach is the second most frequent cancer-related death worldwide. The survival rate of patients with gastric cancer (GC) remains fragile. There is a requirement to discover biomarkers for prognosis approaches. Helicobacter pylori in the stomach is closely associated with the progression of GC. We identified the genes associated with poor/favorable prognosis in H. pylori–induced GC. Multivariate statistical analysis was applied on the Gene Expression Omnibus (GEO) dataset GSE54397 to identify differentially expressed miRNAs (DEMs) in gastric tissues with H. pylori–induced cancer compared with the H. pylori–positive with non-cancerous tissue. A protein interaction map (PIM) was built and subjected to DEMs targets. The enriched pathways and biological processes within the PIM were identified based on substantial clusters. Thereafter, the most critical genes in the PIM were illustrated, and their prognostic impact in GC was investigated. Considering p-value less than 0.01 and |Log2 fold change| as >1, five microRNAs demonstrated significant changes among the two groups. Gene functional analysis revealed that the ubiquitination system, neddylation pathway, and ciliary process are primarily involved in H. pylori–induced GC. Survival analysis illustrated that the overexpression of DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, and TXNIP was associated with poor prognosis, while increased MRPS5 expression was related to a favorable prognosis in GC patients. DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, TXNIP, and MRPS5 may be considered prognostic biomarkers for H. pylori–induced GC. However, experimental validation is necessary in the future.
Collapse
Affiliation(s)
- Farideh Kamarehei
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
- Corresponding author E-mail:
| |
Collapse
|
18
|
Han D, Schaffner SH, Davies JP, Lauren Benton M, Plate L, Nordman JT. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534572. [PMID: 37034668 PMCID: PMC10081218 DOI: 10.1101/2023.03.28.534572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3, a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased in H3K4me1 levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels, but also causes a decrease in H3K4me3 levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific demethylase 5 (KDM5/Lid), an enzyme that removes tri- and di- methyl marks from H3K4. Moreover, analysis of ChIP-seq data revealed that BRWD3 and KDM5 are significantly co- localized throughout the genome and that sites of H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.
Collapse
Affiliation(s)
- Dongsheng Han
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37212, USA
| | - Jared T. Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
19
|
Cordes BLA, Bilger A, Kraus RJ, Ward-Shaw ET, Labott MR, Lee S, Lambert PF, Mertz JE. Drugs That Mimic Hypoxia Selectively Target EBV-Positive Gastric Cancer Cells. Cancers (Basel) 2023; 15:1846. [PMID: 36980731 PMCID: PMC10046841 DOI: 10.3390/cancers15061846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Latent infection of Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cell cancers, including 10% of gastric carcinomas. We previously reported that hypoxia inducible factor-1α (HIF-1α) induces EBV's latent-to-lytic switch and identified several HIF-1α-stabilizing drugs that induce this viral reactivation. Here, we tested three classes of these drugs for preferential killing of the EBV-positive gastric cancer AGS-Akata cell line compared to its matched EBV-negative AGS control. We observed preferential killing with iron chelators [Deferoxamine (DFO); Deferasirox (DFX)] and a prolyl hydroxylase inhibitor (BAY 85-3934 (Molidustat)), but not with a neddylation inhibitor [MLN4924 (Pevonedistat)]. DFO and DFX also induced preferential killing of the EBV-positive gastric cancer AGS-BDneo and SNU-719 cell lines. Preferential killing was enhanced when low-dose DFX (10 μM) was combined with the antiviral prodrug ganciclovir. DFO and DFX induced lytic EBV reactivation in approximately 10% of SNU-719 and 20-30% of AGS-Akata and AGS-BDneo cells. However, neither DFO nor DFX significantly induced synthesis of lytic EBV proteins in xenografts grown in NSG mice from AGS-Akata cells above the level observed in control-treated mice. Therefore, these FDA-approved iron chelators are less effective than gemcitabine at promoting EBV reactivation in vivo despite their high specificity and efficiency in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Janet E. Mertz
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (B.-l.A.C.); (A.B.); (R.J.K.); (E.T.W.-S.); (M.R.L.); (S.L.); (P.F.L.)
| |
Collapse
|
20
|
E3 ligase adaptor FBXO7 contributes to ubiquitination and proteasomal degradation of SIRT7 and promotes cell death in response to hydrogen peroxide. J Biol Chem 2023; 299:102909. [PMID: 36646384 PMCID: PMC9971319 DOI: 10.1016/j.jbc.2023.102909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative disorder of the central nervous system that affects 1% of the population over the age of 60. Although aging is one of the main risk factors for PD, the pathogenic mechanism of this disease remains unclear. Mutations in the F-box-only protein 7 (FBXO7) gene have been previously found to cause early onset autosomal recessive familial PD. FBXO7 is an adaptor protein in the SKP1-Cullin-1-F-box (SCF) E3 ligase complex that facilitates the ubiquitination of substrates. Sirtuin 7 (SIRT7) is an NAD+-dependent histone deacetylase that regulates aging and stress responses. In this study, we identified FBXO7 as a novel E3 ligase for SIRT7 that negatively regulates intracellular SIRT7 levels through SCF-dependent Lys-48-linked polyubiquitination and proteasomal degradation. Consequently, we show that FBXO7 promoted the blockade of SIRT7 deacetylase activity, causing an increase in acetylated histone 3 levels at the Lys-18 and Lys-36 residues and the repression of downstream RPS20 gene transcription. Moreover, we demonstrate that treatment with hydrogen peroxide triggered the FBXO7-mediated degradation of SIRT7, leading to mammalian cell death. In particular, the PD-linked FBXO7-R498X mutant, which reduced SCF-dependent E3 ligase activity, did not affect the stability of SIRT7. Collectively, these findings suggest that FBXO7 negatively regulates SIRT7 stability and may suppress the cytoprotective effects of SIRT7 during hydrogen peroxide-induced mammalian cell death.
Collapse
|
21
|
Ratnayeke N, Baris Y, Chung M, Yeeles JTP, Meyer T. CDT1 inhibits CMG helicase in early S phase to separate origin licensing from DNA synthesis. Mol Cell 2023; 83:26-42.e13. [PMID: 36608667 DOI: 10.1016/j.molcel.2022.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Human cells license tens of thousands of origins of replication in G1 and then must stop all licensing before DNA synthesis in S phase to prevent re-replication and genome instability that ensue when an origin is licensed on replicated DNA. However, the E3 ubiquitin ligase CRL4Cdt2 only starts to degrade the licensing factor CDT1 after origin firing, raising the question of how cells prevent re-replication before CDT1 is fully degraded. Here, using quantitative microscopy and in-vitro-reconstituted human DNA replication, we show that CDT1 inhibits DNA synthesis during an overlap period when CDT1 is still present after origin firing. CDT1 inhibits DNA synthesis by suppressing CMG helicase at replication forks, and DNA synthesis commences once CDT1 is degraded. Thus, in contrast to the prevailing model that human cells prevent re-replication by strictly separating licensing from firing, licensing and firing overlap, and cells instead separate licensing from DNA synthesis.
Collapse
Affiliation(s)
- Nalin Ratnayeke
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yasemin Baris
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph T P Yeeles
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
22
|
MEKs/ERKs-mediated FBXO1/E2Fs interaction interference modulates G 1/S cell cycle transition and cancer cell proliferation. Arch Pharm Res 2023; 46:44-58. [PMID: 36607545 DOI: 10.1007/s12272-023-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
E2F 1, 2, and 3a, (refer to as E2Fs) are a subfamily of E2F transcription factor family that play essential roles in cell-cycle progression, DNA replication, DNA repair, apoptosis, and differentiation. Although the transcriptional regulation of E2Fs has focused on pocket protein retinoblastoma protein complex, recent studies indicate that post-translational modification and stability regulation of E2Fs play key roles in diverse cellular processes. In this study, we found that FBXO1, a component of S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) complex, is an E2Fs binding partner. Furthermore, FBXO1 to E2Fs binding induced K48 ubiquitination and subsequent proteasomal degradation of E2Fs. Binding domain analysis indicated that the Arg (R)/Ile (I) and R/Val (V) motifs, which are located in the dimerization domain of E2Fs, of E2F 1 and 3a and E2F2, respectively, acted as degron motifs (DMs) for FBXO1. Notably, RI/AA or RV/AA mutation in the DMs reduced FBXO1-mediated ubiquitination and prolonged the half-lives of E2Fs. Importantly, the stabilities of E2Fs were affected by phosphorylation of threonine residues located near RI and RV residues of DMs. Phosphorylation prediction database analysis and specific inhibitor analysis revealed that MEK/ERK signaling molecules play key roles in FBXO1/E2Fs' interaction and modulate E2F protein turnover. Moreover, both elevated E2Fs protein levels by knockdown of FBXO1 and decreased E2Fs protein levels by sh-E2F3a delayed G1/S cell cycle transition, resulting in inhibition of cancer cell proliferation. These results demonstrated that FBXO1-E2Fs axis-mediated precise E2Fs stability regulation plays a key role in cell proliferation via G1/S cell cycle transition.
Collapse
|
23
|
Wu MH, Hsu WB, Chen MH, Shi CS. Inhibition of Neddylation Suppresses Osteoclast Differentiation and Function In Vitro and Alleviates Osteoporosis In Vivo. Biomedicines 2022; 10:2355. [PMID: 36289618 PMCID: PMC9598818 DOI: 10.3390/biomedicines10102355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 09/20/2023] Open
Abstract
Neddylation, or the covalent addition of NEDD8 to specific lysine residue of proteins, is a reversible posttranslational modification, which regulates numerous biological functions; however, its involvement and therapeutic significance in osteoporosis remains unknown. Our results revealed that during the soluble receptor activator of nuclear factor-κB ligand (sRANKL)-stimulated osteoclast differentiation, the neddylation and expression of UBA3, the NEDD8-activating enzyme (NAE) catalytic subunit, were dose- and time-dependently upregulated in RAW 264.7 macrophages. UBA3 knockdown for diminishing NAE activity or administering low doses of the NAE inhibitor MLN4924 significantly suppressed sRANKL-stimulated osteoclast differentiation and bone-resorbing activity in the macrophages by inhibiting sRANKL-stimulated neddylation and tumor necrosis factor receptor-associated factor 6 (TRAF6)-activated transforming growth factor-β-activated kinase 1 (TAK1) downstream signaling for diminishing nuclear factor-activated T cells c1 (NFATc1) expression. sRANKL enhanced the interaction of TRAF6 with the neddylated proteins and the polyubiquitination of TRAF6's lysine 63, which activated TAK1 downstream signaling; however, this process was inhibited by MLN4924. MLN4924 significantly reduced osteoporosis in an ovariectomy- and sRANKL-induced osteoporosis mouse model in vivo. Our novel finding was that NAE-mediated neddylation participates in RANKL-activated TRAF6-TAK1-NFATc1 signaling during osteoclast differentiation and osteoporosis, suggesting that neddylation may be a new target for treating osteoporosis.
Collapse
Affiliation(s)
- Meng-Huang Wu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Biodesign Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| | - Mei-Hsin Chen
- Sports Medicine Center, Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
- Colon and Rectal Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| |
Collapse
|
24
|
A Deep Neural Network for Gastric Cancer Prognosis Prediction Based on Biological Information Pathways. JOURNAL OF ONCOLOGY 2022; 2022:2965166. [PMID: 36117847 PMCID: PMC9481367 DOI: 10.1155/2022/2965166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Background Gastric cancer (GC) is one of the deadliest cancers in the world, with a 5-year overall survival rate of lower than 20% for patients with advanced GC. Genomic information is now frequently employed for precision cancer treatment due to the rapid advancements of high-throughput sequencing technologies. As a result, integrating multiomics data to construct predictive models for the GC patient prognosis is critical for tailored medical care. Results In this study, we integrated multiomics data to design a biological pathway-based gastric cancer sparse deep neural network (GCS-Net) by modifying the P-NET model for long-term survival prediction of GC. The GCS-Net showed higher accuracy (accuracy = 0.844), area under the curve (AUC = 0.807), and F1 score (F1 = 0.913) than traditional machine learning models. Furthermore, the GCS-Net not only enables accurate patient survival prognosis but also provides model interpretability capabilities lacking in most traditional deep neural networks to describe the complex biological process of prognosis. The GCS-Net suggested the importance of genes (UBE2C, JAK2, RAD21, CEP250, NUP210, PTPN1, CDC27, NINL, NUP188, and PLK4) and biological pathways (Mitotic Anaphase, Resolution of Sister Chromatid Cohesion, and SUMO E3 ligases) to GC, which is consistent with the results revealed in biological- and medical-related studies of GC. Conclusion The GCS-Net is an interpretable deep neural network built using biological pathway information whose structure represents a nonlinear hierarchical representation of genes and biological pathways. It can not only accurately predict the prognosis of GC patients but also suggest the importance of genes and biological pathways. The GCS-Net opens up new avenues for biological research and could be adapted for other cancer prediction and discovery activities as well.
Collapse
|
25
|
Snow A, Zeidner JF. The development of pevonedistat in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML): hope or hype? Ther Adv Hematol 2022; 13:20406207221112899. [PMID: 35898435 PMCID: PMC9310330 DOI: 10.1177/20406207221112899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disorder clinically defined by cytopenias, bone marrow failure, and an increased risk of progressing to acute myeloid leukemia (AML). Traditionally, first-line treatment for patients with higher-risk MDS has been hypomethylating agents (HMAs). However, these agents have modest clinical activity as single agents. A one-size-fits-all treatment paradigm is insufficient for such a heterogeneous disease in the modern era of precision medicine. Several new agents have been developed for MDS with the hopes of improving clinical outcomes and survival. Pevonedistat is a first-in-class, novel inhibitor of neuronal precursor cell-expressed developmentally down-regulated protein-8 (NEDD8) activating enzyme (NAE) blocking the neddylation pathway leading to downstream effects on the ubiquitin-proteosome pathway. Pevonedistat ultimately leads to apoptosis and inhibition of the cell cycle in cancer cells. Studies have demonstrated the safety profile of pevonedistat, leading to the development of multiple trials investigating combination strategies with pevonedistat in MDS and AML. In this review, we summarize the preclinical and clinical rationale for pevonedistat in MDS and AML, review the clinical data of this agent alone and in combination with HMAs to date, and highlight potential future directions for this agent in myeloid malignancies.
Collapse
Affiliation(s)
- Anson Snow
- Lineberger Comprehensive Cancer Center,
University of North Carolina School of Medicine
- Division of Hematology, Department of Medicine,
University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Joshua F. Zeidner
- Lineberger Comprehensive Cancer Center,
University of North Carolina School of Medicine
- Division of Hematology, Department of Medicine,
University of North Carolina School of Medicine, 170 Manning Drive, POB, 3rd
Floor, CB #7305, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Liu J, Chen T, Li S, Liu W, Wang P, Shang G. Targeting matrix metalloproteinases by E3 ubiquitin ligases as a way to regulate the tumor microenvironment for cancer therapy. Semin Cancer Biol 2022; 86:259-268. [PMID: 35724822 DOI: 10.1016/j.semcancer.2022.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
The tumor microenvironment (TME) plays an important role in neoplastic development. Matrix metalloproteinases (MMPs) are critically involved in tumorigenesis by modulation of the TME and degradation of the extracellular matrix (ECM) in a large variety of malignancies. Evidence has revealed that dysregulated MMPs can lead to ECM damage, the promotion of cell migration and tumor metastasis. The expression and activities of MMPs can be tightly regulated by TIMPs, multiple signaling pathways and noncoding RNAs. MMPs are also finely controlled by E3 ubiquitin ligases. The current review focuses on the molecular mechanism by which MMPs are governed by E3 ubiquitin ligases in carcinogenesis. Due to the essential role of MMPs in oncogenesis, they have been considered the attractive targets for antitumor treatment. Several strategies that target MMPs have been discovered, including the use of small-molecule inhibitors, peptides, inhibitory antibodies, natural compounds with anti-MMP activity, and RNAi therapeutics. However, these molecules have multiple disadvantages, such as poor solubility, severe side-effects and low oral bioavailability. Therefore, it is necessary to discover the novel inhibitors that suppress MMPs for cancer therapy. Here, we discuss the therapeutic potential of targeting E3 ubiquitin ligases to inhibit MMPs. We hope this review will stimulate the discovery of novel therapeutics for the MMP-targeted treatment of a variety of human cancers.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Wenjun Liu
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China
| | - Peter Wang
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
27
|
Karantzelis N, Petropoulos M, De Marco V, Egan DA, Fish A, Christodoulou E, Will DW, Lewis JD, Perrakis A, Lygerou Z, Taraviras S. Small Molecule Inhibitor Targeting CDT1/Geminin Protein Complex Promotes DNA Damage and Cell Death in Cancer Cells. Front Pharmacol 2022; 13:860682. [PMID: 35548337 PMCID: PMC9083542 DOI: 10.3389/fphar.2022.860682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/30/2022] [Indexed: 01/18/2023] Open
Abstract
DNA replication initiation requires the loading of MCM2-7 complexes at the origins of replication during G1. Replication licensing renders chromatin competent for DNA replication and its tight regulation is essential to prevent aberrant DNA replication and genomic instability. CDT1 is a critical factor of licensing and its activity is controlled by redundant mechanisms, including Geminin, a protein inhibitor of CDT1. Aberrant CDT1 and Geminin expression have been shown to promote tumorigenesis in vivo and are also evident in multiple human tumors. In this study, we developed an in vitro AlphaScreen™ high-throughput screening (HTS) assay for the identification of small-molecule inhibitors targeting the CDT1/Geminin protein complex. Biochemical characterization of the most potent compound, AF615, provided evidence of specific, dose-dependent inhibition of Geminin binding to CDT1 both in-vitro and in cells. Moreover, compound AF615 induces DNA damage, inhibits DNA synthesis and reduces viability selectively in cancer cell lines, and this effect is CDT1-dependent. Taken together, our data suggest that AF615 may serve as a useful compound to elucidate the role of CDT1/Geminin protein complex in replication licensing and origin firing as well as a scaffold for further medicinal chemistry optimisation.
Collapse
Affiliation(s)
| | - Michalis Petropoulos
- Department of General Biology, Medical School, University of Patras, Patras, Greece
| | - Valeria De Marco
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David A Egan
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Alexander Fish
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - David W Will
- Chemical Biology Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Joe D Lewis
- Chemical Biology Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anastassis Perrakis
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
28
|
Duncan ED, Han KJ, Trout MA, Prekeris R. Ubiquitylation by Rab40b/Cul5 regulates Rap2 localization and activity during cell migration. J Cell Biol 2022; 221:213068. [PMID: 35293963 PMCID: PMC8931537 DOI: 10.1083/jcb.202107114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cell migration is a complex process that involves coordinated changes in membrane transport and actin cytoskeleton dynamics. Ras-like small monomeric GTPases, such as Rap2, play a key role in regulating actin cytoskeleton dynamics and cell adhesions. However, how Rap2 function, localization, and activation are regulated during cell migration is not fully understood. We previously identified the small GTPase Rab40b as a regulator of breast cancer cell migration. Rab40b contains a suppressor of cytokine signaling (SOCS) box, which facilitates binding to Cullin5, a known E3 ubiquitin ligase component responsible for protein ubiquitylation. In this study, we show that the Rab40b/Cullin5 complex ubiquitylates Rap2. Importantly, we demonstrate that ubiquitylation regulates Rap2 activation as well as recycling of Rap2 from the endolysosomal compartment to the lamellipodia of migrating breast cancer cells. Based on these data, we propose that Rab40b/Cullin5 ubiquitylates and regulates Rap2-dependent actin dynamics at the leading edge, a process that is required for breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Emily D Duncan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Margaret A Trout
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
29
|
The Next Frontier: Translational Development of Ubiquitination, SUMOylation, and NEDDylation in Cancer. Int J Mol Sci 2022; 23:ijms23073480. [PMID: 35408841 PMCID: PMC8999128 DOI: 10.3390/ijms23073480] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023] Open
Abstract
Post-translational modifications of proteins ensure optimized cellular processes, including proteostasis, regulated signaling, cell survival, and stress adaptation to maintain a balanced homeostatic state. Abnormal post-translational modifications are associated with cellular dysfunction and the occurrence of life-threatening diseases, such as cancer and neurodegenerative diseases. Therefore, some of the frequently seen protein modifications have been used as disease markers, while others are targeted for developing specific therapies. The ubiquitin and ubiquitin-like post-translational modifiers, namely, small ubiquitin-like modifier (SUMO) and neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8), share several features, such as protein structures, enzymatic cascades mediating the conjugation process, and targeted amino acid residues. Alterations in the regulatory mechanisms lead to aberrations in biological processes during tumorigenesis, including the regulation of tumor metabolism, immunological modulation of the tumor microenvironment, and cancer stem cell stemness, besides many more. Novel insights into ubiquitin and ubiquitin-like pathways involved in cancer biology reveal a potential interplay between ubiquitination, SUMOylation, and NEDDylation. This review outlines the current understandings of the regulatory mechanisms and assay capabilities of ubiquitination, SUMOylation, and NEDDylation. It will further highlight the role of ubiquitination, SUMOylation, and NEDDylation in tumorigenesis.
Collapse
|
30
|
He X, Zhu A, Feng J, Wang X. Role of neddylation in neurological development and diseases. Biotechnol Appl Biochem 2022; 69:330-341. [PMID: 33469954 DOI: 10.1002/bab.2112] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Neddylation, a posttranslational protein modification, refers to the specific conjugation of NEDD8 to substrates, which is of great significance to various biological processes. Besides members of the cullin protein family, other key proteins can act as a substrate for neddylation modification, which remarkably influences neurodevelopment and neurodegenerative diseases. Normal levels of protein neddylation contribute to nerve growth, synapse strength, neurotransmission, and synaptic plasticity, whereas overactivation of protein neddylation pathways lead to apoptosis, autophagy of neurons, and tumorigenesis. Furthermore, impaired neddylation causes neurodegenerative diseases. These facts suggest that neddylation may be a target for treatment of these diseases. This review focuses on the current understanding of neddylation function in neurodevelopment as well as neurodegenerative diseases. Meanwhile, the recent view that different level of neddylation pathway may contribute to the opposing disease progression, such as neoplasms and Alzheimer's disease, is discussed. The review also discusses neddylation inhibitors, which are currently being tested in clinical trials. However, potential drawbacks of these drugs are noted, which may benefit the development of new pharmaceutical strategies in the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Xin He
- Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ainong Zhu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
- Affiliated Xinhui Hospital, Southern Medical University (People's Hospital of Xinhui District), Jiangmen, Guangdong, People's Republic of China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
31
|
Murer L, Volle R, Andriasyan V, Petkidis A, Gomez-Gonzalez A, Yang L, Meili N, Suomalainen M, Bauer M, Policarpo Sequeira D, Olszewski D, Georgi F, Kuttler F, Turcatti G, Greber UF. Identification of broad anti-coronavirus chemical agents for repurposing against SARS-CoV-2 and variants of concern. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2022; 3:100019. [PMID: 35072124 PMCID: PMC8760634 DOI: 10.1016/j.crviro.2022.100019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 01/18/2023]
Abstract
Endemic human coronaviruses (hCoVs) 229E and OC43 cause respiratory disease with recurrent infections, while severe acute respiratory syndrome (SARS)-CoV-2 spreads across the world with impact on health and societies. Here, we report an image-based multicycle infection procedure with α-coronavirus hCoV-229E-eGFP in an arrayed chemical library screen of 5440 clinical and preclinical compounds. Toxicity counter selection and challenge with the β-coronaviruses OC43 and SARS-CoV-2 in tissue culture and human airway epithelial explant cultures (HAEEC) identified four FDA-approved compounds with oral availability. Methylene blue (MB, used for the treatment of methemoglobinemia), Mycophenolic acid (MPA, used in organ transplantation) and the anti-fungal agent Posaconazole (POS) had the broadest anti-CoV spectrum. They inhibited the shedding of SARS-CoV-2 and variants-of-concern (alpha, beta, gamma, delta) from HAEEC in either pre- or post exposure regimens at clinically relevant concentrations. Co-treatment of cultured cells with MB and the FDA-approved SARS-CoV-2 RNA-polymerase inhibitor Remdesivir reduced the effective anti-viral concentrations of MB by 2-fold, and Remdesivir by 4 to 10-fold, indicated by BLISS independence synergy modelling. Neither MB, nor MPA, nor POS affected the cell delivery of SARS-CoV-2 or OC43 (+)sense RNA, but blocked subsequent viral RNA accumulation in cells. Unlike Remdesivir, MB, MPA or POS did not reduce the release of viral RNA in post exposure regimen, thus indicating infection inhibition at a post-replicating step as well. In summary, the data emphasize the power of unbiased, full cycle compound screens to identify and repurpose broadly acting drugs against coronaviruses.
Collapse
Affiliation(s)
- Luca Murer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Romain Volle
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Alfonso Gomez-Gonzalez
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Liliane Yang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nicole Meili
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Daniela Policarpo Sequeira
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, 1015, Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, 1015, Lausanne, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
32
|
Li JA, Rong Y, Mao W, Zhang L, Kuang T, Lou W. Gene expression profiling reveals the genomic changes caused by MLN4924 and the sensitizing effects of NAPEPLD knockdown in pancreatic cancer. Cell Cycle 2022; 21:152-171. [PMID: 34874801 PMCID: PMC8837228 DOI: 10.1080/15384101.2021.2014254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/25/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022] Open
Abstract
MLN4924 inhibits the proteolytic degradation of Cullin-Ring E3 ligase (CRL) substrates and exhibits antitumor activity toward various malignancies, including pancreatic cancer. MLN4924 suppresses tumor growth by altering various key regulator proteins; however, its impact on gene expression in tumors remains unknown. In this study, the genomic changes caused by MLN4924 in pancreatic cancer were examined by gene chip analysis and ingenuity pathway analysis. Eleven pathways were significantly altered (5 activated and 6 inhibited), 45 functions were significantly changed (21 activated and 24 inhibited), and the most activated upstream factor was predicted to be TNF. Of 691 differentially expressed genes, NAPEPLD knockdown showed synergism with MLN4924, as determined by real-time quantitative PCR and high content screening. NAPEPLD knockdown enhanced the effect of MLN4924 on inhibiting proliferation and inducing apoptosis in vitro. In a pancreatic cancer nude mouse model, MLN4924 inhibited tumor growth more significantly in the NAPEPLD knockdown group than in the control group. NAPEPLD expression was higher in pancreatic cancer tissues than in the normal pancreas but was not associated with prognosis. These findings indicate that MLN4924 causes extensive genomic changes in pancreatic cancer cells, and targeting NAPEPLD may increase the efficacy of MLN4924.
Collapse
Affiliation(s)
- Jian-Ang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yefei Rong
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weilin Mao
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiantao Kuang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Chang SC, Zhang BX, Ding JL. E2-E3 ubiquitin enzyme pairing - partnership in provoking or mitigating cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188679. [DOI: 10.1016/j.bbcan.2022.188679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
|
34
|
Liang Q, Liu M, Li J, Tong R, Hu Y, Bai L, Shi J. NAE modulators: A potential therapy for gastric carcinoma. Eur J Med Chem 2022; 231:114156. [DOI: 10.1016/j.ejmech.2022.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
35
|
Kumar A, Rani M, Mani S, Shah P, Singh DB, Kudapa H, Varshney RK. Nutritional Significance and Antioxidant-Mediated Antiaging Effects of Finger Millet: Molecular Insights and Prospects. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.684318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aging is a multifaceted process that is associated with progressive, lethal, and unalterable changes like damage to different molecules (DNA, proteins, and lipids), cells, tissues, and organs. It is an inevitable process but can be delayed by both genetic and dietary interventions. Besides aging, premature death and age-associated diseases can be dealt with diet regulation and the use of compounds that inhibit the stress responsiveness or promote the damage repair signaling pathways. Natural compounds offer a repertoire of highly diverse structural scaffolds that can offer hopeful candidate chemical entities with antiaging potential. One such source of natural compounds is millets, which are minor cereals with an abundance of high fiber, methionine, calcium, iron, polyphenols, and secondary metabolites, responsible for numerous potential health benefits. The present review article elucidates the nature and significance of different phytochemicals derived from millets with a major focus on finger millet and highlights all the important studies supporting their health benefits with special emphasis on the antiaging effect of these compounds. The present article also proposes the possible mechanisms through which millets can play a significant role in the suppression of aging processes and aging-related diseases by influencing genetic repair, protein glycation, and stress-responsive pathways. We further discuss well-established natural compounds for their use as antiaging drugs and recommend raising awareness for designing novel formulations/combinations from them so that their maximum antiaging potential can be harnessed for the benefit of mankind.
Collapse
|
36
|
Ou H, Hoffmann R, González‐López C, Doherty GJ, Korkola JE, Muñoz‐Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 2021; 15:2634-2671. [PMID: 32981205 PMCID: PMC8486596 DOI: 10.1002/1878-0261.12807] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.
Collapse
Affiliation(s)
- Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Reuben Hoffmann
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusUK
| | - James E. Korkola
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| |
Collapse
|
37
|
Wang K, Reichermeier KM, Liu X. Quantitative analyses for effects of neddylation on CRL2 VHL substrate ubiquitination and degradation. Protein Sci 2021; 30:2338-2345. [PMID: 34459035 PMCID: PMC8521307 DOI: 10.1002/pro.4176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Through catalyzing the ubiquitination of key regulatory proteins, cullin-RING ubiquitin ligases (CRLs) play essential biological roles and their activities are controlled by multiple mechanisms including neddylation, the conjugation of NEDD8 to cullins. Upon neddylation, a CRL, such as the CUL1-based CRL1, undergoes conformational changes that accelerate substrate ubiquitination. Given the structural diversity across subfamilies of CRLs and their substrates, to what extent neddylation modulates the activity of individual CRLs remains to be evaluated. Here, through reconstituting the CRL2 ubiquitination reaction in vitro, we showed that neddylation promotes CRL2VHL -dependent degradation of both full-length HIF1α and the degron peptide of HIF1α, resulting in more than 10-fold increase in the rate of substrate ubiquitination. Consistently, pevonedistat (also known as MLN4924), an inhibitor of neddylation, inhibits the degradation of HIF1α in RCC4 cells stably expressing VHL in cycloheximide chase assays. However, such inhibitory effect of pevonedistat on HIF1α degradation was not observed in HEK293 cells, which was further found to be due to CRL2VHL -independent degradation that was active in HEK293 but not RCC4 cells. After truncating HIF1α to its Carboxy-terminal Oxygen-Dependent Degradation (CODD) domain, we showed that pevonedistat inhibited the degradation of CODD and increased its half-life by six-fold in HEK293 cells. Our results demonstrate that neddylation plays a significant role in activating CRL2, and the cellular activity of CRL2VHL is better reflected by the degradation of CODD than that of HIF1α, especially under conditions where CRL2-independent degradation of HIF1α is active.
Collapse
Affiliation(s)
- Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Kurt M Reichermeier
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.,University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.,Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
38
|
Zhao H, Hu H, Chen B, Xu W, Zhao J, Huang C, Xing Y, Lv H, Nie C, Wang J, He Y, Wang SQ, Chen XB. Overview on the Role of E-Cadherin in Gastric Cancer: Dysregulation and Clinical Implications. Front Mol Biosci 2021; 8:689139. [PMID: 34422902 PMCID: PMC8371966 DOI: 10.3389/fmolb.2021.689139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer is the fifth most common cancer and the third most common cause of cancer death all over the world. E-cadherin encoded by human CDH1 gene plays important roles in tumorigenesis as well as in tumor progression, invasion and metastasis. Full-length E-cadhrin tethered on the cell membrane mainly mediates adherens junctions between cells and is involved in maintaining the normal structure of epithelial tissues. After proteolysis, the extracellular fragment of the full-length E-cadhein is released into the extracellular environment and the blood, which is called soluble E-cadherin (sE-cadherin). sE-cadherin promots invasion and metastasis as a paracrine/autocrine signaling molecule in the progression of various types of cancer including gastric cancer. This review mainly summarizes the dysregulation of E-cadherin and the regulatory roles in the progression, invasion, metastasis, and drug-resistance, as well as its clinical applications in diagnosis, prognosis, and therapeutics of gastric cancer.
Collapse
Affiliation(s)
- Huichen Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Chen Huang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yishu Xing
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yunduan He
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Xiao-Bing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
Sun X, Tong X, Hao Y, Li C, Zhang Y, Pan Y, Dai Y, Liu L, Zhang T, Zhang S. Abnormal Cullin1 neddylation-mediated p21 accumulation participates in the pathogenesis of recurrent spontaneous abortion by regulating trophoblast cell proliferation and differentiation. Mol Hum Reprod 2021; 26:327-339. [PMID: 32186736 PMCID: PMC7227182 DOI: 10.1093/molehr/gaaa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/29/2020] [Indexed: 01/07/2023] Open
Abstract
The study explores the role of neddylation in early trophoblast development and its alteration during the pathogenesis of recurrent spontaneous abortion (RSA). Immunofluorescence and western blot were conducted to evaluate the expression pattern of NEDD8 protein in the first-trimester placentas of healthy control and RSA patients. Neddylated-cullins, especially neddylated-cullin1, were downregulated and their substrate, p21, was accumulated in RSA samples. NEDD8 cytoplasmic recruitment was observed in extravillous trophoblast (EVT) progenitors of RSA placentas. Consistent with the results of clinical samples, neddylation inhibition using MLN4924 in trophoblast cell lines caused obvious p21 accumulation and free NEDD8 cytoplasmic recruitment. Further in vitro study demonstrated neddylation inhibition attenuated proliferation of Jeg-3 cells via p21 accumulation. Moreover, when trophoblast stem (TS) cells derived from first-trimester placentas were cultured for differentiation analyses. MLN4924 impaired the differentiation of TS cells towards EVTs by downregulating HLA-G and GATA3. p21 knockdown could partly rescue MLN4924-suppressed HLA-G and GATA3 expression. In conclusion, cullin1 neddylation-mediated p21 degradation is required for trophoblast proliferation and can affect trophoblast plasticity by affecting HLA-G and GATA3 expression. The results provide insights into the pathological mechanism of RSA and the biological regulation of trophoblast development.
Collapse
Affiliation(s)
- Xiaohe Sun
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yanqing Hao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Tai Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
40
|
Jones TM, Carew JS, Bauman JE, Nawrocki ST. Targeting NEDDylation as a Novel Approach to Improve the Treatment of Head and Neck Cancer. Cancers (Basel) 2021; 13:3250. [PMID: 34209641 PMCID: PMC8268527 DOI: 10.3390/cancers13133250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer is diagnosed in nearly 900,000 new patients worldwide each year. Despite this alarming number, patient outcomes, particularly for those diagnosed with late-stage and human papillomavirus (HPV)-negative disease, have only marginally improved in the last three decades. New therapeutics that target novel pathways are desperately needed. NEDDylation is a key cellular process by which NEDD8 proteins are conjugated to substrate proteins in order to modulate their function. NEDDylation is closely tied to appropriate protein degradation, particularly proteins involved in cell cycle regulation, DNA damage repair, and cellular stress response. Components of the NEDDylation pathway are frequently overexpressed or hyperactivated in many cancer types including head and neck cancer, which contribute to disease progression and drug resistance. Therefore, targeting NEDDylation could have a major impact for malignancies with alterations in the pathway, and this has already been demonstrated in preclinical studies and clinical trials. Here, we will survey the mechanisms by which aberrant NEDDylation contributes to disease pathogenesis and discuss the potential clinical implications of inhibiting NEDDylation as a novel approach for the treatment of head and neck cancer.
Collapse
Affiliation(s)
| | | | | | - Steffan T. Nawrocki
- Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (T.M.J.); (J.S.C.); (J.E.B.)
| |
Collapse
|
41
|
Shoji H, Takahari D, Hara H, Nagashima K, Adachi J, Boku N. A Phase I study of pevonedistat plus capecitabine plus oxaliplatin in patients with advanced gastric cancer refractory to platinum (NCCH-1811). Future Sci OA 2021; 7:FSO721. [PMID: 34258028 PMCID: PMC8256327 DOI: 10.2144/fsoa-2021-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Based on synergistic anti-tumor effects between blockades of NEDD8 activating enzyme and a platinum in preclinical studies, this Phase I study is designed to investigate the safety and tolerability of pevonedistat in combination with capecitabine plus oxaliplatin as third-line or later treatment in patients with unresectable advanced/recurrent gastric cancer who were previously treated with fluoropyrimidines and platinum (cisplatin or oxaliplatin) as the first-line treatment and paclitaxel (including nab-paclitaxel) as the second-line treatment. The aim of this trial is to determine the recommended dose of pevonedistat and to see its pharmacokinetics in combination with capecitabine plus oxaliplatin in the dose-finding part and explore its efficacy and safety in the expansion part. Trial registration number: jRCT2031190020 (jRCTs: the Japan Registry of Clinical Trials).
Collapse
Affiliation(s)
- Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daisuke Takahari
- Department of Gastroenterology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-550, Japan
| | - Hiroki Hara
- Department of Gastroenterology, Saitama Cancer Center, 780 Komuro, Inamachi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Jun Adachi
- Laboratory of Clinical & Analytical Chemistry, National Institute of Biomedical Innovation, Health & Nutrition, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health & Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
42
|
Mikac S, Rychłowski M, Dziadosz A, Szabelska-Beresewicz A, Fahraeus R, Hupp T, Sznarkowska A. Identification of a Stable, Non-Canonically Regulated Nrf2 Form in Lung Cancer Cells. ANTIOXIDANTS (BASEL, SWITZERLAND) 2021; 10:antiox10050786. [PMID: 34063559 PMCID: PMC8157215 DOI: 10.3390/antiox10050786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022]
Abstract
Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2) transcription factor is recognized for its pro-survival and cell protective role upon exposure to oxidative, chemical, or metabolic stresses. Nrf2 controls a number of cellular processes such as proliferation, differentiation, apoptosis, autophagy, lipid synthesis, and metabolism and glucose metabolism and is a target of activation in chronic diseases like diabetes, neurodegenerative, and inflammatory diseases. The dark side of Nrf2 is revealed when its regulation is imbalanced (e.g., via oncogene activation or mutations) and under such conditions constitutively active Nrf2 promotes cancerogenesis, metastasis, and radio- and chemoresistance. When there is no stress, Nrf2 is instantly degraded via Keap1-Cullin 3 (Cul3) pathway but despite this, cells exhibit a basal activation of Nrf2 target genes. It is yet not clear how Nrf2 maintains the expression of its targets under homeostatic conditions. Here, we found a stable 105 kDa Nrf2 form that is resistant to Keap1-Cul3-mediated degradation and translocates to the nucleus of lung cancer cells. RNA-Seq analysis indicate that it might originate from the exon 2 or exon 3-truncated transcripts. This stable 105 kDa Nrf2 form might help explain the constitutive activity of Nrf2 under normal cellular conditions.
Collapse
Affiliation(s)
- Sara Mikac
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland; (S.M.); (A.D.); (R.F.); (T.H.)
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | - Alicja Dziadosz
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland; (S.M.); (A.D.); (R.F.); (T.H.)
| | - Alicja Szabelska-Beresewicz
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego St, 60-637 Poznań, Poland;
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland; (S.M.); (A.D.); (R.F.); (T.H.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
- Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden
| | - Theodore Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland; (S.M.); (A.D.); (R.F.); (T.H.)
- Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University, Edinburgh EH14 1DJ, UK
| | - Alicja Sznarkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland; (S.M.); (A.D.); (R.F.); (T.H.)
- Correspondence:
| |
Collapse
|
43
|
Sokolova O, Naumann M. Manifold role of ubiquitin in Helicobacter pylori infection and gastric cancer. Cell Mol Life Sci 2021; 78:4765-4783. [PMID: 33825941 PMCID: PMC8195768 DOI: 10.1007/s00018-021-03816-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Infection with H. pylori induces a strong host cellular response represented by induction of a set of molecular signaling pathways, expression of proinflammatory cytokines and changes in proliferation. Chronic infection and inflammation accompanied by secretory dysfunction can result in the development of gastric metaplasia and gastric cancer. Currently, it has been determined that the regulation of many cellular processes involves ubiquitinylation of molecular effectors. The binding of ubiquitin allows the substrate to undergo a change in function, to interact within multimolecular signaling complexes and/or to be degraded. Dysregulation of the ubiquitinylation machinery contributes to several pathologies, including cancer. It is not understood in detail how H. pylori impacts the ubiquitinylation of host substrate proteins. The aim of this review is to summarize the existing literature in this field, with an emphasis on the role of E3 ubiquitin ligases in host cell homeodynamics, gastric pathophysiology and gastric cancer.
Collapse
Affiliation(s)
- Olga Sokolova
- Medical Faculty, Otto Von Guericke University, Institute of Experimental Internal Medicine, 39120 Magdeburg, Germany
| | - Michael Naumann
- Medical Faculty, Otto Von Guericke University, Institute of Experimental Internal Medicine, 39120 Magdeburg, Germany
| |
Collapse
|
44
|
Gai W, Peng Z, Liu CH, Zhang L, Jiang H. Advances in Cancer Treatment by Targeting the Neddylation Pathway. Front Cell Dev Biol 2021; 9:653882. [PMID: 33898451 PMCID: PMC8060460 DOI: 10.3389/fcell.2021.653882] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Developmental down-regulation protein 8 (NEDD8), expressed by neural progenitors, is a ubiquitin-like protein that conjugates to and regulates the biological function of its substrates. The main target of NEDD8 is cullin-RING E3 ligases. Upregulation of the neddylation pathway is closely associated with the progression of various tumors, and MLN4924, which inhibits NEDD8-activating enzyme (NAE), is a promising new antitumor compound for combination therapy. Here, we summarize the latest progress in anticancer strategies targeting the neddylation pathway and their combined applications, providing a theoretical reference for developing antitumor drugs and combination therapies.
Collapse
Affiliation(s)
- Wenbin Gai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Peixian People's Hospital, Xuzhou, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Huber RJ, Kim WD, Mathavarajah S. Inhibiting Neddylation with MLN4924 Suppresses Growth and Delays Multicellular Development in Dictyostelium discoideum. Biomolecules 2021; 11:482. [PMID: 33807046 PMCID: PMC8005062 DOI: 10.3390/biom11030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Neddylation is a post-translational modification that is essential for a variety of cellular processes and is linked to many human diseases including cancer, neurodegeneration, and autoimmune disorders. Neddylation involves the conjugation of the ubiquitin-like modifier neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target proteins, and has been studied extensively in various eukaryotes including fungi, plants, and metazoans. Here, we examine the biological processes influenced by neddylation in the social amoeba, Dictyostelium discoideum, using a well-established inhibitor of neddylation, MLN4924 (pevonedistat). NEDD8, and the target of MLN4924 inhibition, NEDD8-activating enzyme E1 (NAE1), are highly conserved in D. discoideum (Nedd8 and Nae1, respectively). Treatment of D. discoideum cells with MLN4924 increased the amount of free Nedd8, suggesting that MLN4924 inhibited neddylation. During growth, MLN4924 suppressed cell proliferation and folic acid-mediated chemotaxis. During multicellular development, MLN4924 inhibited cyclic adenosine monophosphate (cAMP)-mediated chemotaxis, delayed aggregation, and suppressed fruiting body formation. Together, these findings indicate that neddylation plays an important role in regulating cellular and developmental events during the D. discoideum life cycle and that this organism can be used as a model system to better understand the essential roles of neddylation in eukaryotes, and consequently, its involvement in human disease.
Collapse
Affiliation(s)
- Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada;
| | | |
Collapse
|
46
|
Zhou W, Li J, Lu X, Liu F, An T, Xiao X, Kuo ZC, Wu W, He Y. Derivation and Validation of a Prognostic Model for Cancer Dependency Genes Based on CRISPR-Cas9 in Gastric Adenocarcinoma. Front Oncol 2021; 11:617289. [PMID: 33732644 PMCID: PMC7959733 DOI: 10.3389/fonc.2021.617289] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
As a CRISPR-Cas9-based tool to help scientists to investigate gene functions, Cancer Dependency Map genes (CDMs) include an enormous series of loss-of-function screens based on genome-scale RNAi. These genes participate in regulating survival and growth of tumor cells, which suggests their potential as novel therapeutic targets for malignant tumors. By far, studies on the roles of CDMs in gastric adenocarcinoma (GA) are scarce and only a small fraction of CDMs have been investigated. In the present study, datasets of the differentially expressed genes (DEGs) were extracted from the TCGA-based (The Cancer Genome Atlas) GEPIA database, from which differentially expressed CDMs were determined. Functions and prognostic significance of these verified CDMs were evaluated using a series of bioinformatics methods. In all, 246 differentially expressed CDMs were determined, with 147 upregulated and 99 downregulated. Ten CDMs (ALG8, ATRIP, CCT6A, CFDP1, CINP, MED18, METTL1, ORC1, TANGO6, and PWP2) were identified to be prognosis-related and subsequently a prognosis model based on these ten CDMs was constructed. In comparison with that of patients with low risk in TCGA training, testing and GSE84437 cohort, overall survival (OS) of patients with high risk was significantly worse. It was then subsequently demonstrated that for this prognostic model, area under the ROC (receiver operating characteristic) curve was 0.771 and 0.697 for TCGA training and testing cohort respectively, justifying its reliability in predicting survival of GA patients. With the ten identified CDMs, we then constructed a nomogram to generate a clinically practical model. The regulatory networks and functions of the ten CDMs were then explored, the results of which demonstrated that as the gene significantly associated with survival of GA patients and Hazard ratio (HR), PWP2 promoted in-vitro invasion and migration of GA cell lines through the EMT signaling pathway. Therefore, in conclusion, the present study might help understand the prognostic significance and molecular functions of CDMs in GA.
Collapse
Affiliation(s)
- Wenjie Zhou
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junqing Li
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaofang Lu
- Department of Pathology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fangjie Liu
- Department of Hematology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tailai An
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xing Xiao
- Scientific Research Centre, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zi Chong Kuo
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenhui Wu
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
47
|
Song Q, Feng S, Peng W, Li A, Ma T, Yu B, Liu HM. Cullin-RING Ligases as Promising Targets for Gastric Carcinoma Treatment. Pharmacol Res 2021; 170:105493. [PMID: 33600940 DOI: 10.1016/j.phrs.2021.105493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Gastric carcinoma has serious morbidity and mortality, which seriously threats human health. The studies on gastrointestinal cell biology have shown that the ubiquitination modification that occurs after protein translation plays an essential role in the pathogenesis of gastric carcinoma. Protein ubiquitination is catalyzed by E3 ubiquitin ligase and can regulate various substrate proteins in different cellular pathways. Cullin-RING E3 ligase (CRLs) is a representative of the E3 ubiquitin ligase family, which requires cullin (CUL) neddylation modification for activation to regulate homeostasis of ~20% of cellular proteins. The substrate molecules regulated by CRLs are often involved in many cell progressions such as cell cycle progression, cell apoptosis, DNA damage and repair. Given that CRLs play an important role in modulation of biological activities, so targeting a certain CULs member neddylation may be an attractive strategy for selectively controlling the cellular proteins levels to achieve the goal of cancer treatment. In this review, we will discuss the roles of CULs and Ring protein in gastric carcinoma and summarize the current neddylation modulators for gastric carcinoma treatment.
Collapse
Affiliation(s)
- Qianqian Song
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Siqi Feng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenjun Peng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Anqi Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
48
|
The Effect of Neddylation Inhibition on Inflammation-Induced MMP9 Gene Expression in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22041716. [PMID: 33572115 PMCID: PMC7915196 DOI: 10.3390/ijms22041716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Inhibition of the protein neddylation process by the small-molecule inhibitor MLN4924 has been recently indicated as a promising direction for cancer treatment. However, the knowledge of all biological consequences of MLN4924 for cancer cells is still incomplete. Here, we report that MLN4924 inhibits tumor necrosis factor-alpha (TNF-α)-induced matrix metalloproteinase 9 (MMP9)-driven cell migration. Using real-time polymerase chain reaction (PCR) and gelatin zymography, we found that MLN4924 inhibited expression and activity of MMP9 at the messenger RNA (mRNA) and protein levels in both resting cells and cells stimulated with TNF-α, and this inhibition was closely related to impaired cell migration. We also revealed that MLN4924, similar to TNF-α, induced phosphorylation of inhibitor of nuclear factor kappa B-alpha (IκB-α). However, contrary to TNF-α, MLN4924 did not induce IκB-α degradation in treated cells. In coimmunoprecipitation experiments, nuclear IκB-α which formed complexes with nuclear factor kappa B p65 subunit (NFκB/p65) was found to be highly phosphorylated at Ser32 in the cells treated with MLN4924, but not in the cells treated with TNF-α alone. Moreover, in the presence of MLN4924, nuclear NFκB/p65 complexes were found to be enriched in c-Jun and cyclin dependent kinase inhibitor 1 A (CDKN1A/p21) proteins. In these cells, NFκB/p65 was unable to bind to the MMP9 gene promoter, which was confirmed by the chromatin immunoprecipitation (ChIP) assay. Taken together, our findings identified MLN4924 as a suppressor of TNF-α-induced MMP9-driven cell migration in esophageal squamous cell carcinoma (ESCC), likely acting by affecting the nuclear ubiquitin–proteasome system that governs NFκB/p65 complex formation and its DNA binding activity in regard to the MMP9 promoter, suggesting that inhibition of neddylation might be a new therapeutic strategy to prevent invasion/metastasis in ESCC patients.
Collapse
|
49
|
Fu DJ, Cui XX, Zhu T, Zhang YB, Hu YY, Zhang LR, Wang SH, Zhang SY. Discovery of novel indole derivatives that inhibit NEDDylation and MAPK pathways against gastric cancer MGC803 cells. Bioorg Chem 2021; 107:104634. [PMID: 33476867 DOI: 10.1016/j.bioorg.2021.104634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
A series of novel indole derivatives were synthesized and evaluated for their antiproliferative activity against three selected cancer cell lines (MGC803, EC-109 and PC-3). Among these analogues, 2-(5-methoxy-1H-indol-1-yl)-N-(4-methoxybenzyl)-N-(3,4,5-trimethoxyphenyl)acetamide (V7) showed the best inhibitory activity against MGC803 cells with an IC50 value of 1.59 μM. Cellular mechanisms elucidated that V7 inhibited colony formation, induced apoptosis and arrested cell cycle at G2/M phase. Importantly, indole analogue V7 inhibited NEDDylation pathway and MAPK pathway against MGC803 cells.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xin-Xin Cui
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Zhu
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yan-Bing Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yang-Yang Hu
- Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Li-Rong Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Hui Wang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
50
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|